
Page 1
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Behavioral VHDL
RASSP Education & Facilitation

Module 12

Version 3.00

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and
may only be used for non-commercial educational purposes. Any other use of this information without the express
written permission of the ATI is prohibited. Certain parts of this work belong to other copyright holders and are used
with their permission. All information contained, may be duplicated for non-commercial educational use only provided
this copyright notice and the copyright acknowledgements herein are included. No warranty of any kind is provided or
implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457.
Such data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction
except as follows: Certain parts of this work to other copyright holders and are used with their permission; This
information contained herein may be duplicated only for non-commercial educational use. Any vehicle, in which part or
all of this data is incorporated into, shall carry this notice .

Page 2
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Roadmap

 VHDL VHDL

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

H/W & S/W
CODESIGN

Page 3
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Goals

● Increase comprehension of behavioral VHDL
constructs

● Expand knowledge of VHDL concepts and syntax

● Assist in understanding the application of
behavioral VHDL to a real example

Page 4
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

The purpose of this module is to acquaint the student with how to define
behavioral models using VHDL.

The basics of VHDL behavioral modeling are discussed and illustrated
with examples.

Upon completion of this module, it is hoped the student has both the
knowledge and practical understanding to create efficient and useful
VHDL models at the behavioral level.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● Introduction

● Behavioral Modeling
❍ Processes
❍ Sequential statements
❍ Testbenches
❍ Subprograms
❍ Bus Resolution
❍ Blocks and Guards
❍ Packages
❍ Problems to avoid

● Examples

● Summary

Outline

Page 5
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Using VHDL, a system designer can model a circuit (i.e. a component
or system) at multiple levels of abstraction. In prior lessons, we have
concentrated on the basic elements and the structural forms of
describing models in VHDL. In this module we concentrate on the
behavioral view, i.e. describing how the circuit is to perform.

In behavioral modeling, we are vitally interested in the functionality of
the circuit and less interested in its structural composition. At the
highest levels of behavioral abstraction, we may even ignore timing.

When modeling in VHDL, it is important to follow standard practices of
software engineering. Otherwise, the model may be hard to maintain,
even by the person who wrote it. In addition, to aid the reuse of
models, even “throw-away” models should be created with care, and
with the thought that others may use it.

Typical model design and coding practices include structuring the
design, iteratively refining a high-level view of the model down to its final
form, and organizing the individual model components so that they are
loosely coupled (small number of interface signals) and have strong
cohesion (keep strongly related functions in the same architectural
body).

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● Abstraction levels of VHDL models
❍ Structural level
❍ Behavioral/structural mixed (i.e., data flow)
❍ Behavioral

● Behavioral Modeling
❍ Functional performance is the goal of behavioral

modeling
❍ Timing optionally included in the model
❍ Software engineering practices should be used to

develop behavioral models
❑ Structured design
❑ Iterative refinement
❑ Abstract data typing
❑ Loose coupling, strong cohesion

Introduction to Behavioral
Modeling in VHDL

Page 6
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example Behavioral VHDL
Model

USE TEXTIO.all, mypackage.all;

ENTITY module IS

PORT (X, Y: IN BIT; Z: out BIT_VECTOR(3 DOWNTO 0));

END module;

ARCHITECTURE behavior OF module IS

SIGNAL A, B: BIT_VECTOR(3 DOWNTO 0);

BEGIN

A(0) <= X AFTER 20 ns; A(1) <= Y AFTER 40 ns;

PROCESS (A)

VARIABLE P, Q: BIT_VECTOR(3 DOWNTO 0);

BEGIN

P := fft(A);

B <= P AFTER 10 ns;

END PROCESS;

Z <= B;

END behavior;

USE TEXTIO.all, mypackage.all;

ENTITY module IS

PORT (X, Y: IN BIT; Z: out BIT_VECTOR(3 DOWNTO 0));

END module;

ARCHITECTURE behavior OF module IS

SIGNAL A, B: BIT_VECTOR(3 DOWNTO 0);

BEGIN

A(0) <= X AFTER 20 ns; A(1) <= Y AFTER 40 ns;

PROCESS (A)

VARIABLE P, Q: BIT_VECTOR(3 DOWNTO 0);

BEGIN

P := fft(A);

B <= P AFTER 10 ns;

END PROCESS;

Z <= B;

END behavior;

This slide shows a simple example of a behavioral model. Note that the
VHDL process is a key construct in behavioral models and much of this
module is devoted to presenting VHDL features associated with
processes.

Page 7
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Behavioral Modeling

❍ Processes
❍ Sequential statements
❍ Testbenches
❍ Subprograms
❍ Bus Resolution
❍ Blocks and Guards
❍ Packages
❍ Problems to avoid

● Examples

● Summary

Page 8
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

We now turn our attention to the VHDL process statement. The process
is the key structure in behavioral VHDL modeling. A process is the only
means by which the executable functionality of a component is defined. In
fact, for a model to be capable of being simulated, all components in the
model must be defined using one or more processes.

Statements within a process are executed sequentially (although care
needs to be used in signal assignment statements since they do not take
effect immediately; this was covered in the VHDL Basics module when the
VHDL timing model was discussed). Variables are used as internal place
holders which take on their assigned values immediately.

All processes in a VHDL description are executed concurrently. That is,
although statements within a process are evaluated and executed
sequentially, all processes within the model begin executing concurrently.

In the example process given here, the variable periodic is declared and
assigned the initial condition '1'. As long as en is '1', periodic changes
value leading to a potentially new value (called a transaction) to be
scheduled for ck by the simulator. The process then suspends for one
microsecond of simulation time. The signal ck actually assumes its new
value one delta cycle after the process suspends . After the one
microsecond suspension, the process once again executes beginning with
the IF statement. Note that only variables can be declared in a process,
and signals (declared outside of a process) are used primarily for control
(e.g., en in this case), inputs into a process, or outputs from a process
(e.g., ck in this case).

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Processes

● A VHDL process statement is used for all
behavioral descriptions

● Example simple VHDL process:

ARCHITECTURE behavioral OF clock_component IS

BEGIN

 PROCESS

 VARIABLE periodic: BIT := ‘1’;

BEGIN

 IF en = ‘1’ THEN

 periodic := not periodic;

 END IF;

 ck <= periodic;

 WAIT FOR 1 us;

 END PROCESS;

END behavioral;

ARCHITECTURE behavioral OF clock_component IS

BEGIN

 PROCESS

 VARIABLE periodic: BIT := ‘1’;

BEGIN

 IF en = ‘1’ THEN

 periodic := not periodic;

 END IF;

 ck <= periodic;

 WAIT FOR 1 us;

 END PROCESS;

END behavioral;

Page 9
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

The use of process_label at the beginning and end of a process is
optional but recommended to enhance code readability.

The sensitivity_list is optional in that a process may have either a
sensitivity_list, or it must include WAIT statements. However, a process
cannot include both a sensitivity_list and WAIT statements. WAIT
statements will be covered in a subsequent section.

The process_declaration includes declarations for variables, constants,
aliases, files, and a number of other VHDL constructs.

The process_statements include variable assignment statements, signal
assignment statements, procedure calls, wait statements, if statements,
while loops, assertion statements, etc.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Process Syntax

[process_label 8] PROCESS
[(sensitivity_list)]

process_declarations

BEGIN

process_statements

END PROCESS [process_label] ;

[process_label 8] PROCESS
[(sensitivity_list)]

process_declarations

BEGIN

process_statements

END PROCESS [process_label] ;

NO
SIGNAL

DECLARATIONS!

