
Module 12 – Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

1

Module 12 - Behavioral VHDL
Tutorial and Exercises

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programs or incorporated in RASSP material.

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCPA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. No warranty of any kind is
provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

2

Module 12 Tutorial

1 Getting started

1.1 Create a directory for the Module 12 lab material, e.g:

mkdir m12_ex

cd m12_ex

1.2 Copy the source files for the VHDL that you will compile and simulate from the source
directory, e.g:

cp $VHDL_SRC/mult_controller_behav.vhdl .

cp $VHDL_SRC/full_mult_str.vhdl .

The lab is also available in the m12_lab.tar file.

This includes a behavioral description of the control unit for the multiplier and a structural
description that instantiates the datapath and the control unit together.

1.3 There is also a command file that has been created that will generate the forces necessary
to drive the full multiplier through an example multiplication sequence. Copy it over now,
e.g:

cp $VHDL_SRC/m12_ex/full_mult.do .

1.4 The Mentor Graphics QuickVHDL simulator needs a work directory for the compiled
VHDL files. Create this directory with the appropriate command for the version you are
running, e.g:

qhlib work

1.5 The full multiplier uses the datapath constructed for Module 11 as well as the package
from the Module 10 lab. You can access those compiled descriptions by mapping logical
libraries to their actual locations in the file system. The exact command to do this is
specific to the VHDL tools being used. For many versions of the Mentor Graphics
QuickVHDL simulator, it is done using the following command:

qhmap gate_lib ../m10_ex/work

qhmap mult_lib ../m11_ex/work

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

3

2 Examine and compile the state machine code for this lab

2.1 Open the file mult_controller_behav.vhdl file using a text editor or a VHDL editing
environment. You will see the following VHDL description:

-- Eight Bit Multiplier Controller Behavioral Example --
-- RASSP E&F Module # 12 Behavioral VHDL --
-- Robert Klenke UVa 28 May 1996 --

LIBRARY gate_lib;
USE gate_lib.resources.all;

ENTITY mult_controller_behav IS
 PORT(reset : IN level; -- global reset signal
 start : IN level; -- input to indicate start of process
 q0 : IN level; -- q0 ,input from data path
 clk : IN level; -- clock signal
 a_enable : OUT level; -- clock enable for A register
 a_reset : OUT level; -- Reset control for A register
 a_mode : OUT level; -- Shift or load mode for A
 c_enable : OUT level; -- clock enable for c register
 m_enable : OUT level; -- clock enable for M register
 q_enable : OUT level; -- clock enable for Q register
 q_mode : OUT level); -- Shift or load mode for Q
END mult_controller_behav;

ARCHITECTURE state_machine OF mult_controller_behav IS

 SUBTYPE count_integer IS integer RANGE 0 to 8;
 TYPE states IS (idle,initialize,test,shift,add);
 SIGNAL present_state : states := idle;
 SIGNAL next_state : states := idle;
 SIGNAL present_count : count_integer := 0;
 SIGNAL next_count : count_integer := 0;

 BEGIN

 CLKD : PROCESS(clk,reset)
 BEGIN
 IF(reset = ‘1’) THEN
 present_state <= idle;
 present_count <= 0;
 ELSIF(clk’EVENT AND clk = ‘1’ AND clk’LAST_VALUE = ‘0’) THEN
 present_state <= next_state;
 present_count <= next_count;
 END IF;
 END PROCESS CLKD;

 STATE_TRANS : PROCESS(present_state,present_count,start,q0)
 BEGIN
 next_state <= present_state; -- default case
 next_count <= present_count; -- default case

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

4

 CASE present_state IS
 WHEN idle =>
 IF(start = ‘1’) THEN
 next_state <= initialize;
 ELSE
 next_state <= idle;
 END IF;
 next_count <= present_count;
 WHEN initialize =>
 next_state <= test;
 next_count <= present_count;
 WHEN test =>
 IF(present_count < 8) THEN
 IF(q0 = ‘0’) THEN
 next_state <= shift;
 ELSE
 next_state <= add;
 END IF;
 ELSE
 next_state <= idle;
 END IF;
 next_count <= present_count;
 WHEN add =>
 next_state <= shift;
 next_count <= present_count;
 WHEN shift =>
 next_state <= test;
 next_count <= present_count + 1;
 WHEN OTHERS =>
 next_state <= idle;
 next_count <= present_count;
 END CASE;
 END PROCESS STATE_TRANS;

