
Page 1Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Advanced Concepts in VHDL
RASSP Education & Facilitation

Module 13

Version 3.00

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and
may only be used for non-commercial educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their
permission. All information contained, may be duplicated for non-commercial educational use only provided this
copyright notice and the copyright acknowledgements herein are included. No warranty of any kind is provided or
implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457.
Such data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction
except as follows: Certain parts of this work to other copyright holders and are used with their permission; This
information contained herein may be duplicated only for non-commercial educational use. Any vehicle, in which part or
all of this data is incorporated into, shall carry this notice .

Page 2Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Roadmap

 VHDL VHDL

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

H/W & S/W
CODESIGN

Page 3Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the fourth in the series of VHDL instructional modules prepared
by the Rapid Prototyping of Application Specific Signal Processors
(RASSP) Education & Facilitation team.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Goals

● To expand on the syntax and semantics of
constructs introduced in prior modules to
highlight their flexibility

● To introduce new features of VHDL beyond the
scope of the previous introductory modules

Page 4Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Outline

● Introduction
● Revisiting some VHDL constructs

❍ Aliases
❍ Foreign interfaces
❍ Files
❍ Textio
❍ Assert statements
❍ Processes
❍ Signal assignment statements
❍ Shared variables

Page 5Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Outline (Cont.)

● Examples
❍ Abstract data type example

❍ Example from UVA ADEPT

● Summary

Page 6Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Some of the advantages in using VHDL as a description language
include its versatility and the fact that it is an accepted standard with
broad support from both government and industry.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Advantages of Using VHDL

● VHDL offers several advantages to the designer
❍ Standard language

❑ Readily available tools
❍ Powerful and versatile description language
❍ Multiple mechanisms to support design hierarchy
❍ Versatile design reconfiguration support
❍ Support for multiple levels of abstraction

Page 7Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Outline

● Introduction

● Revisiting some VHDL constructs

❍ Aliases
❍ Foreign interfaces
❍ Textio
❍ Assert statements
❍ Processes
❍ Signal assignment statements
❍ Shared variables

● Examples

● Summary

Page 8Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

By this time, the student should recognize that VHDL is actually a
concurrent language in which consistent and predictable behavior is
enforced by the underlying timing model. Sequential behavior is
available within processes to facilitate the description of complex
functionality that is more easily implemented with sequential
statements, but each process is then itself a concurrent statement
within VHDL.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Fundamental View of VHDL

● Fundamentally, VHDL follows event-driven
concurrent execution semantics :

❍ Sequential execution available inside processes
❍ Note component instantiations are concurrent statements

ARCHITECTURE arch_label OF ent_label IS
 [architecture_declarations]
 BEGIN
 [block_statement] |
 [process_statement] |
 [concurrent_procedure_call_statement] |
 [concurrent_assertion_statement] |
 [concurrent_signal_assignment_statement] |
 [component_instantiation_statement] |
 [generate_statement]
END [arch_label];

Page 9Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL provides the alias construct to enhance readability in VHDL
descriptions. Aliases are available in two varieties:

1. Object aliases rename objects

a. constant

b. signal

c. variable

d. file

2. Non-object aliases rename items that are not objects

a. function names

b. literals

c. type names

d. attribute names

[Bhasker95]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Aliases

● Aliases can significantly improve the readability of
VHDL descriptions by using a shorthand notation
for names

● Aliases allow reference to named items in different
ways:

ALIAS data_bus: mvl_vector(7 DOWNTO 0) is data_word(15
DOWNTO 8);

● Aliases can rename any named item except labels,
loop parameters, and generate parameters

Page 10Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A signature is required for an alias of a subprogram or an enumeration
literal. A signature is also used to disambiguate overloaded
subprograms and overloaded enumeration literals in which the
signature indicates the parameter types and result type. A set of outer
brackets “[“ and “]” is used to identify a signature.

[Bhasker95]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Alias
An Example

● An alias of an overloaded subprogram or literal
requires a signature to determine the correct
value to return

TYPE mvl IS ('U', '0', '1', 'Z');
TYPE trinary IS ('0', '1', 'Z');

ALIAS mvl0 IS '0' [RETURN mvl];
ALIAS tri0 IS '0' [RETURN trinary];

TYPE mvl IS ('U', '0', '1', 'Z');
TYPE trinary IS ('0', '1', 'Z');

ALIAS mvl0 IS '0' [RETURN mvl];
ALIAS tri0 IS '0' [RETURN trinary];

PROCEDURE preset_clear(SIGNAL drv: mvl_vector;
pc_value: INTEGER);

PROCEDURE preset_clear(SIGNAL drv: BIT_VECTOR;
pc_value: INTEGER);

ALIAS pcmvl IS preset_clear(mvl_vector, INTEGER);
ALIAS pcbit IS preset_clear(BIT_VECTOR, INTEGER);

PROCEDURE preset_clear(SIGNAL drv: mvl_vector;
pc_value: INTEGER);

PROCEDURE preset_clear(SIGNAL drv: BIT_VECTOR;
pc_value: INTEGER);

ALIAS pcmvl IS preset_clear(mvl_vector, INTEGER);
ALIAS pcbit IS preset_clear(BIT_VECTOR, INTEGER);

Page 11Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL allows the functionality of architecture bodies and subprograms
to be described in a foreign language (e.g. C) and interfaced to a VHDL
model. For example, foreign code may be used when it is difficult to
implement the same functionality in VHDL, such as in cases where
complex arithmetic functions not directly available in VHDL are
required.

The interface between VHDL and foreign code is simulator
implementation dependent. VHDL passes the parameters to the
foreign code but has no further information about the foreign code. The
use and structure of foreign code is largely up to the particular simulator
implementation.

[Bergé93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Foreign Interfaces

● Model description may include portions written in
a foreign programming language (e.G. C)

❍ Subprogram or architecture body can be described in
programming language other than VHDL

❍ Designer can incorporate previously written code or
code that is difficult to write in VHDL

● Details on use of foreign code is largely
implementation dependent

● Not possible to include variables, signals, or
entities described in a foreign language

ATTRIBUTE FOREIGN OF name: construct IS
"information/parameters";

ATTRIBUTE FOREIGN OF name: construct IS
"information/parameters";

Page 12Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The c_model code for xxand2 exists in some form that is
implementation dependent. This code could be in a library of other
models written in C that may be similarly accessed.

[Bhasker95]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Foreign Interfaces
An Example

ENTITY and2 IS
PORT(a, b: IN BIT;
 c: OUT BIT);

END and2;

ARCHITECTURE c_model OF and2 IS
ATTRIBUTE FOREIGN OF c_model:
ARCHITECTURE IS "xxand2(A, B, C)";

BEGIN
END c_model;

ENTITY and2 IS
PORT(a, b: IN BIT;
 c: OUT BIT);

END and2;

ARCHITECTURE c_model OF and2 IS
ATTRIBUTE FOREIGN OF c_model:
ARCHITECTURE IS "xxand2(A, B, C)";

BEGIN
END c_model;

● The c_model architecture is declared as FOREIGN
❍ No statements are needed in the architecture body as they will

never be executed
❍ The implementation calls the "xxand2" function to perform the

actions for the and2 entity

Page 13Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL defines the file object and includes some basic file IO procedures implicitly
after a file type is defined. A file type must be defined for each VHDL type that is to
be input from or output to a file.