Page 10
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

As was seen in an earlier module, a VHDL model contains an entity and
an architecture. Here the entity, which defines the model's interface to
the outside world, is shown.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Let’s Write a VHDL Model ...

ENTITY full_adder IS
PORT (A, B, Cin : IN BIT;
 Sum, Cout : OUT BIT);

END full_adder;

ENTITY full_adder IS
PORT (A, B, Cin : IN BIT;
 Sum, Cout : OUT BIT);

END full_adder;

A

B

Cin

Sum

Cout

Can we build the Full Adder’s architecture using these gates?

Page 11
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

A one-bit full adder will be used in the next few pages as an ongoing
example.

One way to describe the function of a full-bit adder is as a look-up table.
In other words, we can define every mapping of the inputs to the
outputs, and encode them as a case statement in the body of the
process. Here, the logic tables used to generate the outputs, Sum and
Cout, are shown.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Full Adder Architecture

A B Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

for Sum:
Cin (I.e. Carry In):

A B 0 1
0 0 0 1
0 1 1 0
1 1 0 1
1 0 1 0

for Cout (I.e. Carry Out):
Cin (I.e. Carry In)

A B 0 1
0 0 0 0
0 1 0 1
1 1 1 1
1 0 0 1

Page 12
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Alternatively, the Sum and Carry functions of a full-bit adder can each
be represented in VHDL with a single sequential assignment statement:

Sum <= A XOR B XOR Cin;

Carry <= A AND B OR A AND Cin OR B AND Cin;

We can represent these two functions each in separate process
statements (but both in the same architecture), as shown above, or
together in the same process statement.

In the example shown here, the sensitivity lists contain all the signals on
the right-hand side of the signal assignment statements. This allows
any change on any of the right-hand-side signals to cause an evaluation
of the VHDL statements to determine a potential new value for the
output signals.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Two Full Adder Processes

A

B

Cin

Sum

Cout

Summation:
PROCESS(A, B, Cin)
BEGIN
 Sum <= A XOR B XOR Cin;
END PROCESS Summation;

Summation:
PROCESS(A, B, Cin)
BEGIN
 Sum <= A XOR B XOR Cin;
END PROCESS Summation;

Carry:
PROCESS(A, B, Cin)
BEGIN
 Cout <= (A AND B) OR
 (A AND Cin) OR
 (B AND Cin);
END PROCESS Carry;

Carry:
PROCESS(A, B, Cin)
BEGIN
 Cout <= (A AND B) OR
 (A AND Cin) OR
 (B AND Cin);
END PROCESS Carry;

Page 13
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Now we put the entire architecture together. The two process defined
on the previous slide are placed in the same architecture. Note that the
Sum and Carry processes execute concurrently.

This model does not use explicit time (that is, there are no AFTER
phrases or “wait for” statements. Thus, this model is purely functional.
If timing is important, delay phrases (i.e., AFTER clauses) can be added
to the signal assignment statements, or “WAIT FOR” statements can be
added in the processes.

Note that if wait statements are used in a process, the process cannot
have a sensitivity list.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Complete Architecture

ARCHITECTURE example OF full_adder IS
 -- Nothing needed in declarative block...
BEGIN

 Summation: PROCESS(A, B, Cin)
 BEGIN
 Sum <= A XOR B XOR Cin;
 END PROCESS Summation;

 Carry: PROCESS(A, B, Cin)
 BEGIN
 Cout <= (A AND B) OR
 (A AND Cin) OR
 (B AND Cin);
 END PROCESS Carry;

END example;

ARCHITECTURE example OF full_adder IS
 -- Nothing needed in declarative block...
BEGIN

 Summation: PROCESS(A, B, Cin)
 BEGIN
 Sum <= A XOR B XOR Cin;
 END PROCESS Summation;

 Carry: PROCESS(A, B, Cin)
 BEGIN
 Cout <= (A AND B) OR
 (A AND Cin) OR
 (B AND Cin);
 END PROCESS Carry;

END example;

Page 14
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Alternatively, the Carry output could have been described using
programming language constructs instead of the logic equations shown
previously. Here, a set of nested if-then-else statements is used to
implement the table lookup method. A case statement could also be
used.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Alternate Carry Process

 Carry: PROCESS(A, B, Cin)
 BEGIN

IF (A = ‘1’ AND B = ‘1’) THEN
 Cout <= ‘1’;
 ELSIF (A = ‘1’ AND Cin = ‘1’)
THEN
 Cout < = ‘1’;
 ELSIF (B = ‘1’ AND Cin = ‘1’)
THEN
 Cout <= ‘1’;
 ELSE
 Cout <= ‘0’;
 END IF;
 END PROCESS Carry;

 Carry: PROCESS(A, B, Cin)
 BEGIN

IF (A = ‘1’ AND B = ‘1’) THEN
 Cout <= ‘1’;
 ELSIF (A = ‘1’ AND Cin = ‘1’)
THEN
 Cout < = ‘1’;
 ELSIF (B = ‘1’ AND Cin = ‘1’)
THEN
 Cout <= ‘1’;
 ELSE
 Cout <= ‘0’;
 END IF;
 END PROCESS Carry;

Page 15
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Sequential statements are used within processes and are executed in a
top-down fashion. The illustrative (but incomplete) list shown on this
page includes many of the commonly used forms. The VHDL
Language Reference Manual provides a complete list.

Many of these statement types will be explained in further sections of
this module. Some of you may note that these control structures
operate almost exactly like their counterparts in Ada except for the
assert and sequential signal assignment statements.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Sequential Statements

● Assignments executed sequentially in processes
● Sequential statements

❍ {Signal, variable} assignments
❍ Flow control

❑ IF <condition> THEN <statements> [ELSIF <statements]
[ELSE <statements>] END IF;

❑ FOR <range> LOOP <statements> END LOOP;
❑ WHILE <condition> LOOP <statements> END LOOP;
❑ CASE <condition> IS WHEN <value> => <statements>

{WHEN <value> => <statements>}
[WHEN others => <statements>]

END CASE;
❍ WAIT [ON <signal>] [UNTIL <expression>] [FOR <time>] ;
❍ ASSERT <condition> [REPORT <string>] [SEVERITY <level>] ;

Page 16
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

In this example, we show a model for a simple 2-bit counter which
counts clock pulses. The component has clock as an input, and two
outputs which represent the LSB and MSB of a two-bit unsigned
number.

Several of the constructs used above have not been shown before in
this series of educational modules. For example, bit'val(count_value
mod 2) is a function which returns a value of type bit; count_value is a
natural number (i.e., an integer greater than, or equal to, zero);
count_value mod 2 returns the LSB value of the counter value; but the
LSB value is of type natural. Since we want the LSB to be of type bit
instead, we cast it by using the 'val (read as "tic val") attribute on the
type bit.

