
Module 13 - Advanced Concepts in VHDL

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

1

Module 13 : Advanced Concepts In VHDL

Tutorial and Exercises

For the VeriBest Simulator

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. No warranty of any kind is
provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programs or incorporated in RASSP material.

Module 13 - Advanced Concepts in VHDL

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

2

1. Getting Started

1.1. The Module 13 lab will demonstrate the use of functions and test vectors.

Some VHDL models from Modules 10, 11 and 12 will be reused through use of

library mappings.

1.2. The first VHDL files that you will need are package.vhdl, test_and2.vhdl, and

test_mult.vhdl. These include behavioral descriptions of the testbenches for

the and2 gate used in Module 10 and the multiplier used in Module 12.

1.3. In order for these VHDL models to compile correctly, some configuration of

the libraries is needed. Create a library mapping from the logical library name

"gate_lib" to the working library created in module 10.

1.4. Create a library mapping from the logical library name "mult_lib" to the

working library created in module 11.

1.5. Create a library mapping from the logical library name "behav_lib" to the

working library created in module 12.

1.6. There are also two files that contain the input vectors used with these

testbenches. They are test_and2.vec and test_mult.vec. You can examine

these files with any text editor.

2. Open and compile the package containing some functions to be used in this lab

2.1. Open the file package.vhdl using a text editor or a VHDL editing environment.

LIBRARY gate_lib;

USE gate_lib.resources.ALL;

PACKAGE resources IS

 FUNCTION bit2level (bit_in : BIT) RETURN level;

 FUNCTION bit2level (bit_vector_in : BIT_VECTOR)

 RETURN level_vector;

 END resources;

PACKAGE BODY resources IS

 FUNCTION bit2level (bit_in : BIT) RETURN level IS

 BEGIN

 CASE bit_in IS

 WHEN '0' => RETURN '0';

Module 13 - Advanced Concepts in VHDL

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

3

 WHEN '1' => RETURN '1';

 WHEN OTHERS => ASSERT FALSE

 REPORT "Cannot do a conversion to BIT"

 SEVERITY ERROR;

 END CASE;

 RETURN '0';

 END bit2level;

 FUNCTION bit2level (bit_vector_in : BIT_VECTOR) RETURN level_vector IS

 variable I : integer;

 variable level_vector_out : level_vector(bit_vector_in'RANGE);

 BEGIN

 FOR I IN bit_vector_in'RANGE LOOP

 CASE bit_vector_in(I) IS

 WHEN '0' => level_vector_out(I) := '0';

 WHEN '1' => level_vector_out(I) := '1';

 WHEN OTHERS => ASSERT FALSE

 REPORT "Cannot do a conversion to BIT"

 SEVERITY ERROR;

 END CASE;

 END LOOP;

 RETURN level_vector_out;

 END bit2level;

 END resources;

2.2. Compile the package.vhdl model. The model should compile without any

errors.

3. Examine and compile the testbench for the and2 gate

3.1. Open the file test_and2.vhdl using a text editor or a VHDL editing

environment.

LIBRARY gate_lib;

USE gate_lib.resources.ALL;

USE work.resources.ALL;

USE std.textio.ALL;

ENTITY test_and2 IS END;

ARCHITECTURE test OF test_and2 IS

 FILE datain: TEXT OPEN READ_MODE IS "test_and2.vec";

SIGNAL a, b, c : level;

Module 13 - Advanced Concepts in VHDL

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

4

BEGIN

Gate0: ENTITY gate_lib.and2(behav)

PORT MAP (a,b,c);

Action: PROCESS

 VARIABLE L : LINE;

 VARIABLE okay : BOOLEAN := TRUE;

 VARIABLE sim_time : TIME;

 VARIABLE a_in,b_in : BIT;

 VARIABLE delay : TIME;

BEGIN

 WHILE NOT(ENDFILE(datain)) LOOP

 READLINE(DATAIN,L);

 READ(L,sim_time,okay);

 READ(L,a_in,okay);

 READ(L,b_in,okay);

 IF okay THEN

 delay := sim_time-now;

 a <= bit2level(a_in) AFTER delay;

 b <= bit2level(b_in) AFTER delay;

 WAIT FOR delay;

 END IF;

 END LOOP;

 WAIT UNTIL FALSE;

 END PROCESS;

END test;

3.2. Compile the test_and2.vhdl model. The model should compile without any

errors.

4. Simulate the compiled code

4.1. Start the VHDL simulator. Remember to select the entity test_and2 (or its

architecture test) as the design root, if required by your simulator.

Module 13 - Advanced Concepts in VHDL

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

5

4.2. Open a waveform window, then add the signals "A", "B", and "C" from the

and2 component.

4.3. Run the simulator for 500 nanoseconds. The signal waveforms should look

something like this:

4.4. By editing the contents of the test_and2.vec file, you may change the input

values and the times at which they will be assigned.

5. Testing the Booth Multiplier

5.1. Using a similar procedure to the one just used to test the and2 gate, we may test

the Booth multiplier from the Module 12 lab using a testbench approach. First,

compile the VHDL code from the file test_mult.vhdl.

5.2. Start the VHDL simulator. Remember to select the entity test_mult (or its

architecture test) as the design root, if required by your simulator.

5.3. Open a waveform window, then add the signals from the full multiplier

component. Alternately, if the simulator offers a list format for signal values,

display a list of signals. For some simulations, a list may be more convenient

to view than a waveform.

5.4. Run the simulator for 5000 nanoseconds.

5.5. Again, the input values for this simulation may be changed by editing the file

test_mult.vec.