● Example:

TYPE bit_file IS FILE of bit;

In VHDL87, there are no routines to open or close a file, so both the mode of the file
and its name must be specified in the file declaration. The mode defaults to read if
none is specified.

● Examples:

FILE in_file:bit_file IS “my_file.dat” -- opens a file for reading

FILE out_file:bit_file IS OUT “my_other_file.dat”; -- opens a file for writing

In VHDL93, a file can be named and opened in the declaration:

FILE in_file:bit_file OPEN READ_MODE IS “my_file.dat”; -- opens a file for
reading

Or simply declared (and named and opened later):

FILE out_file:bit_file;

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Files

● VHDL defines a file object, associated types, and
certain limited file operations

● File declarations
❍ Vhdl87

❍ Vhdl93

TYPE file_type IS FILE OF type_mark;

PROCEDURE READ(FILE identifier : file_type; value : OUT type_mark);

PROCEDURE WRITE(FILE identifier : file_type; value : IN type_mark);

FUNCTION ENDFILE(FILE identifier : file_type) RETURN BOOLEAN;

TYPE file_type IS FILE OF type_mark;

PROCEDURE READ(FILE identifier : file_type; value : OUT type_mark);

PROCEDURE WRITE(FILE identifier : file_type; value : IN type_mark);

FUNCTION ENDFILE(FILE identifier : file_type) RETURN BOOLEAN;

FILE identifier : file_type IS [mode] “file_name”;FILE identifier : file_type IS [mode] “file_name”;

FILE identifier : file_type [[OPEN mode] IS “file_name”];FILE identifier : file_type [[OPEN mode] IS “file_name”];

Page 14Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In VHDL87, the file is opened and closed when it come into and goes
out of scope.

In VHDL93, there are two FILE_OPEN procedures, one of which
returns a value of the status (success) for opening the file, and one
which doesn’t. There is also a FILE_CLOSE procedure.

The values for FILE_OPEN_KIND are:

READ_MODE,

WRITE_MODE, and

APPEND_MODE.

The values for FILE_OPEN_STATUS are:

OPEN_OK,

STATUS_ERROR,

NAME_ERROR, and

MODE_ERROR.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
File Opening and Closing

● In VHDL87, files are opened and closed when the
associated file object comes into and goes out of
scope

● In VHDL93, files can be opened in the declaration
or predefined procedures can be used:

PROCEDURE FILE_OPEN(FILE identifier:file_type;
 file_name: IN STRING;
 open_kind: FILE_OPEN_KIND := READ_MODE);

PROCEDURE FILE_OPEN(status: OUT FILE_OPEN_STATUS;
 FILE identifier: file_type;
 file_name: IN STRING;
 open_kind: FILE_OPEN_KIND := READ_MODE);

PROCEDURE FILE_CLOSE(FILE identifier: file_type);

PROCEDURE FILE_OPEN(FILE identifier:file_type;
 file_name: IN STRING;
 open_kind: FILE_OPEN_KIND := READ_MODE);

PROCEDURE FILE_OPEN(status: OUT FILE_OPEN_STATUS;
 FILE identifier: file_type;
 file_name: IN STRING;
 open_kind: FILE_OPEN_KIND := READ_MODE);

PROCEDURE FILE_CLOSE(FILE identifier: file_type);

Page 15Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The TEXTIO package provides additional declarations and
subprograms for handling text (ASCII) files in VHDL. For example, the
basic READ and WRITE operations of the FILE type are not very useful
because they work with binary files. Therefore, the TEXTIO package
provides subprograms for manipulating text more easily and efficiently.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Text Input and Output

● Basic file operations in VHDL are limited to
unformatted input/output

● VHDL includes the TEXTIO package for input and
output of ASCII text

❍ TEXTIO is located in the STD library

● The following data types are supported by the
TEXTIO routines:

❍ Bit, bit_vector
❍ Boolean
❍ Character, string
❍ Integer, real
❍ Time

USE STD.TEXTIO.ALL;USE STD.TEXTIO.ALL;

Page 16Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

TEXTIO defines two new data types to assist in text handling. The first
is the LINE data type. The LINE type is a text buffer used to interface
VHDL I/O and the file. Only the LINE type may read from or written to
a file.

A new FILE type of TEXT is also defined. A file of type TEXT may only
contain ASCII characters.

Several of the procedures provided by TEXTIO for handling text
input/output are also listed in this slide.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
TEXTIO Procedures

● TEXTIO defines a LINE data type
❍ All read and write operations use the LINE type

● TEXTIO also defines a FILE type of TEXT for use
with ASCII text

● Procedures defined by TEXTIO are:
❍ Readline(f,k)

❑ Reads a line of file f and places it in buffer k
❍ Read(k,v,...)

❑ Reads a value of v of its type from k
❍ Write(k,v,...)

❑ Writes value v to LINE k
❍ Writeline(f,k)

❑ Writes k to file f
❍ Endfile(f) returns TRUE at the end of FILE

Page 17Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

TEXTIO requires that all disk access go through a buffer of type LINE.
In addition, the READ and WRITE procedures can further format the
text. The field width of the text is the length of the text if not otherwise
specified. If the text is of type TIME, the unit of time can be specified.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Using TEXTIO

● Reading from a file
❍ READLINE reads a line from the file into a LINE buffer
❍ READ gets data from the buffer

● Writing to a file
❍ WRITE puts data into a LINE buffer
❍ WRITELINE writes the data in the LINE buffer to file

● READ and WRITE have several formatting
parameters

❍ Right or left justification
❍ Field width
❍ Unit displayed (for time)

Page 18Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This example displays the current state of a finite state machine model
execution. First, the USE clause makes the contents of the TEXTIO
package available. The enumerated type STATE is then locally
declared. The procedure display_state requires only one input value,
the current state of the FSM.

Several local variables are declared within the procedure. The buffer k
of type LINE will be used for WRITE storage. The FILE flush is of type
TEXT and will output to a file named /dev/tty (i.e. the system console in
UNIX; that is, the procedure will write to the screen). The variable
state_string holds the text value of the state.

The CASE statement is used to assign the appropriate string value to
the variable state_string in preparation for outputting the information to
a file. The WRITE statement then writes the value of state_string to the
buffer k. The WRITE statement further specifies that the string should
be left justified and be 7 spaces wide.

Finally, the WRITELINE sends the buffer k to the file flush. The text is
then written to the screen.

Note that this particular procedure would not work well for writing to a
file since the file is re-initialized every time the procedure is used, and
thus the text would always be written to the beginning of the file.
However, using TEXTIO to write to a file may be accomplished by
passing the file to the procedure as a parameter, or by using a process
that implements the same functionality, for example.

Based on [Navabi93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP TEXTIO
An Example

USE STD.TEXTIO.ALL;
TYPE state IS (reset, good);
PROCEDURE display_state (current_state : IN state) IS

VARIABLE k : LINE;
FILE flush : TEXT IS OUT "/dev/tty";
VARIABLE state_string : STRING(1 to 7);

BEGIN
CASE current_state IS
WHEN reset => state_string := "reset ";
WHEN good => state_string := "good ";

END CASE;
WRITE (k, state_string, LEFT, 7);

WRITELINE (flush, k);
END display_state;

USE STD.TEXTIO.ALL;
TYPE state IS (reset, good);
PROCEDURE display_state (current_state : IN state) IS

VARIABLE k : LINE;
FILE flush : TEXT IS OUT "/dev/tty";
VARIABLE state_string : STRING(1 to 7);

BEGIN
CASE current_state IS
WHEN reset => state_string := "reset ";
WHEN good => state_string := "good ";

END CASE;
WRITE (k, state_string, LEFT, 7);

WRITELINE (flush, k);
END display_state;

● This procedure displays the current state of a FSM

Page 19Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The ASSERT statement is used to alert the user of some condition
inside the model. When the expression in the ASSERT statement
evaluates to FALSE, the associated text message is displayed on the
simulator console. Additionally, an evaluation of FALSE may be used
to halt the simulation, depending on the severity level of the associated
ASSERT statement.

