
Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 1

1

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Hardware/Software Codesign Overview
 RASSP Education & Facilitation Program

Module 14

Version 3.00

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute, and may only be
used for non-commercial educational purposes. Any other use of this information without the express written permission of the
ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their permission. All
information contained herein may be duplicated for non-commercial educational use provided this copyright notice is included.
No warranty of any kind is provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457. Such
data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work belong to other copyright holders and are used with their permission;This information
contained herein may be duplicated only for non-commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this legend.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 2

This slide shows where the Hardware/Software Codesign and
Partitioning process fits into the RASSP design flow.

2

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Rapid Prototyping Design
Process

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

REUSE DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

HW & SW
Partitioning
& Codesign

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 3

The goals of this module are to present what hardware/software
codesign and partitioning is, what the benefits of truly integrated
codesign are, and how industry and research groups are attempting to
automate parts of the codesign process.

3

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Goals

● Introduce the fundamentals of HW/SW codesign
and partitioning concepts in designing embedded
systems

❍ Discuss the current trends in the codesign of embedded
systems

❍ Provide information on the goals of and methodology
for partitioning hardware/software in systems

● Show benefits of the codesign approach over
current design process

❍ Provide information on how to incorporate these
techniques into a general digital design methodology
for embedded systems

● Illustrate how codesign concepts are being
introduced into design methodologies

❍ Several example codesign systems are discussed

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 4

4

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction
● Unified HW/SW Representations
● HW/SW Partitioning Techniques
● Integrated HW/SW Modeling Methodologies
● HW and SW Synthesis Methodologies
● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 5

5

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction

● Unified HW/SW Representations

● HW/SW Partitioning Techniques

● Integrated HW/SW Modeling Methodologies

● HW and SW Synthesis Methodologies

● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 6

The common definitions for HW/SW codesign is presented above. The
two key concepts involved in codesign are concurrent development of
HW and SW, and integrated design. Integrated design allows
interaction between the design of HW and SW. Codesign techniques
using these two key concepts take advantage of design flexibility to
create systems that can meet stringent performance requirements with
a shorter design cycle.

[DeMicheli97],[Franke91],[Kumar95],[Subrahmanyam93]

6

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Codesign Definition
and Key Concepts

● Codesign
❍ The meeting of system-level objectives by exploiting the

trade-offs between hardware and software in a system
through their concurrent design

● Key concepts
❍ Concurrent: hardware and software developed at the

same time on parallel paths
❍ Integrated: interaction between hardware and software

development to produce design meeting performance
criteria and functional specs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 7

7

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Motivations for Codesign

● Factors driving codesign (hardware/software
systems):

❍ Instruction Set Processors (ISPs) available as cores in
many design kits (386s, DSPs, microcontrollers,etc.)

❍ Systems on Silicon - many transistors available in
typical processes (> 10 million transistors available in
IBM ASIC process, etc.)

❍ Increasing capacity of field programmable devices -
some devices even able to be reprogrammed on-the-fly
(FPGAs, CPLDs, etc.)

❍ Efficient C compilers for embedded processors
❍ Hardware synthesis capabilities

The major factor driving the need for hardware/software codesign is
the fact that most systems today include both dedicated hardware
units and software units executing on microcontrollers or general
purpose processors.

The increasing use of programmable processors being used in
systems that formerly may have been all hardware, the availability of
cheap microcontrollers for use in embedded systems, the availability of
processors cores that can be easily embedded into an ASIC design,
and the increased efficiency of higher level language (C and C++)
compilers that make writing efficient code of embedded processors
much easier and less time consuming are all factors that are
increasing the amount of software in embedded systems.

[DeMicheli97]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 8

This module will concentrate on the use of codesign in the development
of embedded systems. A number of technologies have advanced
recently enabling codesign to become feasible:

(1) High-level hardware synthesis capabilities of improved design
automation tools.

(2) ASIC development allows complex algorithms to be implemented in
silicon quickly and inexpensively .

(3) RISC technology has allowed traditional hardware functionality to be
implemented in software

 [Kumar95].

8

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Motivations for Codesign
(cont.)

● The importance of codesign in designing
hardware/software systems:

❍ Improves design quality, design cycle time, and cost
❑ Reduces integration and test time

❍ Supports growing complexity of embedded systems

❍ Takes advantage of advances in tools and technologies
❑ Processor cores
❑ High-level hardware synthesis capabilities
❑ ASIC development

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 9

9

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Categorizing
Hardware/Software Systems

● Application Domain
❍ Embedded systems

❑ Manufacturing control
❑ Consumer electronics
❑ Vehicles
❑ Telecommunications
❑ Defense Systems

❍ Instruction Set Architectures
❍ Reconfigurable Systems

● Degree of programmability
❍ Access to programming
❍ Levels of programming

● Implementation Features
❍ Discrete vs. integrated components
❍ Fabrication technologies

The “best” solution for performing hardware/software partitioning and
codesign depends on the type of system being designed. Therefore, it
is necessary to talk about ways to categorize hardware/software
systems. Above are listed three major ways in which these systems
can be categorized.

[DeMicheli97]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 10

10

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Categories of Codesign
Problems

● Codesign of embedded systems
❍ Usually consist of sensors, controller, and actuators
❍ Are reactive systems
❍ Usually have real-time constraints
❍ Usually have dependability constraints

● Codesign of ISAs
❍ Application-specific instruction set processors (ASIPs)
❍ Compiler and hardware optimization and trade-offs

● Codesign of Reconfigurable Systems
❍ Systems that can be personalized after manufacture for

a specific application
❍ Reconfiguration can be accomplished before execution

of concurrent with execution (called evolvable systems)

The categories of the codesign problem can best be aligned with the
application domain of the system being designed. Here are listed some
distinguishing characteristics of each system that influence the
codesign problem.

[DeMicheli97]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 11

11

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Components of the Codesign
Problem

● Specification of the system
● Hardware/Software Partitioning

❍ Architectural assumptions - type of processor, interface
style between hardware and software, etc.

❍ Partitioning objectives - maximize speedup, latency
requirements, minimize size, cost, etc.

❍ Partitioning strategies - high level partitioning by hand,
automated partitioning using various techniques, etc.

● Scheduling
❍ Operation scheduling in hardware
❍ Instruction scheduling in compilers
❍ Process scheduling in operating systems

● Modeling the hardware/software system during
the design process

The codesign problem consists of specifying the system (typically in a
behavioral form), in a representation that is suitable for describing
either hardware or software, partitioning the system into either
hardware or software, scheduling the execution of the system’s tasks
to meet any timing constraints, and modeling the system throughout
the design process to validate that it meets the original goals and
functionality.

[DeMicheli97]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 12

Embedded systems, as defined above, have been the impetus for much
of the interest in hardware/software codesign.

Form factor measures include size, weight, and power consumption.

[Subrahmanyam93], [Wolf94]

12

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Embedded Systems

Embedded Systems
Application-specific systems which contain hardware
and software tailored for a particular task and are
generally part of a larger system (e.g., industrial
controllers)

● Characteristics
❍ Are dedicated to a particular application
❍ Include processors dedicated to specific functions
❍ Represent a subset of reactive (responsive to external

inputs) systems
❍ Contain real-time constraints
❍ Include requirements that span:

❑ Performance
❑ Reliability
❑ Form factor

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 13

These are trends in embedded systems that have brought about the
need for codesign techniques to meet design constraints.

[Wolf94]

13

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

 Embedded Systems:
Specific Trends

● Use of microprocessors only one or two
generations behind state-of-the-art for desktops

❍ E.g. N/2 bit width where N is the bit width of current
desktop systems

● Contain limited amount of memory
● Must satisfy strict real-time and/or performance

constraints
● Must optimize additional design objectives:

❍ Cost
❍ Reliability
❍ Design time

● Increased use of hardware/software codesign
principles to meet constraints

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 14

Early uses were in banking and transaction processing applications.

In early embedded systems, expensive hardware justified the relatively
high cost of designing and maintaining system software.

Later microprocessors made low-cost embedded systems a realistic
possibility.

[Wolf94]

14

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Embedded Systems:
 Examples

● Banking and transaction processing applications

● Automobile engine control units

● Signal processing applications

● Home appliances (microwave ovens)

● Industrial controllers in factories

● Cellular communications

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 15

15

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Embedded Systems:
Complexity Issues

● Complexity of embedded systems is continually
increasing

● Number of states in these systems (especially in
the software) is very large

● Description of a system can be complex, making
system analysis extremely hard

● Complexity management techniques are
necessary to model and analyze these systems

● Systems becoming too complex to achieve
accurate “first pass” design using conventional
techniques

● New issues rapidly emerging from new
implementation technologies

Because of the increasing capacity of digital system implementation
technologies, the complexity of embedded systems is growing at an extremely
fast rate. This growth is impacting the scope of the codesign problem.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 16

Several ways to help manage the complexity of a design are listed
above.

Growing software:

Always having a version of the code that runs even at the beginning of
the design process when the code does very little.

[Thimbleby88]

16

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Techniques to Support
Complexity Management

● Delayed HW/SW partitioning
❍ Postpone as many decisions as possible that place

constraints on the design

● Abstractions and decomposition techniques
● Incremental development

❍ “Growing” software
❍ Requiring top-down design

● Description languages
● Simulation
● Standards
● Design methodology management framework

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 17

This is a model of the current codesign process from DOD standard
2167. Note that in this model, after initial partitioning, HW and SW
remain separate entities, with no further communication until integration.
This causes serious problems with the implementation of the
hardware/software interfaces and integration to go undetected until the
final integration process - which is often too late to make changes in the
architecture necessary to fix them.

17

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

A Model of the Current
Hardware/Software Design

Process

System
Concepts

Sys/HW
Require.
Analysis

Sys/SW
Require.
Analysis

Hardware
Require.
Analysis

Software
Require.
Analysis

Prelim.
Design

Prelim.
Design

Detailed
Design

Detailed
Design

Fabric.

Coding,
Unit test.,
Integ. test

HWCI
Testing

CSCI
Testing

System
Integ. and

test

Operation.
Testing and

Eval.

SW Development

HW Development

[Franke91]

DOD-STD-2167A

© IEEE 1991

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 18

The separate development of HW and SW restricts the ability to study
HW/SW tradeoffs. A “Hardware First” approach is often pursued with
the following characteristics:

(1) Hardware is specified without understanding the computational
requirements of the software.

(2) Software development does not influence hardware development
and does not follow changes made to hardware during its design
process.

With this type of process, problems encountered as a result of late
integration can result in costly modifications and schedule slippage.

[Franke91], [Thimbleby88], [Turn78]

18

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Current Hardware/Software
Design Process

● Basic features of current process:
❍ System immediately partitioned into hardware and software

components
❍ Hardware and software developed separately
❍ “Hardware first” approach often adopted

● Implications of these features:
❍ HW/SW trade-offs restricted

❑ Impact of HW and SW on each other cannot be assessed
easily

❍ Late system integration

● Consequences these features:
❍ Poor quality designs
❍ Costly modifications
❍ Schedule slippages

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 19

Some common misconceptions about hardware and software design
which adversely impact the current, disconnected hardware/software
design process.

[Turn78]

19

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Incorrect Assumptions in
Current Hardware/Software

Design Process

● Hardware and software can be acquired
separately and independently, with successful
and easy integration of the two later

● Hardware problems can be fixed with simple
software modifications

● Once operational, software rarely needs
modification or maintenance

● Valid and complete software requirements are
easy to state and implement in code

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 20

This figure shows one of the requirements for an efficient codesign
process - an integrated substrate for modeling both the hardware and
software and their interactions. The integrated modeling substrate
allows for incremental review throughout the design process, with
interaction between hardware and software.