Also note the use of the generic parameter used to facilitate the
assignment of delays in the signal assignment statements.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP A Design Example
2-bit Counter

ENTITY count2 IS
GENERIC(prop_delay : TIME := 10 ns);
PORT (clock : IN BIT;

q1, q0: OUT BIT);
END count2;

ARCHITECTURE behavior OF count2 IS
BEGIN

count_up: PROCESS (clock)
VARIABLE count_value: NATURAL := 0;

BEGIN
IF clock='1' THEN

count_value := (count_value+1) MOD 4;
q0 <= bit'val(count_value MOD 2) AFTER prop_delay;
q1 <= bit'val(count_value/2) AFTER prop_delay;

END IF;
END PROCESS count_up;

END behavior;

ENTITY count2 IS
GENERIC(prop_delay : TIME := 10 ns);
PORT (clock : IN BIT;

q1, q0: OUT BIT);
END count2;

ARCHITECTURE behavior OF count2 IS
BEGIN

count_up: PROCESS (clock)
VARIABLE count_value: NATURAL := 0;

BEGIN
IF clock='1' THEN

count_value := (count_value+1) MOD 4;
q0 <= bit'val(count_value MOD 2) AFTER prop_delay;
q1 <= bit'val(count_value/2) AFTER prop_delay;

END IF;
END PROCESS count_up;

END behavior;

Page 17
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Wait statements are used to suspend the execution of a process until some
condition is satisfied. Processes in VHDL are actually code loops. The execution
of the last statement in the process is followed by the execution of the first
statement in the process, and process execution continues until a wait statement is
reached. For this reason, every process must have at least one wait statement (a
sensitivity list is actually an implied wait statement which will be described in the
next page of this module).

The structure of a wait statement contains optional clauses which can be used in
any combination:

The sensitivity_clause: the wait statement will only evaluate its condition clause
when there is an event (i.e. a change in value) on at least one of the signals listed
in the sensitivity_clause. If no sensitivity_clause is given, the signals listed in the
condition_clause constitute an implied sensitivity_clause.

The condition_clause: an expression which must evaluate to TRUE in order for the
process to proceed past the wait statement. If no condition_clause is given, a
TRUE value is implied when there is an event on a signal in the sensitivity_clause.

The timeout_clause: specifies the maximum amount of time the process will
remain suspended at this wait statement. If no timeout_clause is given,
[STD.STANDARD.TIME'HIGH-STD.STANDARD.NOW] (effectively until the end of
simulation time) is assumed.

Wait statements assist the modeling process by synchronizing concurrently
executing processes, implementing delay conditions in a behavioral model, and
establishing event communications between processes. Sometimes, wait
statements are used to sequence process execution relative to the simulation
cycle.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Wait Statement

● The wait statement causes the suspension of a process
statement or a procedure

● wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

❍ sensitivity_clause ::= ON signal_name { , signal_name }

WAIT ON clock;

❍ condition_clause ::= UNTIL boolean_expression

WAIT UNTIL clock = ‘1’;

❍ timeout_clause ::= FOR time_expression

WAIT FOR 150 ns;

Page 18
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

A process with a sensitivity list, as shown in the process on the left, is
implemented as a process with a “WAIT ON sensitivity_list” as its last
statement (as shown in the process on the right). This allows every
process with a sensitivity list to execute once at the beginning of a
simulation and suspend at the bottom waiting for a relevant signal event
to occur. Note that the VHDL standard prohibits the use of both
process sensitivity lists and wait statements within the same process.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Equivalent Processes

● “Sensitivity List” vs “wait on”

Summation:

 PROCESS(A, B, Cin)

 BEGIN

 Sum <= A XOR B XOR
Cin;

END PROCESS Summation;

Summation:

 PROCESS(A, B, Cin)

 BEGIN

 Sum <= A XOR B XOR
Cin;

END PROCESS Summation;

Summation: PROCESS

 BEGIN

 Sum <= A XOR B XOR Cin;

 WAIT ON A, B, Cin;

END PROCESS Summation;

Summation: PROCESS

 BEGIN

 Sum <= A XOR B XOR Cin;

 WAIT ON A, B, Cin;

END PROCESS Summation;

=

if you put a sensitivity list in a process,
you can’t have a wait statement!

if you put a wait statement in a process,
you can’t have a sensitivity list!

Page 19
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

The first process above executes once at the beginning of the VHDL
simulation and then suspends until the input A is assigned a value of ‘1’
before it executes again. This cycle continues in that the process
executes every time A is assigned a value of ‘1’. Note that if A has been
established at '1' before the WAIT command is executed, the WAIT
command will wait forever.

The second process also executes once at the beginning of the VHDL
simulation, but it then waits for 100ns of simulation time and executes
again. This cycle continues with the process executing every 100ns of
simulation time.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
“wait until” and “wait for”

● What do these do?

Summation: PROCESS

 BEGIN

 Sum <= A XOR B XOR Cin;

 WAIT UNTIL A = ‘1’;

END PROCESS Summation;

Summation: PROCESS

 BEGIN

 Sum <= A XOR B XOR Cin;

 WAIT UNTIL A = ‘1’;

END PROCESS Summation;

Summation: PROCESS

 BEGIN

 Sum <= A XOR B XOR Cin;

 WAIT FOR 100 ns;

END PROCESS Summation;

Summation: PROCESS

 BEGIN

 Sum <= A XOR B XOR Cin;

 WAIT FOR 100 ns;

END PROCESS Summation;

Page 20
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

We show here how wait statements can be used to synchronize the
execution of the process, and also how to sensitize a process to signal
changes in another.

In this example, the process does not execute until TheirSignal changes
value. Then we schedule a transaction to ‘1’ on OurSignal and wait for
10 ns. Note, however, that since there is no AFTER clause in the
assignment for OurSignal, it will assume its new value in one delta
cycle.

After waiting 10 ns, DoSomething assigns a value of '0' to OurSignal;
Again, OurSignal will actually take on the new value after one delta
cycle. Execution of DoSomething is then suspended until TheirSignal
becomes '1'. When execution resumes, OurSignal is set to '1' and the
process immediately repeats from the top.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Mix and Match

● Within an architecture we have two signals and
the following process

DoSomething: PROCESS

 BEGIN

WAIT ON TheirSignal;

 OurSignal <= ‘1’;

 WAIT FOR 10 ns;

 OurSignal <= ‘0’;

 WAIT UNTIL (TheirSignal = ‘1’);

 OurSignal <= ‘1’;

END PROCESS DoSomething;

DoSomething: PROCESS

 BEGIN

WAIT ON TheirSignal;

 OurSignal <= ‘1’;

 WAIT FOR 10 ns;

 OurSignal <= ‘0’;

 WAIT UNTIL (TheirSignal = ‘1’);

 OurSignal <= ‘1’;

END PROCESS DoSomething;

Page 21
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Testbenches

● Testbench is the system’s top level component
❍ Its entity declaration does not contain any PORT signals
❍ It instantiates all the necessary components that

comprise the system

● Testbenches may serve three additional useful
purposes:

❍ May generate stimulus for simulation:
❑ Behavioral descriptions can be used to generate

input vectors
❍ May apply stimulus to the entity under test

❑ Locally declared signals can be connected to
PORTS of components in the system

❍ May compare output responses with expected values
❑ Behavioral descriptions can be used to compare

model outputs to expected responses

The testbench is the self-contained top level component in the system
hierarchy, Therefore, it does not have any I/O pins (I.e., there are no
PORT signals in its entity).

In addition to instantiating the necessary components necessary to
describe the system, a testbench may contain a behavioral VHDL
description which may be used to generate stimulus patterns to the
system as well as expected results which can then be compared with
the outputs of the system’s subcomponents.

