
Page 1Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 1

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

DSP Architectures for RASSP
 RASSP Education & Facilitation Program

Module 21

Version 3.00
Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and may only be
used for non-commercial educational purposes. Any other use of this information without the express written permission of the ATI is
prohibited. Certain parts of this work belong to other copyright holders and are used with their permission. All information contained,
may be duplicated for non-commercial educational use only provided this copyright notice and the copyright acknowledgements
herein are included. No warranty of any kind is provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457. Such data
may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except as follows: Certain
parts of this work to other copyright holders and are used with their permission; This information contained herein may be duplicated
only for non-commercial educational use. Any vehicle, in which part or all of this data is incorporated into, shall carry this notice .

Page 2Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Architecture design is based on the functional computational and
communications requirements of the algorithm or algorithms selected to
meet the specification. These trade-offs fall under the functional design
and partitioning sections of the RASSP process.

Copyright 1995-1999 SCRA 2

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Rapid Prototyping Design
Process

 DSP Architectures DSP Architectures

SYSTEM
DEF.

FUNCTION
DESIGN

H/W &
S/W

PART.

H/W
DESIGN

S/W
DESIGN

H/W
FAB

H/W
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LABORATORIES AND DATABASE

Primarily
software

Primarily
hardware

H/W & S/W
CO-DESIGN

Page 3Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This module will cover the areas listed above. The purpose of this
module is to expose the user of the RASSP process to the area of
architecture design.

Copyright 1995-1999 SCRA 3

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Goals

● Present an introduction to state of the art in DSP
architectures

❍ Architecture overview

● Present RASSP-related HW/SW architectures and
methodologies

❍ RASSP architecture goals

❍ The Model Year Architecture framework

❍ Generic architectures for RASSP

❍ Architecture design process

❍ Architecture selection benchmark example
❍ Summary

Page 4Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide presents the outline of topics to be covered in this module
starting with an architecture overview, then presenting the RASSP
goals, followed by the model year architecture concept that is used on
RASSP. Later sections present the RASSP architecture design
process.

Copyright 1995-1999 SCRA 4

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Architecture overview
● RASSP architecture goals
● The Model Year Architecture framework
● Generic architectures for RASSP
● Architecture design process
● Architecture selection benchmark example
● Summary

Page 5Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The first topic will present an overview of architectures for DSP.

Copyright 1995-1999 SCRA 5

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP DSP Architectures
for RASSP

● Architecture overview
● RASSP architecture goals
● The Model Year Architecture framework
● Generic architectures for RASSP
● Architecture design process
● Architecture selection benchmark example
● Summary

Page 6Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Contained in this section are a listing of the main architectural
attributes, a model for architectures presented by Skillicorn, evolution of
architectures used for large systems, and a description of architectural
building blocks.

Copyright 1995-1999 SCRA 6

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Overview
Outline

● Architectural Attributes
● Skillicorn’s model
● Evolution and examples of DSP architectures
● Architectural elements

Page 7Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The key architectural attributes for a signal processing system include
those listed in the chart above. They fall into three broad categories and
help specify the computational and communications requirements of the
system, along with a system configuration needed to combine all the
resources to meet the specification.

Copyright 1995-1999 SCRA 7

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architectural Attributes

• Processor types
• Throughput
• Latency
• Software
• Algorithms

• Information flow
• Data communications
• Backplane / buses
• Interfaces - internal
• Interfaces - external

• Interconnection
 technology
• No. of processors
• Features:
 - Test
 - Fault-tolerance, etc.

Architecture

Computation Communication Configuration

[Lockheed95]

Page 8Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Skillicorns model represents a method for describing uniprocessor and
multiprocessor architectures for computing systems.

Copyright 1995-1999 SCRA 8

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Overview
Outline

● Architectural attributes

● Skillicorn’s model
● Evolution and examples of DSP architectures
● Architectural elements

Page 9Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Skillicorn proposed a general model of all computing architectures. It is
based on the following elements:

● Data Processor (DP)

● Instruction Processor (IP)

● Data Memory (DM)

● Instruction Memory (IM)

● External Interface Unit (EIU).

The IP passes information to the DP in the form of control information
(Instructions), and the DP returns the state of the computation back to
the IP. Both the IP and the DP have some means of obtaining control or
data information from their DM and IM and also from the external world
through an EIU. (See Madisetti1995)

Copyright 1995-1999 SCRA 9

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Skillicorn’s Model of
Computer Architecture

DP IP

DM IM

EIU

state

instructions

addressesdata labelsinstructions

I/O

DP = Data Processor

DM = Data Memory

EIU = External Interface Unit

IP = Instruction Processor

IM = Instruction Memory

Page 10Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A typical signal processing chip family can be seen to follow this model
closely (TI TMS320 family). In this case, all the representative parts are
shown in the figure. The IP consists of a controller that fetches
instructions from its IM based on the address in the PC. The control is
decoded and passes information to the DP (consisting of an ALU,
multiplier, shifter, and accumulator) to process the data from its data
memory. The external interface can load instructions or data through a
number of elements (serial ports, parallel ports, etc.).

Copyright 1995-1999 SCRA 10

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Schematic of TMS320 Family

Controller

PC

StackStack

Shift

ALU

ACC.ACC.

Multiply
T

P

MUXMUX

Program Memory

Data Memory

MUXMUX

Instruction Processor Instruction Memory

Data Memory
Data Processor

External
Interface

Unit

Addr.
Program Bus

Data Bus

Page 11Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Skillicorn’s model can also be applied to a multiprocessor system. In
this case there can be N IPs and DPs along with access to their
respective memories. In the case above, the IPs each have their own
separate instruction memory to process control information, while the
DPs have access to all DM through possibly a shared memory scheme.

Copyright 1995-1999 SCRA 11

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Increasing Performance -
Parallel Processing

Skillicorn’s model for a Multiprocessor

DP IP

DM IM

n by n

n-to-n

n-to-n

Page 12Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Some of the features of parallel processors are listed above.

Grain size can be “coarse” or “fine”. In the coarse-grain architecture, the individual
processors do large chunks of processing with little communication between them.
Fine-grain do smaller chunks and communicate more frequently (require higher
throughput interconnects).

Different control architectures range from Single Instruction Multiple Data (SIMD) to
Multiple Instruction Multiple Data (MIMD). SIMD performs the same set of operations
synchronously on many streams of data (typically used at front-end sensor arrays).
MIMD is more flexible, and each processor works independently with its own set of
operations and data streams (typically used when computations can be broken into
multiple threads).

Coupling can be done loosely or tightly. Loosely-coupled architectures have
processors that act fairly independently from other processors. Tightly-coupled
architectures have processors which can share memory and possibly be controlled by
a global operating system.

Similarity can involve homogeneous (same type of processing elements) or
heterogeneous (various types) type architectures.

Topology: Various methods of interconnect are possible including simple shared multi-
drop buses, switch (crossbar) types, and mesh types.

Medium: This includes such things as copper-wire, coax, and fiber-optic materials.
Connections can be serial or parallel.

Copyright 1995-1999 SCRA 12

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Parallel Processing - Features

● Grain Size

● Control/IP architecture

● Coupling between processors

● Similarity between processing elements

● Topology of interconnect

● Physical medium for interconnect to
sensors/analysis

[Lockheed95]

Page 13Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

An evolution of DSP architectures is presented in this section along with
some examples of recent architectural designs.

Copyright 1995-1999 SCRA 13

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Overview
Outline

● Architectural attributes
● Skillicorn’s model

● Evolution and examples of DSP
architectures

● Architectural elements

Page 14Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This shows architectures in a historical perspective starting from the
independent type to the current trend of open systems.

● Independent: No concern about interoperability or the sharing
of resources between systems. Each performs its independent
functions.

● Federated: The independent systems are interconnected with
a low-speed control bus, and a central computer exercised
overall control of the function of the various independent
systems.

● Integrated: Communication between systems is at a higher
speed, and possible resource sharing is done. Fault tolerant
systems are possible now because one non-functioning
resource can be replaced with another. Data fusion is also
possible where multiple resources can share the same data at
the sensor input.

● Distributed: Resources are spread according to optimal
physical constraints while retaining a strong integrated
capability.

● Open Systems: Allows for incremental changes of hardware
components as technology evolves. It clearly specifies the
critical interfaces for replaceable modular elements. It allows
for vendor independence.

Copyright 1995-1999 SCRA 14

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Evolution of
DSP Architectures

Independent ArchitectureIndependent Architecture

Integrated ArchitectureIntegrated Architecture

Open System ArchitectureOpen System Architecture

Federated ArchitectureFederated Architecture

[Lockheed95]

Distributed ArchitectureDistributed Architecture

Page 15Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Pave Pillar Architecture was put together by the Air Force in the
early 1980s. It was created with the intent of being modular, open, fault
tolerant, and highly flexible.

The control bus carries interprocessor messages and is usually
implemented in redundant form for fault tolerance. It has an associated
BIT bus for maintenance and debugging.

The data network is usually implemented using a non-blocking crossbar
network and transfers large blocks of data. This helps support
multiprocessor dataflow.

The architecture can be partitioned into core modules (for local control
and communication), functional element modules (for high performance
processing, I/O, and storage), and miscellaneous modules (for power
regulation and other support functions).

Copyright 1995-1999 SCRA 15

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Examples of DSP
Architectures - 1

Data Network

FE FE

ECB

ESU

FE FE

ECB

ESU

Control Bus

Support Elements

S

D

D

N

V

D

D

N

Sensors
Displays

System Interface
User Console

ECB = Element Control Bus
ESU = Element Supervisor Unit
FE = Functional Element
 (Memory, Processor, I/O)
SDDN = Sensor Data Distribution Network
VDDN = Video Data Distribution Network

Pave Pillar Architecture

[Lockheed95]

Page 16Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The JIAWG is an implementation of the Pave Pillar Architecture. Use of
the JIAWG standard was mandated by Congress for specific contracts
developed for the Tri-services.

In this architecture, the control bus is the Parallel Intermodule Bus (PI-
bus), and the associated BIT bus is the Test and Maintenance Bus
(TM-Bus).

Copyright 1995-1999 SCRA 16

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Examples of DSP
Architectures - 2

M M M MM
D

D

N

Sensors
Displays

System Element Interconnects
Other

System

Elements

Module Interconnects

M = Module DDN = Data Distribution Network

JIAWG (Joint Integrated Avionics Working Group) Architecture

[Lockheed95]

Cluster

Page 17Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The AOSP architecture was designed for the Air Force in the 1980s for
use in space. It implements a mesh architecture with a planar-4 mesh
topology.

This topology has four families of buses: horizontal, vertical, left
diagonal, and right diagonal. Each node connects separately to the four
bus families. using the 2-dimensional pattern shown.

The Node Operating System (NOS) in each controller routes messages
to their destination, invokes the application tasks, and monitors error
reports.

Copyright 1995-1999 SCRA 17

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Examples of DSP
Architectures - 3

Sensors

Displays

Node

Bus

AOSP (Advanced On-board Signal Processor) Architecture

[Lockheed95]

Page 18Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

SAFENET is a local area network standard developed by the Navy’s
Next Generation Computer Resource (NGCR) Program in the early
1990s. This was used to connect multiple digital systems on-board a
ship.

The architecture uses Fiber Distributed Data Interface (FDDI) at the
network level to implement a dual counter-rotating ring topology. This
helps achieve high bandwidth, low cost, and protection from EMI.

Fault-tolerance is provided in two ways. First, a failed node can be
isolated from the network via an optical bypass switch contained within
the node controller. Second, a failed node can be isolated by
reconfiguring the dual ring into a double-length single ring, thereby
excluding the failed component.

Copyright 1995-1999 SCRA 18

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Examples of DSP
Architectures - 4

NC

NC

NC

NC

NC

NC

FE

EIOEIO

FEFE

FE

Displays
Sensors

System Interface
NC = Node Controller
FE = Functional Element (Memory, Processor or I/O)
EIO = External Input/Output Element

SAFENET (Survivable Adaptable Fiber Optic Embedded Network) Architecture

[Lockheed95]

Page 19Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section will present an overview of elements used to build
architectures for DSP systems.

Copyright 1995-1999 SCRA 19

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Overview
Outline

● Architectural attributes
● Skillicorn’s model
● Evolution and examples of DSP architectures

● Architectural elements

Page 20Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

We will now talk about some of the architectural elements that compose
the architectures just described on the previous slides.

They can be broken into the categories shown in this slide.

Other important elements of an architecture include the software design
and physical constraints, which will not be discussed here.

Copyright 1995-1999 SCRA 20

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architectural Elements

● Computational Elements
● Communication Elements
● Configuration Types

Page 21Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Pre-processors are usually implemented for high throughput application
at the front-end, where sensor data input needs to be processed.

Vector processors are specialized for mathematical computations and
are typically coarse-grained compute engines. A typical application may
include an FFT computation. They are typically pipelined for increased
throughput.

Digital Signal Processors are optimized for multiply and accumulate
type operations (MAC). Some currently available choices include the TI
TMS320 series, AD 21060, Motorola 56000 and 96000, and Intel i860.

Control processors are usually good at input/output and control logic,
but lack the complexity of a high-end processor.

Data processors are general-purpose in intent and meet a large number
of application areas.

Copyright 1995-1999 SCRA 21

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Computational Elements

● Pre-processors
❍ Specialized hardware to provide high throughput

● Vector Processors
❍ Specialized hardware optimized for mathematical

computations

● Digital Signal Processors
❍ Compromise between high-speed specialized HW and lower

speed general-purpose data processors

● Control Processors
❍ Subclassification of a data processor optimized for connecting

a node to a network. Good for I/O and control logic

● Data Processors

❍ General-purpose processor which can be customized with SW
to meet requirements of various applications

Page 22Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Some commonly known data processors are listed above. There
capabilities change on a rapid basis and the numbers above will only
reflect their nature over a short period of time (3 months or less).

Copyright 1995-1999 SCRA 22

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Data Processors

Processor Clock SPECint92 Power Process Transistors

Pentium 100 MHz 100 4 W 0.6 m 3.3 M

Supersparc 60 MHz 80 14 W 0.8 m 3.0 M

PA1700 100 MHz 80 23 W 0.8 m 3.0 M

PowerPC 601 80 MHz 85 9 W 0.6 m 2.8 M

R4400 150 MHz 90 15 W 0.6 m 2.3 M

Alpha 21064A 275 MHz 170 33 W 0.5 m 1.7 M

Intel

Sun

HP

IBM/Motorola

MIPS

DEC

[Lockheed95]

Page 23Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The communications between processors is accomplished by using
buses of various types. These include direct point-to-point links; shared
multi-drop buses; or networks made of links, buses, or switches.

They can be implemented in serial or parallel form. Some choices of
open systems bus standards available today are shown in the chart
above with their respective throughputs.

These buses can perform different functions such as control, data
transfer, maintenance, I/O, and area networking.

Copyright 1995-1999 SCRA 23

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Communications

256

64

32

16

1

10 M 100 M 1 G 10 G 100 G

B
u

s
W

id
th

(N
u

m
b

er
 o

f
D

at
a

W
ir

es
)

Throughput

(Bits/Sec)

PREFERRED

1553

JTAG
 TM Ethernet HPSB

FDDI
100Base
Ethernet

SCSI

ISA

HIC FC
ATM

SCI

P
I

V
M

E

PCI

RACEway

V-Bus

Fu
tu

re
bu

s+

[Lockheed95]

Page 24Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Control buses are typically used to allow multiple processors to inter-
operate in a system through the exchange of commands and some
data. In small systems with low throughput requirements, this may be
the only bus required. Some of the bus choices are listed above.

Copyright 1995-1999 SCRA 24

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Control Buses

 NAME STATUS PERFORMANCE INTENDED APPLICATION

FB+ IEEE 896.x Released 3200 MBytes/sec - 256 parallel Required by NGCR as backplane

ISO/IEC 10857:1994 1994 100 MBytes/sec - 32 parallel control bus

“Futurebus+” Migration path for VME bus

PI-bus Being revised 50 MBytes/sec - 32 parallel Required by JIAWG as backplane

JIAWG J89-N1A by the F-22 control bus

 program

VME64 Recent 80 MBytes/sec - 64 parallel Upgrade for VME bus

IEEE P1014 Rev D revision

VME Released 1987 40 MBytes/sec - 32 parallel Commercial backplane control bus

IEEE 1014-1987 Widely used for high-performance systems
“VersaModule

Europa”

[Lockheed95]

Page 25Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Data interconnects are used to augment control buses for systems with
a higher throughput. To achieve the higher speed, the data interconnect
is usually implemented point-to-point with unidirectional links. Some
choices are listed above.