The four severity levels, in increasing severity, are listed in this slide.
However, the simulator actions associated with each severity level are
simulator dependent. For example, a simulator implementation be use
the Failure condition to halt a simulation but continue a simulation under
the other assertion conditions.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Assert Statement

● ASSERT statements are used to print messages
at the simulation console when specified runtime
conditions are met

● ASSERT statements defined one of four severity
levels :

❍ Note -- relays information about conditions to the user
❍ Warning -- alerts the user to conditions that are not

expected, but not fatal
❍ Error -- relays conditions that will cause the model to

work incorrectly
❍ Failure -- alerts the user to conditions that are

catastrophic

Page 20Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows the syntax of the ASSERT statement. The ASSERT
statement will trigger when the condition is false. The REPORT
statement to be displayed is enclosed in quotes.

The Set and Reset lines of the S-R flip-flop in this example cannot
simultaneously equal one. Therefore, the ASSERT statement
evaluates to FALSE (most easily described using the NOT function) if
this situation is observed during simulation.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Assert Statements

● Syntax of the ASSERT statement

ASSERT condition
 REPORT “violation statement”
 SEVERITY level;

ASSERT condition
 REPORT “violation statement”
 SEVERITY level;

● When the specified condition is false, the ASSERT
statement triggers and the report is issued

● The violation statement is enclosed in quotes

ASSERT NOT((s=‘1’) AND (r=‘1’))
 REPORT “Set and Reset are both 1”
 SEVERITY ERROR;

ASSERT NOT((s=‘1’) AND (r=‘1’))
 REPORT “Set and Reset are both 1”
 SEVERITY ERROR;

Page 21Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The example shown here provides a similar functionality to the TEXTIO
example shown previously. The ASSERT statements are used to
display the current state of a FSM. Note that these ASSERT
statements are concurrent. ASSERTs can be concurrent or sequential
depending on whether they appear outside or inside VHDL processes,
respectively. ASSERTs can also be put in entity statements.

While this procedure does a similar job to the TEXTIO example, it can
provide more information to the user and the simulator. The SEVERITY
level may cause the simulator to pause or stop altogether. While these
actions are implementation defined, they can be useful.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● This code has similar functionality to that of the
TEXTIO example

❍ Assume good = ‘1’, reset = ‘0’

● Possible actions associated with the various
SEVERITY levels are simulator dependent

❍ E.g., Simulation may stop if a failure assertion triggers

Assert Statements
An Example

PROCEDURE display_state (current_state : IN state) IS
BEGIN
 ASSERT NOT(current_state = good)
 REPORT “Status of State: good”
 SEVERITY NOTE;
 ASSERT NOT(current_state = reset)
 REPORT “Status of State: reset”
 SEVERITY WARNING;
END display_state;

PROCEDURE display_state (current_state : IN state) IS
BEGIN
 ASSERT NOT(current_state = good)
 REPORT “Status of State: good”
 SEVERITY NOTE;
 ASSERT NOT(current_state = reset)
 REPORT “Status of State: reset”
 SEVERITY WARNING;
END display_state;

Page 22Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The full syntax of the VHDL process statement is shown here. Two
important points are made in this slide.

First, the notion of a passive process is introduced. Because passive
processes do not create events in the VHDL timing cycle (i.e. they do
not make signal assignments), they may be included in VHDL entity
declarations where they may be used with TEXTIO or assert
statements to report on the state of a simulation, for example.

Second, the postponed process was introduced in VHDL93 to allow a
modeler to implement processes that will not be executed until the last
possible moment in the simulation cycle. Postponed processes may be
used to allow transient conditions to settle out before a simulation state
is examined or an assignment is made. Note that any signal
assignment in a postponed process must include an assigned delay
(i.e. cannot default to a delta cycle delay) to prevent the addition of
further delta cycles within the simulation cycle such that the delta cycle
in which the postponed process executed would no longer be the last of
the simulation cycle.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Processes Revisited

● Complete PROCESS declaration syntax :

● A process with no signal assignment statements
within it or its procedures is a passive process

❍ Passive processes may appear in entity declarations

● Execution of postponed processes (new to VHDL93) :
❍ Triggered in the simulation cycle in which its sensitivity_list

or wait statement conditions are satisfied
❍ Execute on the last delta cycle of the corresponding

simulation time
❍ May not generate additional delta cycles in its execution

[process_label :]
 [POSTPONED] PROCESS [sensitivity_list)] [IS]
 process_declarative_part
 BEGIN
 process_statement_part
 END [POSTPONED] PROCESS [process_label];

Page 23Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Processes Revisited (Cont.)

● Concurrent procedure call equivalent to process
containing a corresponding procedure call

● Concurrent assertion statement equivalent to a
passive process containing a corresponding
assertion statement

● Concurrent signal assignments may also be
postponed

[call_label :] [POSTPONED] procedure_call;

[assert_label :] [POSTPONED] assertion;

[label :] [POSTPONED] signal_assigment;

This slide reiterates the equivalence between processes and other
concurrent statements. Note that many concurrent statements may be
similarly postponed, for example, so that their executions will only occur
in the final delta cycle of a simulation cycle.

Page 24Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In this section, signal assignment statements are revisited paying
special attention to both the similarities and the differences between
concurrent and sequential signal assignment statements.

The delay_mechanism construct is common to both concurrent and
sequential signal assignment statements. It provides flexibility in
determining the response to changes to input signals.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Signal Assignment Statements
Revisited

● Signal assignment statement syntax :

❍ Delay_mechanism is either :
❑ Transport

➨ All input events reflected on output

❑ REJECT time_expression INERTIAL
➨ Used to model component inertia so that short pulses

on input signals do not affect the target output
➨ Default delay_mechanism if none is specified

-- Default condition further specifies that the
provided propagation delay be used for both the
REJECT and INERTIAL delays in the assignment

 [label :] target <= [delay_mechanism] waveform; [label :] target <= [delay_mechanism] waveform;

Page 25Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The syntax for concurrent signal assignment statements is shown here.
Note that there are two types of concurrent signal assignment
statements, conditional and selected. The conditional signal
assignment statement is very general in that any readable signals or
inputs may be tested to determine the value to be assigned to the
target. Note that the simple concurrent signal assignment statement
(e.g. A <= B;) is simply the degenerate case of a conditional signal
assignment statement.

The selected signal assignment statement is reminiscent of a CASE
statement in that the condition of a predetermined signal is examined to
determine the value to be assigned to the target.

The keyword UNAFFECTED may be used as the assignment value so
that the output can be left unchanged when the required conditions for
such an (in)action are met.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Signal Assignment Statements
Revisited (Cont.)