It should be noted that many modern VHDL simulators provide versatile
mechanisms for forcing or driving a VHDL model’s PORT signals via
simulation scripts and such, thus making the use of testbenches often
unnecessary

Page 22
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Testbenches (Cont.)

● Incomplete example of a testbench:

ENTITY testbench IS
-- no PORT statement necessary
END testbench;

ARCHITECTURE example IS testbench
COMPONENT entity_under_test
PORT(...)

END COMPONENT;
BEGIN
Generate_waveforms_for_test;
Instantiate_component;
Monitoring_statements;

END example;

ENTITY testbench IS
-- no PORT statement necessary
END testbench;

ARCHITECTURE example IS testbench
COMPONENT entity_under_test
PORT(...)

END COMPONENT;
BEGIN
Generate_waveforms_for_test;
Instantiate_component;
Monitoring_statements;

END example;

Page 23
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Because VHDL is a rich language, there are several ways to say the
same thing. This example illustrates how the concurrent VHDL
statements shown on the left side (as procedure calls, actually) are
equivalent to the one-statement processes shown on the right. Note
that the “sensitivity list” for a process is functionally equivalent to a “wait
on” statement at then end of the process (e.g. the process for
MakeClock on the right).

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Freedom of Expression

ARCHITECTURE example
OF testbench IS

 .
 .
BEGIN

 MakeReset(ResetSignal,
 100 ns);

 MakeClock(ClockSignal,
 10 ns);

 .

END example;

PROCESS (ResetSignal)
BEGIN
 MakeReset(ResetSignal,

 100 ns);
END PROCESS;

PROCESS (ResetSignal)
BEGIN
 MakeReset(ResetSignal,

 100 ns);
END PROCESS;

PROCESS
BEGIN
 MakeClock(ClockSignal,

 10 ns);
 WAIT ON ClockSignal;
END PROCESS;

PROCESS
BEGIN
 MakeClock(ClockSignal,

 10 ns);
 WAIT ON ClockSignal;
END PROCESS;

Page 24
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

As in the previous page, we see that the concurrent signal assignment
statements on the right can be described using one-statement
processes as seen on the left.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Freedom of Expression (Cont.)

ARCHITECTURE example OF
full_adder IS

BEGIN
 Summation: PROCESS(A, B, Cin)
 BEGIN
 Sum <= A XOR B XOR Cin;
 END PROCESS Summation;

 Carry: PROCESS(A, B, Cin)
 BEGIN
 Cout <= (A AND B) OR
 (A AND Cin) OR
 (B AND Cin);
 END PROCESS Carry;
END example;

ARCHITECTURE example OF
full_adder IS

BEGIN

 Sum <= A XOR B XOR Cin;

 Cout <= (A AND B) OR
 (A AND Cin) OR
 (B AND Cin);
END example;

Page 25
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

The structure of signal assignment statements allows some flexibility.
However, the signal type of the result on the right hand side must match
the type of the signal being assigned. This is illustrated in the first two
signal assignment statements.

The third assignment shows the use of a single after clause used to
control how much simulation time must pass before the assigned signal
takes on its new value.

As seen in the fourth example, multiple assignments can be made in a
single statements by separating them with commas. This sequence of
assignments is called a "waveform".

If a signal assignment statement has no after clause, a clause
equivalent to "after 1 delta cycle" is implied. Delta cycles are key to the
VHDL timing model and have been previously discussed in the Basic
VHDL module.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

ARCHITECTURE stuff OF my_entity IS
SIGNAL ThisBit : BIT;
 SIGNAL ThisBitVector : BIT_VECTOR(1 TO
5);
 SIGNAL ThisInteger : INTEGER;
 SIGNAL ThisString : STRING(1 TO 4);
BEGIN

ThisBit <= ‘1’;
 ThisBitVector <= “10010”;
 ThisInteger <= 567 AFTER 10 ns;
 ThisString <= “VHDL” AFTER 10 ns,
 “ is ” AFTER 20 ns,
 “fun!” AFTER 30 ns;
END stuff;

ARCHITECTURE stuff OF my_entity IS
SIGNAL ThisBit : BIT;
 SIGNAL ThisBitVector : BIT_VECTOR(1 TO
5);
 SIGNAL ThisInteger : INTEGER;
 SIGNAL ThisString : STRING(1 TO 4);
BEGIN

ThisBit <= ‘1’;
 ThisBitVector <= “10010”;
 ThisInteger <= 567 AFTER 10 ns;
 ThisString <= “VHDL” AFTER 10 ns,
 “ is ” AFTER 20 ns,
 “fun!” AFTER 30 ns;
END stuff;

Signal Assignment Statements

Page 26
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Note that in the example on the left, a 20ns pulse on A would initially
result in an assignment to C to be scheduled 25ns in the future as a
result of the first transition on A. However, the second transition on A
(defining the 20ns pulse) would schedule a second transition on C such
that C would then itself show a 20 ns pulse. This leads to both the
assignments to A being suppressed so that the inertial timing
requirements are satisfied.

Since the example on the right explicitly calls for a transport delay
(inertial delay is the default if neither form is specified), a 20ns pulse on
C is allowed even when the NAND gate has a 25ns propagation delay.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Inertial vs Transport Delays

A
B

C

ENTITY nand2 IS
 PORT(A, B : IN BIT; C : OUT
BIT);
END nand2;

ARCHITECTURE behavior OF nand2 IS
BEGIN
 C <= NOT(A AND B) AFTER 25 ns;
END behavior;

ENTITY nand2 IS
 PORT(A, B : IN BIT; C : OUT
BIT);
END nand2;

ARCHITECTURE behavior OF nand2 IS
BEGIN
 C <= NOT(A AND B) AFTER 25 ns;
END behavior;

ENTITY nand2 IS
 PORT(A, B : IN BIT; C : OUT BIT);
END nand2;

ARCHITECTURE behavior OF nand2 IS
BEGIN
 C <= TRANSPORT NOT(A AND B)

 AFTER 25 ns;
END behavior;

ENTITY nand2 IS
 PORT(A, B : IN BIT; C : OUT BIT);
END nand2;

ARCHITECTURE behavior OF nand2 IS
BEGIN
 C <= TRANSPORT NOT(A AND B)

 AFTER 25 ns;
END behavior;

Inertial Timing

Transport Timing

Page 27
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Subprograms in VHDL are in the form of functions and procedures.
Functions return a value and can be used in signal and variable
assignment statements:

 e.g. A <= abs(-1); -- where abs() returns absolute value

Procedures, on the other hand, do not have return values but can
manipulate the signals or variables passed to them as parameters:

 e.g. absolute(A);

absolute() here is a procedure that directly assigns A its absolute value

The use of functions and procedures enables code compaction,
enhances readability, and supports hierarchy by allowing code
sequences that are used frequently to be defined and subsequently
reused easily.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Subprograms

● Similar to subprograms found in other languages

● Allow repeatedly used code to be referenced
multiple times without rewriting

● Break down large blocks of code into small, more
manageable parts

● VHDL provides functions and procedures

Page 28
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Functions must have a return value and a return statement and cannot
modify the parameters passed to them. They are called in statements
where a value is needed (e.g. assignment statements, conditional
tests). Note that only one value can be returned by a function call.