Copyright 1995-1999 SCRA 25

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Data Interconnect Fabric

 NAME STATUS PERFORMANCE INTENDED APPLICATION

SCI Released 1000 MBytes/sec - 16 parallel Heterogeneous parallel processor

IEEE 1596-1992 1992 250 MBytes/sec - serial

“Scaleable Coherent
Interface”

HIC Under 250 MBytes/sec - serial Low-cost parallel processor

IEEE P1355 Development

“Heterogeneous
interconnect”

RACEway Proposed by 160 MBytes/sec - 32 parallel VME-compatible upgrade

VITA Mercury

[Lockheed95]

Page 26Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Test and maintenance buses are typically used to provide a minimally-
intrusive path to every hardware module in the system to isolate and
debug failures. It is typically serial and low speed. It can also be
implemented in redundant form for mission critical fault tolerant
systems.

Copyright 1995-1999 SCRA 26

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test & Maintenance Buses

 NAME STATUS PERFORMANCE INTENDED APPLICATION

Serial Bus Under 6 MBytes/sec - backplane Required by NGCR as T & M bus

IEEE P1394 development 50 MBytes/sec - cable Used with Futurebus+
“High Performance

Serial Bus”
“FireWire”

TM-bus Being revised 0.8 MBytes/sec - serial Required by JIAWG as T & M bus

JIAWG J89-N1B by the F-22 Used with PI-bus

 program

MTM Bus Under 1.2 MBytes/sec - serial Interconnect JTAG modules

IEEE P1149.5 Development Based on TM-bus
“Module Test and

Maintenance Bus”

JTAG Released 1990 3 MBytes/sec - serial Interconnect JTAG modules

IEEE 1149.1-1990 Widely used (in hierarchical structures)

[Lockheed95]

Page 27Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

I/O interconnects are used to collect raw data from the sensors and
distribute it to the processors or to the displays of the system. They are
optimized to transfer large blocks of data with minimal concerns for
error checking and flow control. Some choices are listed above.

Copyright 1995-1999 SCRA 27

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Input/Output Interconnects

 NAME STATUS PERFORMANCE INTENDED APPLICATION

FC Under 100 MBytes/sec - serial Proposed by NGCR for data

ANSI X3T9.3 development channel (sensor input and

“Fibre Channel” video output)

SCSI Released 10 MBytes/sec - 8 parallel Interconnect workstation

“Small Computer Widely used peripherals

System Interface”

1553B Released 0.1 MBytes/sec - serial Interconnect separate boxes

Mil-Std-1553B Military use in a military system

[Lockheed95]

Page 28Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Area network interconnects are used to connect processing systems
located in separate physical boxes. They are optimized for bursty traffic
but in the future they must be able to handle isochronous traffic for
multi-media applications. A list is included above.

Copyright 1995-1999 SCRA 28

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Area Network Interconnects

 NAME STATUS PERFORMANCE INTENDED APPLICATION

ATM Under 300 MBytes/sec - serial Telecommunications

ISO/ITU development. Workstation local area network
“B-ISDN” Immense

“Broadband ISDN” interest.
“Asynchronous

 Transfer Mode”

FDDI Released 12 MBytes/sec - serial Required by NGCR as local area

ISO 9314-x 1990 network (within “SAFENET”)
“Fiber Distributed

 Data Interface”

100Base Ethernet Under 12 MBytes/sec - serial Migration path for Ethernet

IEEE P802.14 development

Ethernet Released 1990 1.2 MBytes/sec - serial Local area network

IEEE 802.3-1990 Widely used

[Lockheed95]

Page 29Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The configuration of an architecture describes how the computational
and communications elements are arranged in the digital system.

The primary goal of this slide is to depict network topologies and the
basic types: linear, ring, switch, mesh and hypercube. Not included are
the connection of sensors to displays and the physical arrangement of
the actual hardware.

Copyright 1995-1999 SCRA 29

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Example Configurations

Linear

Ring

Switch
Mesh

Hypercube

[Lockheed95]

Page 30Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The linear (shared multi-drop) bus is the traditional topology when a
computer bus is mentioned. VME, Ethernet, and 1553 are examples of
this. A linear bus is inherently fault intolerant. Redundancy is usually
implemented for mission-critical computers. Because a linear bus is
shared, there usually is a limit to the number of nodes it can support.
For example, Futurebus+ and PI-bus each have a maximum limit of 32
nodes. To connect additional nodes, a hierarchical topology as shown
above must be configured. The bridge node serves this purpose.

Copyright 1995-1999 SCRA 30

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Linear Topology

Bridge Bridge

Examples: VME, Ethernet

[Lockheed95]

Page 31Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The ring topology is more scaleable than the linear and increases the
total system bandwidth. It uses point-to-point links so the number of
nodes are not limited and a higher speed can be obtained over a single
link. This topology is also fault intolerant, so redundancy is usually built
in.

To solve the intolerance problem, two popular ring topologies are the
counter-rotating ring and the skip ring. With the counter-rotating ring, a
failed link or node can be isolated from the network by its adjacent
neighbor. With the skip ring, a failed link or node can be isolated by
replacing the bad link with the skip link around the node.

Copyright 1995-1999 SCRA 31

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Ring Topology

Counter-Rotating Ring Skip Ring

[Lockheed95]

Page 32Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The switch topology provides concurrent independent data paths
between pairs of nodes and hence is high performance. It is also
flexible because the connections between nodes can be changed
dynamically as needed.

Typical switch types are crossbar and star topologies. The RACEway
from Mercury Computer Systems uses the crossbar type. It has a six-
port crossbar as its basic building block. It does not scale well because
the number of required connections increase more quickly than the
number of nodes.

Copyright 1995-1999 SCRA 32

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Switch Topology

6X 6X

6X 6X 6X 6X 6X 6X

6X 6X

6X 6X

Fat Tree Clos Network

6X = 6-port non-blocking switch

RACEway Topology (used by RASSP primes)

[Lockheed95]

Page 33Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The mesh topology has become the popular choice for scaleable
parallel processors and massively parallel processors. Its most
important feature is that it scales well. The number of communications
links increases linearly with the number of nodes. The disadvantage is
that it requires routing of communication through intervening nodes and
hence leads to delays and extra processing.

An example is the Intel Paragon.

Variants of the mesh topology include the toroid, weave, planar-4 and
the N-Cube. The advantage of the N-cube is that there are fewer link
hops between nodes. The disadvantage is that more links are required
per node and the N-Cube is less scaleable. The planar-4 was
mentioned in an earlier slide as part of the AOSP program.

Copyright 1995-1999 SCRA 33

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Mesh Topology

Toroid Weave Cube

[Lockheed95]

Page 34Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A list of RASSP goals for architectural design are now presented.

Copyright 1995-1999 SCRA 34

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP DSP Architectures
for RASSP

● Architecture overview

● RASSP architecture goals
● The Model Year Architecture framework
● Generic architectures for RASSP
● Architecture design process
● Architecture selection benchmark example
● Summary

Page 35Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The architecture is what unifies a suite of HW and SW components into
a system to accomplish a specified mission. It includes the form,
structure, and interrelationships among the elements of the system and
between the system and its environment.

The RASSP architecture’s main focus is on embedded signal
processing systems. The great complexity requires computational
demands in the GFLOPS to TFLOPS range, using from 1-1000
processing elements (both general purpose COTS components and
application specific designs) with high communication bandwidths.
Requirements for cost effective and rapid upgrades are also a major
focus of the program. Requirements of testability and fault-tolerance are
usually specified. The architectures are typically open ended, modular,
and provide I/O, control, and test facilities.

Copyright 1995-1999 SCRA 35

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP HW/SW
Architecture Goals

● Rapidly provide a scaleable implementation
optimized for a given application

● Provide cost effective and rapid upgrades
● Meet high real-time computational demands

❍ GFLOPS to TFLOPS range

● Meet high communication bandwidths
❍ 70-1000 MBytes/sec

● Provide I/O, control, and test facilities
● Utilize modular and reusable HW and SW

elements
● Provide additional SWAP constraints (Size,

Weight, Area, Power) - smaller, lighter, mobile
information systems

Page 36Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

To support these goals, the concept of Model Year Architecture (MYA)
will now be presented.

Copyright 1995-1999 SCRA 36

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP DSP Architectures
for RASSP

● Architecture overview
● RASSP architecture goals

● The Model Year Architecture framework
● Generic architectures for RASSP
● Architecture design process
● Architecture selection benchmark example
● Summary

Page 37Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

To dramatically improve the process by which complex digital systems
are specified, designed, documented, manufactured, and supported
requires a signal processing design methodology that recognizes a
number of application domains. A key element to implement this
methodology is a Model Year Architecture approach that adheres to a
specific set of principles which include:

The architectures must be open to promote HW/SW upgradability and
reusability in other applications

● The architectures must use emerging, state-of-the-art
commercial technology whenever possible

● The architectures must support a wide range of applications to
maintain low non-recurring engineering (NRE) costs

● The architectures must facilitate continuous product
improvement and substantial life-cycle-cost (LCC) savings in
fielded system upgrades

● The RASSP Model Year Architecture(s) (MYA) must be
supported by the necessary library models to facilitate trade-
offs and optimizations for specific applications. Reusable HW
and SW libraries facilitate growth and enhancement in direct
support of the RASSP model year concept. The notion of
model year upgrades is embodied in the reuse libraries and
the methodology for their use. As technology advances, new
architectural elements may be included in the library. Rapid
insertion of a new element into an existing, RASSP-generated
design is the goal of the Model Year concept.

Copyright 1995-1999 SCRA 37

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Model Year
Architecture within the Design

Process

[LMC-Meth]

RASSP Model Year
Architecture

System
Definition

Architecture
Definition

Detailed
Design

RASSP Reuse Library

Library Population

Reqmts
Analysis

Functional
Analysis

Functional
Design

HW

SW

HW

SW

HW

SW

Architecture
Selection

Architecture
Verification

Algorithmic
Primitive

Development

OS Services
Primitive

Development

Architecture/
HW Model

Development

Page 38Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The RASSP design process is based on true HW/SW codesign and is
no longer partitioned by discipline (e.g. HW and SW), but rather by
levels of abstraction represented in the system, architecture, and
detailed design processes. The above figure shows the RASSP
methodology as a library-based process that transitions from
architecture independence in the systems design process to
architecture dependence in the architecture process.

Various levels of virtual prototypes are generated throughout the design
process. The first is output from the systems process, where an
executable specification is generated, the architecture process
generates two more with increasing detail and verification. The final
prototype is created before HW/SW sign-off and full system verification
is done at the RTL and gate levels with application and test SW running
on the prototype.

Copyright 1995-1999 SCRA 38

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP HW/SW Codesign Key Part of
Model Year Architecture

System Req.

Arch Indep. Model

HW Perf. Model SW Perf. Model

Beh.-level model

ISA Model

Arch. Depen. Model

RTL Model

Gate-level Model

Prototype HW

Source Code

HOL
Assembly

Load Module

L
I
B
R
A
R
Y

S
I
M
U
L
A
T
I
O
N

Virtual Prototype
level 0 (VP0)

VP1

VP2

VP3

[LMC-Meth]

Page 39Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

HW/SW codesign is a major RASSP design methodology to aid in
achieving the proposed 4X improvement in design of signal processing
systems. The list above presents the principle benefits of the
methodology.

Copyright 1995-1999 SCRA 39

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Principle Benefits of
HW/SW Codesign

● Mutual influence of both hardware and software
early in the design cycle, SW and HW
performance help select the architecture

● Continual verification throughout the design
cycle - As the design progresses through
subsequent levels of detail, both HW and SW are
verified to improve design quality

● Enables evaluation of larger design trade space
● Reduces integration and test since HW and SW

have been co-verified throughout the design
process

[LMC-Meth]

Page 40Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As technology is evolving faster than systems can be developed, the concept of Model
Year Architecture allows the incorporation of new technologies to be inserted into the
design as they appear.

The objective of the Model Year Architecture (MYA) is to develop a framework for
signal processor architectures. The MYA should address the following issues:

Contribute to the 4X reduction in design cycle time required by RASSP

● Provide life cycle support

● Provide scalability to support changing mission scenarios and different
deployment environments

● Support heterogeneity in the design process by providing cost effective
implementations of functions with a wide range of performance
requirements

● Provide flexible interfaces to a wide range of subsystems

● Utilize modular software in the form of reusable components and support
upgrades to operating systems, services, and libraries.

● Support hardware upgrades

● Provide for testability in the design process and detect and isolate faults
with high probability

● Support for RASSP signal processor retrofit into non-RASSP (legacy)
systems

● HW and SW elements within the library of components are encapsulated
by functional wrappers, which add a level of abstraction to hide
implementation details and facilitate efficient technology insertion

Copyright 1995-1999 SCRA 40

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Year Architecture

● Objectives
❍Develop framework for signal processor

architectures
❍Support sufficient model-year upgrades by

minimizing hardware/software breakage
❍Develop model-year instantiations to support

benchmarks and demonstrations
❍Promote design upgrades and reuse via

standardized, open interfaces while leveraging
commercial technology

❍Support scalability, heterogeneity, modular
software, life cycle support, testability, and
system retrofit

[LMC-ATL][LMC-MYA]

Page 41Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The basic elements of a MYA are listed above.

The functional architecture defines the necessary components and the manner in
which their interfaces must be defined to ensure that the design is upgradable and
facilitates technology insertion. As such, the functional architecture is a starting point
for developing solutions for an application-specific set of problems, not a detailed
instantiation of an architecture.

An important aspect of the functional architecture is that application-specific
realizations of a signal processor are embodied in the proper definition and use of
encapsulated library elements. Encapsulation refers to additional structure added to
otherwise raw library elements to support the functional architecture and ensure library
element interoperability and technology independence.

A modular software architecture simplifies the development of high-performance, real-
time DSP applications allowing the developers to easily describe, implement, and
control signal processing applications for multiprocessor implementations. It supports
upgrades for operating system kernels, external services, and application libraries.

Open interface standards are used to help ensure interoperability between
components and ensure a wide availability of commercial components and support.

Design guidelines and constraints are provided for general architectural development,
such as how to use the functional architecture framework, use of encapsulated
libraries and procedures and templates to encapsulate new library components.

Copyright 1995-1999 SCRA 41

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Components of
Model Year Architecture

● Functional architecture
❍ Provides a starting point for developing application-

specific architectures

● Encapsulated library components
❍ Provides component interoperability and upgradability

at the architectural level

● Modular software architecture
❍ Supports upgrades for operating system kernels,

external services, and application libraries

● Open interface standards
❍ Ensure wide availability of commercial components and

support

● Design guidelines and constraints
[LMC-ATL][LMC-MYA]

Page 42Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram illustrates the MYA framework as inserted in the RASSP
design methodology. Synergism between the MYA framework and the
RASSP methodology is required, because all areas of the methodology,
including architecture development, HW/SW codesign, reuse library
management, HW synthesis, target SW generation, and design for test
are impacted by the MYA framework.

Specific instantiations of the MYA are incorporated into the RASSP
methodology to aid in the design of systems.

Copyright 1995-1999 SCRA 42

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Users View of the
Model Year Architecture

[LMC-ATL][LMC-MYA]

Cmd Prog SPGN

Ctrl I/F DF I/F Prim

PosixPosix

uK

Functional Architecture Design Guidelines,
Constraints,

I / F Standards

Modular Software
Architecture

Mutually
Supportive

RASSP
Re-Use

Libraries

Encapsulated
Library

Elements

Application
Notes

Model Year Architecture Framework System Application

• Radar
• IRST
• UW Acou.

Specific Instantiation of
Model Year Architecture

RASSP
Methodology

MYA Framework
Integrated
Into RASSP
Methodology

Page 43Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As part of the MYA framework, an important feature is the capture of
guidelines of various workflows in the design process and incorporate
them into the RASSP methodology. Guidelines are also described for
encapsulating new elements to be placed in the design library.