● Concurrent signal assignment syntax:

❍ A postponed concurrent signal assignment statement is
equivalent to a one line postponed process

❍ Example conditional signal assignment statement :

❍ Example selected signal assignment statement :

❍ UNAFFECTED may be used as the assignment value
❑ No event is assigned to output -- new for VHDL93

[label :] [POSTPONED] [GUARDED] conditional_signal_assignment
| [label :] [POSTPONED [GUARDED] selected_signal_assignment

[label :] [POSTPONED] [GUARDED] conditional_signal_assignment
| [label :] [POSTPONED [GUARDED] selected_signal_assignment

S3 <= 0 AFTER 2 ns WHEN (x=‘0’ and y=‘0’) ELSE
 1 AFTER 5 ns WHEN (x=‘1’ and y=‘1’) ELSE
 2 AFTER 8 ns;

S3 <= 0 AFTER 2 ns WHEN (x=‘0’ and y=‘0’) ELSE
 1 AFTER 5 ns WHEN (x=‘1’ and y=‘1’) ELSE
 2 AFTER 8 ns;

WITH sel_signal SELECT
S3 <= 0 AFTER 3 ns WHEN 0,
 1 AFTER 4 ns WHEN 3,
 2 AFTER 5 ns WHEN OTHERS;

WITH sel_signal SELECT
S3 <= 0 AFTER 3 ns WHEN 0,
 1 AFTER 4 ns WHEN 3,
 2 AFTER 5 ns WHEN OTHERS;

Page 26Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Recalling the previous presentation of VHDL BLOCKs and GUARDs,
the target of a concurrent signal assignment statement containing the
keyword GUARDED and appearing within a BLOCK statement is a
guarded target. The use of BLOCKs and GUARDs allows guarded
targets to have their signal drivers disconnected (i.e. turned off) so that
another concurrent signal assignment statement to the same target
signal can determine the signal’s value without the use of a VHDL Bus
Resolution Function. This mechanism is analogous to the use of tri-
state bus drivers in digital hardware designs.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Signal Assignment Statements
Revisited (Cont.)

● Concurrent signal assignment : (cont.)

❍ If the target of the assignment is a signal of kind bus or
register, it is a guarded target -- available inside blocks

❑ If the keyword GUARDED appears in the signal
assignment statement, there are two possibilities for
the assignment semantics :

➨ For guarded targets :

➨ For non-guarded targets :

if GUARD then
 signal_transform
else
 disconnect_statements
end if;

if GUARD then
 signal_transform
else
 disconnect_statements
end if;

if GUARD then
 signal_transform
end if;

if GUARD then
 signal_transform
end if;

Page 27Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Additional differences in functionality between sequential and
concurrent signal assignment statements are shown here.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Signal Assignment Statements
Revisited (Cont.)

● Sequential signal assignment statement :
❍ No mechanisms for guarded, postponed, conditional, or

selected signal assignments
❑ No guarded statements because blocks are

concurrent rather than sequential statements
❑ No postponed statements because sequential signal

assignment statements are NOT equivalent to one
line processes

❑ No conditional or selected signal assignment
statements because their function is provided by
other means in sequential statements

➨ E.G. IF-THEN_ELSE and CASE statements

❍ UNAFFECTED not allowed as an assignment value
❑ Not needed since no conditional or selected

assignment statements are available

Page 28Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

At any VHDL assignment to objects with parameters or indices,
associations may be made by position, name, or by a combination of
the two as long as the association is not then made ambiguous.
Named associations are highlighted here for two reasons. First, the
use of OTHERS can be very useful when assigning the values to an
object with many indices. Second, it can be confusing to see an
assignment as the one in the declaration of the variable var_nam1
above in which a constant seems to be assigned to another constant
when in actuality it is a constant being assigned to the location
referenced by a constant index.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Named Associations

● Any index or parameter can be associated by
position or by name

❍ Assignments to elements in records in arrays can use
“|” and “OTHERS” :

❍ Port map and generic map associations can use
“OPEN” :

TYPE array_ex IS ARRAY (1 TO 3) OF INTEGER;

VARIABLE var_pos : array_ex := (12,34,5);
VARIABLE var_nam1 : array_ex := (3=>23,2=>14,1=>8);
VARIABLE var_nam2 : array_ex := (1|3=>11,OTHERS=>15);

TYPE array_ex IS ARRAY (1 TO 3) OF INTEGER;

VARIABLE var_pos : array_ex := (12,34,5);
VARIABLE var_nam1 : array_ex := (3=>23,2=>14,1=>8);
VARIABLE var_nam2 : array_ex := (1|3=>11,OTHERS=>15);

r0 : ENTITY work.dff(behav)
 PORT MAP (d0,clk,q=>q0,qn=>OPEN,enable=>enabled);

r0 : ENTITY work.dff(behav)
 PORT MAP (d0,clk,q=>q0,qn=>OPEN,enable=>enabled);

ENTITY dff is
 PORT(d,clk,enable : IN level;
 qn,q : OUT level);
END dff;

Page 29Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

VHDL87 limited the scope of the variable to the process in which it was
declared. Signals were the only means of communication between
processes, but signal assignments require an advance in either delta
time or simulation time.

VHDL '93 introduced shared variables which are available to more than
one process. Like ordinary VHDL variables, their assignments take
effect immediately. However, caution must be exercised when using
shared variables because multiple processes making assignments to
the same shared variable can lead to unpredictable behavior if the
assignments are made concurrently. The VHDL ‘93 standard does not
define the value of a shared variable it two or more processes make
assignments in the same simulation cycle.

[Bergé93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Shared Variables

● In VHDL87, the scope of a variable was limited to
the process in which it was declared

❍ Signals were the only means of inter-process
communication

● VHDL93 introduced the shared variable
❍ Available to many processes or procedures

● Shared variables are useful for system level
modeling or object-oriented programming

❍ Shared variables also introduce some non-determinism
in VHDL, limiting the uses of this new construct

Page 30Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The syntax of the shared variable is similar to that of the normal
variable. However, the keyword SHARED is placed in front of
VARIABLE in the declaration

[Bergé93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Shared Variables
Non-determinism

● The final value of count is unpredictable

ARCHITECTURE non_determinist OF example IS
SHARED VARIABLE count : INTEGER;

BEGIN
p1 : PROCESS
BEGIN
count := 1;
WAIT;

END PROCESS p1;

p2 : PROCESS
BEGIN
count := 2;
WAIT;

END PROCESS p2;
END non_determinist;

ARCHITECTURE non_determinist OF example IS
SHARED VARIABLE count : INTEGER;

BEGIN
p1 : PROCESS
BEGIN
count := 1;
WAIT;

END PROCESS p1;

p2 : PROCESS
BEGIN
count := 2;
WAIT;

END PROCESS p2;
END non_determinist;

Page 31Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As an example of where shared variables are useful, the
stack_of_integer package in this and the next slide uses a shared
variable in two procedures used to maintain a stack. The designer is
responsible for ensuring that no two processes call these two
procedures at any one time.

The package declarative region is shown here declaring two
procedures, push and pop.