A function can have multiple return statements; the simulator will exit
the function when it encounters the first return statement in the
execution of the function.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Functions

● Produce a single return value
● Called by expressions
● Cannot modify the parameters passed to them
● Require a RETURN statement

FUNCTION add_bits2 (a, b : IN BIT) RETURN BIT IS
 VARIABLE result : BIT; -- variable is local to function
BEGIN
result := (a XOR b);
RETURN result; -- the two functions are equivalent

END add_bits2;

FUNCTION add_bits2 (a, b : IN BIT) RETURN BIT IS
 VARIABLE result : BIT; -- variable is local to function
BEGIN
result := (a XOR b);
RETURN result; -- the two functions are equivalent

END add_bits2;

FUNCTION add_bits (a, b : IN BIT) RETURN BIT IS
BEGIN -- functions cannot return multiple values

RETURN (a XOR b);
END add_bits;

FUNCTION add_bits (a, b : IN BIT) RETURN BIT IS
BEGIN -- functions cannot return multiple values

RETURN (a XOR b);
END add_bits;

Page 29
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This example illustrates the use of a function call in a signal assignment
statement where the value returned by the function add_bits() is
assigned to the signal result. Also note that the parameters passed to
the function during the call are associated either by position (as in the
example above) or by name. In this example, x is associated with
parameter a, and y is associated with parameter b.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Functions

● Functions must be called by other statements
● Parameters use positional association

ARCHITECTURE behavior OF adder IS
BEGIN
PROCESS (enable, x, y)
BEGIN
IF (enable = '1') THEN
result <= add_bits(x, y);
carry <= x AND y;

ELSE
carry, result <= '0';

END PROCESS;
END behavior;

FUNCTION add_bits

(a, b : IN BIT)

Page 30
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Unlike functions, procedures may modify multiple signals and variables
in a single call. Procedures can operate on their parameters and are
able to make assignments to signals and variables in their parameter
lists that are of mode OUT or INOUT. A procedure call, therefore, is
itself a complete VHDL statement.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Procedures

● May produce multiple output values
● Are invoked by statements
● May modify the parameters

PROCEDURE add_bits3 (SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- procedures can return multiple values
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;

PROCEDURE add_bits3 (SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- procedures can return multiple values
temp_result <= (a XOR b) AND en;
temp_carry <= a AND b AND en;

END add_bits3;

● Do not require a RETURN statement

Page 31
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Parameter types and modes must be compatible with the signals in the
parameter list during a procedure call.

Actually, procedure overloading is achieved by defining multiple
procedures (or functions, for that matter) with different parameter types
to distinguish among them in procedure (or function) calls.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Procedures (Cont.)

● With parameter
passing, it is possible
to further simplify the
architecture

ARCHITECTURE behavior OF adder IS
BEGIN
PROCESS (enable, x, y)
BEGIN
add_bits3(x, y, enable,
 result, carry);
END PROCESS;

END behavior;

PROCEDURE add_bits3

(SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result,
 temp_carry : OUT BIT)

● The parameters must
be compatible in
terms of data flow
and data type

Page 32
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

A Bus Resolution Function (BRF) is used to determine the value of a
signal that has two or more simultaneously active drivers. Each active
driver provides an input to the BRF, and the BRF calculates the single
value that will be read by any process using the signal as an input.

The input to the BRF is an array which includes all the active signal
drivers. This input array is constructed and maintained implicitly by the
simulator.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Signal Resolution and Buses

Bus Resolution Function

OR

AND

Execution phase Signal update phase

Resolved
signal

Transaction queue

Page 33
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Each concurrent signal assignment statement or process has a driver
for any signal being assigned. Special care must be used when
multiple concurrent signal assignment statements and/or processes
drives the same signal.

Note that multiple signal assignment statements within the same
process (i.e. sequential signal assignment statements) are allowed
because they are executed sequentially and all use the one signal
driver of their process.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Bus Resolution
Smoke Generator

● VHDL does not allow multiple concurrent signal
assignments to an unresolved signal

❍ Multiple sequential signal assignments are allowed

LIBRARY attlib; USE attlib.att_mvl.ALL;
-- this code will generate an error
ENTITY bus IS
PORT (a, b, c : IN MVL; z : OUT MVL);

END bus;

ARCHITECTURE smoke_generator OF bus IS
SIGNAL circuit_node : MVL;

BEGIN
circuit_node <= a;
circuit_node <= b;
circuit_node <= c;
z <= circuit_node;

END smoke_generator;

LIBRARY attlib; USE attlib.att_mvl.ALL;
-- this code will generate an error
ENTITY bus IS
PORT (a, b, c : IN MVL; z : OUT MVL);

END bus;

ARCHITECTURE smoke_generator OF bus IS
SIGNAL circuit_node : MVL;

BEGIN
circuit_node <= a;
circuit_node <= b;
circuit_node <= c;
z <= circuit_node;

END smoke_generator;

Page 34
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

To review, bus resolution functions are used to determine the value
assigned to a signal connected to two or more active drivers. The input
to the bus resolution function is a VHDL simulator-generated array of
the active drivers to the signal in question. The user-defined bus
resolution function can use this array of drivers to determine what value
the signal will have at all ports where it will be read. Examples include
wired-or and wired-and functions, but the user may define much more
sophisticated abstract functions based on user-defined status fields,
etc.

Note that Bus Resolution Functions are ordinary functions except for
the fact that they are called implicitly by the simulator rather than
explicitly by the VHDL programmer. Also note that the input is an array
of signals each of which is the same type as the returned signal.

Each process that makes an assignment to a particular signal is a driver
of that signal. Note that concurrent signal assignment statements are
equivalent to one line processes; thus, no two concurrent signal
assignment statements may make assignments to the same signal
without a bus resolution function.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Bus Resolution Functions

● Are used to determine the assigned value when
there are multiple signal drivers to the same signal

FUNCTION wired_and (drivers : MVL_VECTOR) RETURN MVL IS
VARIABLE accumulate : MVL := '1';

BEGIN
FOR i IN drivers'RANGE LOOP
accumulate := accumulate AND drivers(i);

END LOOP;
RETURN accumulate;

END wired_and;

FUNCTION wired_and (drivers : MVL_VECTOR) RETURN MVL IS
VARIABLE accumulate : MVL := '1';

BEGIN
FOR i IN drivers'RANGE LOOP
accumulate := accumulate AND drivers(i);

END LOOP;
RETURN accumulate;

END wired_and;

● Bus resolution functions may be user defined or
called from a package

Page 35
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Because the the BRF wired_and is associated with the signal
circuit_node above, the VHDL simulator can use the BRF to determine
the value to assign to circuit_node even though it has multiple active
drivers.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Bus Resolution
Smoke Generator Fixed

● A signal which has a bus resolution function
associated with it may have multiple drivers

LIBRARY attlib; USE attlib.att_mvl.ALL;
USE WORK.bus_resolution.ALL;

ENTITY bus IS
PORT (a, b, c : IN MVL; z : OUT MVL);

END bus;

ARCHITECTURE fixed OF bus IS
SIGNAL circuit_node : wired_and MVL;

BEGIN
circuit_node <= a;
circuit_node <= b;
circuit_node <= c;
z <= circuit_node;

END fixed;

Page 36
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

A NULL transaction is used to deactivate a signal driver. This is
analogous to putting a tri-state driver in a high-impedance state. In such
a case, the value of the signal is determined by the other active
driver(s). Of course, if there is more than one active driver at any one
time, a Bus Resolution Function would be needed.