Copyright 1995-1999 SCRA 43

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Design Guidelines and
Constraints

● Incorporated into the RASSP design
methodology

● Describe how to properly use the
functional architecture

● Describe how to use encapsulated library
elements

● Contains procedures and templates to
help aid the encapsulation of new library
elements

[LMC-ATL]

Page 44Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The contents of the hardware and software component reuse library
has models and data at various levels as shown in the chart above.
These models support concurrent codesign throughout the selection
and verification process. The reuse library drives both the architecture
synthesis and the software synthesis processes in an integrated
fashion.

Copyright 1995-1999 SCRA 44

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Contents of Reuse Library

[LMC-Meth]

Software Reuse Library Hardware Reuse Library

• SW Performance Models

• Application code / code
fragments

• OS Kernel(s) / OS services

• Application DFGs

• Control/support software

• Test data

• Documentation elements

• Performance models

• Behavioral models

• RTL models

• DFG partitions and mappings

• Architecture configurations

• Test plans and test sets

• Documentation elements

Page 45Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The functional architecture defines the necessary components and the manner in
which their interfaces must be defined to ensure that the design is upgradable and
facilitates technology insertion. The functional architecture is the starting point for
developing solutions for an application-specific set of problems, not a detailed
instantiation of an architecture. The functional architecture DOES NOT specify the
topology or configuration of the signal processing architecture.

The functional architecture specifies a high-level framework for launching application-
specific architecture development. Architecture-level reuse element classes are
provided. Open interface candidates for the interconnect fabric, sensor, and
interchassis interfaces are provided for selection. The functional architecture also
specifies the test methodology to be used for design.

The STDx demarcations illustrate the types of interfaces found in various portions of
the functional architecture.

The Reconfigurable Network Interface (RNI) is divided into three logical elements: 1)
Fabric interface, 2) External network interface, and 3) Bridge element. The fabric and
external interfaces implement the specific protocols to the elements being
interconnected, for example a High-speed Parallel Port Interface (HIPPI) could be
used for the external interface and a VME interface can be used for the fabric
interface. The bridge element, which typically consists of a buffer memory and a
controller implemented via custom logic (e.g. FPGA, ASIC) or a programmable
processor, performs the actual bridging function. The buffer memory facilitates
asynchronous coupling and flow control between the two networks, while the controller
coordinates data transfers. The three logical elements of the RNI are implemented as
encapsulated library elements that serve to isolate changes resulting from upgrades.
For example, the VME interface can be replaced with an encapsulated SCI interface.

The processing element is also encapsulated so links to the internal interconnect
fabric is made easier, reusable and provides a better route to upgradability.

Copyright 1995-1999 SCRA 45

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP High-Level Functional
Architecture

[LMC-ATL][LMC-MYA]

Chassis 1

TM **
Controller

Shar.
Mem.

Proc.
Elem.

Interconnect Fabric

RNI* RNI* RNI*

Bus

Sensor
(e.g. A/D)

• Operator Consoles
• Loosely Coupled Proc. Subsystems
• Ancillary Equipment
• Mass Storage

* Reconfigurable Network Interface
** Test and Maintenance

STD1 / STD6

STD3

STD5

STD2

STD1/
STD6

STD1/
STD6

Layering

Functional
Interface Encapsulated

Library
Elements

Encapsulated
Library

Elements

Functional
Interfaces

Internal Node

Fabric Interface

Fabric Interface

RNI Bridge Element

External Network
Interface

Internal Module

STD2,
STD3, or
STD5

STD4
Interchassis Link

to Chassis 2

STD1 -- Internal / Module I/F e.g. Mercury RaceWay
STD2 -- Subsystem I/F e.g. 1553B
STD3 -- Sensor I/F e.g. HIPPI
STD4 -- Interchassis I/F e.g. Fibre Channel
STD5 -- Multidrop Bus e.g. Futurebus+
STD6 -- Test/Maintenance I/F e.g. IEEE 1149.5

Page 46Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A layered approach can be used for handling the interfacing between
components. This decomposes the architecture into smaller,
manageable, and reusable parts. A standard functional interface was
defined supporting technology independence and model year upgrades.
The interface is implemented using a Standard Virtual Interface (SVI)
which is general enough to support different communication paradigms
and adds an additional layer to the hardware interfacing. SVI will be
discussed in more detail in the following slides. An Application
Programming Interface (API) is used to isolate the SW from the
underlying operating system implementation.

Copyright 1995-1999 SCRA 46

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Interface Approach

● Use layered approach
❍ Decompose architecture into smaller, manageable, and

reusable parts

● Define standard functional interfaces, not physical
interfaces

❍ Technology independence to support model year upgrades

● Provide guidelines for a Standard Virtual Interface (SVI)
❍ General interface to support different communication

paradigms
❍ Adds additional layer to hardware interfacing

● Use standard Application Programming Interface (API)
❍ Data flow graph approach similar to PGM
❍ Isolate application SW from underlying operating system

implementation

[LMC-ATL][LMC-MYA]

Page 47Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The above diagram illustrates an application of a functional interface at
the hardware level for a construct called an Reconfigurable Network
Interface (RNI). The RNI is divided into three logical elements: 1) local
interface, 2) external interface, and 3) bridge element. The local and
external interfaces implement the specific protocols to the elements
being interconnected, in this example a HIgh speed Parallel Port
Interface HIPPI and VME interface. The bridge element, which typically
consists of a buffer memory and a controller implemented via custom
logic (e.g. FPGA, ASIC) or a programmable processor, performs the
actual bridging function. The buffer memory facilitates asynchronous
coupling and flow control between the two networks, while the controller
coordinates data transfers.

The three logical elements of the RNI are implemented as encapsulated
library elements that serve to isolate changes resulting from upgrades.
For example, the VME interface could be replaced by another
encapsulated interface, such as SCI, with little or no impact on the
HIPPI HW and SW.

Copyright 1995-1999 SCRA 47

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Functional Interface Example
Applied to RNI

Local Network (e.g. VME)

External Network (e.g. HIPPI)

Interface
Logic

Buffer
Memory

Interface
Logic

Processor
or Control

Logic

Functional
Interfaces

Encapsulated
Library

Elements

[LMC-ATL]

Local
Interface

External
Interface

RNI Bridge Element

Page 48Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

SVI encapsulates library elements to support reusability and rapid
upgradability. The interconnection of library elements is done by
connecting their SVIs. A protocol is defined for the SVI to SVI interface.
Each library element needs the SVI to operate in this environment. A
possible hardware realization is shown above. The SVI interface is
implemented on an FPGA, or an equivalent technology, using optimized
hardware synthesis tools.

Copyright 1995-1999 SCRA 48

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Approach to Standard Virtual
Interface (SVI)

[LMC-ATL][LMC-MYA]

Encapsulated Processor
Library Element

Encapsulated Interface
Library Element

SVI
Low Level
Software
Interface

Processing Element
(single or cluster)

Processing Element
(single or cluster)

Possible Hardware
Realization

Wrappers
Combined

SVI logic optimized
during hardware
synthesis

FPGA

Raw Interface
Element

SVI Encapsulation
Logic (wrapper)

SVI Encapsulation
Logic (wrapper)

Raw Interface
Element

Internal / Module Fabric
(STD1) e.g. Mercury RaceWay

SVI signals internal
to FPGA. Some
may be implicit

Page 49Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

SVI can be used at any encapsulation level (LRM, MCM, component),
but should be used where it makes the most sense. Considerations of
HW overhead and reusable design elements should be taken into
account.

Copyright 1995-1999 SCRA 49

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Guidelines for Using SVI

● Use SVI only down to the smallest desirable
upgradable LRM in the system

● If the line replaceable module (LRM) is a board:
SVI should be associated with the board-level
interface only and not for any intra-board
interfaces

● If the LRM is an MCM or a daughter card: SVI
should be associated with the MCM-level
interface only and not for any intra-MCM
interfaces

● The final choice for using SVI at an
architecturally finer-grained level depends on the
relative HW overhead incurred by SVI for a given
scenario

[LMC-ATL][LMC-MYA]

Page 50Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

SVI can be applied at the module level to encapsulate processing and
shared memory nodes, at interconnect boundaries to allow for plug and
play interoperability between internal and interface elements, etc.

The choice of encapsulation depends on issues of supportability, design
overhead, etc..

Copyright 1995-1999 SCRA 50

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Applications of SVI

● Internal modules
❍ Use for processing nodes and shared memory nodes

❍ Use between internal node and node-to-interconnect
interface

❍ Allows “plug and play” interoperability between internal
nodes and node-to-fabric interfaces

● Reconfigurable Network Interface (RNI)
❍ Implements system-level interfaces: sensors, loosely

coupled processor subsystems, operator consoles, etc.

❍ Implements bridge between internal interconnect fabric
and particular system-level interfaces

❍ Contains three logical components: fabric interface,
external network interface, and RNI bridge element

[LMC-ATL][LMC-MYA]

Page 51Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Layering can cause performance penalties due to the additional HW
overhead. This can be acceptable if the layering is chosen judiciously
and only important architectural elements are isolated where possible
technology insertion can occur.

Copyright 1995-1999 SCRA 51

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Implications of Layering

● Can cause performance penalties and
unacceptable hardware or software growth

● Resolution
❍ Trade off performance vs. functionality

❍ Overhead reduction techniques -> SVI

● Use layering judiciously; only isolate important
architectural elements subject to upgrades/
technology insertion

● Some layering overhead must be accepted
❍ Tradeoff to realize greater benefits of design/life cycle

and cost reduction

[LMC-ATL][LMC-MYA]

Page 52Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

To provide an integrated diagnostic capability, a structured test
approach is required for the various levels of system integration:
component, module, and box (rack).

Component: High degree of fault coverage (>95%) should be provided.
BIST should conform to the IEEE 1149.1 standard (JTAG). Many IC
vendors now provide for it.

Module: IEEE 1149.1 boundary scan architecture is used to detect
interconnect faults between components. Modules are designed with
built-in-test (BIT) to detect, diagnose, and isolate module faults. This is
usually controlled by a BIT controller.

Rack: A test and maintenance (TM) controller manages system-level
testing, including the initiation of BIT for each of the modules. IEEE
1149.5 proposes a TM bus standard.

System Test requirements may vary significantly based on the
application.

Copyright 1995-1999 SCRA 52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Stresses Testability

Component
BIST/JTAG

Module
IEEE 1149.1

Rack
IEEE 1149.5

SYSTEM-LEVEL TEST & MAINTENANCE

[Lockheed95]

Page 53Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Designers of complex systems cannot afford to postpone test
considerations until the final stages of design and still deliver a quality
product. Testable systems are not a natural product of a design team
unless BIT and scan features are included up front and knitted together
seamlessly throughout the system hierarchy.

To ensure consistency between levels of the design hierarchy, a
system-level test architecture and strategy must be developed and
passed down to each level. The DFT methodology uses the hierarchical
partitioning to manage test development complexity and to provide
solutions to the incorporation of COTS components.

The RASSP design process is shown above with specific information
flow and activities relative for design for test. A prime goal of the
RASSP methodology is to eliminate design modification efforts late in
the design cycle, including those to correct testability problems. VHDL
and WAVES are used, as appropriate, throughout the methodology to
capture and refine test and DFT-related information.

Copyright 1995-1999 SCRA 53

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP DFT Tasks

[LMC-Meth]

Customer
Requirements
and Feedback

System
Definition

Architecture
Development

SW Design
Library

HW Design
Library

Detailed
Design

Manufacturing
and Production

Field Maintenance
and Repair

Feedback of
Tradeoff results

Model Year N-1 results

Testability & Diagnostic Requirements

Partition
Strategies

Functional Test
SW Routines

Product
Descriptions

• Diagnostic concepts
• Test requirements
• Testability trades and analysis
• Subsystem test plans &

testbenches
• Risk analysis

• Test & Diagnostic strategies
• Testability partitioning
• BIT architecture
• Prototype TPS
• Architecture component test

plans & testbenches

• Develop BITE, BIST, and scan
components

• Develop test vectors
• Fault simulation
• Fault dictionaries
• UUT product descriptions

• Develop test program sets (TPS)
• Provide input to design reviews
• Build & test special fixtures &

equipment
• Conduct in-process tests
• Feedback results

Page 54Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The test architecture is an important part of the MYA. Standard test
interfaces should be augmented to the signal and control interfaces to
chips, modules, and subsystems.

The test architecture hierarchy should parallel the system architecture
hierarchy incorporating elements at the system level, chassis level, all
the way down to the functional or logic block.

Copyright 1995-1999 SCRA 54

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test Architecture

● Required as an integral part of MYA: Formal structure
required to ensure testable design

● Use of standard test interfaces as required augmentations
to signal/control interface to chips, module, and systems

● Test architecture parallels system architecture hierarchy
❍ Processor system
❍ Chassis
❍ Sub-chassis/functional group
❍ Printed circuit board
❍ Line replaceable module (LRM)
❍ Multichip assembly
❍ Chip
❍ Functional or logic block

[LMC-ATL][LMC-MYA]

Page 55Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Test and maintenance controllers (TMCs) should be used to implement
the hierarchy and should communicate via standard test interface
buses. The test and maintenance controllers have the responsibility to
interface with the master TMC, collect results, and compile status
reports.

Copyright 1995-1999 SCRA 55

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test Architecture (Cont.)

● Test architecture implemented by hierarchy of test and
maintenance controllers (TMCs)

❍ Participate in all TM activities
❍ Communicate via standard test interfaces buses

● TMC responsibilities
❍ Interface with master TMC (at highest level of hierarchy)

❑ Receive test instruction

❑ Receive test data and control

❑ Send test and status results

❍ Internal responsibilities
❑ Execute/supervise testing of components within its scope

❑ Collect results and compile status reports

❑ Send test instructions and data to subordinate TMCs (if
any)

[LMC-ATL][LMC-MYA]

Page 56Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Attributes of software are considered architectural when they express relationships between
HW and SW that contribute to long term capacity for change. They are considered design
when they are implementation specific.

The SW architecture must make provisions for several levels of control and task management.
Open systems protocols should be considered. The architecture also must provide for an
orderly flow of data throughout the system.

Operating System: An open systems approach should be selected for greater resistance to
system obsolescence. POSIX provides for standard interfaces. They are called the Operating
System Interface (OSI) and the Application Program Interface (API). Use of the POSIX
standards should allow SW to be portable across similar platforms.

Programming Language: PDL (Program Design Language) is a mixture of language statement
and control structures. It has the following characteristics:
States design in a easily read fashion.

● It allows concentration on the design logic rather than implementation details.

● Documentation can be done concurrently.

● It is convertible to a high order language (HOL).

Ada is the official language of choice for large complex SW projects of the U.S. Govt. Ada 95
provides for object-oriented features. C and C++ code can be used when COTS technology is
specified for use.

Structured Design: A SW development methodology that follows a hierarchical structure of SW
module development and test.

Object-oriented Design: Results in a more modular design. There are three phases to this
approach. One, Object Oriented Analysis (OOA), two, Object Oriented Design (OOD), and last,
Object Oriented Programming (OOP). OOA and OOD are embedded in the CASE tools such as
Cadre’s Teamwork, and IDE’s Software Through Pictures.

CSR (Control and Status Registers) architectures can be used to identify the module, select a
working subset of its performance capabilities, enable BIST, and record the health status
history. IEEE 1212-1991 specifies a standard CSR architecture.

Copyright 1995-1999 SCRA 56

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Overview

Programming Languages OS Support/Standards

• PDL
• Ada PDL
• C and C++

• POSIX (IEEE 1003.1b)
 (not an OS)
• Real Time OS (RTOS)
 (commercial developments)

Structured Design
Object-oriented Design
CASE Tools
CSR Architectures (Control & Status Registers)

[Lockheed95]

Page 57Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide presents a list of the SW architecture process goals desired
by the RASSP process. These include a formalized approach to reuse,
DFG-driven autocode generation for application code, CASE-based
code development for general command and control software when
autocode generation is not available.