20

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Directions of the HW/SW
Design Process

System
Concepts

Sys/HW
Require.
Analysis

Sys/SW
Require.
Analysis

Hardware
Require.
Analysis

Software
Require.
Analysis

Prelim.
Design

Prelim.
Design

Detailed
Design

Detailed
Design

Fabric.

Coding,
Unit test.,
Integ. test

HWCI
Testing

CSCI
Testing

System
Integ. and
test

Operation.
Testing and
Evaluation

SW Development

HW Development

[Franke91]

Integrated Modeling Substrate

Integrated Modeling Substrate

© IEEE 1991

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 21

Partitioning - the process of determining which functions to implement in
hardware and which in software.

Iterative Partitioning Techniques: Repeated HW/SW partitioning is used
to improve the system performance.

By switching certain functions to hardware and some to software, the
speed, cost, and other performance metrics can be affected.
Partitioning is done over and over, moving the partition until optimal
performance is obtained.

Continuous/incremental evaluation: Evaluating the hardware and
software designs at several stages of the design process allows
interaction between the HW and SW designs at the earliest stages.

Continuous/incremental evaluation is facilitated in the integrated
modeling substrate by allowing HW and SW changes to be taken into
consideration in both design paths at early stages rather than waiting
until integration. This makes the integration process much smoother.

[Franke91], [Kumar95], [Thimbleby88], [Turn78]

21

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Requirements for the Ideal
Codesign Environment

● Unified, unbiased hardware/software representation
❍ Supports uniform design and analysis techniques for

hardware and software
❍ Permits system evaluation in an integrated design

environment
❍ Allows easy migration of system tasks to either hardware or

software

● Iterative partitioning techniques
❍ Allow several different designs (HW/SW partitions) to be

evaluated
❍ Aid in determining best implementation for a system
❍ Partitioning applied to modules to best meet design criteria

(functionality and performance goals)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 22

The benefits of an integrated modeling substrate have been stated
before. The system must also include a validation methodology to insure
that the system meets its initial requirements. Some codesign
environments are attempting to meet this validation requirement using
formal verification techniques on the initial unified representation of the
system. Others use the integrated modeling substrate to provide
simulation-based validation.

22

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Requirements for the Ideal
Codesign Environment (cont.)

● Integrated modeling substrate
❍ Supports evaluation at several stages of the design process
❍ Supports step-wise development and integration of hardware

and software

● Validation Methodology
❍ Insures that system implemented meets initial system

requirements

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 23

Advances in the automation of the design of hardware have influenced
the development of tools to automate the design of software, and visa
versa. This represents an opportunity to exploit common techniques in
the codesign process. Some research efforts that exploit this cross-
fertilization are discussed later in the module.

[Smith86]

23

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cross-fertilization Between
Hardware and Software

Design

● Fast growth in both VLSI design and software
engineering has raised awareness of similarities
between the two

❍ Hardware synthesis
❍ Programmable logic
❍ Description languages

● Explicit attempts have been made to “transfer
technology” between the domains

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 24

Several components of EDA (electronic design automation) tools for
VLSI design have been transferred into tools for automating software
design:

● Designer support rather than automated synthesis of design

● Graphics-driven designs

● A central repository of design information

● Tools for early assessment of correctness and quality of the
design.

The EPOS system is an example of a system for both HW and SW
design that uses a hierarchical graphics-driven design.

The CADES system emphasizes management and control of design
environment using a central database.

[Smith86]

24

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cross-fertilization Between
Hardware and Software

Design (cont.)

● EDA tool technology has been transferred to SW
CAD systems

❍ Designer support (not automation)

❍ Graphics-driven design

❍ Central database for design information

❍ Tools to check design behavior early in process

VLSI
DESIGN

SOFTWARE
ENGINEERING

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 25

Compiler-like transformations and techniques have been applied to
high-level hardware synthesis capabilities, such as dead code
elimination and loop unrolling.

Some efforts have tried to address design change management issues.
Information hiding and program families have been used to try to
minimize the impact of change in the VLSI design process.

The concept of design families involves characterizing a set of programs
as a family “whenever it is worthwhile to study programs from the set by
first studying the common properties of the set and then determining the
special properties of the individual family members.” Family similarities
during all stages of design will lead to designs that are relatively easy to
modify.

[Kumar95], [Smith86]

25

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cross-fertilization Between
Hardware and Software

Design (cont.)

● Software technology has been transferred to EDA
tools

❍ Single-language design
❑ Use of 1 common language for architecture spec.

and implementation of a chip
❍ Compiler-like transformations and techniques

❑ Dead code elimination
❑ Loop unrolling

❍ Design change management
❑ Information hiding
❑ Design families

SOFTWARE
ENGINEERING

VLSI
DESIGN

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 26

The codesign process starts with an architecture independent
description of the system functionality. This description is independent
of HW and SW, and several system representations may be utilized,
e.g. finite state machines (FSMs).

The system is then described by means of a programming language,
which is next compiled into an internal representation such as a data
control flow description. This description serves as a unified system
representation that can represent HW or SW.

HW/SW functional partitioning is performed on this unified
representation. After this step has been completed, HW, SW and related
interfaces are synthesized.

Evaluation is then performed. The partitioning process is iterative, and
If the evaluation does not meet required objectives, another HW/SW
partition is generated and evaluated.

[Kumar95]

26

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Typical Codesign Process

 System
Description
(Functional)

 HW/SW
Partitioning

 Software
Synthesis

 Interface
Synthesis

Hardware
Synthesis

 System
Integration

Concurrent processes
Programming languages

Unified representation
(Data/control flow)

Instruction set level
HW/SW evaluation

SW HW

 FSM-
directed graphs

 Another
 HW/SW
partition

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 27

This is a general view of codesign. It is not taken from a specific
approach used by one group. Rather, it reflects a combination of
several approaches presented recently in literature.

Note partitioning stage and the integration phases common to all
codesign methodologies. Codesign is still a relatively new, changing
approach, so there is not one set standard for how it must be done.
Many variations exist.

[Rozenblit94, p.4]

27

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Conventional Codesign
Methodology

Analysis of Constraints
and Requirements

System Specs..

HW/SW
Partitioning

Hardware Descript. Software Descript.

HW Synth. and
Configuration

Interface Synthesis Software Gen.
& Parameterization

Configuration
Modules

Hardware
Components

HW/SW
Interfaces

Software
Modules

HW/SW Integration
and Cosimulation

Integrated
System

System Evaluation Design Verification
[Rozenblit94]

© IEEE 1994

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 28

One of the major features of a good codesign process is that it allows
faster exploration of the design space. This includes analyzing different
configurations for the overall system (irrespective of its implementation)
AND analyzing different hardware/software partitions for a given system
configuration.

 [Subrahmanyam93].

28

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Codesign Features

Basic features of a codesign process
● Enables mutual influence of both HW and SW

early in the design cycle
❍ Provides continual verification throughout the design

cycle
❍ Separate HW/SW development paths can lead to costly

modifications and schedule slippages

● Enables evaluation of larger design space
through tool interoperability and automation of
codesign at abstract design levels

● Advances in key enabling technologies (e.g.,
logic synthesis and formal methods) make it
easier to explore design tradeoffs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 29

Lack of a standardized representation: The industry lacks a common
model or standard for unified exchangeable design representations
which would greatly enhance usage of codesign.

Lack of good validation and evaluation methods: Very few
comprehensive tools are available for hardware/software cross-
specification, development, simulation, integration, and test. However,
efforts are underway to provide them.

[Buchenrieder93].

29

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

State of Codesign
Technology

● Current use limited by:
❍ Lack of a standardized representation
❍ Lack of good validation and evaluation methods

● Possible solutions:
❍ Extend existing hardware/software languages to the use

of heterogeneous paradigms
❍ Extend formal verification techniques to the HW/SW

domain

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 30

In software, problems found in development testing are at least one
order of magnitude more costly to fix than those found during
requirements specifications. Therefore, it is important that the system be
able to be validated as the design progresses. The most common way
to perform this validation is through simulation.

[Boehm73], [Terry90], [Thimbleby88], [Turn78]

30

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Issues and Problems:
Integration

● Errors in hardware and software design become much more
costly as more commitments are made

● “Hardware first” approach often compounds software cost
because software must compensate for hardware
inadequacies

1

2

3

4

25 50 75 100

R
el

at
iv

e
P

ro
g.

C
os

t /
 In

st
r.

% Util. of speed and mem capacity

Experience

Folklore

Software Cost Impact of Inadequate Hardware Resources

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 31

31

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction

● Unified HW/SW Representations

● HW/SW Partitioning Techniques

● Integrated HW/SW Modeling Methodologies

● HW and SW Synthesis Methodologies

● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 32

One of the keys to a GOOD hardware/software codesign process is a
unified representation the allows the functionality of the system (at
various levels of abstraction) to be specified in a manner that is
“unbiased” towards either a hardware or software implementation.

Again, this description must be validated to ensure that it meets the
original system specifications. This validation typically happens through
simulation although at a high level, formal techniques can sometimes be
applied.

[Kumar95]

32

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Unified HW/SW
Representation

● Unified Representation --
❍ A representation of a system that can be used to

describe its functionality independent of its
implementation in hardware or software

❍ Allows hardware/software partitioning to be delayed
until trade-offs can be made

❍ Typically used at a high-level in the design process

● Provides a simulation environment after
partitioning is done, for both hardware and
software designers to use to communicate

● Supports cross-fertilization between hardware
and software domains

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 33

This slide discusses the process of abstraction - describing the system
in only as much detail as is absolutely necessary to perform the analysis
of current interest.

[McFarland90]

33

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Current Abstraction
Mechanisms in

Hardware Systems

Abstraction
The level of detail contained within the system model

● A system can be modeled at system, instruction
set, register-transfer, logic, or circuit level

● A model can describe a system in the behavioral,
structural, or physical domain

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 34

This chart illustrates various levels of abstraction possible for hardware
systems along three description domains, i.e. behavior, structure,
physical.

34

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Abstractions in Modeling:
Hardware Systems

Level Behavior Structure Physical

PMS (System) Communicating
Processes

Processors
Memories
Switches (PMS)

Cabinets, Cables

Instruction Set
(Algorithm)

Register-
Transfer

Logic

Circuit

Input-Output Memory, Ports
Processors

Board
Floorplan

Register
Transfers

ALUs, Regs,
Muxes, Bus

ICs
Macro Cells

Logic Equns. Gates, Flip-flops Std. cell layout

Network Equns. Trans., Connections Transistor layout

[McFarland90]

Start here

Work to
here

© IEEE 1990

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 35

Ex: High-level language such as C is used by a developer. Programs
are written for a “virtual machine” that understands the language’s
instruction set.

[Kumar95], [Tanenbaum87]

35

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Current Abstraction
Mechanisms for

Software Systems

Virtual machine
A software layer very close to the hardware that hides
the hardware’s details and provides an abstract and
portable view to the application programmer

Attributes
❍ Developer can treat it as the real machine
❍ A convenient set of instructions can be used by

developer to model system
❍ Certain design decisions are hidden from the

programmer
❍ Operating systems are often viewed as virtual machines

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 36

Virtual machine hierarchy:

Multiple layers of software on top of hardware are shown for a typical
computer system.

Operating system represents one level of a virtual machine.