There are two actions that can take place if all drivers of a signal are
disconnected:

 1. Use the last known value

 2. Require that a bus resolution function specify a value

The keyword REGISTER is used if the last known value action is
desired, and the keyword BUS is used if a bus resolution function must
specify a value. The action to be used is established when the signal is
declared.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Null Transactions

● How can a driver be disconnected (i.e. not
influence the output at all)?

❍ Use the null waveform element

● Example
bus_out <= NULL AFTER 17 ns;

● What happens if all drivers of a resolved signal
are disconnected?

❍ Use register kind in signal declaration to keep most
recently determined value

❍ Use bus kind in signal declaration if resolution function
will determine the value

● Example
signal t : wired_bus BUS;

signal u : BIT REGISTER;

Page 37
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

An entity can contain passive statements to perform actions such as
timing or validity checks at the interface of a component. Assertion
statements in an entity, for example, may be used to check that setup
and hold requirements are satisfied.

A passive statement is one which does not change the state of the
system being simulated. For example, the execution of a passive
statement does not lead to any signal assignments.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Entity Statements

● Entities may contain statements, but they can
only be :
❍ Concurrent assertion statements
❍ Passive concurrent procedure calls
❍ Passive process statements

● Example :
ENTITY multiplexor IS

PORT (a, b: IN BIT; select: IN BIT;
 output: OUT BIT);

BEGIN
check: PROCESS(a, b)
BEGIN

ASSERT NOT(a=b) REPORT “a equals b”
 SEVERITY NOTE;
END PROCESS;

 END multiplexor;

Page 38
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Blocks may be used to define a partitioning and a hierarchy within a
design and to group together signal assignments and other concurrent
statements which may share some common locally declared objects.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Blocks and Guards

● Blocks are concurrent statements and provide a
mechanism to partition an architecture
description

❍ Items declared in declarative region of block are visible
only inside the block, e.g. :

❑ signals, subprograms

● Blocks may be nested to define a hierarchical
partitioning of the architectural description

Page 39
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

A conditional GUARD can be included in the BLOCK declaration. If
such a GUARD expression exists, then any signal assignment
statement in the block which has the keyword GUARDED will
disconnect the corresponding signal driver if the GUARD expression
evaluates to false. This is one mechanism which can be used to
guarantee that there `e only one active driver on any signal at any one
time.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Blocks and Guards

● Unique to blocks is the GUARD construct
❍ A guarded signal assignment statement schedules an

assignment to the signal driver only if the GUARD
expression is true. If the GUARD is false, the
corresponding signal drivers are disconnected

❍ Example

ARCHITECTURE guarded_assignments OF n_1_mux IS
BEGIN
 bi: FOR j IN i’RANGE GENERATE
 bj: BLOCK (s(j)=‘1’ OR s(j)=‘Z’)

BEGIN
 x <= GUARDED i(j);
END BLOCK;

 END GENERATE;
END guarded_assignments

Page 40
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL packages are collections of reusable declarations and
descriptions of VHDL types, subtypes, subprograms, aliases, constants,
attributes, components, etc.

The declaration section of a package contains declaration statement for
all the elements in the package. For several elements (e.g. TYPE
definitions), the declaration is all that is needed. For some elements,
however (e.g. subprograms), a functional description is also needed.
This additional information is placed in the body section of the package.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Packages

● Packages encapsulate elements that can be
globally shared among two or more design units

● A package consists of two parts

Declaration

Body

Declarations for all
elements contained
in the package

Necessary definitions
for certain objects in
package declaration,
e.g. subprogram
descriptions

Page 41
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide lists many of the VHDL constructs frequently included in
packages. The contents of a package are made available to other
VHDL descriptions (i.e. other packages, entities, and architectures) by
way of USE clauses that are analogous to the INCLUDE statements of
other programming languages.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Packages

● Example package contents include:
❍ Subprograms (i.e. functions and procedures)
❍ Data and type declarations such as

❑ User record definitions
❑ User types and enumerated types
❑ Constants
❑ Files
❑ Aliases
❑ Attributes

❍ Component declarations

● Entities and Architectures cannot be declared or
defined in a package

● To use a package, it must be made visible via the
use construct

Page 42
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Interestingly, even though VHDL is considered to be strongly typed, the
developers of the language decided to stpongly type only with respect
to the base type, not derived subtypes.

Thus, the VHDL analyzer will not be aware of inconsistent subtypes in
the example shown here, and the simulator will execute the statements
as expected. Note, however, that the result after multiplying A and B
may be out of the range of B's subtype resulting in a runtime subtype
range violation.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Potential Problems to Avoid

● Objects defined by subtypes derived from a base
type are considered to be of the same type

❍ Example

PROCESS

 SUBTYPE smallintA IS INTEGER RANGE 0 TO 10;

 SUBTYPE smallintB IS INTEGER RANGE 0 TO 15;

 VARIABLE A: smallintA := 5;

VARIABLE B: smallintB := 8;

VARIABLE C: INTEGER;

BEGIN

 B := B * A; -- OK

 C := B + 1; -- OK

END;

Page 43
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

The use of shared variables requires careful attention to ensure that
correct values are communicated among relevant processes. For
example, if one process writes a shared variable in the same simulation
cycle that another process reads the variable, the VHDL standard does
not define what value is read. Similarly, if two or more processes write
to the same shared variable in the same simulation cycle, the standard
does not define what value should be written to the variable.

Care must be taken if overloaded functions are differentiated solely by
the type of their return values. The previous version of the VHDL
standard, 1076-1987, did not require that differentiations on output
types be supported. The current standard, 1076-1993, however, has
included the requirement that differentiations based solely on output
type be supported.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Potential Problems to Avoid
(Cont.)

● Avoid using shared variables
❍ Debugging potential asynchronous errors very difficult
❍ Concept likely to change in future VHDL standards

● Overloaded items cannot be resolved by return
type

❍ Example: These overloaded functions cannot be
disambiguated

FUNCTION “-” (a,b: NATURAL) RETURN INTEGER;

FUNCTION “-” (a,b: NATURAL) RETURN NATURAL;

Page 44
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Because literals in VHDL are semantically ambiguous (e.g., “abc” can
be a string or a vector of enumerated values ‘a’, ‘b’, ‘c’), it is often
impossible for the VHDL analyzer to determine the exact type of a
literal, and thus resolve the overloaded function, if it is dependent on the
literal.

For instance, note that in the upper example, '0' appears in the
definition for both enumerated types, twobit and fourbit. Therefore,
calling abc with '0' as its parameter does not allow for a distinction
between the two versions of the abc function.

It is a good idea to use qualification when passing literals as
subprogram parameters both to ensure that inadvertent ambiguities are
avoided and to improve the readability of the VHDL code.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Resolving Difficulties

● Overloaded items cannot be resolved if the
argument types include common literals, i.e.,

❍ Resolve the ambiguity by qualifying the literal:
y <= abc(twobit’(‘0’));

❍ General tip: Use qualification to avoid numerous
problems where the compiler cannot seem to select a
specific meaning, e.g., read (abc, string’(“abcabc”));

TYPE twobit IS (‘0’, ‘1’);

TYPE fourbit IS (‘U’, ‘0’, ‘1’, ‘Z’);

FUNCTION abc (x: twobit) RETURN INTEGER;

FUNCTION abc (x: fourbit) RETURN INTEGER;

y <= abc(‘0’)); -- Which function do we use?