Copyright 1995-1999 SCRA 57

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Software Architecture
Process Goals

● Formalize reuse
● Emphasize DFG-driven autocode generation
● Focus on three major areas of SW functionality

❍ Algorithm, as specified by a flow graph
❍ Scheduling, communication, execution, as specified by

mapping a graph to a specific architecture

❍ General command/control software

● RASSP is attempting to automate the first two
● Use CASE-based code development,

documentation, and verification for the general
command/control software

[LMC-Meth]

Page 58Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The requirements of the SW architecture include those listed above.

Support should be included that simplifies high-performance real-time
DSP application SW development. The SW architecture should provide
predictable responses to provided services and easy description,
implementation, and control execution of signal processing algorithms.
The architecture should support HW upgrades, OS kernel upgrades,
and application development in a platform independent fashion.

Copyright 1995-1999 SCRA 58

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Software Architecture
Requirements

● Support a methodology that simplifies high-performance,
real-time DSP application software development

● Provides easy description, implementation, and control
execution of signal processing algorithms

● Supports application development in a platform
independent fashion

● Provides predictable deterministic response to all provided
services

● Supports upgrades of operating system kernels, external
services, and application libraries

● Supports hardware upgrades via hardware-specific
software modules

[LMC-ATL][LMC-MYA]

Page 59Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The approach used on RASSP to implement the SW architecture is
listed above.

A layered approach is used to support the MYA concept where the
replacement of a specific processor and its microkernel would maintain
the same API so applications developed for one processor need not be
changed when porting it to a new system.

The RASSP run-time system (RRTS) is built on the microkernel to
provide higher-level services to control and execute applications on
multi-processor systems.

Copyright 1995-1999 SCRA 59

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture

● Layered architecture to support model year
concept

● Uses commercial microkernel technology to
provide underlying services to support high-level
application programming interface (API)

● RASSP Run-Time System (RRTS) builds on the
microkernel services to provide higher level
services to control and execute applications on
multiple processors

● RRTS support to implement required services is
external to microkernel

● Scheduling and execution paradigms being re-
defined for RASSP: more distributed

[LMC-ATL][LMC-MYA]

Page 60Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Application Programming Interface (API) is a set of functions
developed in PGM used to develop data flow applications. These
functions serve as a buffer between the application program and the
microkernel and need not be changed as the kernel is changed during
model year upgrades. The API will be highly transportable from platform
to platform.

Copyright 1995-1999 SCRA 60

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture (Cont.)

● Application Programming Interface (API)
❍ Uses Processing Graph Method (PGM) developed by

NRL

❍ PGM serves as a data flow graph API for signal
processing algorithm descriptions

❍ PGM serves as a command program API for:

❑ Data flow graph execution control (starting,
stopping) and monitoring

❑ Managing I/O devices

❑ Starting other command programs

❑ Setting flow graph parameters

❑ Responding to external inputs

[LMC-ATL][LMC-MYA]

Page 61Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Run time support is provided for static and dynamic graph mapping to
processors with static or dynamic scheduling.

Copyright 1995-1999 SCRA 61

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture (Cont.)

● Run-time support for three ranges of application
requirements

❍ Static graph mapping to processors with static
scheduling (initially)

❍ Static graph mapping to processors with dynamic
scheduling

❍ Dynamic graph mapping to processors with dynamic
scheduling

[LMC-ATL][LMC-MYA]

Page 62Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The operating systems requirements for the MYA are presented above.
It must support the RASSP run-time system (RRTS) and support COTS
products with proprietary operating systems.

Copyright 1995-1999 SCRA 62

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture (Cont.)

● Operating system requirements
❍ Service requirements to support RRTS

❑ Process creation (spawning)

❑ Protected address space for processes

❑ Preemptive multitasking

❑ Support for dynamic priorities

❑ Round robin time-slicing for equal priority ready tasks

❑ Mutex and counting semaphores

❑ Interprocess communication

❑ Sequential message passing (sockets)

❍ Support for COTS products with proprietary O/S
❑ O/S meets service requirements for RASSP

❑ O/S provides open interface on which the RRTS and
associated API can be ported

[LMC-ATL][LMC-MYA]

Page 63Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Various real-time microkernels can be used for the operating system.
They must be suited for high performance embedded signal processing
and a few candidates are listed above.

Copyright 1995-1999 SCRA 63

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture (Cont.)

● Real-time microkernel/operating system
candidates

❍ Large commercial offering
❍ Not all suited for high performance embedded signal

processing

❍ Current promising candidates

❑ SPOX - Spectron Microsystems Inc.

❑ PSOS+/UNISON - Multiprocessor Toolsmiths

❑ Real Time Executive for Military Systems (RTEMS) -
Developed by On-Line Applications Research
Corporation under contract to the US Army Missile
Command

❑ Real-Time MACH - Open Software Foundation (OSF)

[LMC-ATL][LMC-MYA]

Page 64Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The software supports the Model Year Architecture (MYA) concept by
providing a common Application Programming Interface (API) to the
underlying real-time operating system services. This allows a new
hardware platform with a new microkernel to change for each model
year while maintaining the API. Support for the API is through the
RASSP Run-Time System (RRTS), which provides the services
required for the control and execution of multiple graphs on a multi-
processor system. The RRTS and its support for the API forms the
essential component of software encapsulation for a processor object.

The application layer is divided into two parts. The first part is the
command program, which provides response to external control inputs ,
starting and stopping data flow graphs, managing I/O devices,
monitoring flow graph execution and performance, starting other
command programs, and setting flow graph parameters. The control
interface provides services that implement these operations.

The second part of the application layer is the data flow graphs (DFGs)
implemented using a data flow language. Services provided by the DFG
interface are largely invisible to the developer and include managing
graph queues, interprocessor communication, and scheduling. The
constructed flow graphs will be converted to HOLs such as C or Ada via
autocode generation and will contain calls to a standard set of domain
primitives.

Copyright 1995-1999 SCRA 64

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture Diagram

[LMC-ATL][LMC-MYA]

Application

Application
Programmer’s
Interface

PGM Run-Time
System

Micro /
Nanokernel

Command Program(s) Data Flow Graph(s)

Control Interface
Data Flow
Interface

Target Proc.
Map

Target Proc.
Prim. Libraries

RRTS* RRTS*

RRTS
Support

RRTS
Support

Real Time
POSIX

Real Time
POSIX

Micro / Nanokernel

*RRTS: RASSP Run-Time Support

Page 65Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Software development cannot be discussed without its relationship to
the architecture. The software portion of architectural objects is handled
by the process shown above.

This process depicts the progression of software generation from the
requirements to the load image, with emphasis on the graph objects
involved and the general RASSP process in which they occur.

Architecture definition involves the creation and refinement of the DFGs
that drive both the architecture design and the SW generation for the
signal processor. The DFGs of the signal processor are developed, and
the nodes are allocated to either hardware or software. Automated
generation of the software partitions is performed to provide executable
threads that are to be run on the DSPs. These autocoded partitions are
combined into an application graph which is functionally equivalent to
the original.

The final step in the SW development, which is the production of the
load image, occurs during detailed design. The load image generation is
an automatic build process that is driven by the autocode generation
results. The inputs to the process include the architectural description,
the detailed DFGs describing the processing, the partitioning and the
mapping information, the autocode results, and the command program.

The process is controlled by a software build management function
which extracts the necessary information from the library and manages
the construction of all the downloadable code.

Copyright 1995-1999 SCRA 65

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Graph-Based Software
Development Scenario

[LMC-ATL]

Reqmts
Analysis

Exec.
Functional

Spec.

Command
Program

Spec.

Arch.
Indep.
Graph

Allocated
Graph

Partitioned
SW

Graph

Partition
Code

Generation

Equivalent
Application

Code

Load
Image

Command
Program

DFG/
Command
Functional
Simulation

Target
Code

Generation

Systems Architecture Detailed Design

Page 66Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section covers a set of generic architectures from which the
RASSP user can select a preferred architecture as a starting point for a
signal processor design.

Copyright 1995-1999 SCRA 66

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP DSP Architectures
for RASSP

● Architecture overview
● RASSP architecture goals
● The Model Year Architecture framework

● Generic architectures for RASSP
● Architecture design process
● Architecture selection benchmark example
● Summary

Page 67Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the minimal architectural configuration consisting of a single HW
processor, some I/O, and an interconnect. The interface HW accepts
sensor data as its input and displays processed data at its output.

Copyright 1995-1999 SCRA 67

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Generic Descriptions of
Architectures

Sensor

EIO PE EIO

Display

System Interface

EIO = External Input/Output Element

PE = Processor Element

Minimal Architecture

[Lockheed95]

Page 68Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A direct-mapped architecture represents a one-to-one correspondence
between the algorithm and the HW module solution. HW modules are
interconnected with dedicated point-to-point links and data flows from
the raw input through the various modules to the solution output.

Macro function modules include such things as filters, FFTs, etc.

The direct-mapped architecture is inflexible because a change in the
problem algorithm requires changing the HW modules and
interconnecting links. It is also not readily scaleable and fault intolerant.

The trade-off is lower cost, size, weight, and power versus a lack of
easy future upgradability.

Copyright 1995-1999 SCRA 68

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Generic Descriptions of
Architectures (Cont.)

EIO

EIO

Display

EIO

MF

MF

MF

Sensor

Sensor

Direct-mapped Architecture

EIO = External Input/Output Element

MF = Macro Function

[Lockheed95]

Page 69Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The shared-bus architecture employs a conventional control bus (VME,
Futurebus+, etc.) as the mechanism for interconnecting multiple nodes.

The architecture uses standard HW modules with much of the
application solution implemented in SW.

It is scaleable because additional HW and SW modules can be added
easily, but is limited in the degree of scalability by the fixed interconnect
bandwidth of the shared bus.

Copyright 1995-1999 SCRA 69

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Generic Descriptions of
Architectures (Cont.)

Sensors

Displays

EIO

NC

EIO

NC

FE

NC

Node

Control Bus

System InterfaceNC = Node Controller
EIO = External Input/Output Element

FE = Functional Element (Memory, Processor, or Input/Output)

Shared-bus Architecture

[Lockheed95]

Page 70Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The ring architecture employs a set of point-to-point links configured in
a ring topology (FDDI, SCI, etc.) as the mechanism for interconnecting
multiple nodes.

The main difference with the shared bus architecture is that the
communication paths between nodes are separate links rather that
common bus.

This diagram shows the dual counter-rotating rings implementation
typically used for fault-tolerant applications.

Copyright 1995-1999 SCRA 70

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

NC

NC

NC

FE

EIOEIO

NC

NC

NC FEFE

FE

Displays
Sensors

System Interface

Node

Generic Descriptions of
Architectures (Cont.)

NC = Node Controller

FE = Functional Element (Memory, Processor or I/O)
EIO = External Input/Output Element

Ring Architecture

[Lockheed95]

Page 71Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The switch architecture interconnects nodes with direct links that can be
reconfigured (switched) dynamically. The simplest is the crossbar
switch, where every node can be connected to any other node.

The Mercury RACEway uses a series of crossbar switches connected
in a multistage pipeline to achieve a modularly scaleable switch
network.

The advantage of a switch architecture is that it achieves very high
bandwidth.

One disadvantage for a crossbar switch is that it does not scale well. As
the number of nodes in the network increases, the complexity and cost
of the switch increases more quickly than linear.

Topologies based on crossbar switches can scale well.

Copyright 1995-1999 SCRA 71

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Generic Descriptions of
Architectures (Cont.)

EIO PE PE EIO

Sensors DisplaysSwitch Network

System Interface

EIO = External I/O Element

PE = Processor Element

Switch Architecture

[Lockheed95]

Page 72Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A mixed architecture is a combination of two or more of the previous
architecture types.

An example might include a direct-mapped architecture to handle the
front-end pre-processing function and a shared bus to handle the less
demanding back-end processing.

Another example is the hierarchical multi-drop bus approach used in the
Pave Pillar architecture.

Copyright 1995-1999 SCRA 72

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Generic Descriptions of
Architectures (Cont.)

EIO

EIO

Display

EIO

MF

MF

Sensor

Sensor

PE PE

Control Bus

System Interface
EIO = External I/O Element

MF = Macro Function
PE = Processor Element

Mixed Architecture

[Lockheed95]

Page 73Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section presents an architecture selection methodology, including
a set of guidelines in the form of rules of thumb for capturing the key
features in a preliminary architecture selection.

Copyright 1995-1999 SCRA 73

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP DSP Architectures
for RASSP

● Architecture overview
● RASSP architecture goals
● The Model Year Architecture framework
● Generic architectures for RASSP

● Architecture design process
● Architecture selection benchmark example
● Summary

Page 74Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The first section describes the architecture process flow in the design
process.

Copyright 1995-1999 SCRA 74

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Design Process
Outline

● Architecture Process flow
● Performance model characteristics
● Trade-off advisor
● Metrics and architecture selection rules of thumb
● Tools for architecture selection

Page 75Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Prior to selecting an architecture, the customer’s requirements are
examined and expressed in terms of a list of standard RASSP metrics
(presented later). The metrics are weighted relative to one another
based on their respective importance.

RASSP architecture selection begins with the selection of a small
number of candidate architectures from a provided set of template
architectures contained in a reuse library. Coarse rules of thumb are
used based on the algorithm to be solved.

After choosing candidate architectures, the problem is mapped onto the
architectures selected. This is done using performance models from a
reuse library.

The architectures are simulated at the performance level to compare
results via metrics previously defined for the problem.

Copyright 1995-1999 SCRA 75

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP High-level View of the
Architecture Design Process

Select
Architecture(s)

Map Problem
Algorithm Onto

Architecture(s)

Simulate

Architecture
Solution(s)

Compare
Performance

Metrics

RASSP

Modules and
Building Blocks

Problem

Algorithm

Problem
Solution

RASSP Design Reuse Library

RASSP
Architecture

Candidate Set

[Lockheed95]

Page 76Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The systems, architecture, and detailed design processes are the first
three main processes in the design of a system. The focus of this
presentation is on the architecture design processes. Within the
architecture design process, there are three additional processes that
need to be defined; functional design, architecture selection, and
architecture verification. Simulation is performed at each of the stages
of the design.

At the requirements stage, simulation is done using an executable
specification developed for the application.

More detail on the functional design, architecture selection, and
architecture verification stages will be contained in the following slides.

Copyright 1995-1999 SCRA 76

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Simulation Philosophy
by Design Process

[LMC-ARCH]

S
ys

te
m

s
A

rc
h

it
ec

tu
re

D
et

ai
le

d
D

es
ig

n

Functional Design

Architecture
Selection

Architecture
Verification

Req.
Definition

Arch.
Indep. DFG

HW/SW
Allocate

Partition/
Map

Candidate
Arch

SIM

SIM

SIM

Modify Modify

Modify

ModifyModify

Modify

Autocode
Partitions

Selected
Arch

Develop Hierarchical
Verification Plan

Select
Hardware

Select
Model level

Page 77Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The architecture definition process transforms processing requirements
into a candidate architecture of hardware and software elements.

The architecture definition process is a new HW/SW codesign process
in the RASSP methodology for high-level virtual prototyping and
simulation. The primary concern in the architectural definition process is
to select and verify an architecture for the signal processor that satisfies
the requirements passed down from the systems definition process.

The overall task is to:

● Define and evaluate various architectures

● Select one or more for detailed evaluation that appear to meet
the requirements

● Validate the chosen architecture(s) for both function and
performance before detailed design

Concurrently, each selected architecture is evaluated with respect to
size, power, weight, cost, schedule, testability, reliability etc.

The process is library based and DFG-driven. Reuse of both
architecture elements and software primitives significantly shortens the
design cycle. VHDL performance model simulations are used to verify
system requirements are met. Software performance is also modeled
for its impact on the total processing time.

Copyright 1995-1999 SCRA 77

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Contents of the Architecture
Design Process

[LMC-ARCH]

Functional
Design

Architecture
Selection

Architecture
Verification

Detailed Design

• Refine size, weight, power, reliability,
testability and cost requirements
• Refine algorithms - Functional flows, all
modes
• Develop detailed DFGs

• Architecture tradeoffs
• HW/SW allocation
• Iterative simulation
• Selection of 1 or more candidates
• Non-DFG software design
•Virtual prototype VP1

• Develop required new fcts and models
• Autocode generation
• Integrated DFG / Non-DFG SW functional
simulation
• Develop verification plan
• Hierarchical simulation
• Virtual prototype VP2

F
ee

d
b

ac
k

P
at

h

Page 78Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The functional design step provides a more detailed analysis of the processing requirements
resulting in initial sizing estimates, detailed data and control flow graphs for all required
processing modes to drive the HW/SW codesign, and the criteria for architecture selection. The
control flow graphs provide the overall signal processor control, such as mode switching
(referred to as the command program). Functional simulators support the execution of both the
data and control flow graphs.