Higher levels such as utility programs (compilers, editors, interpreters,
etc) and application programs can also be viewed as virtual machines.

[Tanenbaum87]

36

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Abstractions for
Software Systems

Virtual Machine Hierarchy

• Application Programs
• Utility Programs
• Operating System
• Monitor
• Machine Language
• Microcode
• Logic Devices

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 37

An abstract HW/SW model is developed to promote early performance
analysis. Using unified representation based on data/control flow
concepts, the abstract HW/SW model supports general performance
evaluation, the identification of bottlenecks, the evaluation of HW/SW
tradeoffs, and the evaluation of design alternatives. The model can be
used to assess the consequences of various HW/SW partitioning
decisions before committing to a particular design.

[Kumar95]

37

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Abstract Hardware-Software
Model

Uses a unified representation of system to allow
early performance analysis

Abstract
HW/SW
Model

General
Performance
Evaluation

Evaluation
of Design

Alternatives

Evaluation
of HW/SW
Trade-offs

Identification
of Bottlenecks

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 38

There are numerous methods that are candidates to be used for a
unified representation. Most all of them have been tried in one codesign
system or another with varying levels of success. Typically the methods
are more suited to systems of a certain type, e.g., data flow diagrams
are more suited to data driven applications like Digital Signal Processing
(DSP) systems.

38

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Examples of Unified HW/SW
Representations

Systems can be modeled at a high level as:

● Data/control flow diagrams
● Concurrent processes
● Finite state machines
● Object-oriented representations
● Petri Nets

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 39

39

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Unified Representations
(Cont.)

● Data/control flow graphs
❍ Graphs contain nodes corresponding to operations in

either hardware or software
❍ Often used in high-level hardware synthesis
❍ Can easily model data flow, control steps, and

concurrent operations because of its graphical nature

Example: +

+

+

+

5 X 4 Y
Control Step 1

Control Step 2

Control Step 3

This figure presents data flow graphs in more detail. DFGs are used in
many high level specification tools such as Ptolemy, SES Workbench,
etc.

[Kumar95]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 40

This slide discusses two other mechanisms that have been used for
unified representations, concurrent processes and finite state machines.
Both of these representations are more suited to control dominated
applications such as a real-time, reactive control system.

[Chiodo92]

40

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Unified Representations
(Cont.)

● Concurrent processes
❍ Interactive processes executing concurrently with other

processes in the system-level specification

❍ Enable hardware and software modeling

● Finite state machines
❍ Provide a mathematical foundation for verifying system

correctness, simulation, hardware/software partitioning,
and synthesis

❍ Multiple FSMs that communicate can be used to model
reactive real-time systems

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 41

Object oriented representations can be used as a unified representation.
They do, however suffer somewhat from complexity and are more
ideally suited to describing software than hardware.

[Kumar95]

41

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Unified Representations
(Cont.)

● Object-oriented representations:
❍ Use techniques previously applied to software to

manage complexity and change in hardware modeling
❍ Use C++ to describe hardware and display OO

characteristics
❍ Use OO concepts such as

❑ Data abstraction
❑ Information hiding
❑ Inheritance

❍ Use building block approach to gain OO benefits
❑ Higher component reuse
❑ Lower design cost
❑ Faster system design process
❑ Increased reliability

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 42

This is a simple example of three different levels of hardware
abstraction that can be described in an OO representation.

[Kumar95]

42

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Unified Representations
(Cont.)

Object-oriented representation

Example:

 3 Levels of abstraction:
Register

Read

Write

ALU Processor

Add
Sub

AND
Shift

Mult
Div
Load
Store

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 43

Petri Nets have been used to describe both hardware and software and
therefore are a candidate for a unified representation. They also suffer
somewhat from a complexity issue (many places and transitions are
necessary to model a fairly simple system). Petri Nets were not
developed to describe the complete functionality of a system, and thus
are not very applicable for low-level functional descriptions.

[Kumar95]

43

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Unified Representations
(Cont.)

● Petri Nets: a system model consisting of places,
tokens, transitions, arcs, and a marking

❍ Places - equivalent to conditions and hold tokens
❍ Tokens - represent information flow through system
❍ Transitions - associated with events, a “firing” of a

transition indicates that some event has occurred
❍ Marking - a particular placement of tokens within places

of a Petri net, representing the state of the net

Example:
Token

Transition

Input
Places

Output
Place

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 44

44

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction

● Unified HW/SW Representations

● HW/SW Partitioning Techniques

● Integrated HW/SW Modeling Methodologies

● HW and SW Synthesis Methodologies

● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 45

Partitioning the system into dedicated hardware components and
software components executing on Instruction Set Processors is a vital
part of the codesign process.

Partitioning requires the use of performance and other metrics to assist
the partitioner (either human or automated) in choosing from among
several alternative hardware and software solutions.

Because there are multiple metrics that must be optimized at the same
time, finding an optimum partition is an NP-hard problem.

 [Gajski94].

45

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Hardware/Software
Partitioning

● Definition
❍ The process of deciding, for each subsystem, whether

the required functionality is more advantageously
implemented in hardware or software

● Goal
❍ To achieve a partition that will give us the required

performance within the overall system requirements (in
size, weight, power, cost, etc.)

● This is a multivariate optimization problem that
when automated, is an NP-hard problem

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 46

Issues of hardware implementation vs software implementation must be
addressed when performing partitioning. There are pros and cons to
both hardware and software implementations. The system
requirements and performance goals must be examined to determine
which criteria are most critical for the particular system.

In general, HW implementation supports parallel execution of operations
while incurring the cost of hardware fabrication. Software
implementation is generally slower than custom hardware
implementation, but does not require high cost of fabrication. Similarly,
partitioning may be driven by schedule requirements in which there is
not time to build custom hardware.

[DeMicheli93].

46

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

HW/SW Partitioning Issues

● Partitioning into hardware and software affects
overall system cost and performance

● Hardware implementation
❍ Provides higher performance via hardware speeds and

parallel execution of operations

❍ Incurs additional expense of fabricating ASICs

● Software implementation
❍ May run on high-performance processors at low cost

(due to high-volume production)

❍ Incurs high cost of developing and maintaining
(complex) software

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 47

There are two basic approaches that most designers use when performing
partitioning.
They either start with all operations in software and move some into hardware (when
speed is critical) or they start with all operations in hardware and move some into
software. Different design environments support one or the other. For example
Cosyma, a cosynthesis approach to design, starts with all functions generated in
software and then moves operations to hardware only as time constraints are
violated.

A team at the University of Braunschweig, Germany, explored codesign tradeoffs in
systems that were originally implemented in software (written in C)

● A partitioning program identified the computational bottlenecks and migrated the
corresponding functions to application-specific hardware

● With system-level partitioning, a critical loop which took up 90% of the software
execution time for a HDTV Chromakey algorithm was implemented in hardware
(as a 17,000 gate ASIC) leading to a 3X speedup

A team at Stanford University explored migrating hardware components to software
routines

● Identifying non-critical tasks which can be migrated from hardware to software
implementations lead to significant size and cost reductions without reducing
performance

● A system model which specified performance requirements in terms of latency
and data-rate constraints was used to support the partitioning

● A 20% reduction in gate count was achieved

 [DeMicheli94]

47

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Partitioning Approaches

● Start with all functionality in software and move
portions into hardware which are time-critical
and can not be allocated to software
(software-oriented partitioning)

● Start with all functionality in hardware and move
portions into software implementation
(hardware-oriented partitioning)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 48

Functional partitioning allows the system to be partitioned into hardware
and software components.

It is analogous to Structural Partitioning in which the structure of a
system is refined into lower level hardware components. However, in
Structural Partitioning, functionality cannot be moved from hardware to
software.

 [Gajski94].

48

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

System Partitioning
(Functional Partitioning)

● System partitioning in the context of
hardware/software codesign is also referred to as
functional partitioning

● Partitioning functional objects among system
components is done as follows

❍ The system’s functionality is described as collection of
indivisible functional objects

❍ Each system component’s functionality is implemented
in either hardware or software

● An important advantage of functional partitioning
is that it allows hardware/software solutions

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 49

Metrics must be used to guide the partitioning process. The type of
metrics used depends a great deal on the level of description of the
system.

 [DeMicheli93].

49

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Partitioning Metrics

● Deterministic estimation techniques
❍ Can be used only with a fully specified model with all

data dependencies removed and all component costs
known

❍ Result in very good partitions

● Statistical estimation techniques
❍ Used when the model is not fully specified
❍ Based on the analysis of similar systems and certain

design parameters

● Profiling techniques
❍ Examine control flow and data flow within an

architecture to determine computationally expensive
parts which are better realized in hardware

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 50

Early binding is widely used in industry because it supports complete
planning of the design cycle. With this method, hardware/software
partitioning decisions have to be made very early in the design.

Late binding because of its flexibility, provides greater opportunity for
performing hardware/ software tradeoffs. Therefore, late binding
generally results in a more optimal partition.

[Buchenrieder93].

50

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Binding Software
to Hardware

● Binding: assigning software to hardware
components

● After parallel implementation of assigned
modules, all design threads are joined for system
integration

❍ Early binding commits a design process to a certain
course

❍ Late binding, on the other hand, provides greater
flexibility for last minute changes

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 51

HW/SW partitioning algorithms are usually targeted to systems in which
only a few operations need specialized hardware.

 [Wolf94].

51

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Hardware/Software System
Architecture Trends

● Some operations in special-purpose hardware
❍ Generally take the form of a coprocessor

communicating with the CPU over its bus
❑ Computation must be long enough to compensate

for the communication overhead
❍ May be implemented totally in hardware to avoid

instruction interpretation overhead
❑ Utilize high-level synthesis algorithms to generate a

register transfer implementation from a behavior
description

● Partitioning algorithms are closely related to the
process scheduling model used for the software
side of the implementation

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 52

This slide presents the formal definition of a hardware/software partition.

 [Vahid94].

52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

HW/SW Partition
Formal Definition

● A hardware/software partition is defined using
two sets H and S, where H ⊂ ⊂ O, S ⊂⊂ O, H ∪∪ S = O,
H ∩ ∩ S = φφ

● Associated metrics:
❍ Hsize(H) is the size of the hardware needed to

implement the functions in H (e.g., number of
transistors)

❍ Performance(G) is the total execution time for the group
of functions in G for a given partition {H,S}

❍ Set of performance constraints, Cons = (C1, ... Cm),
where Cj = {G, timecon}, indicates the maximum
execution time allowed for all the functions in group G
and G ⊂⊂ O

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 53

Therefore, the problem is to map functions to either hardware or
software in such a way that we find the minimal hardware for which all
performance constraints can be met.

[Vahid94].

53

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Performance Satisfying
Partition

● A performance satisfying partition is one for
which performance(Cj.G) ≤≤ Cj.timecon, for all
j=1...m

● Given O and Cons, the hardware/software
partitioning problem is to find a performance
satisfying partition {H,S} such that Hsize(H) is
minimized

● The all-hardware size of O is defined as the size
of an all hardware partition (i.e., Hsize(O))

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 54

There are a number of issues that influence the partitioning problem,
both in its difficulty, and in the quality of solutions.

 [Gajski94].

54

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Issues in Partitioning

● Specification abstraction level
● Granularity
● System-component allocation
● Metrics and estimations
● Partitioning algorithms
● Objective and closeness functions
● Partitioning algorithms
● Output
● Flow of control and designer interaction

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 55

The material is presented in the sequence in which we encounter
these issues in a typical partitioning process:

First, the specification abstraction level defines the input in terms of
the abstraction level of the conceptual model.