Page 45
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Behavioral Modeling

● Examples

● Summary

Page 46
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Examples

● Create a tri-state bus resolution function for a
four-valued logic

● Build a state machine description of a control unit
for an unsigned 8 bit multiplier

● Implement a Quicksort routine in sequential VHDL

Page 47
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the revised package for the level type with the inclusion of the
necessary types, subtypes and the actual resolution function. This
example simply illustrates how a bus resolution function is defined.

Note that the resolution function takes in a level_vector, which is really
an unconstrained array, and returns a single level value as is required
by the language. The subtype level_resolved_x is the signal subtype
that is associated with the bus resolution function and
level_resolved_x_vector is an array of signals of that subtype.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Package with Bus Resolution
Function

(Package Declaration)

PACKAGE resources IS

 -- user defined enumerated type
 TYPE level IS ('X', '0', '1', 'Z');

 -- type for vectors (buses)
 TYPE level_vector IS ARRAY (NATURAL RANGE <>) OF level;

 -- subtype used for delays
 SUBTYPE delay IS time;

 -- resolution function for level
 FUNCTION wired_x (input : level_vector) RETURN level;

 -- subtype of resolved values
 SUBTYPE level_resolved_x IS wired_x level;

 -- type for vectors of resolved values
 TYPE level_resolved_x_vector IS
 ARRAY (NATURAL RANGE <>) OF level_resolved_x;

 END resources;

Page 48
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the package body showing the implementation of the wired_x
function. Notice that the loop index spans input’RANGE which ensures
that the BRF function can examine all the elements in the
unconstrained array of signal drivers (i.e. the actual number of signal
drivers may not be known a priori).

Basically, the function returns ‘Z’ if all drivers are ‘Z’, the value of any
single non-‘Z’ driver if there is one, and an ‘X’ if there is more than one
active driver.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Package with Bus Resolution
Function

(Package Body)
PACKAGE BODY resources IS
 -- resolution function
 FUNCTION wired_x (input : level_vector) RETURN level IS

 VARIABLE has_driver : BOOLEAN := FALSE;
 VARIABLE result : level := 'Z';
 BEGIN
 L1 : FOR i IN input’RANGE LOOP

 IF(input(i) /= 'Z') THEN
 IF(NOT has_driver) THEN
 has_driver := TRUE;
 result := input(i);
 ELSE -- has more than one driver
 result := 'X';
 EXIT L1;
 END IF;
 END IF;

 END LOOP L1;

 RETURN result;
 END wired_x;
END resources;

Page 49
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This a simulation result of three level signals driving a level_resolved_x
signal.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Bus Resolution Function
Simulation Results

Page 50
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Now we are going to develop a behavioral description of the controller
for the unsigned 8 bit multiplier. This is a flow chart of the algorithm that
the controller uses.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Flow Chart for Unsigned 8 Bit
Multiplier Controller

START

C, A ← 0
M ← Multiplicand
Q ← Multiplier
Count ← 0

Q0 = 1? C, A ← A + M

Shift C,A,Q
Count ← Count + 1

No Yes

Count = n?
No Yes

END

Page 51
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is state diagram of the controller state machine. The outputs for
each state aren’t shown for clarity. Notice that there is also a “count”
variable that must be included in the state machine to count the number
of iterations through the loop. The count variable is actually
implemented as another state variable.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP State Diagram for Unsigned 8 Bit
Multiplier Controller

Initialize

Test

Add
Shift

Idle

START=‘1’

COUNT<n && Q0=‘1’COUNT<n && Q0=‘0’

COUNT=n

Count=
Count+1

Count=0

Page 52
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

The state machine actually has two state variables, the current state of
the control state machine (e.g., initialize, shift, add), and the present
loop count. The loop count is a state variable in that it has a present
value and a next value, and it is updated in the clock process. However,
the value of count only affects the next control state the machine goes
to and doesn’t affect the outputs. The implementation is actually more
like two state machines in the same architecture.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Control
Unit Behavioral Description

● Synthesizable VHDL state machine description
● Two internal state variables

❍ present_state
❍ present_count

● Three interacting VHDL processes
❍ Clock (or register) process
❍ State Transition process
❍ Output process

● Moore machine
● Asynchronous reset signal and synchronous

start signal

Page 53
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This the entity description for the unsigned 8 bit multiplier control unit. It
hooks to the datapath via the control signals listed.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Control
Unit

(Entity)
LIBRARY gate_lib;
USE gate_lib.resources.all;

ENTITY mult_controller_behav IS
 PORT(reset : IN level; -- global reset signal
 start : IN level; -- input to indicate start of process
 q0 : IN level; -- q0 ,input from data path
 clk : IN level; -- clock signal
 a_enable : OUT level; -- clock enable for A register
 a_reset : OUT level; -- Reset control for A register
 a_mode : OUT level; -- Shift or load mode for A
 c_enable : OUT level; -- clock enable for c register
 m_enable : OUT level; -- clock enable for M register
 q_enable : OUT level; -- clock enable for Q register
 q_mode : OUT level); -- Shift or load mode for Q
END mult_controller_behav;

Control
 Unit

Multiplicand

Mn-1 M0

An-1 A0

Multiplier

Qn-1 Q0C

n-Bit Adder

Product

Data Path

Page 54
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the beginning of the architecture of the control unit. Note that the
constrained subtype of integer is for synthesis - unconstrained integers
are hard to synthesize! Also note the state variables are enumerated
types. This allows the synthesis tools to encode the state variable using
different schemes.

Also included here is the clock process. Note that it is edge triggered
and that both present_state and present_count are updated on the
clock edge. Also note the asynchronous reset signal.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Control
Unit

(Architecture - Clock Process)

ARCHITECTURE state_machine OF mult_controller_behav IS

 SUBTYPE count_integer IS INTEGER RANGE 0 TO 8;
 TYPE states IS (idle,initialize,test,shift,add);
 SIGNAL present_state : states := idle;
 SIGNAL next_state : states := idle;
 SIGNAL present_count : count_integer := 0;
 SIGNAL next_count : count_integer := 0;

 BEGIN

 CLKD : PROCESS(clk,reset)
 BEGIN
 IF(reset = '1') THEN
 present_state <= idle;
 present_count <= 0;
 ELSIF(clk'EVENT AND clk = '1' AND clk'LAST_VALUE = '0') THEN
 present_state <= next_state;
 present_count <= next_count;
 END IF;
 END PROCESS CLKD;

Page 55
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the state transition process for the state machine. Note the
default assignment of next_state = present_state which is only really
required for (some) synthesis tools.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Control
Unit

(Architecture - State Transition Process)

STATE_TRANS : PROCESS(present_state,present_count,start,q0)
 BEGIN
 next_state <= present_state; -- default case
 next_count <= present_count; -- default case
 CASE present_state IS
 WHEN idle =>
 IF(start = '1') THEN
 next_state <= initialize;
 ELSE
 next_state <= idle;
 END IF;
 next_count <= present_count;
 WHEN initialize =>
 next_state <= test;
 next_count <= present_count;
 WHEN test =>
 IF(present_count < 8) THEN
 IF(q0 = '0') THEN
 next_state <= shift;
 ELSE
 next_state <= add;
 END IF;
 ELSE
 next_state <= idle;
 END IF;
 next_count <= present_count;

 WHEN add =>
 next_state <= shift;
 next_count <= present_count;
 WHEN shift =>
 next_state <= test;
 next_count <= present_count +

1;
 WHEN OTHERS =>
 next_state <= idle;
 next_count <= present_count;
 END CASE;
END PROCESS STATE_TRANS;

Page 56
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the output process. Note that the outputs are only dependent on
the present_state variable (Moore machine).