[Bergé93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Shared Variables
Stack Example

● A shared variable is best used for system level
modeling and object-oriented programming

● The following stack_of_integer package uses
shared variables to make the stack available to
more than one procedure

PACKAGE stack_of_integer IS
PROCEDURE push (what : IN INTEGER);
PROCEDURE pop (what : OUT INTEGER);

END stack_of_integer;

PACKAGE stack_of_integer IS
PROCEDURE push (what : IN INTEGER);
PROCEDURE pop (what : OUT INTEGER);

END stack_of_integer;

Page 32Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

[Bergé93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Shared Variables
Stack Example

PACKAGE BODY stack_of_integer IS
TYPE stack_type IS ARRAY (0 TO 100) OF INTEGER;
SHARED VARIABLE stack : stack_type;
SHARED VARIABLE index : NATURAL := 0;

PROCEDURE push (what : IN INTEGER) IS
BEGIN
stack(index) := what;
index := index + 1;

END push;

PROCEDURE pop (what : OUT INTEGER) IS
BEGIN
index := index - 1;
what := stack(index);

END pop;
END stack_of_integer;

PACKAGE BODY stack_of_integer IS
TYPE stack_type IS ARRAY (0 TO 100) OF INTEGER;
SHARED VARIABLE stack : stack_type;
SHARED VARIABLE index : NATURAL := 0;

PROCEDURE push (what : IN INTEGER) IS
BEGIN
stack(index) := what;
index := index + 1;

END push;

PROCEDURE pop (what : OUT INTEGER) IS
BEGIN
index := index - 1;
what := stack(index);

END pop;
END stack_of_integer;

Page 33Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Outline

● Introduction

● Revisiting some VHDL constructs

● Examples

❍ Abstract data type example

❍ Example from UVA ADEPT

● Summary

Page 34Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Abstract data types (ADTs) are objects which can be used to represent
an activity or component in behavioral modeling. An ADT supports data
hiding, encapsulation, and parameterized reuse. As such they give
VHDL some object-oriented capability.

An ADT is both a data structure (such as a stack, queue, tree, etc.) and
a set of functions (e.g. operators) that provide useful services of the
data. For example, a stack ADT would have functions for pushing an
element onto the stack, retrieving an item from the stack, and perhaps
several user-accessible attributes such as whether the stack is full or
empty.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Abstract Data Type Example

● A first example will be the implementation of an
abstract data type (ADT) in VHDL

● An abstract data type consists of two things
❍ The custom VHDL data types and subtypes
❍ Operators that manipulate data of those custom types

● Examples of ADTs include :
❍ Queue data type
❍ Finite state machine data type
❍ Floating and complex data type
❍ Vector and matrix data types

Page 35Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is a package declaration for a package that implements a complex
number data type. Note that the data type is given as well as some
standard operators on that type.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Abstract Data Types
An Example Package Declaration

PACKAGE complex_type IS

 CONSTANT re : INTEGER := 0;

 CONSTANT im : INTEGER := 1;

 TYPE complex IS ARRAY (NATURAL RANGE re TO im) OF REAL;

 FUNCTION "+" (a, b : complex) RETURN complex;
 FUNCTION "-" (a, b : complex) RETURN complex;
 FUNCTION "*" (a, b : complex) RETURN complex;
 FUNCTION "/" (a, b : complex) RETURN complex;

END complex_type;

PACKAGE complex_type IS

 CONSTANT re : INTEGER := 0;

 CONSTANT im : INTEGER := 1;

 TYPE complex IS ARRAY (NATURAL RANGE re TO im) OF REAL;

 FUNCTION "+" (a, b : complex) RETURN complex;
 FUNCTION "-" (a, b : complex) RETURN complex;
 FUNCTION "*" (a, b : complex) RETURN complex;
 FUNCTION "/" (a, b : complex) RETURN complex;

END complex_type;

Page 36Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the package body showing the implementation of the standard
operators on the complex type.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Abstract Data Types
An Example Package Body

PACKAGE BODY complex_type IS

 FUNCTION "+" (a, b : complex)
RETURN complex IS

 VARIABLE t : complex;
 Begin

 T(re) := a(re) + b(re);
 T(im) := a(im) + b(im);
 RETURN t;

 End "+";

 FUNCTION "-" (a, b : complex)
RETURN complex IS

 VARIABLE t : complex;
 Begin

 T(re) := a(re) - b(re);
 T(im) := a(im) - b(im);
 RETURN t;

 End "-";

PACKAGE BODY complex_type IS

 FUNCTION "+" (a, b : complex)
RETURN complex IS

 VARIABLE t : complex;
 Begin

 T(re) := a(re) + b(re);
 T(im) := a(im) + b(im);
 RETURN t;

 End "+";

 FUNCTION "-" (a, b : complex)
RETURN complex IS

 VARIABLE t : complex;
 Begin

 T(re) := a(re) - b(re);
 T(im) := a(im) - b(im);
 RETURN t;

 End "-";

FUNCTION "*" (a, b : complex) RETURN complex
IS

 VARIABLE t : complex;
 BEGIN

 t(re) := a(re) * b(re) - a(im) * b(im);
 t(im) := a(re) * b(im) + b(re) * a(im);
 RETURN t;

 END "*";

 FUNCTION "/" (a, b : complex) RETURN
complex IS

 VARIABLE i : real;
 VARIABLE t : complex;
 BEGIN

 t(re) := a(re) * b(re) + a(im) * b(im);
 t(im) := b(re) * a(im) - a(re) * b(im);
 i := b(re)**2 + b(im)**2;
 t(re) := t(re) / i;
 t(im) := t(im) / i;
 RETURN t;

 END "/";
END complex_type;

FUNCTION "*" (a, b : complex) RETURN complex
IS

 VARIABLE t : complex;
 BEGIN

 t(re) := a(re) * b(re) - a(im) * b(im);
 t(im) := a(re) * b(im) + b(re) * a(im);
 RETURN t;

 END "*";

 FUNCTION "/" (a, b : complex) RETURN
complex IS

 VARIABLE i : real;
 VARIABLE t : complex;
 BEGIN

 t(re) := a(re) * b(re) + a(im) * b(im);
 t(im) := b(re) * a(im) - a(re) * b(im);
 i := b(re)**2 + b(im)**2;
 t(re) := t(re) / i;
 t(im) := t(im) / i;
 RETURN t;

 END "/";
END complex_type;

Page 37Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section presents the description of some simple performance
modeling elements that are based on elements from UVA’s ADEPT
tool. This example will illustrate the use of a Bus Resolution Function to
implement an embedded communication protocol used to pass
information between components. In addition, functions and
procedures are used extensively throughout the example to enhance
readability and reuse as well to abstract away implementation details.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Example From UVA ADEPT

● The following example is based on the performance
and reliability modeling tool, ADEPT, developed at
the University of Virginia

❍ Note that the implementations of the modules shown here
are greatly simplified subsets of those actually used in
ADEPT

● Some particularly useful features of this example :
❍ A complex bus resolution function is used to achieve an

embedded fully interlocked handshake protocol between
communicating components

❍ VHDL procedures and functions are used extensively to
hide the implementation details of the underlying behavior

Page 38Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide illustrates the priority implemented in the Bus Resolution
Function Protocol. The simplest case to consider (and the only one that
will be used in the following example) is for a point-to-point connection
in which one element serves as the token source and the other serves
as the token sink. In this case, the status of the output token for the
source will be either Present or Released, and the status of the output
token for the sink will be either Acked or Removed.

The circle in the slide above serves two related purposes. First, note
that at any one time, the arrows at the “corners” indicate the four
possible states in which the two token drivers can be. For any of these
four conditions, protocol will select the token that is at the head of the
arrow.