We are then concerned with the granularity of the functional objects
into which the input is decomposed.

Metrics, partitioning algorithms, objective and closeness functions are
used to determine which partition to implement.

The system component allocation process chooses components, from
among those available, to implement the partition.

Finally, we have the output, which is a fully implemented system.

 [Gajski94].

55

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Issues in Partitioning (Cont.)

Output

High Level Abstraction

Decomposition of functional objects

• Metrics and estimations
• Partitioning algorithms
• Objective and closeness functions

Component allocation

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 56

Design usually begins with higher abstraction levels, as designers
initially conceptualize at those levels.

Thus, different levels of input to partitioning techniques represent
different amounts of design already done before partitioning is
performed.

[Gajski94].

56

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Specification Abstraction
Levels

● Task-level dataflow graph
❍ A Dataflow graph where each operation represents a

task

● Task
❍ Each task is described as a sequential program

● Arithmetic-level dataflow graph
❍ A Dataflow graph of arithmetic operations along with

some control operations
❍ The most common model used in the partitioning

techniques

● Finite state machine (FSM) with datapath
❍ A finite state machine, with possibly complex

expressions being computed in a state or during a
transition

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 57

Design then progresses to lower levels such as these.

 [Gajski94].

57

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Specification Abstraction
Levels (Cont.)

● Register transfers
❍ The transfers between registers for each machine state

are described

● Structure
❍ A structural interconnection of physical components
❍ Often called a netlist

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 58

Note that it is the system functionality that is being partitioned here in
order to achieve a better allocation and assignment to hardware or
software. That is, a number of objects in a partition defined here may
be assigned to the same hardware or software later.

 [Gajski94].

58

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Granularity Issues in
Partitioning

● The granularity of the decomposition is a
measure of the size of the specification in each
object

● The specification is first decomposed into
functional objects, which are then partitioned
among system components

❍ Coarse granularity means that each object contains a
large amount of the specification.

❍ Fine granularity means that each object contains only a
small amount of the specification

❑ Many more objects
❑ More possible partitions

➭ Better optimizations can be achieved

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 59

An integral part of the partitioning problem is allocating portions of the
system to actual components for their implementation. Obviously, the
system “tasks” must be allocated to components that are capable of
performing them.

 [Gajski94].

59

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

System Component
Allocation

● The process of choosing system component
types from among those allowed, and selecting a
number of each to use in a given design

● The set of selected components is called an
allocation

❍ Various allocations can be used to implement a
specification, each differing primarily in monetary cost
and performance

❍ Allocation is typically done manually or in conjunction
with a partitioning algorithm

● A partitioning technique must designate the
types of system components to which functional
objects can be mapped

❍ ASICs, memories, etc.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 60

Metrics must be defined to determine a partition’s relative cost vs. other
potential partitionings. Obviously, some metrics, such as execution time
of a given task on a specific processors, are impossible to measure
precisely until a final implementation is made. Therefore, accurate, fast
“cost” estimation is mandatory for a good partitioning algorithm.

 [Gajski94].

60

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Metrics and Estimations
Issues

● A technique must define the attributes of a
partition that determine its quality

❍ Such attributes are called metrics

❑ Examples include monetary cost, execution time,
communication bit-rates, power consumption, area,
pins, testability, reliability, program size, data size,
and memory size

❑ Closeness metrics are used to predict the benefit of
grouping any two objects

● Need to compute a metric’s value
❍ Because all metrics are defined in terms of the structure

(or software) that implements the functional objects, it
is difficult to compute costs as no such implementation
exists during partitioning

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 61

A consideration of metrics is only important once the requirements are
satisfied.

The hardware size metric is defined as improved when there is a
reduction in amount of HW.

The performance metric is defined as improved when there is an
increase in the amount of HW and a corresponding decrease in the
amount of SW.

[Gajski94].

61

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Metrics in HW/SW Partitioning

● Two key metrics are used in hardware/software
partitioning

❍ Performance: Generally improved by moving objects to
hardware

❍ Hardware size: Hardware size is generally improved by
moving objects out of hardware

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 62

There are two basic approaches to computing metrics. The first is to
create a detailed implementation and directly measure the metrics of
interest. The second is to estimate the given metric from the abstract
system model in use at the time.

 [Gajski94].

62

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Computation of Metrics

● Two approaches to computing metrics
❍ Creating a detailed implementation

❑ Produces accurate metric values
❑ Impractical as it requires too much time

❍ Creating a rough implementation
❑ Includes the major register transfer

components of a design
❑ Skips details such as precise routing or optimized

logic, which require much design time
❑ Determining metric values from a rough

implementation is called estimation

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 63

Varying weights for area, timing, and power constraints may be used to
reflect their relative importance in each different system being designed.

 [Gajski94].

63

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Objective and Closeness
Functions

● Multiple metrics, such as cost, power, and
performance are weighed against one another

❍ An expression combining multiple metric values into a
single value that defines the quality of a partition is
called an Objective Function

❍ The value returned by such a function is called cost

❍ Because many metrics may be of varying importance, a
weighted sum objective function is used

❑ e.g., Objfct = k1 * area + k2 * delay + k3 * power
❍ Because constraints always exist on each design, they

must be taken into account
❑ e.g Objfct = k1 * F(area, area_constr)
 + k2 * F(delay, delay_constr)

 + k3 * F(power, power_constr)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 64

For most partitioning algorithms based on multiple metrics, finding an
optimal partition is an NP-hard problem. Therefore, heuristics must be
employed to reduce the complexity and find a “good enough” partition.

The other option, of course, is to leave the partitioning up to the user.
This is the approach used in several noteworthy HW/SW codesign
research efforts.

 [Gajski94].

64

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Partitioning Algorithm Issues

● Given a set of functional objects and a set of
system components, a partitioning algorithm
searches for the best partition, which is the one
with the lowest cost, as computed by an
objective function

● While the best partition can be found through
exhaustive search, this method is impractical
because of the inordinate amount of computation
and time required

● The essence of a partitioning algorithm is the
manner in which it chooses the subset of all
possible partitions to examine

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 65

A partitioning algorithm can be classified into several general categories.

 [Gajski94].

65

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Partitioning Algorithm Classes

● Constructive algorithms
❍ Group objects into a complete partition
❍ Use closeness metrics to group objects, hoping for a

good partition
❍ Spend computation time constructing a small number

of partitions

● Iterative algorithms
❍ Modify a complete partition in the hope that such

modifications will improve the partition
❍ Use an objective function to evaluate each partition
❍ Yield more accurate evaluations than closeness

functions used by constructive algorithms

● In practice, a combination of constructive and
iterative algorithms is often employed

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 66

In the graph above, C represents a solution which would consume fewer
resources (in HW and SW) than A or B, yet it might be very difficult to
find, and solution A may be “good enough.”

Multivariate optimization is a much-studied problem in CS. The
interested reader should investigate this area to understand the
problems inherent in optimal partitioning.

 [Gajski94].

66

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Iterative Partitioning
Algorithms

● The computation time in an iterative algorithm is
spent evaluating large numbers of partitions

● Iterative algorithms differ from one another
primarily in the ways in which they modify the
partition and in which they accept or reject bad
modifications

● The goal is to find global minimum while
performing as little computation as possible

A

B

C

A, B - Local minima
C - Global minimum

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 67

Greedy algorithms only go “down hill” and thus are likely to get stuck in
local minima.

An important advantage of hill-climbing algorithms over greedy
algorithms lies in the hill-climbing algorithms’ ability to escape local
minima. With this ability, they are more likely to find the global minimum
and provide a better solution. They are however, more computationally
complex.

 [Gajski94].

67

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Iterative Partitioning
Algorithms (Cont.)

● Two broad categories:
❍ Greedy algorithms

❑ Only accept moves that decrease cost
❑ Can get trapped in local minima

❍ Hill-climbing algorithms
❑ Allow moves in directions increasing cost

(retracing)
➭ Through use of stochastic functions

❑ Can escape local minima
❑ E.g., simulated annealing

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 68

Potential roles for the result of HW/SW partitioning include:

1) Subsequent use as a functional specification for humans who must
implement each component.

2) Subsequent use as the input to a synthesis tool.

 [Gajski94].

68

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Output Issues in Partitioning

● Any partitioning technique must define the
representation format and potential use of its
output

❍ E.g., the format may be a list indicating which functional
object is mapped to which system component

❍ E.g., the output may be a revised specification
❑ Containing structural objects for the system

components
❑ Defining a component’s functionality using the

functional objects mapped to it

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 69

The decision-making sequence chosen will impact the final partition
obtained.

It is advantageous to use the sequence that yields good results for a
particular design goal, say, maximizing performance.

 [Gajski94].

69

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Flow of Control and
Designer Interaction

● Sequence in making decisions is variable, and
any partitioning technique must specify the
appropriate sequences

❍ E.g., selection of granularity, closeness metrics,
closeness functions

● Two classes of interaction
❍ Directives

❑ Include possible actions the designer can perform
manually, such as allocation, overriding
estimations, etc.

❍ Feedback
❑ Describe the current design information available to

the designer (e.g., graphs of wires between objects,
histograms, etc.)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 70

The formal definition of cost functions and iterative partitioning
algorithms. If Cost(H’, S’, Cons, I) ≤ Cost(H, S, Cons, I) is true, a
better partition has been found.

 [Vahid94].

70

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Comparing Partitions Using
Cost Functions

● A cost function is a function Cost(H, S, Cons, I)
which returns a natural number that summarizes
the overall quality of a given partition

❍ I contains any additional information that is not
contained in H or S or Cons

❍ A smaller cost function value is desired

● An iterative improvement partitioning algorithm
is defined as a procedure
Part_Alg(H, S, Cons, I, Cost())
which returns a partition H’, S’ such that
Cost(H’, S’, Cons, I) ≤≤ Cost(H, S, Cons, I)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 71

71

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction

● Unified HW/SW Representations

● HW/SW Partitioning Techniques

● Integrated HW/SW Modeling Methodologies

● HW and SW Synthesis Methodologies

● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 72

Cosimulation in the codesign context, is the simulation of a system’s
hardware and software in the same environment. Obviously, when the
entire system is specified in the unified representation, a single
simulation environment can be used. However, often after partitioning,
the hardware and software are represented using different languages
and modeling paradigms, thus cosimulation is necessary to validate the
system through simulation.

72

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cosimulation

● An HDL (VHDL or Verilog) simulation
environment is used to perform behavioral
simulation of the system hardware processes

● A Software environment (C or C++) is used to
develop the code

● SW and HW execute as separate processes
linked through UNIX IPC (interprocessor
communications) mechanisms (sockets)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 73

A team at Carnegie-Mellon University has developed a cosimulation
environment based on the use of the Verilog hardware description
language to describe the hardware and C or C++ to describe the
software.

The Verilog simulator is used to perform behavioral simulation of the
system hardware processes. The software processes run as separate
Unix processes and communicate with the hardware simulator by
means of the BSD (Berkeley Software Distribution) Unix socket facility.
Many aspects of the system are hidden by the abstraction used for
HW/SW interaction.

In the Verilog simulation environment, one or more modules comprise
the application specific portion of the hardware. A separate module acts
as the bus interface. The bus interface module translates the socket
activity into the appropriate simulation events. The routines that do the
translation are implemented in C and linked to the Verilog simulation
environment through the Verilog PLI.