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned 8 Bit Multiplier Control
Unit

(Architecture - Output Process)

 OUTPUT : PROCESS(present_state)
 BEGIN
 CASE present_state IS
 WHEN idle =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 WHEN initialize =>
 a_enable <= '1';
 a_reset <= '0';
 a_mode <= '1';
 c_enable <= '0';
 m_enable <= '1';
 q_enable <= '1';
 q_mode <= '1';
 WHEN test =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';

WHEN add =>
 a_enable <= '1';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '0';
 WHEN shift =>
 a_enable <= '1';
 a_reset <= '1';
 a_mode <= '0';
 c_enable <= '0';
 m_enable <= '0';
 q_enable <= '1';
 q_mode <= '0';
 WHEN OTHERS =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 END CASE;
 END PROCESS OUTPUT;

END state_machine;

Page 57
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the simulation results for the full multiplier consisting of the
control unit and the data path combined together in an overall structural
description.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Full Unsigned 8 Bit Multiplier
Simulation Results
(Control Unit & Data Path)

Page 58
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

The final example is the coding of a quicksort routine in sequential
VHDL. This is the package for the quicksort code. It includes a constant
for the array size (to avoid dynamic allocation), and integer array that
will be sorted, and the declaration of the quicksort procedure.

In the example code for the modules, there is a C code implementation
of quicksort that shadows the VHDL implementation.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Package for Quicksort Routine
(Package Declaration)

PACKAGE qsort_resources IS

 CONSTANT maxarray : INTEGER := 100;

 TYPE integer_array IS ARRAY (NATURAL RANGE 0 to maxarray) OF integer;

 PROCEDURE quicksort(VARIABLE a : INOUT integer_array;
 l : INTEGER;
 r : INTEGER);

END qsort_resources;

Page 59
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the package body the implements the quicksort routine. Note
that it is implemented recursively.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Package for Quicksort Routine
(Package Body - Quicksort Procedure)

PACKAGE BODY qsort_resources IS

 PROCEDURE quicksort(VARIABLE a : INOUT integer_array;
 l : INTEGER;
 r : INTEGER) IS
 VARIABLE v, t : INTEGER;
 VARIABLE i, j : INTEGER;

 BEGIN
 IF(r > l) THEN
 v := a(r);
 i := l - 1;
 j := r;
 LOOP
 LOOP
 i := i + 1;
 EXIT WHEN(a(i) >= v);
 END LOOP;
 LOOP
 j := j - 1;
 EXIT WHEN(a(j) <= v);
 END LOOP;
 t := a(i);
 a(i) := a(j);
 a(j) := t;
 EXIT WHEN(j <= i);
 END LOOP;
 a(j) := a(i);
 a(i) := a(r);
 a(r) := t;
 quicksort(a, l, i - 1);
 quicksort(a, i + 1, r);
 END IF;
 END quicksort;
END qsort_resources;

Page 60
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the entity and architecture that “runs” the quicksort routine on a
set of data. The data is read and written from files and only variables
are used to hold data. The code is sequential in that there is only one
process statement and it runs one time through to completion.
Therefore, there are no concurrent constructs.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Quicksort Routine
(Entity & Architecture)

LIBRARY STD;
USE STD.TEXTIO.all;
LIBRARY work;
USE work.qsort_resources.all;

ENTITY qsort IS
 GENERIC(infile : STRING := "default";
 outfile : STRING := "default");
END qsort;

ARCHITECTURE test OF qsort IS

 BEGIN

 P1 : PROCESS

 VARIABLE nelements, i, tempint, temppointer :
integer;

 VARIABLE iarray : integer_array;
 VARIABLE fresult : FILE_OPEN_STATUS := STATUS_ERROR;
 VARIABLE l : LINE;
 FILE in_fd : TEXT;
 FILE out_fd : TEXT;

Page 61
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the main part of the architecture. It reads in the integer array
data from a file, finds the minimum (least) element and puts it in
element 0 as a sentinel (required by the quicksort routine) calls
quicksort on the entire array, and then writes the result back out to a
file.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Quicksort Routine
(Architecture Cont.)

BEGIN

 file_open(fresult,in_fd,infile,READ_MODE);
 IF(fresult /= OPEN_OK) THEN
 ASSERT FALSE
 REPORT "Usage: qvsim qsort
 -ginfile=<infile>
 -goutfile=<outfile>"
 SEVERITY FAILURE;
 END IF;

 FILE_OPEN(fresult,out_fd,outfile,WRITE_MODE);
 IF(fresult /= OPEN_OK) THEN
 ASSERT FALSE
 REPORT "Usage: qvsim qsort
 -ginfile=<infile>
 -goutfile=<outfile>"
 SEVERITY FAILURE;
 END IF;

-- read in file and set number of elements
nelements := 0;
WHILE(NOT ENDFILE(in_fd)) LOOP
 READLINE(in_fd,l);
 READ(l,iarray(nelements));
 nelements := nelements + 1;
END LOOP;

 -- find minimum element and place in
 -- element zero for sentinel
 tempint := iarray(0);
 temppointer := 0;
 FOR i IN 1 TO nelements - 1 LOOP
 IF(iarray(i) < tempint) THEN
 tempint := iarray(i);
 temppointer := i;
 END IF;
 END LOOP;
 IF(temppointer /= 0) THEN
 iarray(temppointer) := iarray(0);
 iarray(0) := tempint;
 END IF;

 -- do the quicksort!
 quicksort(iarray,0,nelements-1);

 -- write out results
 FOR i IN 0 TO nelements - 1 LOOP
 WRITE(l,iarray(i));
 WRITELINE(out_fd,l);
 END LOOP;

 WAIT;
 END PROCESS P1;

END test;

Page 62
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the simulation results for the quicksort showing the state of some
internal variables during one of the recursive calls to quicksort. The final
results are best observable in the output file.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Quicksort Routine Simulation
Results

Page 63
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Behavioral Modeling

● Examples

● Summary

Page 64
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary

● Behavioral VHDL is used to focus on the
behavior, and not the structure, of the device

● Several familiar programming constructs are
available, e.g CASE, IF-THEN-ELSE

● Subprograms allow large parts of code to be
broken down into smaller, more manageable
parts

● Bus resolution functions determine assigned
value of signal with multiple active signal drivers

Page 65
Copyright  1995-1999 RASSP E&F
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

[Ashenden] Peter Ashenden, “The VHDL Cookbook,” Available via ftp from
ftp://ftp.cs.adelaide.edu.au/pub/VHDL/VHDL-Cookbook/

[IEEE] All referenced IEEE material is used with permission.

[IEEE93] “The VHDL Language Reference Manual,” IEEE Standard 1076-93, 1993.

[Jain91] Ravi Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, 1991.

[Navabi93] Zain Navabi, VHDL: Analysis and Modeling of Digital Systems McGraw Hill, 1993.

[Mohanty95] Sidhatha Mohanty, V. Krishnaswamy, P. Wilsey, “Systems Modeling, Performance
Analysis, and Evolutionary Prototyping with Hardware Description Languages,” Proceedings of the
1995 Multiconference on Simulation, pp 312-318.

[Richards97] Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal
Processors, Kluwer Academic Publishers, Norwell, MA, 1997