The second purpose of the circle is to illustrate the sequence of token
status conditions that will be seen by an observer on the signal
connecting the two elements during a communication.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example From UVA ADEPT
Bus Resolution Function

● The token status priority used in the protocol bus
resolution function is illustrated below :

❍ Note that the positions of the four arrows represent the
four states in which the protocol token inputs may be

❍ For each of the four input conditions, the token with the
status at the head of the arrow is selected

❍ Note that the cycle indicated by the illustration also
shows the order of the status at the output of protocol

 Released

 Removed

 Present

 Acked

Page 39Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The package declaration required for this example is shown here.
Several required data types and useful constants are declared. Note,
for example, that the token type is a record that contains an
enumerated type and an array of integers.

[UM93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example From UVA ADEPT
UVA Package Declaration

PACKAGE uva IS

 TYPE Handshake IS (Removed, Acked, Released, Present);
 TYPE Token_Fields IS (Status, Tag1, Tag2, Tag3,

 Index, Act_Time, Color);
 TYPE Color_Type IS
 ARRAY(Token_Fields RANGE Tag1 TO Act_Time) OF INTEGER;

 TYPE Token IS
 RECORD
 Status : Handshake;
 Color : Color_Type;
 END RECORD;

 TYPE Token_Vector IS ARRAY (Integer RANGE <>) OF Token;
 FUNCTION Protocol (Input : Token_Vector) RETURN Token;
 SUBTYPE Token_Res IS Protocol Token;

 CONSTANT Def_Colors : Color_Type := (OTHERS=>0);
 CONSTANT Def_Source_Token : Token := (Released,Def_Colors);
 CONSTANT Def_Sink_Token : Token := (Removed,Def_Colors);

-- Package declaration continued on next slide

PACKAGE uva IS

 TYPE Handshake IS (Removed, Acked, Released, Present);
 TYPE Token_Fields IS (Status, Tag1, Tag2, Tag3,

 Index, Act_Time, Color);
 TYPE Color_Type IS
 ARRAY(Token_Fields RANGE Tag1 TO Act_Time) OF INTEGER;

 TYPE Token IS
 RECORD
 Status : Handshake;
 Color : Color_Type;
 END RECORD;

 TYPE Token_Vector IS ARRAY (Integer RANGE <>) OF Token;
 FUNCTION Protocol (Input : Token_Vector) RETURN Token;
 SUBTYPE Token_Res IS Protocol Token;

 CONSTANT Def_Colors : Color_Type := (OTHERS=>0);
 CONSTANT Def_Source_Token : Token := (Released,Def_Colors);
 CONSTANT Def_Sink_Token : Token := (Removed,Def_Colors);

-- Package declaration continued on next slide

Page 40Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This continues the declaration section of the package with declarations
of a number of useful procedures and functions.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example From UVA ADEPT
UVA Package Declaration (Cont.)

-- Package declaration continued from previous slide

 PROCEDURE Place_Token(SIGNAL T : INOUT Token);
 PROCEDURE Place_Token(SIGNAL T : INOUT Token; Delay : TIME);
 PROCEDURE Ack_Token(SIGNAL T : INOUT Token);
 PROCEDURE Release_Token(SIGNAL T : INOUT Token);
 PROCEDURE Remove_Token(SIGNAL T : INOUT Token);

 function Token_Present(T : Token) RETURN BOOLEAN;
 function Token_Acked(T : Token) RETURN BOOLEAN;
 function Token_Released(T : Token) RETURN BOOLEAN;
 function Token_Removed(T : Token) RETURN BOOLEAN;

END uva;

-- Package declaration continued from previous slide

 PROCEDURE Place_Token(SIGNAL T : INOUT Token);
 PROCEDURE Place_Token(SIGNAL T : INOUT Token; Delay : TIME);
 PROCEDURE Ack_Token(SIGNAL T : INOUT Token);
 PROCEDURE Release_Token(SIGNAL T : INOUT Token);
 PROCEDURE Remove_Token(SIGNAL T : INOUT Token);

 function Token_Present(T : Token) RETURN BOOLEAN;
 function Token_Acked(T : Token) RETURN BOOLEAN;
 function Token_Released(T : Token) RETURN BOOLEAN;
 function Token_Removed(T : Token) RETURN BOOLEAN;

END uva;

Page 41Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The body of the package used in the example is shown here. The
complete VHDL file, which spans several slides, includes the
implementation of the various functions and procedures declared in the
declarative section of the package.

The implementation of the Bus Resolution Function protocol is shown in
this particular slide. The first section of the function searches through
the input token_vector to find a sink token of status Acked and/or a
source token status Present to select a single source token and a
single sink token between which to arbitrate. If no appropriate source
or sink token is found for either of these, default status conditions of
Released and Removed are used for the source and sink tokens,
respectively. The function then picks the appropriate token from
between the two tokens selected in the first section via the arbitration
priority that was described earlier.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example From UVA ADEPT
UVA Package Body

PACKAGE BODY uva IS

 FUNCTION Protocol (Input : Token_Vector) RETURN Token IS
 VARIABLE Source_Token : Token := Def_Source_Token;
 VARIABLE Sink_Token : Token := Def_Sink_Token;
 VARIABLE I : INTEGER;
 BEGIN
 -- First, determine status of input tokens
 FOR I in Input'RANGE
 IF (Input(I).Status = Present) THEN Source_Token := Input(I);
 ELSIF (Input(I).Status = Acked) THEN Sink_Token := Input(I);
 END IF; -- else use default assignments from variable declarations
 END loop;

 -- Resolve based on status of tokens identified
 IF (Source_Token.Status=Present) THEN
 IF (Sink_Token.Status=Acked) THEN RETURN Sink_Token;
 ELSE RETURN Source_Token;
 END IF;
 ELSIF (Sink_Token.Status=Acked) THEN RETURN Source_Token;
 ELSE RETURN Sink_Token;
 END IF;

 END Protocol;

-- Package body continued on next slide

PACKAGE BODY uva IS

 FUNCTION Protocol (Input : Token_Vector) RETURN Token IS
 VARIABLE Source_Token : Token := Def_Source_Token;
 VARIABLE Sink_Token : Token := Def_Sink_Token;
 VARIABLE I : INTEGER;
 BEGIN
 -- First, determine status of input tokens
 FOR I in Input'RANGE
 IF (Input(I).Status = Present) THEN Source_Token := Input(I);
 ELSIF (Input(I).Status = Acked) THEN Sink_Token := Input(I);
 END IF; -- else use default assignments from variable declarations
 END loop;

 -- Resolve based on status of tokens identified
 IF (Source_Token.Status=Present) THEN
 IF (Sink_Token.Status=Acked) THEN RETURN Sink_Token;
 ELSE RETURN Source_Token;
 END IF;
 ELSIF (Sink_Token.Status=Acked) THEN RETURN Source_Token;
 ELSE RETURN Sink_Token;
 END IF;

 END Protocol;

-- Package body continued on next slide

Page 42Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example From UVA ADEPT
UVA Package Body (Cont.)