Architecture sizing helps to analyze the system requirements and processing flows for all the
required modes of the system in terms of estimated operations per second, memory
requirements, and I/O bandwidths.

Selection criteria definition helps prioritize the overall system requirements and the derived
requirements and establishes a selection criteria. The selection criteria provides the necessary
basis for subsequent architecture trade-off analysis. A trade-off matrix is used to formalize the
selection criteria. It contains top-level requirements allocated to the signal processor.

Flow graph generation transforms the finalized algorithm processing flows into detailed DFGs
as the first step in HW/SW codesign. The DFGs are based upon the Processing Graph Method
(PGM) developed by the Navy. PGM is a specification for defining detailed DFGs for signal
processing applications. The DFGs are made up of reusable library elements, which may
represent either hardware or software. The DFGs are the basis for both the architecture
synthesis, the detailed software generation, and potentially custom processor synthesis. Each
DFG is simulated to provide data for comparison with the algorithmic flows developed during
the systems process (executable spec). Control flow requirements are transformed into the
control flow graphs (CFGs) required to manipulate the DFGs according to a defined set of rules.
This DFG control is referred to as command processing. Conceptually, the command program
manipulates objects. The objects are the DFGs and their data structures. The command
program must be able to accept messages from outside the signal processor, interpret those
messages, and generate the appropriate control information to stop graphs, start graphs, initiate
I/O, set graph parameters, etc. The command program can be developed through standard
software development CASE tools or through the tools that provide autocode generation
capability.

Functional simulation verifies both the DFGs and the CFGs and their interrelationships.

Copyright 1995-1999 SCRA 78

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Functional Design

[LMC-ARCH]

Architecture
Sizing

Initiate
Primitive

Development
Selection
Criteria

Definition

Flow Graph
Generation

DFG
Simulation

Develop
Command
Program

Functional
Simulation

• Algorithm implementation analysis (ops/s, mem, I/O)
• Algorithm simulation/ optimization
• Develop functional models
• ‘ilitities and cost assessment
• Refine processing flows (all modes)

To architecture selection

• Transform processing
flows to detailed DFGs

• Translate control reqmts.
to control flow graphs

• Validate DFG
functionality for all
modes

• Prioritize requirements
• Define selection criteria

• CASE tools
• Autocode

generation

• Joint CFG/DFG
simulation

• Validate functional
interaction

Page 79Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide lists the functions of the architecture sizing step in the design
process.

This step analyzes the system requirements and processing flows in
terms of operations/sec, memory size, and I/O. Initial estimates are
made for size, weight, power, and cost of the system. A first pass at
partitioning of HW and SW functionality is done. Simulations are
performed on the algorithms developed and optimizations are
incorporated to meet the requirements. Models are created as needed
by this process.

Copyright 1995-1999 SCRA 79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architecture Sizing

● Analyze system requirements and
processing flows in terms of
operations/sec, memory requirements,
and I/O bandwidths

● Make initial size, weight, power, and cost
assessments

● Develop first pass partitioning of HW and
SW functionality

● Develop any necessary functional models

● Perform algorithm simulations and
optimization

[LMC-Meth]

Page 80Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As part of the selection criteria, a trade-off matrix is defined to help
formalize the selection process. This chart contains some a list of the
top-level requirements allocated to the signal processor. Satisfying
these requirements drives the HW/SW codesign of an architecture. The
matrix is populated as the design progresses. Early in the process the
entries are less accurate than later on. The goal is to eliminate some of
the designs early while carrying the best candidates to subsequent
levels of detail.

Copyright 1995-1999 SCRA 80

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Selection
Criteria Matrix

[LMC-Meth]

Architecture Tradeoff Matrices
Architecture Metrics

Architecture Scores

Size Wght Pwr Sch Test Cost Reliability Total

Size Wght Pwr Sch Test Cost Reliability Total

Arch # 1

Arch # 2

Max. Score

Arch # 1

Arch # 2

Max. Score

0-5 0-25 0-15 0-5 0-15 0-10 0-15 0-10 0-100

0-5 0-25 0-15 0-5 0-15 0-10 0-15 0-10 0-100

Page 81Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The transformation of the finalized algorithm processing flows into the
detailed DFGs is the first step in the HW/SW codesign process. These
DFGs are based upon the Processing Graph Method (PGM) developed
by the Navy. PGM is a specification for defining detailed DFGs for
signal processing applications. The DFGs are made up of reusable
library elements, which may represent either HW or SW.

The DFGs are the basis for architecture synthesis, detailed software
generation, and potentially custom processor synthesis.

The left side of this figure represents the processing flows as passed
down from the systems definition stage. The right side represents the
detailed DFG constructed from reuse library elements.

If suitable library components do not exist, then they need to be
developed and added to the library.

Copyright 1995-1999 SCRA 81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Flow Graph Generation

Processing
Flows

Demod.

BP Filter

PSD

Freq. Det.

Pwr Det.

S&H

Edge Det.

FFT

Corr. Mix

Peak Pick

Lag Domain
Beamform

Domain
Primitive

Graph

Demod

FIR1

FIR2

FFT REP8

PSD Det_PW

REP

Det_Freq.

Sum

Lag_Dom

S&H

MAG

EAVE

DIFF

FFT8

Covar_MA

Covar_SUB

Peak_PK

[LMC-Meth]

Page 82Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The command flow is modeled using command programs. The
command programs are generated by transforming the state and
process models using autocode generation into prototype code used
with the data flow graphs to simulate the graphs. CASE-based tools or
tools that provide autocode generation from state transition diagrams
are used to develop the software.

Copyright 1995-1999 SCRA 82

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Command Program
Development

● Transform the state and process models
via autocode generation into prototype
code used with the DFGs to simulate the
graphs

● Develop software using CASE-based tools
or tools that provide autocode generation
from state transition diagrams

[LMC-Meth]

Page 83Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

When all the code is created for both the DFGs and CFGs, simulations
are performed to verify its behavior. This is compared with the
processing flows described by the executable specification (level 0 VP).
The CFGs interaction with the DFGs are validated.

Copyright 1995-1999 SCRA 83

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Functional Simulation

● Simulate both DFGs and CFGs

● Verify DFG simulation matches
processing flow description

● Validate CFGs interaction with DFGs
which includes:
❍Passing parameter information between

external world and graph management
software

❍ Initiating or terminating I/O devices
❍Starting and stopping DFGs

[LMC-Meth]

Page 84Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Architecture selection is an automation-aided process to rapidly evaluate different architectural designs
and instantiations of these designs.

The architecture selection process represents the heart of the RASSP HW/SW codesign, which uses a
library-based, DFG-driven approach to SW development combined with iterative performance trade-off
analysis to support rapid selection/analysis of candidate architectures. For each architecture offered as a
candidate in the selection process, the following steps in the process are done:

Develop a partitioning and mapping for the candidate architecture

● Performance analysis of the partitioning and mapping

● Optimization of the mapping, resulting in processor instantiation

● Analysis of the instantiation size, weight, power, cost, testability, reliability, risk, etc...

● Iteration of the above until one or more acceptable architectures are attained

Inputs to the architecture selection process are the prioritized processing requirements, the selection
criteria, the required DFGs for all modes of operation, command program specification, and other non-DFG
requirements, and the HW/SW reuse library.

Outputs from the process are the finalized DFGs and one or more architecture instantiations that were
selected for more detailed functional and performance verification. Also output is the description of the
DFG partitioning and mapping to the processors of the selected architecture(s) for all processing modes.

Architecture definition involves selecting the class of architecture to be used (e.g. MIMD, SIMD, etc.) and
the design approach within the class (e.g. interconnect topology).

Architecture model synthesis selects the specific processor type(s), number of processors to be used,
along with the communication mechanism (e.g. bus, Xbar switch, etc.) for the selected architecture types.
The DFGs allocated to software are partitioned and mapped to the available processors of the candidate
architectures under consideration. The SW partitions are defined by mapping the primitives in the DFG to
the DSPs in the architecture.

Simulation is used to verify the algorithms functionally and to refine the performance of the candidate
architectures using available throughput, memory, and I/O estimates for these algorithms. VHDL is used to
perform this simulation.

Detailed analysis involves proceeding with implementational analysis of the candidate architecture(s).

Trade-off analysis helps determine an optimized solution by iterating the architecture synthesis, simulation,
and detailed analysis process for each of the candidate architectures. These activities are directed toward
populating an architecture trade-off matrix that is a record of the design process.

Copyright 1995-1999 SCRA 84

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architecture Selection

[LMC-ARCH]

Architecture
Definition

Synthesize
Architectural

Model

Simulation
Detailed
Analysis

Tradeoff
Analysis

Initiate
Model

Development to architecture verification

• Select arch class
– experience
– requirements
– initial sizing estimate

• Select:
– processor type(s)
– communication type(s)
– # processors
– communication topology

• Partition/map all DFGs
• Generate simulator

• Redefine DFGs based on
unique processor char.

• Reverify functionality
• Performance simulation

• Estimate
– size, wgt, pwr, cost
– testability, reliability

• Assess availability
(schedule, features, ...)

• Assess risk• Select one or more
architectures based
on defined criteria

F
ee

d
b

ac
k

From functional design

Page 85Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Given the DFGs that describe the processing, the architect must
postulate one or more designs that may satisfy the requirements. These
choices are based upon the domain experience of the design team.
One of the RASSP goals is to facilitate the ability to define and evaluate
more alternatives than would otherwise be possible through semi-
automated tools that assist the architect.

The processing at this point represented by the DFGs has not been
allocated to either HW or SW.

Copyright 1995-1999 SCRA 85

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Definition: Class
and Topology Selection

● Select class of architecture (e.g. MIMD, SIMD,
etc.)

● Select design approach (e.g. interconnect
topology

● Decision based on architect’s domain experience
and system requirements, cost, etc.

P1 P2

P3 P4

P1 P2

ASIC ASIC

Example candidate architectures

[LMC-ARCH]

Page 86Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

For the selected architecture type, the next step is to select the specific
processor types and number of processors, along with a desired
communication mechanism. The process of defining the architecture is
coupled with the allocation of the DFG to the architectural elements. To
support this capability, the library contains a hardware model capable of
performing the processing defined by the DFG node.

The portion of the DFGs allocated to SW is partitioned and mapped to
the available processors of the candidate architecture under
consideration. The SW partitions are defined by mapping the primitives
in the DFG to the DSPs in the architecture. The above figure show a
DFG in which two portions of the DFG are allocated to hardware and
the remainder of the DFG to SW grouped into four partitions. This
activity is supported by multiple, automated partitioning/mapping
algorithms for graph assignment and a manual capability.

A VHDL performance model is constructed for the architecture to obtain
performance metrics for the partition.

Copyright 1995-1999 SCRA 86

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architecture Model Synthesis

Domain
Primitive

Graph

Demod

FIR1

FIR2

FFT REP8

PSD Det_PW

REP

Det_Freq.

Sum

Lag_Dom

S&H

MAG

EAVE

DIFF

FFT8

Covar_MA
Covar_SUB

Peak_PK

HW
Component

SW
Partition #1

SW
Partition #2

SW
Partition #3

SW
Partition #4

HW
Component [LMC-ARCH]

Page 87Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Simulations are performed on candidate architectures with timelines
created as shown above. This helps refine the architectural candidates
and improve the estimates in the selection criteria matrix. The
functionality of the algorithms is verified against previous simulations at
the higher level to assure correctness.

Copyright 1995-1999 SCRA 87

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Simulation

● Verify algorithms again functionally

● Refine anticipated performance of candidate architectures
using available throughput, memory, and I/O estimates

● Use performance models to optimize the architecture
selections through iterative synthesis and simulation

(a)

(b)

n1

n2 & n3

n4 & n5

n6

n1

n2 & n3

n4 & n5

n6
(a) Four processor architecture
(b) Two process, two ASIC solution

[LMC-ARCH]

Page 88Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Detailed analysis of the results help postulate an implementation for
each of the candidate architectures using high-level synthesis tools and
design advisors. Improved system requirement estimates are used to
help refine the selection criteria matrix and estimates of schedule
impact, testability, reliability, parts availability, and maintainability can
now be obtained.

Copyright 1995-1999 SCRA 88

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Analysis

● Postulate an implementation for each
candidate architecture and transform it
into size, weight, power, throughput, and
cost estimates

● Use high-level synthesis tools and design
advisors to obtain the implementations

● Estimate schedule, testability, reliability,
availability, and maintainability for each
candidate implementation

● Assess component availability to support
the desired development schedule

[LMC-ARCH]

Page 89Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This step iterates on architecture synthesis and simulation to obtain an
optimal solution to the architecture selection problem. The trade-off
matrix is populated and design notes are generated that document the
rationale for each of the entries in the matrix. The number of candidate
architectures is now trimmed to only a few for further evaluation in the
verification phase.

Copyright 1995-1999 SCRA 89

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Trade-off Analysis

● Iterate architecture synthesis, simulation,
and detailed analysis for each candidate
architecture to obtain an optimal solution

● Populate the architecture trade-off matrix

● Generate design notes that document the
rationale for the entries in the matrix

● Select one or more candidate
architectures for further evaluation in the
architecture verification phase

[LMC-ARCH]

Page 90Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Architecture verification is the process of hierarchically simulating both the functionality and performance of
a selected architecture candidate. Simulations are performed at a greater degree of detail as compared to
those in architecture selection process. The goal of the verification process is to validate operation of all
architectural entities and the interfaces between them before detailed design. Software partitions are
autocoded to produce software modules translated from the processor-independent library elements to
optimized processor specific implementations, which are interfaced through a set of standard services build
on an operating system microkernel.

Inputs to the architecture verification process include the selected architecture instantiation, which includes
all or a portion of the implementation partitioning/component list, the optimized DFGs, the CFGs, detailed
SW description, and the HW/SW reuse library.

The outputs from the this process include new library elements, detailed specifications for HW
development, and performance and functionality verification.

Autocode generation uses the finalized DFGs and the partitioning/mapping data as inputs to generate the
software for each of the partitions. The code is generated by translating the processor-independent flow
graph primitives to target-specific code which uses the optimized math libraries for the specific DSP.

Performance simulation uses timing estimates from the autocode generation to estimate the performance
of the design partitions. It should account for performance impacts due to the target operating system, the
graph management system built on top of the operating system, and any scheduling overhead.

Refining the architectural attributes can now be done because more information is made available by the
increased detail of the design.

Trade-off analysis is updated by filling in more detail in the trade-off matrix as it becomes available. Scores
are assigned to each of the candidate architectures to aid in the final selection process.

Component mix evaluation is the process of simulating at more detailed levels of models than was
previously done. The reuse library is accessed for the required components and if they are not available,
models are developed as needed.

A verification plan is developed that ensures, to the maximum extent possible, that all hardware
components will function and interoperate as expected and all SW will execute properly on the architecture
when built.

Simulation development enables incremental functional and performance evaluation of the HW and
simulation models throughout the design process. Integrated tool suites are used to support the
combination of testbed simulation, simulator(s), and/or emulator(s) to fully verify performance and code
functionality before hardware implementation.

Copyright 1995-1999 SCRA 90

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architecture Verification

[LMC-ARCH]

From architecture selection

Autocode
Generation

Refine
Implementation

Analysis

Performance
Simulation

Tradeoff
Analysis Update

Component Mix
Evaluation

Define
Verification Plan

Develop Hierarchical
Simulation

Simulation

To detailed design

Develop Models
As Needed

• Translate graph partitions
• Validate partitions
• Build equivalent graph
• Estimate performance

• Simulate on architecture
• Account for OS, graph mgnt,

and scheduling overhead

• Refine size, wgt, pwr, etc.
based on specific
implementation technologies

• Update risk

• Select one or more architectures for
continued evaluation

• Evaluate model availability for each HW/SW
component

• Hierarchical validation
• Ensure all component interfaces tested
• Plan reflects model availability

• Based on validation plan
• Generate compilations, translations, and stimulus

• Performance
• Functionality

Page 91Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Autocode generation uses the DFGs, candidate architectures, and
partitioning/mapping data from the previous process to translate the
processor-independent flow graph information to target-specific code.