 OUTPUT : PROCESS(present_state)
 BEGIN
 CASE present_state IS
 WHEN idle =>
 a_enable <= ‘0’;
 a_reset <= ‘1’;
 a_mode <= ‘1’;
 c_enable <= ‘0’;
 m_enable <= ‘0’;
 q_enable <= ‘0’;
 q_mode <= ‘1’;
 WHEN initialize =>
 a_enable <= ‘1’;
 a_reset <= ‘0’;
 a_mode <= ‘1’;
 c_enable <= ‘0’;
 m_enable <= ‘1’;
 q_enable <= ‘1’;
 q_mode <= ‘1’;
 WHEN test =>
 a_enable <= ‘0’;
 a_reset <= ‘1’;

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

5

 a_mode <= ‘1’;
 c_enable <= ‘0’;
 m_enable <= ‘0’;
 q_enable <= ‘0’;
 q_mode <= ‘1’;
 WHEN add =>
 a_enable <= ‘1’;
 a_reset <= ‘1’;
 a_mode <= ‘1’;
 c_enable <= ‘1’;
 m_enable <= ‘0’;
 q_enable <= ‘0’;
 q_mode <= ‘0’;
 WHEN shift =>
 a_enable <= ‘1’;
 a_reset <= ‘1’;
 a_mode <= ‘0’;
 c_enable <= ‘0’;
 m_enable <= ‘0’;
 q_enable <= ‘1’;
 q_mode <= ‘0’;
 WHEN OTHERS =>
 a_enable <= ‘0’;
 a_reset <= ‘1’;
 a_mode <= ‘1’;
 c_enable <= ‘0’;
 m_enable <= ‘0’;
 q_enable <= ‘0’;

q_mode <= ‘1’;
 END CASE;
 END PROCESS OUTPUT;

END state_machine;
END resources;

2.2 Compile the VHDL code, e.g:

qvhcom mult_controller_behav.vhdl

2.3 Compile the vhdl code for the full multiplier structural description, e.g:

qvhcom full_mult_str.vhdl

3 Simulate the compiled code

3.1 Start up the Mentor Graphics VHDL simulator. The specific command may very
depending on the version you are using, e.g.:

qhsim full_mult

Note that all of the lower level components used in the multiplier are loaded by the
simulator. You should see a window similar to the following:

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

6

3.2 Using the dofile mechanism of the Mentor Graphics VHDL simulator, execute command
file full_mult.do. The result should be a wave window that is similar to the following:

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

7

Assignment:

Develop a VHDL behavioral description of a control unit for the Booth's algorithm
datapath you designed for Module 11. Note that your datapath will probably require several
initialization states before it is ready to start the main loop of the algorithm. A generalized
state diagram for the control unit with the outputs eliminated for clarity is shown below:

Develop a structural description for the full Booth's algorithm multiplier that instantiates

the datapath and control unit together. Compile and simulate your design.

Idle

Init0

Init1

Init2

Test

Add

Shift

Subtract

COUNT < n && Q0Q-1 = 10 COUNT < n && Q0Q-1 = 01

COUNT < n &&
Q0Q-1 = 00 || 11

COUNT =
COUNT+1

COUNT = 0

START = 1

COUNT = n

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

8

Module 12 Tutorial Continued
(optional if time permits)

4 Copy, Compile and run the C source code for the quicksort
example

4.1 You will begin this example by compiling and running a version of the quicksort routine
coded in C. Copy that source code now from the source directory, e.g:

cp $VHDL_SRC/qsort.c .

4.2 Examine the qsort.c file using a text editor. You will see the following file:

/***/
/* Quicksort Algorithm Behavioral Example - C Test Code */
/* RASSP E&F Module # 12 Behavioral VHDL */
/* Robert Klenke UVa 28 May 1996 */
/***/

#include <stdio.h>

/* use static allocation */
#define MAXARRAY 100

void quicksort(a,l,r)
int *a;
int l;
int r;
{
 int v, t;
 int i, j;

 if(r>l) {
 v = a[r];
 i = l-1;
 j = r;
 do {
 do {
 i = i + 1;
 } while(a[i]<v);
 do {
 j = j - 1;
 } while(a[j]>v);
 t = a[i];
 a[i] = a[j];
 a[j] = t;
 } while(j>i);
 a[j] = a[i];
 a[i] = a[r];