73

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Verilog Cosimulation Example

Verilog HW Simulator

Module: Application
specific hardware

HW
proc 1

HW
proc 2

Module: Bus Interface

Verilog PLI

SW
proc 1

SW
proc 2

Software processes
communicate with
hardware simulator
via UNIX sockets

Verilog PLI (programming
language interface) serves as
translator, allowing hardware
simulation models to
communicate with software
processes.

[Thomas93]

UNIX
sockets

© IEEE 1993

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 74

74

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

VHDL Cosimulation Example

VHDL Simulator

Hardware Model in VHDL:

VHDL Foreign Language
Interface

Software processes
communicate with
hardware simulator
via foreign language
interface

Allowing hardware
simulation models to
“cosimulate” with software
processes.

SW
proc 1

SW
proc 2

RS232
module

VME
module

A similar mechanism can be used to develop a cosimulation
environment using VHDL and C++.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 75

75

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Architecture - VHDL

Communications NetworkCommunications Network

CPU 1CPU 1 CPU 2CPU 2 CPU 3CPU 3 CPU 4CPU 4

Scheduler - C
Mapping Function (e.g.):
lRound Robin
lComputational

Requirements Based
lCommunications

Requirements Based

VHDL-C Based HW/SW
Cosimulation for DSP

Multicomputer Application

Algorithm - C

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 76

76

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

VHDL-C Based HW/SW
Cosimulation for DSP

Multicomputer Application
Unix C Program

System State (e.g.):

CPU:
Time to instruction completion

Comm Agent:
Messages in Send Queue
Messages in Recv Queue

Network:
Communications Channels Busy

Next Instruction for CPU to Execute (e.g.):

Send(destination, message_length)
Recv(source, message_length)
Compute(time)

VHDL Simulator

Architecture Model

INSTRUMENT
PACKAGE

CPU 1 CPU 2 CPU 3 CPU 4

Comm

Agent 1

Comm

Agent 2

Comm

Agent 3

Comm

Agent 4

Communications Network

Scheduler
Algorithm/

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 77

Another problem with the current HW/SW design process involves the
model continuity problem. High-level system models have not been
useable as the design progresses to lower, more detailed design. This
lack of continuity prevents the designer from using the analysis
performed with the high-level model at the more detailed stages of
design. This lack of model continuity is seen in both hardware and
software systems.

[Franke91]

77

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Model Continuity Problem

Model Continuity Problem
Inability to gradually define a system-level model into a
hardware/software implementation

● Model continuity problems exist in both hardware
and software systems

● Model continuity can help address several system
design problems

❍ Allows validation of system level models with
corresponding HW/SW implementation

❍ Addresses subsystem integration

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 78

78

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction

● Unified HW/SW Representations

● HW/SW Partitioning Techniques

● Integrated HW/SW Modeling Methodologies

● HW and SW Synthesis Methodologies

● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 79

The traditional hardware design process is a serial, waterfall process
with few feedback loops to iterate over the design space.

79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Hardware Design
Methodology

Hardware Design Process:
Waterfall Model

Hardware
Requirements

Preliminary
Hardware

Design

Detailed
Hardware

Design
Fabrication Testing

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 80

High-level hardware synthesis tools are often used with high-level
preliminary designs to develop hardware structures from:

(1) Behavioral descriptions

(2) System design constraints.

Lower-level synthesis tools can then be used to take hardware structure
and derive algorithmic, register-transfer, logic, and circuit-level designs.

[Kumar95]

80

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Hardware Design
Methodology (Cont.)

● Use of HDLs for modeling and simulation

● Use of lower-level synthesis tools to derive
register transfer and lower-level designs

● Use of high-level hardware synthesis tools

❍ Behavioral descriptions

❍ System design constraints

● Introduction of synthesis for testability at all
levels

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 81

Hardware synthesis is the automated mapping of a behavioral
description onto a specific hardware implementation.

[Parker84]

81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Hardware Synthesis

● Definition
❍ The automatic design and implementation of hardware

from a specification written in a hardware description
language

● Goals/benefits

❍ To quickly create and modify designs

❍ To support a methodology that allows for multiple
design alternative consideration

❍ To remove from the designer the handling of the
tedious details of VLSI design

❍ To support the development of correct designs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 82

These terms and definitions describe the levels of hardware to which
hardware synthesis tools operate.

 [Parker84].

82

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Hardware Synthesis
Categories

● Algorithm synthesis
❍ Synthesis from design requirements to control-flow

behavior or abstract behavior
❍ Largely a manual process

● Register-transfer synthesis
❍ Also referred to as “high-level” or “behavioral”

synthesis
❍ Synthesis from abstract behavior, control-flow

behavior, or register-transfer behavior (on one hand) to
register-transfer structure (on the other)

❍ Logic synthesis
❍ Synthesis from register-transfer structures or Boolean

equations to gate-level logic (or physical
implementations using a predefined cell or IC library)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 83

This is a generic overview of the hardware synthesis process.

83

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Hardware Synthesis
Process Overview

Behavioral
Simulation

Optional RTL
Simulation

Behavioral
Synthesis

Synthesis &
Test Synthesis

Gate-level
Simulation

Gate-level
Analysis

Place and Route

Specification Implementation

Verification

Silicon Vendor

Silicon

Behavioral
Functional

RTL
Functional

Gate

Layout

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 84

The traditional software design process can also be described by a
serial, waterfall process.

[Jalote91], [Kumar95]

84

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Software Design
Methodology

Software Design Process:
Waterfall Model

Software
Requirements

Software
Design

Coding Testing Maintenance

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 85

Requirements Phase - consists of both defining the spec. for the
system and defining the requirements for system analysis.

● Requirements phase produces: Software Requirements
Specification (SRS) document.

● Must be complete and clear because changes in spec. can be
very costly once design has progressed to later stages.

Coding is in high-level language: C, C++ for example.

Multiple testing levels consist of:

● Unit testing - individual module alone

● Integration testing - several interconnected modules

● System testing - entire software subsystem in intended
hardware environment

● Regression testing - if changes made to model

● Acceptance testing - performed by user.

[Jalote91]

85

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Software Design
Methodology (Cont.)

● Software requirements includes both
❍ Analysis
❍ Specification

● Design: 2 levels:
❍ System level - module specs.
❍ Detailed level - process design language (PDL) used

● Coding - in high-level language
❍ C/C++

● Maintenance - several levels
❍ Unit testing
❍ Integration testing
❍ System testing
❍ Regression testing
❍ Acceptance testing

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 86

Software synthesis is the automated mapping of functionality into
executable code.

[Kumar95]

86

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Software Synthesis

● Definition: the automatic development of correct
and efficient software from specifications and
reusable components

● Goals/benefits

❍ To Increase software productivity

❍ To lower development costs

❍ To Increase confidence that software implementation
satisfies specification

❍ To support the development of correct programs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 87

The use of software synthesis is become more prevalent for the same
major reasons hardware synthesis is, design (coding) time is less,
reusability is higher and some more “correct by construction” techniques
can be applied.

87

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Why Use
Software Synthesis?

● Software development is becoming the major
cost driver in fielding a system

● To significantly improve both the design cycle
time and life-cycle cost of embedded systems, a
new software design methodology, including
automated code generation, is necessary

● Synthesis supports a correct-by-construction
philosophy

● Techniques support software reuse

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 88

Software synthesis can mean complex language compilers, or tools that
generate actual software code from abstract descriptions such as DFGs.
However, the applicability of these latter tools seems to be very
application specific.

88

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Software Synthesis
Categories

● Language compilers

❍ ADA and C compilers

❍ YACC - yet another compiler compiler

❍ Visual Basic

● Domain-specific synthesis

❍ Application generators from software libraries

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 89

Here are some examples of software synthesis systems, mostly of the
latter type discussed on the previous page.

[Terry90]

89

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Software Synthesis Examples

● Mentor Graphics Concurrent Design Environment
System

❍ Uses object-oriented programming (written in C++)
❍ Allows communication between hardware and software

synthesis tools

● Index Technologies Excelerator and Cadre’s
Teamwork Toolsets

❍ Provide an interface with COBOL and PL/1 code
generators

● KnowledgeWare’s IEW Gamma
❍ Used in MIS applications
❍ Can generate COBOL source code for system designers

● MCCI’s Graph Translation Tool (GrTT)
❍ Used by Lockheed Martin ATL
❍ Can generate ADA from Processing Graph Method

(PGM) graphs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 90

90

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

GrTT Tool Architecture

SPGN*
PARCER

GRAPH
ANALYSIS

AUTOCODER

SPGN
File

GV
Sets

Validated Graph
Object

Behavioral Specification

Ada Source
Code File

Domain Primitive Database

Constraints/Error Cond.

Behavior

Code
Fragments

MCCI

*Signal Processing Graph Notation

This figure presents the architecture of the GrTT tool. It accepts the
SPGN (Signal Processing Graph Notation - a textual representation of
the PGM data flow graph) representation of an application graph and
generates source code that can then be compiled to the specific target
architecture.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 91

91

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Interface Synthesis

● Definition: the automatic design and
implementation of hardware (glue logic) and the
software (drivers) components between the
processor and the dedicated hardware

● Goals/benefits
❍ To quickly create and modify designs

❍ To remove from the designer the handling of the
tedious details of VLSI design

The automated synthesis of the interfaces between system components
implemented in hardware and software is a big issue. Several of the
codesign research systems described later in this module include
techniques for automating the creation of these interfaces.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 92

92

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Interface Synthesis
Approaches

● Typical approaches use standard interface
schemes

❍ memory-mapped

❍ serial port

❍ parallel port

❍ self-timed

❍ synchronous

❍ blocking

There are many techniques for interfacing between software executing
on a processor and dedicated hardware outside that processor, and
thus, there are many different ways to synthesize hardware/software
interfaces.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 93

93

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cosynthesis

● Methodical approach to system implementations
using automated synthesis-oriented techniques

● Methodology and performance constraints
determine partitioning into hardware and
software implementations

● The result is “optimal” system that benefits from
analysis of hardware/software design trade-off
analysis

“Cosynthesis” has come to mean the concurrent synthesis of the
hardware and software portions of the system, trading-off various
implementation techniques between them to arrive at a more “optimum”
overall solution.

[Gupta92]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 94

Above figure represents design trade-offs common in synthesis while
also creating a cost-effective system. While a pure HW system may
fulfill all performance needs, it may not meet constraints such as cost.
The pure SW implementation may meet the cost constraint, but not the
performance goals. The cosynthesis approach works to find the best
mixed implementation of HW and SW. It provides a systematic
exploration of system designs that is driven by cost and performance
constraints.

94

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cosynthesis Approach to
System Implementation

Memory
Behavioral

Specification and
Performance criteria

System
Input

P
er

fo
rm

an
ce

Cost

Mixed
Implementation

Pure SW

Pure HW

Constraints

[Gupta93]

System
Output

© IEEE 1993

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 95

95

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction

● Unified HW/SW Representations

● HW/SW Partitioning Techniques

● Integrated HW/SW Modeling Methodologies

● HW and SW Synthesis Methodologies

● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 96

As part of the RASSP program, the prime contractors developed
methodologies for codesign of embedded DSP systems. This slide
shows the methodology developed by Lockheed Sanders. Their RASSP
Development Methodology works top-down from requirements to
completed system with feedback to the user at all stages and with an
integrated HW/SW simulation in VHDL as a key.

[Hood94]

96

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Sanders Codesign
Methodology

Integrate
& Test

Global influences

Libraries
Design
rules

Tool
select.

Virtual
Environ.