Optimized math libraries are used for time-critical DSP application code
such as FFTs, FIR filters, etc.

The partitions are validated and functionality is verified against previous
simulations.

Copyright 1995-1999 SCRA 91

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Autocode Generation

● Use architectures, finalized DFGs, and
partitioning/mapping data from the architecture
selection process

● Translate processor-independent flow graph
primitives to target-specific code

● Use optimized math libraries for each specific
DSP

● Validate the partitions
● Build an equivalent node which represents the

entire graph partition
● Verify functionality of the equivalent node via

simulation and compare with previous graph
simulations

[LMC-ARCH]

Page 92Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Performance simulations are done using the timing estimates for the
autocode generated software. Communications protocol, target OS,
graph management SW, and scheduling overhead is included to help
improve the quality of the performance model simulations.

Copyright 1995-1999 SCRA 92

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Simulation

● Generate timing estimates for the autocode-generated
software

● Repeat performance simulation using new timing estimates
❍ Communication protocol included

● Include target operating system, graph management
system, and any scheduling overhead in performance
simulations

[LMC-ARCH]

n1

n2 & n3

n4 & n5

n6

P1 P2

ASIC ASIC

6 node original
graph

transformed
to 4 node
equivalent

graph

Page 93Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The iterative process of simulating the various architectures and the
graph mappings to them results in the completion of the trade-off matrix
shown above. This matrix is a record of the design process performed
during the architecture phase. The entries in the table should be
supported by detailed notes giving insight into the rationale for the
numbers.

The output of trade-off analysis update is one or more candidate
architectures that satisfy the requirements and are ready for more
detailed design and analysis.

Copyright 1995-1999 SCRA 93

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Update Trade-off Analysis

[LMC-Meth]

Architecture Tradeoff Matrices
Architecture Metrics

Architecture Scores

Size Wght Pwr Sch Test Cost Reliability Total

Size Wght Pwr Sch Test Cost Reliability Total

Arch # 1

Arch # 2

Max. Score

Arch # 1

Arch # 2

Max. Score

0-5 0-25 0-15 0-5 0-15 0-10 0-15 0-10 0-100

0-5 0-25 0-15 0-5 0-15 0-10 0-15 0-10 0-100

500 in2

200 in2

1.0 lbs

0.5 lbs

20 W

10 W

8 mo.

18 mo.

high

med

low

med

high

high

5

12

10

20

10

15

4

2

15

10

8

5

15

15

67

79

Page 94Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This stage in the process evaluates the availability of models and
determines if any critical model development should be done in-cycle.

Verification plans are developed to test hardware component
interoperability and SW/HW interactions are correct. Mixed-domain
simulation should be done in an environment that support this
paradigm.

Copyright 1995-1999 SCRA 94

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Component Mix Evaluation
and Verification Definition

● Evaluate performance and specific behavioral
model availability

● Create models if necessary and within time
constraints

● Develop a verification plan for hardware
component interoperability

❍ Ensure all component interfaces are tested

❍ Ensure all devices properly communicate with each
other

❍ Ensure all software executes on the appropriate
processor

● Provide for integrated mixed-domain simulation
framework (e.g. high-level performance models
with ISA, RTL, HW emulators, etc.) [LMC-Meth]

Page 95Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The simulation development should be done in a mixed-mode
simulation environment using a backplane that supports its use.

The features which it must support are included above.

Testbed hardware includes such items as HW modelers, emulator
boards, non-VHDL-based simulators, etc..

Copyright 1995-1999 SCRA 95

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Simulation Development

● Provide multi-domain backplane that enables
mixed-mode simulation which supports:

❍ Testbed hardware that provides:
❑ User porting of algorithms on a single workstation

and embedded multiprocessors

❑ An application environment that supports
multiprocessor mapping, instrumentation, and
performance monitoring

❍ Behavioral simulation to verify functionality and
performance of designs (HDL-based)

❍ Architecture simulation (non-functional data-flow-level
simulation) to determine the performance of large
systems

[LMC-Meth]

Page 96Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Based upon model availability, the architecture map be mapped to an
appropriate simulation engine. The above figure illustrates one such
mapping where processor #1 has a behavioral representation selected,
processor #2 has both a performance and RTL level model available
but possible due to simulation time requirements, the performance
model is chosen. ASIC #1 has a VHDL RTL level model that is used
and ASIC #2 has a verilog RTL level model. All are simulated in the
multi-domain environment. The ideal is to support the interoperability of
commercial tools to simulate a complete system in a seamless fashion.

Copyright 1995-1999 SCRA 96

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Simulation Engine Example

[LMC-Meth]

P1 P2

ASIC #1 ASIC #2

Element HW Testbed Perf.
Full Funct.
(ISA, Beh.)

Full Funct.
(RTL) Bus Funct.

HW
Testbed Behavioral RTL (VHDL) Performance

Ptolemy

S
im

u
la

ti
o

n
B

ac
kp

la
n

e

Verilog

P1
P2

ASIC # 1
ASIC # 2

Page 97Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section will describe the characteristics of performance models
used for architecture selection and verification.

Copyright 1995-1999 SCRA 97

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Design Process
Outline

● Architecture Process flow

● Performance model characteristics
● Trade-off advisor
● Metrics and architecture selection rules of thumb
● Tools for architecture selection

Page 98Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide presents an overview of how performance models can be
effective used in the selection of architectures for DSP applications.

Copyright 1995-1999 SCRA 98

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Overview

● Apply during early stages of system
development

● Use as a design tool, not a genie
● Aid evaluation of design alternatives
● Capture design decisions and assumptions
● Examine system behavior at boundary conditions
● Determine bottlenecks, overdesign, etc.
● Use for examining system sizing, topology,

partitioning and capability issues

[Honeywell]

Page 99Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The metrics captured by using performance model simulations include
latency, throughput, and utilization. These metrics are compared
against the requirements to help determine the optimal architecture for
the application.

Copyright 1995-1999 SCRA 99

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Metrics

● Performance metrics are generally in three
categories:

❍ Latency: the time it takes to complete a job
❍ Throughput: the rate at which jobs are processed

❍ Utilization: time busy as a fraction of the total time

● Used to evaluate designs against typical
requirements:

❍ Processor loading no more than 80%

❍ Communications loading no more than 50%

❍ Processing rate sufficient to meet requirements
❍ System produces output with appropriate timeliness

● Generally not used for application level
functional verification

[Honeywell]

Page 100Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The major components contained in a performance model library are
listed at the top of this slide. These include I/O devices, memory,
pipelines, buses, and processors. These components are connected to
form system architectures. The most complicated is the processor
model which includes methods for describing software tasks and
scheduling.

Distributions are used to model rates at which tokens are passed
throughout the network.

Copyright 1995-1999 SCRA 100

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Major Generic Components

● Library has over 50 generic components

● Primary characteristics are modeled with the following
generic characteristics

❍ Unit: the size of data input
❍ Throughput: the frequency at which UNITS can be processed
❍ Latency: propagation through a component
❍ TxForm: the increase/decrease in the amount of data

● Generics are described by a distribution of the form
❍ String = “POISSON 4 range 0 100”
❍ String = “UNIFORM range 10 20”

[Honeywell]

Device Example
Input Analog Sensor
Output Heads-Up display
Pipeline Rendering pipeline
Memory Global bulk memory
Processor Data server module
Bus PI-bus

Page 101Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Tokens are the method used to model the information flow between
components in a system. These tokens are represented in VHDL by
signals with the record data type. The record contains fields containing
the token size, type, destination, etc. and is described in more detail in
the next slide.

Copyright 1995-1999 SCRA 101

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Signal Representation using
VHDL

● A signal is a basic representation in VHDL for
communicating information between models

● Our signal value is represented by a token, which is a
complex record structure containing multiple fields

❍ Fields contain token size, type, destination, etc.
❍ Models the flow of information through the system

[Honeywell]

Size
Type

Token

Model A Model B

Dout

Dout<= token

Din

Page 102Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The use of a common token definition is critical for the interoperability of
abstract models from diverse sources such as libraries and other
project groups. Honeywell Technology Center, under the RASSP
contract, has proposed a token type convention for performance
modeling, as shown above.

Copyright 1995-1999 SCRA 102

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Token Description

[Honeywell]

TYPE utoken IS RECORD
source : NameType; -- source of token, string
destination : NameType; -- destination of token, string
id : INTEGER; -- “unigue” token id
start_time : TIME; -- When created
t_type : Token_Type; -- token type
size : data_size; -- size of token, physical type
state : bus_state; -- Used for handshaking
protocol : bus_protocol; -- What type of bus?
priority : INTEGER; -- Used by BRF
collisions : INTEGER;
retries : INTEGER;
value : INTEGER;
Interrupt : INTEGER;

END RECORD;

Page 103Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Component models in a performance library consist of layers. For
simpler devices such as memories, I/O devices, pipelines, and bus
interface units there are two layers while processors contain three. The
first layer is the generic model which interfaces to the system architect
to allow rapid modification of system configuration and characteristics.
The characterization layer contains the functionality of device described
at the performance level. This is the code that determines the behavior
of the component. The application layer in processors is used to handle
SW functions in processing elements.

Copyright 1995-1999 SCRA 103

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Component Characterization

● A generic model is created
● A “characterization layer” is added
● Processors have an additional layer for software

[Honeywell]

Application

Characterization

Generic Model Generic Model

Characterization

Processor Bus Interface Unit
Memory
Input/Output Device
Pipeline

Page 104Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The input device generates tokens for a given distribution. The generic
passed to the device would include parameters such as distribution
type, values for the distribution (mean, std), etc. The characterization
takes the form shown in the roadmap process above. It first initializes
token counters and distributions, then generates new token fields,
delays as necessary, writes the token to the output, and at the end it
accumulates any necessary statistics.

These input models represent devices such as sensors and are the
easiest elements to model. They tend to be purely data sources and
can be characterized by the rate at which they can produce data.

Copyright 1995-1999 SCRA 104

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Input Device

Generates tokens per given
distribution (e.g. Sensor)

Roadmap

Begin process
Initialize token counters and distributions
Generate new token fields
Delay for period
Write token to output
Accumulate performance statistics

End process

[Honeywell]

Page 105Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A memories contribution to system performance can generally be
modeled by a simple delay line. A request for data at a particular
location results in the memory responding after some delay with that
value. Caches are slightly more complex since they may respond with
some failure indication or at variable rates. The attributes associated
with memories include the physical size, the speed and access type,
implementation technology, cache type, and expected hit ratios.

The process description above describes the high-level behavior of the
memory device.

Copyright 1995-1999 SCRA 105

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Memory

Responds to read or write
request per given configuration

Roadmap

Begin process
Initialize distributions
Wait for memory request
Generate new token fields
Write token to output
Accumulate performance statistics

End process

[Honeywell]

Page 106Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Pipelines are basically delay line elements where inputs cause outputs
to be generated at a specified delay time later. As in all the previous
examples, it behaves asynchronously because it waits for a pipeline
request rather than a specified clock edge. This reduces the number of
simulation events that occur.

Copyright 1995-1999 SCRA 106

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Pipeline

Delays token per given value

Roadmap

Begin process
Initialize distributions
Wait for pipeline request
Generate new token fields
Write token to output
Accumulate performance statistics

End process

[Honeywell]

Page 107Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Output device (e.g. displays) models accept tokens per a given
frequency and can be described simply as data sinks. These along with
input devices are the easiest to model.

Copyright 1995-1999 SCRA 107

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Output Device

Accepts tokens per given
frequency (e.g. Display)

Roadmap

Begin process
Initialize distributions
Generate distributions
Delay for period and await input
Accumulate performance statistics

End process

[Honeywell]

Page 108Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Since the global side of the communications interface needs to fit the
protocol being modeled, some modifications to the VHDL code may
have to be done. The information required by the model should include
the distribution of the bus interface arbitration time for requests and
acknowledgments as well as the bandwidth for the bus. The mechanism
to due this is through a complete set of generics and a modification to
the global interface side that implements the specified protocol. The
current library has a template that can be used as a baseline model for
which additional information can be added as required. The bus
resolution function may also need some modifications based on the
protocol being used.

Copyright 1995-1999 SCRA 108

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Bus Characterization

● Information required
❍Distribution of biu arbitration time for bus

request and ack
❍Bandwidth of bus

● Mechanism
❍Complete generics
❍Write GlobalBusIf architecture to implement

protocol for BIU transmit and receive.
❍Use generic example in library as a template

for future models
❍Make additions to brf arbitration as required

[Honeywell]

Page 109Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The above diagram describes the bus token protocol used to pass
information from components connected to the same bus. The state
field in the token is used to implement the token passing. There are four
states used to determine the handshaking, idle, busy, request, and
acknowledge.

Copyright 1995-1999 SCRA 109

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Bus Token Protocol

● The state field in the token is used to implement token
passing

❍ Based on uninterpreted modeling work by Aylor, Waxman, et
al at Univ. of Virginia

● Bus state has four values: (idle, request, ack, busy)
❍ By changing this field value, the models pass the state of the

token to each other

[Honeywell]

Bus Master Bus Slave

request

ack

busy

idle

Page 110Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The bus interface unit consists of four main processes to perform
functions of reading and writing tokens to the local or global buses. An
example of the global bus would be the PI-bus. The local bus connects
to a driving element such as a processor, memory, etc.

Copyright 1995-1999 SCRA 110

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Bus Interface Unit (BIU)

● The BIU consists of four processes:
❍ LBRCV receives tokens from a local bus
❍ LBTX transmits tokens on the local bus
❍ BIURCV receives tokens from the global bus
❍ BIUTX transmits tokens to the global bus

● Global bus example is the PI-bus

● The local bus is a point to point connection to a driving
element (processor, memory, etc.)

Local
Bus

Global
Bus

Read/writes to bus
per given protocol

[Honeywell]

Page 111Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is a list of generics associated with the bus interface model. The
protocol, latency, bandwidth, and times associated with the
handshaking are specified. The VAL format is used for token fields with
the _Info suffix.

Copyright 1995-1999 SCRA 111

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
BIU Generics

● Protocol -- Bus protocol type
● Latency_Info -- Latency of BIU itself
● Bandwidth_Info -- Bandwidth of bus
● BW_units_per_sec -- Units of BW generic
● Bus_timeout_info -- How long will BIU wait

 for ACK to a request
● Ack_time_Info -- How long to wait before

 sending ACK
● Priority -- Priority of bus

➱ Token fields with _Info suffix are of type STRING
in the VAL format

[Honeywell]

Page 112Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The processor model consists of both HW and SW characterizations.
The objectives of a processor model include:

● Provide support for high-level SW modeling

– Preemptive tasking

– Static and dynamic task scheduling

– Rate monotonic task scheduling

– Interrupt service

– Task communication similar to Ada rendezvous

– Task synchronization, i.e., semaphores

● Control of dedicated functions such as coprocessors, BIUs,
and memory

● Support command/response model behavior

Copyright 1995-1999 SCRA 112

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Processor Model

[Honeywell]

Tasks

Scheduler

Processor

Local Bus I/F
- - - - -BIU - - - - -

Processor Bus I/F

Interrupt

Software
Characterization

Hardware
Characterization

Processor Bus

Proc. Bus I/F
 - - - BIU - - -

Local Bus I/F

Proc. Bus I/F
 - - - BIU - - -

Local Bus I/F

Proc. Bus I/F
 - - - BIU - - -

Local Bus I/F

Proc. Bus I/F
 - - - BIU - - -

Local Bus I/F

Proc. Bus I/F
 - - - BIU - - -

Local Bus I/F

Disk I/F
PI Bus

Interface
Floating

Point
Coprocessor

Memory
Dual Port
Memory

Page 113Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The utilization, throughput, and latency information for the system
model are captured automatically by the simulation. Trade studies can
be done using these statistics to determine the optimal architecture for
the system application. The raw data from the simulations is displayed
in an intuitive form as shown on the next slide.

