
Module 13 - Advanced Concepts in VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

1

Module 13 - Advanced Concepts in VHDL
Tutorial and Exercises

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and Limitation of
Liability Information concerning the material, VHDL code and software developed under the
RASSP programs or incorporated in RASSP material.

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced
Technology Institute (ATI), and may only be used for non-commercial educational purposes.
Any other use of this information without the express written permission of the ATI is
prohibited. Certain parts of this work belong to other copyright holders and are used with their
permission. All information contained, may be duplicated for non-commercial educational use
only provided this copyright notice and the copyright acknowledgements herein are included.
No warranty of any kind is provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under
Contract F33615-94-C-1457. Such data may be liberally reproduced and disseminated by the
Government, in whole or in part, without restriction except as follows: Certain parts of this
work to other copyright holders and are used with their permission; This information
contained herein may be duplicated only for non-commercial educational use. Any vehicle, in
which part or all of this data is incorporated into, shall carry this notice .

Module 13 - Advanced Concepts in VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

2

Module 13 Tutorial

1. Getting started

1.1. Create a directory for the Module 13 lab material:

>> mkdir m13_ex

>> cd m13_ex

1.2. Copy the source files for the VHDL that you will compile and simulate:

>> cp $VHDL_SRC/packaee.vhdl .

>> cp $VHDL_SRC/test_and2.vhdl .

>> cp $VHDL_SRC/test_mult.vhdl .

These files are also in m13_lab.tar. This includes behavioral descriptions

of the testbench for the and2 gate used in Module 10 and the multiplier

used in Module 12.

1.3. There are also two files that contain the input vectors used with these

testbenches. Copy them now:

>> cp $VHDL_SRC/test_and2.vec .

>> cp $VHDL_SRC/test_mult.vec .

1.4. QuickVHDL needs a work directory for the compiled VHDL files. Create

this directory with the following command:

>> qhlib work

1.5. The full multiplier uses the package from the Module 10 lab, the datapath

constructed for the Module 11 lab, and the behavioral descriptions from

the Module 12 lab. Map the work libraries from these exercises into the

gate_lib, mult_lib, and behav_lib logical libraries:

>> qhmap gate_lib ../m10_ex/work

>> qhmap mult_lib ../m11_ex/work

>> qhmap bahav ../m12_ex/work

2. Examine and compile the package containing some functions to be used in this lab

2.1. Using your favorite text editor, examine the package.vhdl file:
LIBRARY gate_lib;
USE gate_lib.resources.ALL;

PACKAGE resources IS

Module 13 - Advanced Concepts in VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

3

 FUNCTION bit2level (bit_in : BIT) RETURN level;

 FUNCTION bit2level (bit_vector_in : BIT_VECTOR)
 RETURN level_vector;

 END resources;

PACKAGE BODY resources IS

 FUNCTION bit2level (bit_in : BIT) RETURN level IS

 BEGIN

 CASE bit_in IS
 WHEN '0' => RETURN '0';
 WHEN '1' => RETURN '1';
 WHEN OTHERS => ASSERT FALSE
 REPORT 'Cannot do a conversion to BIT'
 SEVERITY ERROR;
 END CASE;
 RETURN '0';
 END bit2level;

 FUNCTION bit2level (bit_vector_in : BIT_VECTOR) RETURN
level_vector IS

 variable I : integer;
 variablelevel_vector_out:level_vector(bit_vector_in'RANGE);

 BEGIN

 FOR I IN bit_vector_in'RANGE LOOP
 CASE bit_vector_in(I) IS
 WHEN '0' => level_vector_out(I) := '0';
 WHEN '1' => level_vector_out(I) := '1';
 WHEN OTHERS => ASSERT FALSE
 REPORT 'Cannot do a conversion to BIT'
 SEVERITY ERROR;
 END CASE;
 END LOOP;
 RETURN level_vector_out;
 END bit2level;

 END resources;

2.2. Compile the VHDL code.

>> qvhcom package.vhdl

3. Examine and compile the testbench for the and2 gate

3.1. Using your favorite text editor, examine the test_and2.vhdl file:

LIBRARY gate_lib;

Module 13 - Advanced Concepts in VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

4

USE gate_lib.resources.ALL;
USE work.resources.ALL;
USE std.textio.ALL;

ENTITY test_and2 IS END;

ARCHITECTURE test OF test_and2 IS
 FILE datain: TEXT OPEN READ_MODE IS 'test_and2.vec';
SIGNAL a, b, c : level;

BEGIN

Gate0: ENTITY gate_lib.and2(behav)
PORT MAP (a,b,c);

Action: PROCESS

 VARIABLE L : LINE;
 VARIABLE okay : BOOLEAN := TRUE;

 VARIABLE sim_time : TIME;
 VARIABLE a_in,b_in : BIT;
 VARIABLE delay : TIME;

BEGIN

 WHILE NOT(ENDFILE(datain)) LOOP
 READLINE(DATAIN,L);
 READ(L,sim_time,okay);
 READ(L,a_in,okay);
 READ(L,b_in,okay);
 IF okay THEN
 delay := sim_time-now;
 a <= bit2level(a_in) AFTER delay;
 b <= bit2level(b_in) AFTER delay;
 WAIT FOR delay;
 END IF;
 END LOOP;
 WAIT UNTIL FALSE;
 END PROCESS;

END test;

3.2. Compile the VHDL code.

>> qvhcom -93 test_and2.vhdl

4. Simulate the compiled code

4.1. Start up the Quicksim tool:

>> qhsim test_and2

4.2. Next, select the signals for viewing. Using the right mouse button, select

Module 13 - Advanced Concepts in VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

5

View->Signals from the menus at the top of the window.

4.3. View the waveforms of the selected signals by selecting under the Signals

menu, Wave->Signals in design.

4.4. Now run the simulation dor 500 ns

QHSIM 1> run 500

You should see an output that looks something like this:

By editing the contents of the test_and2.vec file, you may change the input
values and the times at will be assigned.

5. Testing the Booth Multiplier

Using a similar procedure to the one just used to test the and2 gate, we
may test the Booth multiplier from the Module 12 lab using a testbench
approach.

5.1. Compile the VHDL code.

>> qvhcom -93 test_mult.vhdl

5.2. Start up the Quicksim tool:

>> qhsim test_mult

5.3. Select the signals for viewing. Using the right mouse button, select

Module 13 - Advanced Concepts in VHDL Lab Tutorial

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

6

View->Signals from the menus at the top of the window.

5.4. For this simulation, it may be more convenient to view the signals in a list

format rather than in the waveform format that has been used thus far.

From the Signals menu, select

List->Signals in design.

5.5. Now run the simulation for 5000 ns

QHSIM 2> run 5000

5.6. Again, the input values for this simulation may be changed by editing

test_mult.do.