Cost
models

Design Development Software Modules

Hardware Modules

Feedback
to user

Requirements

Req.
Analysis

Algorithm
Develop.

HW/SW
Tradeoff
Analysis

SW Req.
Partition.

HW Req.
Partition.

At all
steps

Design Code Test

Integrated HW/SW
Simulation

Logical
& Phys.
Design

Anal.
 &
Simul.

Fab &
Test

System
Checkout

[HOOD94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 97

The Lockheed Sanders codesign methodology contains an attempt to
construct an integrated modeling methodology to allow portions of the
system, either hardware or software, to be described at different levels
of abstraction.

97

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Sanders Codesign
Methodology

Integrated Modeling Substrate

Gate Level
Model

Arch Ind.
Proc Model

Behavior
Level Model

ISA
Model

Hardware
Perf. Model

System
Requirements

RTL Model

Prototype
Hardware

Software
Perf. Model

Arch Dep.
Proc Model

Source Code

Load
Module

S
I
M
U
L
A
T
I
O
N

L
I
B
R
A
R
Y

HOL

Assembly

[RASSP94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 98

Here are brief descriptions of the major processes in the Saunders
codesign process.

98

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Sanders Codesign
Methodology

● Subsystems process
❍ Processing requirements are modeled in an

architecture-independent manner
❍ Codesign not an issue

● Architecture process
❍ HW/SW allocation analyzed via modeling of SW

performance on candidate architectures
❍ Hierarchical verification is performed using finer grain

modeling (ISA and below)

● Detailed design
❍ Downloadable executable application and test code is

verified to maximum extent possible
● Library support

❍ SW models validated on test data
❍ HW models validated using existing SW models
❍ HW & SW models jointed iterated throughout designs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 99

This figure show the other RASSP prime contractor’s (Lockheed Martin
ATL) codesign process. Notice similarities to other methodologies:

● Requirements analysis

● Specification partitioning

● Tradeoff analysis

● Integration

Bi-directional arrows indicate that we may do incremental changes as
needed in the design.

99

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Lockheed Martin ATL
Codesign Methodology

Req.
 &

Spec.

Top
level
Arch.

Algor.
develop.
& simul.

SW Req.
Spec.

Partition.

HW
Spec..

Partition

HW/SW
Tradeoff

HW
Design

HW/SW
Cosimul.

SW
Design

SW
Code

Prototype
User

Interface

HW
Dev.

HW
Sim.

HW
Anal.
& Fab

HW
Test

SW
Debug

SW
Test

HW/SW
Integ.

System
Checkout

[RASSP94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 100

100

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction

● Unified HW/SW Representations

● HW/SW Partitioning Techniques

● Integrated HW/SW Modeling Methodologies

● HW and SW Synthesis Methodologies

● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 101

101

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Major Codesign Research
Efforts

● Chinook - University of Washington - Chou,
Ortega, Borriello

● Cosmos - Grenoble University - Ismail, Jerraya
● Cosyma - University of Braunschweig - Ernst,

Henkel, Benner
● Polis - U. C. Berkeley - Chiodo, Giusto, Jurecska,

Hsieh, Lavagno, Sangiovanni-Vincentelli
● Ptolemy - U. C. Berkeley - Kalavade, Lee
● Siera- U. C. Berkeley - Srivastava, Broderson

These are some of the major research efforts in codesign. A brief
description of their major characteristics is included in the following
slides and more details are included on the Chinook, Cosyma,
Ptolemy, and Polis systems.

Chinook - [Chou95]

Cosmos - [Ismail95]

Cosyma - [Ernst93]

Polis - [Chiodo92]

Ptolemy - [Kalavade93]

Siera - [Srivastava91]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 102

102

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Chinook

● Unified representation: Event Graph (CDFG)

● Partitioning: constraint driven by scheduling
requirements

● Scheduling: timing driven

● Modeling substrate: based on Verilog HDL

● Validation: simulation based (Verilog)

● Main emphasis on synthesis of
hardware/software interfaces

The Chinook system is being developed by Gaetano Borriello’s group
at the University of Washington. The major area of research being
looked at in Chinook is techniques for automating the synthesis of
many different types of hardware/software interfaces. This includes
automatic generation of device drivers on the software side, and glue
logic on the hardware side.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 103

103

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cosmos

● Unified representation: Initial description is done in
SDL (specification description language) which is
translated into SOLAR, an intermediate form that
allows several description levels (CSPs, FSMs, etc.)

● Partitioning: user driven using a tool that allows
processes to be grouped together or split into sub-
processes

● Scheduling: based on the partitioning
● Modeling substrate: VHDL simulation after

architecture mapping
● Validation: simulation based
● Main emphasis on synthesis of communications

mechanisms between processes - reuse of existing
communication models

The Cosmos system is being developed at the National Poyltechnical
Institute of Grenoble. The major emphasis is on the unified description
in the Solar language, and the automated synthesis of communications
channels between processes using existing communication models.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 104

104

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cosyma

● Unified representation: ES graph (CDFG)

● Partitioning: combined method based on course
partitioning by user with cost guidance and finer
scheduling done by simulated annealing

● Scheduling: no specific method

● Modeling substrate: based on C++

● Validation: simulation based (C++)

● Main emphasis on partitioning for hardware
accelerators

Cosyma is being developed at the University of Brunschweig. In
Cosyma, the entire system is implemented in software running on
embedded controllers. Functionality is migrated to hardware
“accelerators” only if timing constraints are violated. Note that this is
simply another type of partitioning heuristic.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 105

105

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Polis

● Unified representation: Codesign Finite State
Machine (CFSM) based

● Partitioning: user driven with cost estimated
provided by co-simulation

● Scheduling: classical real-time algorithms
● Modeling substrate: Ptolemy based (C++)
● Validation: co-simulation and formal FSM

verification
● Main emphasis on verifiable specification not

biased to either hardware or software
implementation

POLIS is being developed by Alberto Sangiovanni-Vincentelli’s group
at UC Berkeley. The main areas of emphasis in POLIS are the use of
CFSMs to provide an unbiased unified representation, and the
automated synthesis of a hardware and software implementation once
a suitable partition is found. The use of a unified representation that is
very close to traditional FSMs also allows formal verification to be
used.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 106

106

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Ptolemy

● Unified representation: Data Flow Graph
● Partitioning: greedy algorithm based on

scheduling constraints
● Scheduling: linear based on sorting blocks by

“criticality”
● Modeling substrate: heterogeneous modeling

and simulation framework based on C++
● Validation: based on simulation
● Main emphasis on heterogeneous modeling

framework (mixing different models of
computation)

Ptolemy is being developed by Edward Lee’s group at UC Berkeley.
The major area of emphasis and the original work in Ptolemy was the
development of a heterogeneous simulation environment that allows
the cosimulation of many different models of computation. This makes
it ideally suited to modeling hardware/software systems.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 107

107

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Siera

● Unified representation: static, hierarchical network of
concurrent sequential processes communicating via
message queues (similar to DFG)

● Partitioning: manual user driven
● Scheduling: static process to processor mapping,

priority based preemptive schedulers available within
real-time OS on processors

● Modeling substrate: based on VHDL - includes
support for modeling continuous time systems such
as sensors and actuators

● Validation: based on simulation
● Main emphasis on the design of embedded systems

targeted towards a predefined architectural template

Siera was developed by Robert Broderson’s group at UC Berkeley.
The major emphasis was the mapping of an application to a predefined
architectural template and the integration of the tool with the UC Oct
tools for implementation.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 108

108

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Chinook

● Hardware/Software Co-synthesis system
developed at the University of Washington

● Targeted at real-time reactive embedded systems

● Control dominated designs constructed from off-
the-shelf components

This slide begins a more detailed look at the Chinook cosynthesis
system. It is targeted towards the synthesis of control dominated
systems to off-the-shelf processors and custom ASICs communicating
through one of several different I/O mechanisms.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 109

109

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Chinook’s Principal
Innovations

● Single Specification - one specification, with explicit
timing/performance constraints is used for the system’s
hardware and software

● One Simulation Environment - the high level specification, the
final result, and any intermediate steps can be simulated to verify
and debug the design

● Software Scheduling - the appropriate software architecture is
synthesized to meet the timing requirements

● Interface Synthesis - the hardware and software necessary to
interface between system components (glue logic and device
drivers) is automatically synthesized

● Complete Information for Physical Prototyping - a complete
netlist is generated for the hardware, and C source code is
generated for the software

These are among Chinooks principal innovations. The claim is that the
combination of them, not any individual one, is the most novel thing
about Chinook.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 110

110

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

The Chinook System

Verilog
Specification

Processor &
Device Libraries

parserparser schedulerscheduler

comm.
synthesizer

comm.
synthesizer

code
generator

code
generator

driver
synthesizer

driver
synthesizer

interface
synthesizer
interface

synthesizer

program

netlist

Behavioral
Simulation

Mixed
Simulation

Structural
Simulation

This is the Chinook system. The inputs to the system are a Verilog
behavioral specification of the system developed by the designer,
complete with associated timing constraints, and a supplied library of
processor and device libraries onto which to map the application.

The user must do the partitioning and mapping of the tasks onto
processors or dedicated hardware by hand, but the system then
automatically synthesizes all hardware and software for the system,
including automatically synthesizing the interfaces between the
processors and external hardware.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 111

111

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

System Specification in
Chinook

(Unified Representation)

● The system specification is written in a dialect of Verilog
and includes the system’s behavior and the structure of the
system architecture

● The behavior is specified as a set of tasks in a style similar
to communicating finite state machines - control states of
the system are organized as modes which are behavioral
regimes similar to hierarchical states

● In a given mode, the system’s responses are defined by a
set of handlers which are essentially event-triggered
routines

● The designer must tag tasks or modules with the processor
that is preferred for their implementation - untagged tasks
are implemented in software

● The designer can specify response times and rate
constraints for tasks in the input description

Additional details on the Chinook system.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 112

112

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Scheduling in Chinook

● Chinook provides an automated scheduling algorithm
● Low-level I/O routines and high level routines grouped in

modes are scheduled statically
● A static, nonpreemptive scheduling algorithm is used to

meet min/max timing constraints on low-level operations
❍ Determines serial ordering for operations
❍ Inserts delays as necessary to meet minimum constraints
❍ Includes heuristics in the scheduling algorithm to help exact

algorithm generate valid solution to NP-hard scheduling
problem

● A customized dynamic scheduler may be generated for the
top-level modes

Chinook provides an automated scheduling algorithm. Low level
routines are grouped into modes, and then scheduled within them
statically using heuristics to guide the search for a “good enough”
schedule.

A customized dynamic scheduler is then generated for top-level modes
if necessary.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 113

113

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Interface Synthesis in
Chinook

● Realization of communication between system components
is an area of emphasis in the Chinook system

● Chinook synthesizes device drivers from timing diagrams
● Custom code for the processor being used is generated

❍ For processors with I/O ports, an efficient heuristic is used to
connect devices with minimal interface hardware

❍ For processors w/o I/O ports, a memory mapped I/O interface
is generated including allocating address spaces, and
generating the required bus logic and instructions

● Portions of the interface that cannot be implemented in
software are synthesized into external hardware

Chinook automatically synthesizes interfaces between hardware and
software portions of the system. Several different processor I/O styles
including I/O ports and memory mapped I/O are handled for maximum
flexibility in dealing with different processors.