-- Package body continued from previous slide
 PROCEDURE Place_Token (SIGNAL T : INOUT Token) IS
 VARIABLE Temp : Token;
 BEGIN
 Temp := T;
 Temp.Status := Present;
 T <= Temp;
 END Place_Token;

 PROCEDURE Place_Token (SIGNAL T : INOUT Token; Delay : TIME) IS
 VARIABLE Temp : Token;
 BEGIN
 Temp := T;
 Temp.Status := Present;
 T <= Temp after delay;
 END Place_Token;

 PROCEDURE Ack_Token(SIGNAL T : INOUT Token) IS
 VARIABLE Temp : Token;
 BEGIN
 Temp := T;
 Temp.Status := Acked;
 T <= Temp;
 END Ack_Token;

-- Package body continued on next slide

-- Package body continued from previous slide
 PROCEDURE Place_Token (SIGNAL T : INOUT Token) IS
 VARIABLE Temp : Token;
 BEGIN
 Temp := T;
 Temp.Status := Present;
 T <= Temp;
 END Place_Token;

 PROCEDURE Place_Token (SIGNAL T : INOUT Token; Delay : TIME) IS
 VARIABLE Temp : Token;
 BEGIN
 Temp := T;
 Temp.Status := Present;
 T <= Temp after delay;
 END Place_Token;

 PROCEDURE Ack_Token(SIGNAL T : INOUT Token) IS
 VARIABLE Temp : Token;
 BEGIN
 Temp := T;
 Temp.Status := Acked;
 T <= Temp;
 END Ack_Token;

-- Package body continued on next slide

Page 43Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This and the following two slides show the implementation of the
remaining procedures and functions in this package body.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example From UVA ADEPT
UVA Package Body (Cont.)

-- Token body continued from previous slide

PROCEDURE Release_Token(SIGNAL T : INOUT Token) IS
VARIABLE Temp : Token;
BEGIN
 Temp := T;
 Temp.Status := Released;
 T <= Temp;
END Release_Token;

PROCEDURE Remove_Token(SIGNAL T : INOUT Token) IS
VARIABLE Temp : Token;
BEGIN
 Temp := T;
 Temp.Status := Removed;
 T <= Temp;
END Remove_Token;

-- Token body continued on next slide

-- Token body continued from previous slide

PROCEDURE Release_Token(SIGNAL T : INOUT Token) IS
VARIABLE Temp : Token;
BEGIN
 Temp := T;
 Temp.Status := Released;
 T <= Temp;
END Release_Token;

PROCEDURE Remove_Token(SIGNAL T : INOUT Token) IS
VARIABLE Temp : Token;
BEGIN
 Temp := T;
 Temp.Status := Removed;
 T <= Temp;
END Remove_Token;

-- Token body continued on next slide

Page 44Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example From UVA ADEPT
UVA Package Body (Cont.)

-- Package body continued from previous slide
FUNCTION Token_Present (T : Token) RETURN BOOLEAN IS
 BEGIN
 IF (T.Status = Present) THEN RETURN TRUE;
 ELSE RETURN FALSE;
 END IF;
 END Token_Present;

FUNCTION Token_Acked(T : Token) RETURN BOOLEAN IS
 BEGIN
 IF (T.Status = Acked) THEN RETURN TRUE;
 ELSE RETURN FALSE;
 END IF;
 END Token_Acked;

FUNCTION Token_Released(T : Token) RETURN BOOLEAN IS
 BEGIN
 IF (T.Status = Released) THEN RETURN TRUE;
 ELSE RETURN FALSE;
 END IF;
 END Token_Released;

FUNCTION Token_Removed(T : Token) RETURN BOOLEAN IS
 BEGIN
 IF (T.Status = Removed) THEN RETURN TRUE;
 ELSE RETURN FALSE;
 END IF;
 END Token_Removed;

END uva;

-- Package body continued from previous slide
FUNCTION Token_Present (T : Token) RETURN BOOLEAN IS
 BEGIN
 IF (T.Status = Present) THEN RETURN TRUE;
 ELSE RETURN FALSE;
 END IF;
 END Token_Present;

FUNCTION Token_Acked(T : Token) RETURN BOOLEAN IS
 BEGIN
 IF (T.Status = Acked) THEN RETURN TRUE;
 ELSE RETURN FALSE;
 END IF;
 END Token_Acked;

FUNCTION Token_Released(T : Token) RETURN BOOLEAN IS
 BEGIN
 IF (T.Status = Released) THEN RETURN TRUE;
 ELSE RETURN FALSE;
 END IF;
 END Token_Released;

FUNCTION Token_Removed(T : Token) RETURN BOOLEAN IS
 BEGIN
 IF (T.Status = Removed) THEN RETURN TRUE;
 ELSE RETURN FALSE;
 END IF;
 END Token_Removed;

END uva;

Page 45Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The description of the source module above is a greatly simplified
version of the source module found in the ADEPT library. Note that this
and the subsequent model descriptions assume that the package
presented in this example will be compiled into the “uvalib” library.

The description above is sequential in nature in that the source module
activates its token driver (i.e., “places” a token), waits for the adjacent
module to activate its driver (i.e., by it “acknowledging” the token),
inactivates its driver (i.e. ,“releases” the token), waits for the adjacent
module to inactivate its driver (i.e., by it “removing” the token), and
finally waits for the specified delay before beginning the sequence
again.

[UM93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simple Module Examples
Source Module

LIBRARY uvalib;
USE uvalib.uva.ALL;

ENTITY Source IS
 GENERIC (Step : TIME);
 PORT (Data_Output : INOUT Token;
END Source;

Architecture Ar_Source OF Source IS
BEGIN
 PROCESS
 BEGIN
 Place_Token(Data_Output);
 WAIT UNTIL Token_Acked(Data_Output);

 Release_Token(Data_Output);
 WAIT UNTIL Token_Removed(Data_Output);

 WAIT FOR Step;
 END PROCESS;

END Ar_Source;

LIBRARY uvalib;
USE uvalib.uva.ALL;

ENTITY Source IS
 GENERIC (Step : TIME);
 PORT (Data_Output : INOUT Token;
END Source;

Architecture Ar_Source OF Source IS
BEGIN
 PROCESS
 BEGIN
 Place_Token(Data_Output);
 WAIT UNTIL Token_Acked(Data_Output);

 Release_Token(Data_Output);
 WAIT UNTIL Token_Removed(Data_Output);

 WAIT FOR Step;
 END PROCESS;

END Ar_Source;

Page 46Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A simplified version of the Fixed_Delay module form the ADEPT library
is shown above. In this case, the module waits for a token to arrive at
its input and then places a token on its output using an overloaded
version of the place_token procedure that includes a delay parameter.
After the output token is acknowledged, the module acknowledges its
input token and releases its output token as it begins to prepare for the
arrival of the next token on its input by continuing with the token status
sequence defined by protocol .

[UM93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simple Module Examples
Fixed_delay Module

LIBRARY uvalib;
USE uvalib.uva.ALL;

ENTITY FD IS
 GENERIC (Delay : Time);
 PORT (Data_Input, Data_Output : INOUT Token;
END FD;

Architecture Ar_FD of FD IS
BEGIN
 PROCESS
 BEGIN
 WAIT UNTIL Token_Present(Data_Input) AND Token_Removed(Data_Output);

 Place_Token(Data_Output,Delay); -- Note use of overloaded procedure
 WAIT UNTIL Token_Acked(Data_Output);

 Ack_Token(Data_Input);
 Release_Token(Data_Output);
 WAIT UNTIL Token_Released(Data_Input);

 Remove_Token(Data_Input);
 END PROCESS;

END Ar_FD;

LIBRARY uvalib;
USE uvalib.uva.ALL;

ENTITY FD IS
 GENERIC (Delay : Time);
 PORT (Data_Input, Data_Output : INOUT Token;
END FD;

Architecture Ar_FD of FD IS
BEGIN
 PROCESS
 BEGIN
 WAIT UNTIL Token_Present(Data_Input) AND Token_Removed(Data_Output);

 Place_Token(Data_Output,Delay); -- Note use of overloaded procedure
 WAIT UNTIL Token_Acked(Data_Output);

 Ack_Token(Data_Input);
 Release_Token(Data_Output);
 WAIT UNTIL Token_Released(Data_Input);

 Remove_Token(Data_Input);
 END PROCESS;

END Ar_FD;

Page 47Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A simplified version of the Sink module from the ADEPT library is
shown above. This module waits for an input token to arrive. It then
acknowledges the input token and continues through the token status
sequence defined by protocol to prepare it for the arrival of the next
input token.

