Module 13 - Advanced Conceptsin VHDL

Module 13 : Advanced Concepts In VHDL

Tutorial and Exercises

For the VeriBest Simulator

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. No warranty of any kind is
provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

See the RASSP Disclaimer_file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programs or incorporated in RASSP material.

Copyright ©1995-1999 SCRA 1
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 13 - Advanced Conceptsin VHDL

1. Getting Started

1.1. The Module 13 lab will demonstrate the use of functions and test vectors.
Some VHDL models from Modules 10, 11 and 12 will be reused through use of
library mappings.

1.2. Thefirst VHDL files that you will need are package.vhdl, test_and2.vhdl, and
test_mult.vhdl. These include behaviora descriptions of the testbenches for
the and2 gate used in Module 10 and the multiplier used in Module 12.

1.3. In order for these VHDL models to compile correctly, some configuration of
the libraries is needed. Create a library mapping from the logical library name
"gate_lib" to the working library created in module 10.

1.4. Create a library mapping from the logical library name "mult_lib" to the
working library created in module 11.

1.5. Create a library mapping from the logical library name "behav_lib" to the
working library created in module 12.

1.6. There are adso two files that contain the input vectors used with these
testbenches. They are test_and2.vec and test_mult.vec. You can examine
these files with any text editor.

2. Open and compile the package containing some functions to be used in this lab
2.1. Open the file package.vhdl using atext editor or aVHDL editing environment.

LI BRARY gate |ib;
USE gate |ib.resources. ALL;

PACKAGE resources IS
FUNCTI ON bit2level (bit_in : BIT) RETURN | evel;

FUNCTI ON bit 2l evel (bit_vector_in : BIT_VECTOR)
RETURN | evel vector;

END resources;
PACKAGE BODY resources IS
FUNCTI ON bit2level (bit_in : BIT) RETURN level IS
BEG N
CASE bit_in IS

WHEN ' 0' => RETURN '0';

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 13 - Advanced Conceptsin VHDL

WHEN '1' => RETURN '1';
WHEN OTHERS => ASSERT FALSE
REPORT "Cannot do a conversion to BIT"
SEVERI TY ERROR;
END CASE;
RETURN ' 0" ;
END bit 2l evel ;

FUNCTI ON bit2level (bit_vector_in : BIT_VECTOR) RETURN | evel vector 1IS

variable | : integer;
variabl e | evel _vector_out : level vector(bit_vector _in'" RANGE);
BEG N

FOR I IN bit_vector_in' RANGE LOOP
CASE bit_vector_in(l) IS
WHEN ' 0' => level vector_out(l)
WHEN '1' => level vector_out(l)
WHEN OTHERS => ASSERT FALSE
REPORT "Cannot do a conversion to BIT"
SEVERI TY ERROR;

o
2 Q

END CASE;
END LOOP;
RETURN | evel _vector _out;
END bi t 2l evel ;

END r esour ces;

2.2. Compile the package.vhdl model. The model should compile without any
errors.

3. Examine and compile the testbench for the and2 gate

3.1. Open the file test_and2.vhdl using a text editor or a VHDL editing
environment.

LI BRARY gate |ib;

USE gate |ib.resources. ALL;
USE wor k. resources. ALL;

USE std.textio. ALL;

ENTITY test _and2 | S END;

ARCHI TECTURE test OF test_and2 IS
FI LE datain: TEXT OPEN READ MODE IS "test _and2.vec";
SIGNAL a, b, c : level;

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 13 - Advanced Conceptsin VHDL

BEG N

Gat e0: ENTITY gate_lib.and2(behav)
PORT MAP (a, b, c);

Action: PROCESS

VARI ABLE L : LI NE;
VARl ABLE okay : BOOLEAN : = TRUE;

VARI ABLE simtime : TIME
VARI ABLE a in,b in : BIT,
VARI ABLE del ay : TI ME;

BEG N

VWHI LE NOT(ENDFI LE(dat ai n)) LOOP
READLI NE(DATAIN, L) ;

READ(L, si m ti ne, okay) ;

READ(L, a_i n, okay) ;

READ(L, b_i n, okay) ;

| F okay THEN
delay := simtine-now,
a <= bit2level (a_in) AFTER del ay;
b <= bit2level (b_in) AFTER del ay;

WAI T FOR del ay;

END | F;

END LOOP;

WAI T UNTIL FALSE;

END PROCESS;

END t est;

3.2. Compile the test_and2.vhdl model. The model should compile without any
errors.
4. Simulate the compiled code

4.1. Start the VHDL simulator. Remember to select the entity test_and2 (or its
architecture test) as the design root, if required by your simulator.

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 13 - Advanced Conceptsin VHDL

4.2. Open a waveform window, then add the signals "A", "B", and "C" from the
and2 component.

4.3. Run the simulator for 500 nanoseconds. The signal waveforms should look
something like this:

rwaveForm Viewer[1] [_ O]
Gt ll:l ins ‘ﬂ ﬂ

Scale:i15 ;ng :r_i _-|_-!

= | @ || =] E] m = ﬁns I '|1sn | o '|4sn |‘
n A L

.I1E Nl

.Jlc g

| Paz: 500 ne |Start

4.4. By editing the contents of the test_and2.vec file, you may change the input
values and the times at which they will be assigned.

5. Testing the Booth Multiplier

5.1. Using asimilar procedure to the one just used to test the and2 gate, we may test
the Booth multiplier from the Module 12 lab using a testbench approach. First,
compile the VHDL code from the file test_mult.vhdl.

5.2. Start the VHDL simulator. Remember to select the entity test_mult (or its
architecture test) as the design root, if required by your simulator.

5.3. Open a waveform window, then add the signals from the full multiplier
component. Alternately, if the simulator offers alist format for signal values,
display alist of signals. For some ssimulations, a list may be more convenient
to view than awaveform.

5.4. Run the simulator for 5000 nanoseconds.

5.5. Again, the input values for this simulation may be changed by editing the file
test._ mult.vec.

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