Chinook synthesizes all of the additional software and hardware for the
interfaces including device drivers and address/glue logic.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 114

114

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Communications Synthesis
and System Simulation in

Chinook
● Chinook provides methods for synthesizing

communications systems between multiple processors if a
multicomputer implementation is chosen

❍ Bus-based, point-to-point, and hybrid communications
schemes are supported

❍ Communications library that includes FIFOs, arbiters, and
interconnect templates is provided

● Simulation of the design at different levels of detail is
supported

❍ Verilog-XL Programming Language is used
❍ Verilog PLI is used to interface to device models written in C
❍ Each device supports the same API for simulation and

synthesis - API calls can be used by the designer to animate
the model interactively

❍ RTL level models of the processors are used to simulate the
final implementation of the system (software)

Chinook also can synthesize communications channels between tasks
on different processors if a multiprocessor architecture is chosen.

Finally, Chinook includes an integrated modeling substrate based on
the Verilog Programming Language. The Verilog PLI is used to
interface between the software, written in C, and the hardware models,
written in Verilog.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 115

This begins a section on more details concerning Cosyma. Like the
other systems Cosyma is targeted towards a subset of
hardware/software systems, in this case, small embedded real-time
systems.

The partitioning strategy in Cosyma starts out with all tasks mapped to
software. Then, when timing constraints are violated, tasks are migrated
to hardware to attempt to generate a valid implementation that meets
timing constraints.

 [Hermann94].

115

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Cosynthesis of Embedded
Applications (COSYMA)

● Developed at the Technical University of Braunschweig,
Germany

● An experimental system for HW/SW codesign of small
embedded real time systems

❍ Implements as many operations as possible in software
running on a processor core

❍ Generates external hardware only when timing constraints are
violated

● Target architecture:
❍ Standard RISC processor core
❍ Application-specific processor

● Communication between HW and SW through shared
memory with a communicating sequential processes
(CSP) type protocol

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 116

C* : a superset of the ANSI C standard.

Extensions of C:

(1)Timing: min and max delays and duration between C labels of a task

(2)Task concept

(3)Task intercommunication

The COSYMA partitioning approach uses simulated annealing.

[Ernst93]

116

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

COSYMA (Cont.)

● Input description of system in C* is translated
into an internal graph representation supporting

❍ Partitioning
❍ Generating hardware descriptions for parts moved to

hardware

● Internal graph representation combines
❍ Control and dataflow graph
❍ Extended syntax (ES) graph

❑ Syntax graph
❑ Symbol table
❑ Local data/control dependencies

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 117

The input to Cosyma is a real time system described in a superset of the
C language, C*, with time constraints and processes.

Input description is translated to an Extended Syntax Graph (ESG),
which tries to compromise between differing requirements to the
system.

1) HW/SW partition should take place at this level. This helps maintain
independence from the hardware architecture.

2) Parts selected to be implemented in HW and SW, respectively,
should be easily translated to their respective domains (HW or SW).

3) Dataflow analysis for different cosynthesis steps, like scheduling and
translation to other target languages, should be supported.

[DeMicheli94], [Hermann94].

117

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Design Flow in a
COSYMA System

C* Mode

Simulator

C* Compiler

ES Flowgraph ES to HW C

HW-C Model

ES to C

C Program

C Compiler

Object Code

Partitioning

 Cost
Estimation

Run time
Analysis

Olympus

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 118

The major emphasis for Cosyma is the development of automated
partitioning algorithms, which few other systems attempt to implement.

As stated previously, the approach is to start with an all software
solution and then move tasks to hardware to improve the schedule while
minimizing cost. This multivariate optimization problem is handled using
simulated annealing, a hill climbing algorithm.

 [Hermann94].

118

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

COSYMA - Aims and
Strategies

● Major aim is automating HW/SW partitioning
process, for which very few tools currently exist

● COSYMA partitions at the basic block and
function level (including hierarchical function
calls)

❍ Simulated annealing algorithm is used because of its
flexibility in the cost function and the possibility to
trade-off computation time vs result quality

❍ Starts with an unfeasible all-software solution

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 119

The Cosyma cost metric is based on estimates from the abstract, high
level description. Using estimates of the metrics used in the cost
computation rather than actual values leads to faster turnaround times.

 [Hermann94].

119

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

COSYMA - Cost Function
and Metrics

● The cost function is defined to force the
annealing to reach a feasible solution before
other optimization goals (e.g., area)

● The metrics used in cost computation are:
❍ Expected hardware execution times
❍ Software execution times
❍ Communication
❍ Hardware costs

● The cost function is updated in each step of the
simulated annealing algorithm

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 120

Details on the flow of the Cosyma tools after partitioning is performed.

 [Hermann94].

120

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

COSYMA - Cost Function and
Metrics (Cont.)

● After partitioning, the parts selected to be
realized in software are translated to a C
program, thereby inserting code for
communicating with the coprocessor

● The rest of the system is translated to the input
description of the high-level synthesis system,
and an application-specific coprocessor is
synthesized

● Lastly, a fast-timing analysis of the whole HW/SW
system is performed to test whether all
constraints are satisfied

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 121

This slide gives a brief overview of Ptolemy. Ptolemy was started as a
project to develop a heterogeneous simulation environment supporting
many different models of computation. Although it was not specifically
intended as a codesign environment, it is well suited to be the integrated
modeling substrate for one. Some of the attributes that make Ptolemy
well suited for HW/SW codesign include:

● Mixed-mode simulation and prototyping

● Block diagram description

● Model continuity

[Buck94]

121

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Ptolemy

● A software environment for simulation and
prototyping of heterogeneous systems

● Attributes
❍ Facilitates mixed-mode system simulation,

specification, and design
❍ Supports generation of DSP assembly code from a

block diagram description of algorithm
❍ Uses object-oriented representations to model

subsystems efficiently
❍ Supports different design styles called domains

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 122

An environment for codesign was added to Ptolemy. It was called the
Design Assistant.

122

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Codesign Methodology
Using Ptolemy

● Ptolemy supports a framework for
hardware/software codesign, called the Design
Assistant

● The Design Assistant consists of two
components

❍ Specific point tools for estimation, partitioning,
synthesis, and simulation

❍ An underlying design methodology management
infrastructure for design space exploration

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 123

Another approach to codesign - here is the methodology used in
conjunction with Ptolemy.

Note similarities to other codesign methodologies:

● Partitioning

● Iterative design at many stages of development.

Ptolemy approach supports simulation at various level of abstraction.

123

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Codesign Methodology
Using Ptolemy (Cont.)

[Rozenblit94]

Design constraints Design specs. User inputs

Design Flow Area/Time
Estimation

HW/SW
Partitioning

Interface
Synthesis

Netlist
Generation

Hardware
Synthesis

Software
Synthesis

Simulation

PtolemyVHDL/Synopsys

SystemSystem

Manual
CPLEX(ILP)
GCLP...

Layout + Software © IEEE 1994

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 124

This figure show some of the basic building blocks of Ptolemy The basic
unit of modularity is a “block.”

Portholes provide a standard interface through which blocks
communicate.

Blocks communicate through streams called particles which form the
base type for all messages passed.

Geodesic class establishes the connection between portholes.

Plasma class manages the reclamation of used particles.”

A porthole is different from a “wormhole”. A wormhole is a foreign
subsystem contained entirely within an object.

[Kalavede, Lee, Ch. 19 from Rozenblit94]

124

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Ptolemy Heterogeneous
Simulation Environment

Structural Components

● Data encapsulated in “particles”
● “Block” objects send and receive messages
● Particles travel to/from external world through

“portholes”

Geodesic

Plasma

Block BlockPorthole Porthole Porthole Porthole

Universe
(Ptolemy Simulation Kernel)

Separate Model of Computation
(e.g. discrete event)

Separate Model of Computation
(e.g. data flow)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 125

125

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

POLIS

● Hardware/Software Codesign and synthesis
system developed at the University of California,
Berkeley

● Targeted towards small, scale, reactive, control
dominated embedded systems

● Includes an “unbiased” mechanism for
specifying the system’s function that allows for
maximum flexibility in mapping to hardware or
software and also allows for formal verification

This slide begins a more detailed description of the POLIS system.
POLIS is a codesign environment targeted toward small real-time
reactive systems. The major features of POLIS include an “unbiased”
specification mechanism and automated hardware and software
synthesis after partitioning.

[Chiodo92], [Chiodo94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 126

126

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

POLIS
Unified Representation

● System behavior is specified in a formal manner using Codesign Finite
State Machines (CFSMs)

❍ CFSMs translate a set of inputs to a set of outputs with only a finite amount
of internal state

❍ Unlike traditional FSMs, CFSMs do not all change state exactly at the same
time (globally asynchronous)

● CFSMs are designed to be unbiased towards hardware or software
● Translators exist to convert other specification languages (e.g.

ESTEREL) into CFSMs
● CFSMs can be translated into traditional FSMs to allow formal

verification
● CFSMs can communicate with each other using events

❍ Events are unidirectional and happen in non-zero, unbounded time
❍ Events can be used to communicate across all domains (hardware or

software)
❍ Events are unbuffered and can be overwritten - however, they can be used to

implement fully interlocked handshaking
● CFSMs are translated into behavioral FSMs for hardware synthesis and

into S-graphs for software synthesis

The unified representation in POLIS is based on Codesign Finite State
Machines (CFSMs). A CFSM is like an FSM except that all CFSMs are
not defined to change state all at the same time (I.e., on a clock edge).

The system specification can be done in the ESTEREL language or in
graphical extended FSMs, and this will be automatically translated into
CFSMs. Once the entire system is specified in CFSMs, the system
can be verified using formal verification techniques based on FSM
theory. The system can then be partitioned by the designer with
feedback in the form of cost estimates.

Once the system is verified and partitioned, the CFSMs that are to be
implemented in hardware are translated into behavioral FSMs for
hardware synthesis and the CFSMs that are to be implemented in
software are translated into S-graphs for software synthesis.

Communication between CFSMs is through events. Events include a
token (signal) and an associated value, if necessary. Normally, events
between CFSMs are unidirectional and not buffered (I.e., the event
sender can over write an event pending on one of its outputs). Events
can be used to implement a fully interlocked handshaking protocol
between CFSMs.

[Chiodo92], [Chiodo94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 127

127

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Codesign Finite State
Machines

● Specification: “Five seconds
after the key is turned on, if
the belt has not been
fastened, an alarm will beep
for ten seconds or until the
key is turned off”

Wait

Alarm

Off

(*Key == On) → *Start

(*End == 5) → *Alarm = On
(*Key == Off) or
(*Belt == On) →

(*End == 10) or
(*Belt == On) or
(*Key == Off) → *Alarm = Off

(*Key == ON) and
(*Belt == On) →

This is an example of a CFSM for a simple seat belt alarm system for
a car.

[Chiodo94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 128

128

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

S-graph Software
Specification

Begin

S==Off

S==Wait*Key==On

*END==5 *END==10

*Alarm=On

S=Alarm

*Belt==On

*Key==Off

*Alarm=Off

*Key==Off

S=Off

End

*Belt==On

*Start

S=Wait

[Chiodo94]

Next

Next

Next

Next Next

Next

True False

True False

True
False

TrueFalse

TrueFalse

TrueFalseNext
TrueFalse

True

False

True
False

© IEEE 1994

Here is the same CFSM as the previous slide translated into an S-
graph. Note that the S-graph can now easily be coded into software.