[UM93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simple Module Examples
Sink Module

LIBRARY uvalib;
USE uvalib.uva.ALL;

ENTITY Sink IS
 PORT (Data_Input : INOUT Token;
END Source;

ARCHITECTURE Ar_Sink OF Sink IS
BEGIN
 PROCESS
 BEGIN
 WAIT UNTIL Token_Present(Data_Input);

 Ack_Token(Data_Input);
 WAIT UNTIL Token_Released(Data_Input);

 Remove_Token(Data_Input);
 END PROCESS;

END Ar_Sink;

LIBRARY uvalib;
USE uvalib.uva.ALL;

ENTITY Sink IS
 PORT (Data_Input : INOUT Token;
END Source;

ARCHITECTURE Ar_Sink OF Sink IS
BEGIN
 PROCESS
 BEGIN
 WAIT UNTIL Token_Present(Data_Input);

 Ack_Token(Data_Input);
 WAIT UNTIL Token_Released(Data_Input);

 Remove_Token(Data_Input);
 END PROCESS;

END Ar_Sink;

Page 48Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows the top level VHDL description in which the three
modules just described are instantiated and connected to each other by
their PORT MAP assignments.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Three Module Example
Testbench Description

LIBRARY uvalib;
USE uvalib.uva.ALL;

ENTITY Test IS
END;

ARCHITECTURE Ar_Test OF Test IS
 SIGNAL A,B : Token_Res;
 BEGIN
 m0 : ENTITY work.Source(Ar_Source)
 GENERIC MAP (5ns)
 PORT MAP (A);
 m1 : ENTITY work.FD(Ar_FD)
 GENERIC MAP (5ns)
 PORT MAP (A,B);
 m2 : ENTITY work.Sink(Ar_Sink)
 PORT MAP (B);
 END Ar_Test;

LIBRARY uvalib;
USE uvalib.uva.ALL;

ENTITY Test IS
END;

ARCHITECTURE Ar_Test OF Test IS
 SIGNAL A,B : Token_Res;
 BEGIN
 m0 : ENTITY work.Source(Ar_Source)
 GENERIC MAP (5ns)
 PORT MAP (A);
 m1 : ENTITY work.FD(Ar_FD)
 GENERIC MAP (5ns)
 PORT MAP (A,B);
 m2 : ENTITY work.Sink(Ar_Sink)
 PORT MAP (B);
 END Ar_Test;

Page 49Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The three-module example shown in this slide will be used to illustrate
the important events in the passing of tokens from a token source to a
token sink. As the table shows, the relevant events are the placing and
acknowledging of tokens. The other two states in the four-cycle
handshake, releasing and removing, are only required to effect the
interlocked handshake protocol.

Note that the fixed_delay module does not acknowledge the source's
token until its output has been acknowledged by the sink module (i.e.,
there is no buffering between inputs and outputs). This is an important
characteristic of the communication standard used by ADEPT modules
(unless explicitly stated otherwise, as in the BUFFER module).

[UM93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Three Module Example
Simplified Event Sequence

step: 5 ns

SOURCE

SOA

FIXED_DELAY

FDA

SINK

SIA

delay: 5nsA B

1 2

34

Event Time Description
1 0 ns Source places token on A
2 5 ns Delay places token on B
3 5 ns Sink acks token on B
4 5 ns Delay acks token on A
1 10 ns Source places next token on A

Page 50Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This example shows the entire four-cycle sequence of token
assignments made in the passing of tokens in the model. Note that
after a token is acknowledged, the release and removal of that token
take place in delta time (e.g., event 4 and 6 for B in the example).

[UM93]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Three Module Example
Detailed Event Sequence

step: 5 ns
mod_type: 1

SOURCE

SOA

FIXED_DELAY

FDA

SINK

SIA

delay: 5nsA B

1 2

3

4

5

6

7

8
Event Time Delta Description

Resolved
Signal A

Resolved
Signal B

1 0 ns 1 Source executes place_token on A present removed
2 5 ns 1 Delay executes place_token on B “ present
3 2 Sink executes ack_token on B “ acked
4 3 Delay executes release_token on B “ released
5 Delay executes ack_token on A acked “
6 4 Sink executes remove_token on B “ removed
7 Source executes release_token on A released “
8 5 Delay executes remove_token on A removed “
1 10 ns 1 Source executes place_token on A present “

“

“

“
“
“
“
“
“

Page 51Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Outline

● Introduction

● Revisiting some VHDL constructs

● Examples

● Summary

Page 52Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This instructional module has illustrated the versatility of VHDL in
supporting abstraction and information encapsulation to facilitate the
description of complex systems. Example system design and
description methodologies based on VHDL were included primarily to
illustrate the VHDL constructs used to support modeling at higher levels
of design abstraction.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary

● VHDL provides sophisticated constructs making
it a versatile description language for modeling
of hardware structure and behavior, e.G. :

❍ Bus resolution functions allow for user defined bus
arbitration

❍ Shared variables, new to VHDL 93, support sharing of
information in abstract models

● This concludes the sequence of VHDL modules
developed by the RASSP E&F team

❍ These modules are introductory in nature and are not
intended to provide a complete and comprehensive
coverage of VHDL

❍ The contents of these modules, however, provide
enough information to allow a designer new to VHDL to
successfully describe complex systems with VHDL

Page 53Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

[Bergé93] Bergé, J-M., Fonkoua, A., Maginot, S., Rouillard, J., VHDL'92: The New Features of
the VHDL Hardware Description Language, Kluwer Academic Publishers, 1993.

[Bhasker95] Bhasker, J. A VHDL Primer, Prentice Hall, 1995.

[Hein95] Hein, Karl, et al. “RASSP VHDL Modeling Terminology and Taxonomy-Revision 1.0”,
Proceedings of the 2nd Annual RASSP Conference, July 24-27, 1995.

[Honeywell94] Carpenter, T., Rose, F., Steeves, T., Performance Modeling with VHDL,
Honeywell Systems & Research Center, 1994.

[Honeywell95] Honeywell Performance Modeling Library, 1995.

[IEEE] All referenced IEEE material is used with permission.

[LRM93] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993, 1994.

[Navabi93] Navabi, Z., VHDL: Analysis and Modeling of Digital Systems, McGraw-Hill, 1993.

[UM93] Cutright, E.D., Rao, R., Johnson, B.W., Aylor, J.H., A Handbook on the Unified
Modeling Methodology Building Block Set, CSIS, http://www.ee.virginia.edu/research/CSIS/,
University of Virginia, 1993.

[Richards97] Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application
Specific Signal Processors, Kluwer Academic Publishers, Norwell, MA, 1997