Copyright 1995-1999 SCRA 113

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Model Output

● The VHDL model automatically captures three
types of statistics

❍ Utilization

❑ Percent of time busy/total simulation time

❑ Tracked for each entity

❍ Latency
❑ Time to move a token from point A to point B

❑ Post processed from output

❍ Throughput

❑ Data processed/time period

❑ Tracked for each entity

● Trade studies are interpretations of these
statistics

● Raw data displayed in intuitive form
[Honeywell]

Page 114Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 114

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architectural Design Example

●Establish mechanism for
evaluating communication,
system performance and
architecture tradeoffs

●Provide virtual prototype to
evaluate and verify candidate
hardware/software
architectures

●Integrate performance
modeling tool into the RASSP
Design Environment

●Verify partitioning of software
tasks on hardware elements

●Evaluate and verify
communication network
requirements

●Identify throughput, utilization
and latency bottlenecks

System Level Data Flow Graph

I m age
Sour ce

Data
Sink

H D I

L R C

H R C

Board L evel H ardware Architecture

RACEway Network

VME Backplane

X
B
A
R

Sharc

Sharc

Sharc

Sharc

Sharc

Sharc

Sharc

Sharc

Sharc

Sharc

Sharc

Sharc

NIC

NIC

VIC
Mercury Board

NIC

NIC

In this example we should some preliminary steps that map an
algorithm to a candidate architecture using timing models of software
executing on target hardware (called performance modeling). In this
case an algorithm shown (top right) in the slide is mapped and
scheduled onto a candidate architecture shown in the bottom right part
of the slide.

Page 115Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 115

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Performance Modeling
Environment

Hardware Design Capture

Software Design Capture

Model Performance Analysis

Hardware architecture and software
algorithm
are captured within the performance
modeling environment

The performance modeling environment (in this case Cosmos) allows
capture of the hardware elements of the architecture and also the
software elements of the algorithm (according to a certain granularity),
and then allows mixed performance analysis of throughput, utilization,
and latency of tasks (as shown on the bottom right).

Page 116Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 116

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture of System
Hardware Model

Cluster Model

Daughter Card Model
Board Level Model

Hardware Model Hierarchy of
Mercury RACEway Architecture

• 3 SHARCs per cluster
• 2 clusters per daughter card
• 2 daughter cards per board
• Total of 12 SHARCs

The steps in the modeling of the hardware architecture at the card and
the board level are shown, using a total of 12 SHARCs.

Page 117Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 117

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture of System
Software Model

Software Data
Flow Graph

Top Level Software Mapping

Individual Processor
Task Mapping

The software task graph is also modeled together with a control flow
graph/assignment/mapping schedule that is utilized to merge the
hardware and software graphs together.

Page 118Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

These are some example plots of the output of performance model
simulations. The left side plot shows processor utilization vs. time and
processing element. The right plot shows how the memory is utilized
during the same time line.

Copyright 1995-1999 SCRA 118

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Model Output
Results

[Hein95]

0 100 200 300 400 500 0 100 200 300 400 500

Proc-1

Proc-2

Proc-3

Proc-4

Proc-5

Proc-6

6-MB

5-MB

4-MB

3-MB

2-MB

1-MB

P
ro

ce
ss

o
r

E
le

m
en

t

M
em

o
ry

 A
llo

ca
ti

o
n

Time (uS) Time (uS)

Example processing time line Example memory allocation time history

Page 119Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 119

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Initial Top Level Cosmos
Performance Model Results

The result of the virtual prototyping at the performance modeling level
shows various metrics of latency, throughput and utilization for various
mapping and scheduling strategies for executing the algorithm on the
candidate architecture.

Page 120Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 120

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Results of the Architectural
Design Example

●Initial model results indicated minimal (< 10 %) communication bandwidths required for
transferring data between control processor and SHARC clusters as well as between the
low resolution and high resolution processors

●Communication bandwidths associated with the HDI process could not be determined
based on the uncertainty of the final HDI implementation and processor mapping

● Performance modeling provided a good initial system simulation tool for capturing and
mapping an application to an architecture to observe processor utilization, communication
throughput, and overall system performance

●However, the simulation using Cosmos for 12-24 processors required 200Mbytes of
memory, straining system resources, and the environment can be simplified further to
reduce the overhead in the simulation requirements through use of lightweight models.

Performance modeling of complex, large scale systems may require the use of
lightweight models which reduce memory and runtime requirements

Performance modeling of complex, large scale systems may require the use of
lightweight models which reduce memory and runtime requirements

The results of the HW/SW modeling at the architectural level in this
example confirm that the bandwidth requirements of the application do
not strain the underlying architecture, and provide a good idea of the
capability of the architectures. However, when modeling large systems
the burden of the modeling environment can be quite severe in terms of
memory usage, and light weight custom performance models can also
be constructed to perform the architectural design.

Page 121Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The above slide lists the major benefits for modeling both hardware and
software in the processing element. With the addition of software
characteristics, a more thorough evaluation of the throughput, latency,
and resource utilization can be done. It helps determine how the various
functions can be implemented most efficiently as well as provide an
early validation of the SW requirements. It allows for SW refinement in
the traditional hardware design phase. The SW scheduling can be
evaluated as part of the trade-off studies in architecture selection.

Copyright 1995-1999 SCRA 121

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Benefits of HW/SW Modeling

● Helps evaluation of throughput, latency, resource
utilization, and resource contention

● Helps determine how functions can be
implemented most efficiently (ASIC, PALS, COTS,
etc.)

● Provides early validation of SW requirements and
design

● Allows for software design refinement
● Provides for evaluation of SW scheduling

performance
● Permits rapid processor evaluation and trade-off
● Permits evaluation of SW design/architecture on

the HW design early in the process [Honeywell]

Page 122Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 122

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Design Process
Outline

● Architecture Process flow
● Performance model characteristics

● Trade-off advisor
● Metrics and architecture selection rules of thumb
● Tools for architecture selection

Page 123Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The architecture trade-off advisor takes as its inputs the functional
design in the form of a data flow graph and some performance
specification(s). It also uses libraries of architectures and decomposition
functions captured for reuse. These are input to a performance
modeler.

The output will be a count of the number of processors required to
perform the functions and well as bandwidth requirements for
communications and a count of the complexity of the algorithm.

Copyright 1995-1999 SCRA 123

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture
Trade-off Advisor

Functional Design

- Data Flow Graph

- Performance Specs

Library of Architectural

 Alternatives with

Abstract Properties

Library of Decomposition

and Contention Functions

Output Architecture

 Parameters

 - # of Processors

 - Bandwidth

 - Ops/second

Performance

 Modeler

[Lee94]

Page 124Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The architecture advisor chooses a hardware architecture based on the
predicted performance of the decomposed tasks.

Performance prediction models may exist for multiprocessors
containing N processors, each with its own local memory for code and
data. In addition, each processor can access shared memory via an
interconnection network.

Performance tradeoffs are done using high-level models of the
respective components chosen for the architectural candidates.

Timing information such as access time to local memory, global
memory, and network data and message passing are included in the
model.

Copyright 1995-1999 SCRA 124

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Tradeoffs

Proc 1

Mem1

Proc N

Local

Memories

Processors

To other processors

Broadcast Bus

tp= Processing time including access to

 local memory
ta = Access time to global memory

tw = Waiting time caused by contention

 over the network

ta(N) = Ta/fa(N) tp(N) = Tp/fp(N)

[Lee94]

GMem

Connection Network

Mem1

Page 125Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This plot shows how a typical trade-off curve may look as the number of
processors are increased for the previous slide’s example. We see that
the speedup continues to increase in both cases until about seven
processors are utilized. At this point an additional processor does little
to improve the performance.

We also see the asynchronous case has a higher speedup as
compared to the synchronous case.

Copyright 1995-1999 SCRA 125

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Tradeoffs

Number of Processors

S
pe

ed
up

Asynchronous

Synchronous

2 7 10

0

0

[Lee94]

Page 126Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section will describe some of the metrics associated with the
architecture design process and give some basic rules of thumb in
choosing and architecture.

Copyright 1995-1999 SCRA 126

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Design Process
Outline

● Architecture Process flow
● Performance model characteristics
● Trade-off advisor

● Metrics and architecture selection rules of
thumb

● Tools for architecture selection

Page 127Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In addition to performance metrics, the above listed metrics are
important in helping to choose the correct architecture to use for the
application.

A rating can be placed on each metric and, during selection from a few
candidates, the weight associated with a particular metric is factored
into the equation for choosing the best architecture.

There are three main classes of metrics. They include:

● Intended use metrics

● Performance metrics

● Supportability metrics

Copyright 1995-1999 SCRA 127

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architecture Related Metrics

Function Processor Complexity Power Standards
Environment Interconnect Complexity Reliability
Interfaces Software Complexity Testability
Security Size Maintainability
Schedule Weight Fault Tolerance
Cost Volume Scalability

INTENDED USE
METRICS

PERFORMANCE
METRICS

SUPPORTABILITY
METRICS

ADDITIONAL

[Lockheed95]

Page 128Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This and the next slide list some general rules of thumb to consider when selecting an
architecture to solve a particular problem.

Select interconnect by scope: Within a module use direct interconnects; between
modules use standard interconnect protocols (VME, SCI, etc.).

Select interconnect by speed: Organize the program data flow from sensor inputs to
output. Select a scheme to satisfy the requirements of each section. Sensor input may
be much higher than output display information. In this case, different interconnects
can be used.

Select processor type: Decompose the algorithm into a set of processing functions
interconnected with direct data links. For each function, define the type of processing
required (vector, general purpose, etc.). Attempt an initial direct-mapped architecture
and, if the solution is overkill, reduce the complexity by using various SW modules.

Use Serial Interconnect: It is better to select an interconnect with fewer pins.

Use FPGAs: If maximal speed is not applicable, it is better to use FPGAs as compared
to ASIC solutions. They provide support for
Rapid development

● Frequent interactions with the customer

● Commercial IC advances

Use open standards: It is better to use open systems architecture constructs to provide
for expansion, upgrading, or functional reconfiguration through the use of replaceable
modular elements. This applies to both HW and SW.

Copyright 1995-1999 SCRA 128

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architectural Selection -
Rules of Thumb

● Select interconnect by scope
● Select interconnect by speed
● Select processor type (scalar, vector, DSP etc)
● Use serial interconnect
● Use field programmable devices
● Use open systems

[Lockheed95]

Page 129Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Keep it simple: Most often simple and straightforward concepts with clean partitions
and interfaces are desired.

Use metrics: The list of metrics was presented earlier. Going over the metrics ahead of
time can speed choice of an acceptable design. The metrics can be broken into three
categories: Intended Use, Performance, Supportability.

Incorporate testability: Because complex, compact electronics cannot be probed
externally, some form of BIST is almost certainly required.

Reuse design elements: Reuse of previous designs improves reliability and reduces
development time and cost. Test time is usually decreased because reused modules
have already been tested. Life cycle costs can also be reduced because such things
as manuals, training, test equipment, and spare parts already exist.

Reduce power consumption: Because heat dissipation is expensive in terms of cost
and weight, less heat is preferable. Select components designed for the portable
electronics market where this is a critical parameter. Smaller feature size is also
helpful and lowers power supply voltages.

Use appropriate programming model: Choose SIMD or MIMD based on the type of
processing that is required by the application. Communication with respect to loose or
tight coupling is also an issue. The choice of homogeneous or heterogeneous
processing elements is also important.

Use software design methodology: Choose OOD when possible. The resulting
modular structures are more suitable for automatic code generation, easier to code by
hand, and easier to test and maintain.

Copyright 1995-1999 SCRA 129

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architectural Selection -
Rules of Thumb (Cont.)

● Keep it simple
● Use metrics
● Incorporate testability
● Reuse design elements
● Reduce power consumption
● Use appropriate programming model
● Use software design methodology

[Lockheed95]

Page 130Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Tools are an important part of the architecture design process. RASSP
is attempting to address the need for additional tools to fill in the gaps in
the architecture design process.

Copyright 1995-1999 SCRA 130

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Design Process
Outline

● Architecture Process flow
● Performance model characteristics
● Trade-off advisor
● Metrics and architecture selection rules of thumb

● Tools for architecture selection

Page 131Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The main tool used by the ATL branch of Lockheed-Martin is the PGM
tool developed by the Naval Research Labs. PGM is used to model the
data flow of the system and contains hundreds of primitives written in
Ada to develop algorithm designs. GRED and GRAIL are graphical
tools to aid in PGM development while PGSE is the simulation
environment used to perform the functional simulation on PGM graphs.

Copyright 1995-1999 SCRA 131

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Tools for Architecture
Selection and Verification

● PGM Tools: GRED and GRAIL
❍ GRED is a graphical editor for building PGM graphs

❍ GRAIL is a translator from graphical format to Signal
Processing Graph Notation (SPGN)

● PGSE: Simulation Environment
❍ Functional simulation of PGM graphs

❍ Provides standard interface to command program

❍ Provides ability to simulate command program
interacting with multiple PGM graphs

[LMC-ARCH]

Page 132Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The processing graph method (PGM) develops signal processing
applications at the data flow level without the implementation details.

Copyright 1995-1999 SCRA 132

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Processing Graph Method
(PGM)

● Develops signal processing applications without
any knowledge of the underlying machine
architecture.

● Achieves this goal by providing
❍ A high level specification

❍ A graph oriented language

❍ Tools for translating the graphs into load modules for
target machines

❍ And a run-time support environment which expands the
graph instances

[PGM90]

Page 133Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Dataflow Vs. Control flow

In a Control flow paradigm the order of execution of elements of the
program are embedded in the program description. On the other hand,
in a Dataflow paradigm the execution of the elements are based on the
availability of the data. The environment provides a set of atomic
operations that can consume data and produce data. Upon the
execution of the program, the elements that have data ready will
produce data that will enable other elements to be ready for execution.

Copyright 1995-1999 SCRA 133

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PGM Fundamentals

● PGM is based on a modified “data flow”
methodology.

● It differs from the classical data flow in the
following manner:

❍ The input queue threshold can be set to more than 1.

❍ An offset can be specified to skip a certain number of
input data in the queue before reading data.

❍ The number of elements to read into a node can be
specified.

❍ The number of elements to consume from input queues
can be specified.

❍ PGM is data flow only down to the level of scheduling
nodes for execution.

[PGM90]

Page 134Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Signal processing applications are normally described using block
diagrams that lend themselves very naturally to Dataflow paradigm. The
block diagram is built out of certain black boxes that perform certain
functionalities. These black boxes are further described based on more
primitive signal processing elements. Each box in the block diagram
processes the data that appears at its inputs and provides the result at
the output where it is used by another box.

Copyright 1995-1999 SCRA 134

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PGM and DSP

● PGM is to be used to build up signal processing
applications.

● The signal processing application is defined as a
set of graphs and command programs.

● The graphs are analogous to flow diagrams used
to summarize signal processing flow.

● The command programs define the graphs
interaction among themselves and the outside
world.

● The result is a set of graphs and command
programs that are translated into load modules
which are subsequently executed under the PGM
runtime environment.

[PGM90]

Page 135Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

PGM is currently being used in the design process at the algorithm
specification level. Data flow graphs are generated in PGM from Ada
primitives. These are used to simulate the processing flows for the
given application. The PGM primitives are simulated using the PGSE
environment. After satisfactory simulation results are obtained, the PGM
graphs are input to the NetSyn tool to begin architecture trade-offs.

Copyright 1995-1999 SCRA 135

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP PGM Utilization in the Design
Process

[LMC-ARCH]

• PGM Tools

• PGSE

• NetSyn

• Autocode
Tools

• NetSyn

Algorithm
Specification

PGM DFG
Simulation

Architecture
Tradeoffs

Autocode
Generation

Performance
Resimulation

• User must be familiar with PGM
• Data flow control is considered

at outset as part of graph

• Used to verify PGM graph with
respect to functional spec.

• Driven from PGM graph and
PGSE simulation results

• Driven from architecture and
DFG mapping to processors

• Provides verification of
autocode results with original
graph

Page 136Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

NetSyn allows performance trade-offs to be done in a more
automated/user friendly fashion. The input to this tool will be the PGM
data flow graph and PGSE output. Rapid performance trade-offs are
made within the environment by choosing candidate architectures and
simulating them using performance models from Honeywell. Outputs
include reports, improved architectural candidates, SW mappings, and
improved flow graphs.