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

9

 a[r] = t;
 quicksort(a,l,i-1);
 quicksort(a,i+1,r);
 }
}
main(argc,argv)
int argc;
char *argv[];
{
 int nelements, i, tempint, temppointer, min, iarray[MAXARRAY];
 FILE *in_fd, *out_fd;

 if(argc < 2) {
 fprintf(stderr,”Usage:qsort <infile> <outfile>\n”);
 exit(0);
 }

 if ((in_fd = fopen(argv[1], “r”)) == 0) {
 fprintf(stderr, “Usage: qsort <input_file> <output_file>\n”);
 exit(0);
 }
 if ((out_fd = fopen(argv[2], “w”)) == 0) {
 fprintf(stderr, “Usage: qsort <input_file> <output_file>\n”);
 exit(0);
 }

 /* read in file and set number of elements */
 nelements = 0;
 while((fscanf(in_fd,”%d\n”,&iarray[nelements]) != EOF)
 && (nelements < MAXARRAY))
 nelements++;

 /* find minumum element and place in element zero for sentinel */
 tempint = iarray[0];
 temppointer = 0;
 for(i=1;i<nelements;i++)
 if(iarray[i] < tempint) {
 tempint = iarray[i];
 temppointer = i;
 }
 if(temppointer != 0) {
 iarray[temppointer] = iarray[0];
 iarray[0] = tempint;
 }

 /* do the quicksort! */
 quicksort(iarray,0,nelements-1);

 /* write out results */
 for(i=0;i<nelements;i++)
 fprintf(out_fd,”%d\n”,iarray[i]);
}

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

10

4.3 Compile the C code using an available C compiler, e.g.:

cc -o qsort qsort.c

4.4 Create an unsorted input file named test.in using a text editor and add the values shown
below:

123
40
56
987
9
928374
89273
743
823
52
7
127638
83
2
187
1879
897234
3483
84502
284734
2
8729
947

4.5 Run the quicksort routine on the test.in file:

qsort test.in test.out

The result will be a test.out file like this one:

2
2
7
9
40
52
56
83
123
187
743

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

11

823
947
987
1879
3483
8729
84502
89273
127638
284734
897234
928374

5 Copy, Compile and simulate the VHDL source code for the
quicksort example

5.1 Copy the source files for the VHDL that you will compile and simulate from the source
directory, e.g.:

cp $VHDL_SRC/qsort_pkg.vhdl .

cp $VHDL_SRC/qsort.vhdl

5.2 Examine the quicksort package file qsort_pkg.vhdl and notice the similarity between the
quicksort routine in VHDL and the same routine in C. The major difference is the way in
which the loops are constructed because of the differences in the available loop constructs
in the two languages.

Notice that the entity description has two generics for the input and output file names, but
no ports. Also note that the architecture is coded as a single process statement that executes
one time at the beginning of the simulation and then stops at a WAIT statement at the end
of the process. The VHDL code for this process is also very similar to the corresponding C
code for the main program.

5.3 Compile the VHDL files, e.g.:

qvhcom qsort_pkg.vhdl

qvhcom -93 qsort.vhdl

Note that the -93 option is used in some versions of Mentor Graphics QuickVHDL
compiler to allow IEEE 1076-93 VHDL constructs such as the file_open routine.

5.4 Run the VHDL quicksort routine, e.g.:

qhsim -c -ginfile=test.in -goutfile=test.out2 qsort

Module 12 - Behavioral VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

12

The -c option is used in many versions of the Mentor Graphics QuickVHDL simulator to
run in the command line mode (no GUI), and the -ginfile=test.in and -goutfile=test.out2
options are used to provide the test.in and test.out2 files for the top level generics of the
qsort entity.

When the QuickVHDL command line prompt appears, run the simulation and then exit the
simulator, e.g.:

QHSIM 1> run

QHSIM 2> quit

5.5 Verify that the test.out2 file generated by the VHDL quicksort routine is the same as the
test.out file produced by the C implementation. You can look at the files using a text editor,
or you can use the Unix diff program. diff compares two files and lists any differences
between them:

diff test.out test.out2

No output from this command indicates that the files were the same.