[Chiodo94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 129

129

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Partitioning and Scheduling in
POLIS

● Partitioning based on mapping CFSMs to either
hardware or software

● This mapping is left to the user - performance
feedback is provided by simulation

● Interfaces between partitions are automatically
generated

● Scheduling based on executing CFSMs
● Selection of scheduling algorithm left to user -

built into RTOS
❍ Round-robin cyclic executive
❍ Off-line I/O rate-based cyclic executive
❍ Static pre-emptive: rate monotonic scheduling
❍ Dynamic pre-emptive: Earliest Deadline First

Once the user driven partitioning is completed, POLIS synthesizes the
hardware, software, and interfaces between the two. There are seven
interface styles available in POLIS depending on whether the interface
is hardware-to-hardware, hardware-to-software, etc. and the
communications mechanism used, I.e., asynchronous events or
interlocked, etc.

Selection the scheduling algorithm to be used in the Real-Time
Operating System (RTOS) in the embedded processors is left to the
user.

[Chiodo92], [Chiodo94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 130

130

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Interfaces Among Partitions

● Interfaces use strobe/data protocol (corresponding to the
event/value primitive)

A B CSender Receiver

Sender’s Domain Receiver’s DomainChannel’s Domain

● Example HW to SW interface

0 1 -0 / 1

10 / 1

-1 / 011 + 0- / 0

x ack / y

X

y

ack

y

HW HW to SW SW

ack

X

This slide show some more detail about how POLIS synthesizes the
interfaces between partitions. The example on the bottom is the
standard interface between hardware and software without
interlocking.

[Chiodo92]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 131

131

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

The POLIS Co-design
Environment

Compilers

SW Synthesis
Interface
Synthesis

HW Synthesis

Formal
Verification

Partitioning

Simulation

Graphical EFSM ESTEREL (Other)…

CFSMs

SW Code +
RTOS

Prototype

Logic Netlist

This is the POLIS codesign environment. As shown, the user specifies
the system in ESTEREL, EFSM, or other suitable description
languages, and these are automatically translated into CFSMs for
formal verification, simulation, and partitioning. After partitioning, the
system is automatically synthesized and then it can be simulated again
at the implementation level.

[Chiodo92], [Chiodo94]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 132

132

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Outline

● Introduction

● Unified HW/SW Representations

● HW/SW Partitioning Techniques

● Integrated HW/SW Modeling Methodologies

● HW and SW Synthesis Methodologies

● Industry Approaches to HW/SW Codesign

● Hardware/Software Codesign Research

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 133

Hardware/Software Codesign is becoming more and more necessary as
mixed implementation systems become both more prevalent and more
complex. This module has attempted to present some of the aspects of
a good codesign environment and some of the research work being
undertaken to develop one.

133

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

Module Summary

● The synergistic design of hardware and software in a digital
system, called Hardware/Software Codesign, has been explored

● Elements of a HW/SW Codesign methodology have been
outlined

● Industrial design flows that contain aspects of codesign have
been presented

● Present day research into automating portions of the codesign
problem have been explored

● As digital systems become more complex and performance
criteria become more stringent, codesign will become a
necessity

● Better design tools and unified design environments will allow
codesign techniques to become standard practice

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 134

134

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

References

[Boehm73] Boehm, B.W. “Software and its Impact: A Quantitative Assessment,” Datamation, May
1973, p. 48-59.

[Buchenrieder93] Buchenrieder, K., “Codesign and Concurrent Engineering”, Hot Topics, IEEE
Computer, R. D. Williams, ed., January, 1993, pp. 85-86

[Buck94] Buck, J., et al., “Ptolemy: a Framework for Simulating and Prototyping Heterogeneous
Systems,” International Journal of Computer Simulation, Vol. 4, April 1994, pp. 155-182.

[Chiodo92] Chiod0, M., A. Sangiovanni-Vincentelli, “Design Methods for Reactive Real-time Systems
Codesign,” International Workshop on Hardware/Software Codesign, Estes Park, Colorado,
September 1992.

[Chiodo94] Chiodo, M., P. Giusto, A. Jurecska, M. Marelli, H. C. Hsieh, A. Sangiovanni-Vincentelli, L.
Lavagno, “Hardware-Software Codesign of Embedded Systems,” IEEE Micro, August, 1994, pp. 26-
36; © IEEE 1994.

[Chou95] P. Chou, R. Ortega, G. Borriello, “The Chinook hardware/software Co-design System,”
Proceedings ISSS, Cannes, France, 1995, pp. 22-27.

[DeMicheli93] De Micheli, G., “Extending CAD Tools and Techniques”, Hot Topics, IEEE Computer, R.
D. Williams, ed., January, 1993, pp. 84

[DeMicheli94] De Micheli, G., “Computer-Aided Hardware-Software Codesign”, IEEE Micro, August,
1994, pp. 10-16

[DeMichelli97] De Micheli, G., R. K. Gupta, “Hardware/Software Co-Design,” Proceedings of the IEEE,
Vol. 85, No. 3, March 1997, pp. 349-365.

[Ernst93] Ernst, R., J. Henkel, T. Benner, “Hardware-Software Cosynthesis for Micro-controllers”, IEEE
Design and Test, December, 1993, pp. 64-75

[Franke91] Franke, D.W., M.K. Purvis. “Hardware/Software Codesign: A Perspective,” Proceedings of
the 13th International Conference on Software Engineering, May 13-16, 1991, p. 344-352; © IEEE
1991

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 135

135

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

References (Cont.)

[Gajski94] Gajski, D. D., F. Vahid, S. Narayan, J. Gong, Specification and Design of Embedded
Systems, Prentice Hall, Englewood Cliffs, N J, 07632, 1994

[Gupta92] Gupta, R.K., C.N. Coelho, Jr., G.D. Micheli. “Synthesis and Simulation of Digital Systems
Containing Interactive Hardware and Software Components,” 29th Design Automation Conference,
June 1992, p.225-230.

[Gupta93] Gupta, R.K., G. DeMicheli, “Hardware-Software Cosynthesis for Digital Systems,” IEEE
Design and Test, September 1993, p.29-40; © IEEE 1993.

[Hermann94] Hermann, D., J. Henkel, R. Ernst, “An approach to the estimation of adapted Cost
Parameters in the COSYMA System”, 3rd International Conference on Hardware/Software
codesign, Grenoble, France, September 22-24, 1994, pp. 100-107

[Hood94] Hood, W., C. Myers, "RASSP: Viewpoint from a Prime Developer," Proceedings 1st Annual
RASSP Conference, Aug. 1994.

[IEEE] All referenced IEEE material is used with permission.
[Ismail95] T. Ismail, A. Jerraya, “Synthesis Steps and Design Models for Codesign,” IEEE Computer,

no. 2, pp. 44-52, Feb 1995.
[Kalavade93] A. Kalavade, E. Lee, “A Hardware-Software Co-design Methodology for DSP

Applications,” IEEE Design and Test, vol. 10, no. 3, pp. 16-28, Sept. 1993.
[Klenke96] Klenke, R. H., J. H. Aylor, R. Hillson, D. J. Kaplan, “VHDL-Based Performance Modeling for

the Processing Graph Method Tool (PGMT) Environment,” Proceedings of the VHDL International
Users Forum, Spring 1996, pp. 69-73.

[Kumar95] Kumar, S., “A Unified Representation for Hardware/Software Codesign”, Doctoral
Dissertation, Department of Electrical Engineering, University of Virginia, May, 1995

[Jalote91] Jalote, P., An Integrated Approach to Software Engineering, Springer-Verlag, New York,
1991.

[McFarland90] McFarland, M.C., A.C. Parker, R. Camposano. “The High-Level Synthesis of Digital
Systems,” Proceedings of the IEEE, Vol. 78, No. 2, February 1990, p.301-318, © IEEE 1990.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 136

136

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

References (Cont.)

[Parker84] Parker, A.C., “Automated Synthesis of Digital Systems,” IEEE Design and Test,, November
1984, p. 75-81.

[RASSP94] Proceedings of the 1st RASSP Conference, Aug. 15-18, 1994.
[Rozenblit94] Rozenblit, J. and K. Buchenrieder (editors). Codesign Computer -Aided

Software/Hardware Engineering, IEEE Press, Piscataway, NJ, 1994; © IEEE 1994.
[Smith86] Smith, C.U., R.R. Gross. “Technology Transfer between VLSI Design and Software

Engineering: CAD Tools and Design Methodologies,” Proceedings of the IEEE, Vol. 74, No. 6, June
1986, p.875-885.

[Srivastava91] M. B. Srivastava, R. W. Broderson, “Rapid prototyping of Hardware and Software in a
Unified Framework,” Proceedings ICCAD, 1991, pp. 152-155.

[Subrahmanyam93] Subrahmanyam, P. A., “Hardware-Software Codesign -- Cautious optimism for the
future”, Hot Topics, IEEE Computer, R. D. Williams, ed., January, 1993, pp. 84

[Tanenbaum87] Tanenbaum, A.S., Operating Systems: Design and Implementation, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1987.

[Terry90] Terry, C. “Concurrent Hardware and Software Design Benefits Embedded Systems,” EDN,
July 1990, p. 148-154.

[Thimbleby88] Thimbleby, H. “Delaying Commitment,” IEEE Software, Vol. 5, No. 3, May 1988, p. 78-86.
[Thomas93] Thomas, D.E., J.K. Adams, H. Schmitt, “A Model and Methodology for Hardware-Software

Codesign,” IEEE Design and Test, September 1993, p.6-15; © IEEE 1993.
[Turn78] Turn, R., “Hardware-Software Tradeoffs in Reliable Software Development,” 11th Annual

Asilomar Conference on Circuits, Systems, and Computers, 1978, p.282-288.
[Vahid94] Vahid, F., J. Gong, D. D. Gajski, “A Binary Constraint Search Algorithm for Minimizing

Hardware During Hardware/Software Partitioning”, 3rd International Conference on
Hardware/Software Codesign, Grenoble, France, Sepetember22-24, 1994, pp. 214-219

[Wolf94] Wolf, W.H. “Hardware-Software Codesign of Embedded Systems,” Proceedings of the IEEE,
Vol. 82, No.7, July 1994, p.965-989.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 137

137

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

References (Cont.)

Additional Reading:
Aylor, J.H. et al., "The Integration of Performance and Functional Modeling in VHDL” in Performance

and Fault Modeling with VHDL, J. Schoen, ed., Prentice-Hall, Englewood Cliffs, N.J., 1992.
D’Ambrosio, J. G., X. Hu, “Configuration-level Hardware-Software Partitioning for Real-time Embedded

Systems”, 3rd International Conference on Hardware/Software codesign, Grenoble, France,
September 22-24, 1994, pp. 34-41

Eles, P., Z. Peng, A. Doboli, “VHDL System-Level Specification and Partitioning in a Hardware-Software
Cosynthesis Environment”, 3rd International Conference on Hardware/Software codesign,
Grenoble, France, September 22-24, 1994, pp. 49-55

Gupta, R.K., G. DeMicheli, “Hardware-Software Cosynthesis for Digital Systems,” IEEE Design and
Test, September 1993, p.29-40.

Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal Processors,
Kluwer Academic Publishers, Norwell, MA, 1997

Schultz, S.E., “An Overview of System Design,” ASIC and EDA, January 1993, p.12-21.
Thomas, D. E, J. K. Adams, H. Schmit, “A Model and Methodology for Hardware-Software Codesign”,

IEEE Design and Test, September, 1993, pp. 6-15
Zurcher, F.W., B. Randell, “Iterative Multi-level Modeling - A Methodology for Computer System

Design,” Proceedings IFIP Congress ‘68, Edinburgh, Scotland, August 1968, p.867-871.