Copyright 1995-1999 SCRA 136

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Tools for Architecture
Selection and Verification

(Cont.)

● NetSyn: (Assignment/Performance Simulation)
❍ Driven from PGM data flow graph and PGSE output

❍ Performance simulation for candidate architectures

❍ Library primitives
❑ PGSE executables

❑ Target dependent timing database

❍ Outputs include reports, architecture, mapping, and
graph

[LMC-ARCH]

Page 137Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The NetSyn tool contains three reusable parts libraries to aid in the
selection and verification of an architecture. They consist of 1) a
Reusable Software System (RSS) which contains functional graph
primitives to help in the building of applications, 2) a reusable
architectural parts library which contains architectural classes,
components, and configurations, capable of being simulated at the
performance level in VHDL and 3) a timing library which contains timing
information for the execution of the specific primitives on various
processors.

Copyright 1995-1999 SCRA 137

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
NetSyn Functional Diagram

[LMC-Review]

F6

input
F1

F2

F3

F4

F5

Functional Graph Spec. F6

PGM
ECOS

Workstation

RSS
Library

PGSE
Behavioral
Simulation

Graph
Environment Behavior

Timing
Library

Assignment

Graph
Instance

Architecture
Library

Analysis

Mapping Design
Library

Mapping
and Metrics

Cost

VHDL
Simulation

Mapping Metrics

Reports

Architecture
and

Characteristics

Page 138Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Reusable Software Subsystem (RSS) captures functional graph
primitives in the form of C, Ada, Microcode etc.. It also captures test
datasets, analysis reports to aid application developers, reusable graph
instantiation parameter lists, reusable graph environments, and
primitive tests. The graphical editor for generating PGM graphs (GRED)
can access the primitives for building new graphs.

Copyright 1995-1999 SCRA 138

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Reusable Software Subsystem
(RSS)

[LMC-Review]

Primitive Specifications
(document each entry)

Analysis reports
(aid application developers)

Test datasets
(used for simulations)

Simulator shell
wrappers

(created automatically)
Graph instantiation

parameter lists
(reusable)

Graph environments
(reusable)

Primitive tests
(tested on Sun host)

Dynamically
linked to PGSE

GRED can access
for graph building

Mercury
SAL C

primitives

Mercury
Microcode

Ada
Primitives

Timing
Formulas

Page 139Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The reusable architectures are hierarchically composed. Connection
rules are used to rapidly generate architectures from entities. The
performance models use size, weight, power, and cost values so the
tool can quickly generate estimates for the entire system. The
environment includes capabilities for testing the behavioral models of
entities. Timing is included in the library for each of the parts. Currently,
the complete RACE architecture from Mercury is part of this library.

Copyright 1995-1999 SCRA 139

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Reusable Architectural Parts
Library

● Hierarchies of architectures are handled
● Connection rules generate architectures from

entities
● Size, weight, power, cost values generated for

architectures
● Includes environment for testing behavioral

models of entities
● Timing functions included
● Mercury entities and architectures included:

RACE

[LMC-Review]

Page 140Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Autocode is a tool that takes as input, PGM data flow graphs, and
generates a modified graph with updated timing estimates for the code
which has been mapped to a target processor. The target code is
compatible with the run-time system. The next slide shows more detail
of the autocode generation process.

Copyright 1995-1999 SCRA 140

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Tools for Architecture
Selection and Verification

(Cont.)

● Autocode: (Code generation and run-time
control)

❍ Driven from PGM data flow graph, architecture, and
mapping

❍ Library primitives
❑ Target independent PGSE executables

❑ Target primitive maps (TPMs) to specific target processors

❍ Outputs include:

❑ Modified graph

❑ Timing estimates for graph

❑ Target code compatible with run time system

[LMC-ARCH]

Page 141Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The autocoding process is shown above. The main elements of the
process include:

● Equivalent graph generation

● Partition target-independent autocoding

● Equivalent graph autocoding

● Partition target-dependent autocoding

● Load image specification

The inputs to the equivalent graph generation process are domain-
primitive graphs, configuration files, and partition lists. Equivalent graph
generation generates standalone PGM graphs for each partition.
Partition autocoding generates Ada procedures implementing each
partition (behavior model) and ‘C’ programs implementing each
software partition using target math libraries. Equivalent graph
autocoding creates run-time data structures implementing the
equivalent graphs. Load image specification generates “make” files
specifying complete run-time system.

Copyright 1995-1999 SCRA 141

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Autocoding Process

[LMC-Review]

RASSP Library
Domain Primitive Database
 Domain primitives
 Ada Domain primitive
 Algorithms
 Target primitive maps

Documentation
Test vectors

BIT Applications
Kernel OS
Target Primitives

Equivalent Graph
Generation and verification

Architecture

Detailed Design

Target-Independent
Partition Autocoding
(Behavior Modeling)

Target Dependent
Partition Autocoding

Equivalent Graph
Autocoding

Application
Generation

• Domain-primitive
Application graphs

• Partition node lists
• Configuration file

• Equivalent graph
• Performance

estimates

• Partition graph for
each partition

• Equivalent graph

• Partition target-
independent Ada
procedures
(behavior models)

• Partition target-
dependent ‘C’
programs

• Equivalent graph
data structures

• Load Image make
file

Page 142Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide lists the inputs and outputs of the autocoding process.

Copyright 1995-1999 SCRA 142

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Autocoding Process Inputs
and Outputs

● Inputs to the autocoding process
❍ PGM application graph SPGN file

❍ Candidate architecture configuration file

❍ Lists of nodes in processor software partitions

❍ Lists of nodes in hardware partitions

● Autocoding outputs
❍ Partition ‘C’ programs for target processors

❍ Partition and application performance estimates
generated

❍ Run-time system load image for candidate architecture

❍ Behavior models for hardware or software partition

[LMC-Review]

Page 143Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Run-time support is partitioned into user, RASSP user, and Model Year
Architecture parts. There are driver-level interfaces between the reuse
and model year partitions. Application interfaces are isolated from the
target OS. Ports to the external world include the load port, BIT
interface, and the command interface. The load manager, graph
manager, and BIT manager are run-time managers that execute run-
time service routines. Applications are instanced as equivalent node
tasks and multiple instances, priorities, and preemption are possible.

Copyright 1995-1999 SCRA 143

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Autocoding Run-Time Support

[LMC-Review]

User Software

RASSP
Reuse
Software

Kernel
OS

 Primitive

Kernel
OS

 Primitive

Kernel
OS

 Primitive

OS
IF

OS
IF

OS
IF

Task
Proc 1

Task
Proc n

Task
Proc 2

Comm-
and
Program

EXT
Interface Command

 Interface Graph Manager

Application
Interface

Applications BIT Applications

BIT
App.
Interface

Run Time Support

BIT manager BIT Interface

Load PortLoad Manager

Model Year
Architecture
Software

Page 144Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Matlab and Signal Processing Workstation (SPW) are used at the high
levels of algorithm development and simulation. Current plans are to
incorporate PGM code generation into the SPW environment to have a
tighter link to the previous set of tools described. This will help close the
gap between application algorithm development and the architecture
selection tools.

Copyright 1995-1999 SCRA 144

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Tools for Architecture
Selection and Verification

(Cont.)

● Matlab: Mathematical language
❍ Rapid algorithm construction and simulation

❍ Only data flow manipulation is via SimuLink

● SPW: Data flow language
❍ Rapid algorithm construction and simulation

❍ Synchronous data flow

❍ Commercially available libraries

❍ Incorporate Matlab blocks into SPW under RASSP

❍ Export PGM compatible graph (SPGN) from SPW under
RASSP

[LMC-ARCH]

Page 145Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The next section will mention the benchmark example chosen for
testing the improvements of the RASSP process. The main focus is on
the architecture selection phase of its development.

Copyright 1995-1999 SCRA 145

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP DSP Architectures
for RASSP

● Architecture overview
● RASSP architecture goals
● The Model Year Architecture framework
● Generic architectures for RASSP
● Architecture design process

● Architecture selection benchmark example
● Summary

Page 146Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is a detailed flow chart of the computation involved in the RASSP
Benchmark 1 SAR processing algorithm.

The input was complex data representing the terrain image information.
It was first processing by a finite impulse filter and Taylor-weighted
before computing a 2048-point complex FFT.

This represents the processing for one of three polarizations.

Copyright 1995-1999 SCRA 146

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Benchmark Example

8-48 TAP FIR

(-1)^n

Taylor
weighting
with +/- 1
modulation

8-48 TAP FIR

(-1)^n Taylor
weighting
with +/- 1
modulation

Even

Odd

Zero-pad &
2048 point
Complex FFT

RCS Amplitude Weights

C
u

rr
en

t
F

ra
m

e
P

re
vi

o
u

s
F

ra
m

e

C
o

n
vo

lu
ti

o
n

K
er

n
el

s

2048 Columnwise
1024 point
Complex
Inverse FFT

2048x512
output image
for one of three
polarizations

Header info. to
select kernel from
table

Image Formation Process Diagram

2032 samples
per image line

Column by
Column Multiply

Page 147Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This chart shows the preliminary analysis of the computational
complexity, including the storage requirements for the processor’s
implementation of the SAR algorithm.

The final estimate requires approximately 400 MFLOPS of processing
and 26.5 MBytes of memory.

These numbers are representative for each polarization. There are
three polarizations, and the next slide takes that information into
account.

Copyright 1995-1999 SCRA 147

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Benchmark Example (Cont.)

Data input distribution 5.25

(-1)^1 Modulation (2032 ranges, 512 pulses) 2.07 (0 adds, 2.07 multiplies)
48 Tap FIR Filter (2032 ranges, 512 pulses) 198.9 (99.4 adds, 99.4 multiplies) 1.2

Taylor Weighting (2032 ranges, 512 pulses) 2.07 (0 adds, 2.07 multiplies)
2048 Point, Range 57.7 (34.6 adds, 23.1 multiplies)

Compression, FFT (512 pulses)
RCS Weighting (2048 ranges 512 pulses) 2.1 (0 adds, 2.1 multiplies) 0.016

Complex Convolution 6.29 (2.1 ads, 4.19 multiplies) 16.8

Kernel, Multiply (2048 ranges, 512 pulses)

1024 Point Inverse FFT (2048 ranges) 104.8 (62.9 adds, 41.9 multiplies) 0.016

Data Output 10.5 0.05

Totals 390

Processor Load and Memory Requirements

Algorithm Block Processing Size (MFLOP) Local Memory Size

Page 148Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Given the three polarizations, the total computational requirements are
approximately 1272 MFLOPS.

The memory amount needed is on the order of 80 MBytes.

Copyright 1995-1999 SCRA 148

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Benchmark Example (Cont.)

 Processing Speed Local Memory Size

 (MFLOPS) (MBytes)

Total per frame, single 424 26.5

polarization

Total, all 3 polarizations 1272 79.5

Total Processor Speed and Memory Requirements

Page 149Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slides shows the preliminary tradeoffs for architectural design.

It was decided that a COTS solution was the preferred choice. Only one
custom I/O module was included for increasing the throughput.

The final solution provided 1440 MFLOPS of processing capability,
leaving about 200 MFLOPS of overhead. The memory was set at 96
MBytes for data storage and covered the required 80 MBytes. The I/O
BW was selected to be 100 MBytes/sec, which more than met the 57
MBytes/sec requirement. The program storage allotted was 12 MBytes.

Copyright 1995-1999 SCRA 149

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Benchmark Example (Cont.)

 Criteria Requirements Provided

COTS As Much As Possible Only one custom I/O module

 C Mature Mature

Throughput 1,272 MFLOPS 1,440 MFLOPS

Memory 80 MBytes 96 MBytes

I/O Bandwidth 57 MBytes/Sec 100 MBytes/Sec

Program Memory 12 MBytes

COTS SAR Processor

Page 150Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This shows the first architecture selected. It is an all-COTS solution
because of the inclusion of the MCV6 boards from Mercury Computing
Systems. The network was a collection of crossbar switches to meet
the throughput data requirements. The control information was passed
over the VME-64 bus from a 68040 controller card.

Copyright 1995-1999 SCRA 150

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Benchmark Example (Cont.)

S
P
A
R
E

S
P
A
R
E

6
8
0
4
0

System
Maintenance

Controller

M
C
V

6

Ethernet

System Controller

RS232

F
I
R
M

M
C
V

6

M
C
V

6

M
C
V

6

M
C
V

6

R
A
D
A
R
IF

Radar

Display

M
C
V

6

VME-64

CrossbarCrossbar

Page 151Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This shows a breakdown of the individual modules for the COTS
solution proposed for the design of the SAR processor vs the various
metrics of importance used in the architecture selection process.

Copyright 1995-1999 SCRA 151

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Benchmark Example (Cont.)

 Module Weight Power Speed Non-vol Data
Item Number (lbs) (watts) (Mflops) Memory DRAM MB/sec

68040 (Motorola 1 1.6 23 4
MVME 167)
i860 (Mercury 6 9 150 1440 96
MCV 6)
Firmware Memory 1 1.5 15 8
Radar IF (Custom) 1 1.5 30 100
Backplane 2
Backplane 1 2
Crossbars (2)
Power Supply 15 55
Rack Enclosure 20
Installed Capability 9 52 274 1440 12 96 100
Required Capability 60 500 1272 80 57

Page 152Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows some the features of the COTS solution to the RASSP
Benchmark 1 study.

The architecture met or exceeded all its specifications in throughput and
memory. It was open and scaleable by using the MCV6 cards. The
VME standard bus was used because it is supported by the greatest
number of suppliers and with high performance.

The design represented state-of-the-shelf hardware.

Copyright 1995-1999 SCRA 152

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP COTS Solution
Features and Benefits

● Exceeds throughput and memory requirements

● Open and scaleable architecture

● VME bus standard supports highest performance
hardware from the greatest number of suppliers

● Technology upgrades shielded from the
applications software

● Scalability via Mercury RACEway (can support
up to 20 array processing modules with 4
processors on each 6U VME module in a single
chassis)

● State-of-the-shelf architecture

Page 153Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide depicts the custom architecture selected for the SAR
processor. A custom board containing the Sharp FFT chip was used to
do the complex FFT computation, and control was implemented using
the 68040 card.

Copyright 1995-1999 SCRA 153

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Custom SAR Processor
Architecture Overview

VME-64

S
P
A
R
E

S
P
A
R
E

F
I
R
M

R
A
D
A
R
IF

S
H
A
R
P

6
8
0
4
0

System
Maintenance

Controller

S
P
A
R
E

S
P
A
R
E

Ethernet

System Controller

Radar

Display

RS232

Page 154Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This shows the hardware breakdown of the custom design associated
with the design of the SAR processor. It utilized the 68040 controller,
the Sharp FFT engine, 2 crossbars, and some custom IF hardware and
backplane design.

Copyright 1995-1999 SCRA 154

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Configuration Matrix for
Custom SAR Processor

 Module Weight Power Speed Non-vol Data
Item number (lbs) (watts) (Mflops) Memory DRAM MB/sec

68040 (Motorola 1 1.6 23 4
MVME 167)
Sharp Engine 1 1.5 30 2400 96
Firmware Memory 1 1.5 15 8
Radar IF (Custom) 1 1.5 30 100
Backplane 2
Backplane 1 2
Crossbars (2)
Power Supply 15 55
Rack Enclosure 20
Installed Capability 4 44 124 2400 12 96 100
Required Capability 60 500 1272 80 57

Page 155Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This shows a comparison of the two architectures selected for design of
the SAR processing algorithm.

This is a form factor comparison of COTS vs Custom.

Copyright 1995-1999 SCRA 155

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Comparison of COTS
vs Custom Approaches

 COTS Custom

Number of Data 1 1

Processing Modules

Number of SAR 6 1 (Double Wide)

Processing Modules

Number of Radar I/F 1 (Double Wide) 1 (Double Wide)

Modules

Total Modules 9 4

Power (W) 274 124

Weight (lbs) 52 44

Page 156Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This shows some of the software elements required in the development
of the SAR processing algorithm.

Copyright 1995-1999 SCRA 156

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Design

● Software data sensor handling element
● Setup process software (custom and COTS)
● SAR process software (custom and COTS)
● Control and diagnostic software (custom and

COTS)
● Process output data software (custom and COTS)
● Development practice and support

Page 157Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This shows a spreadsheet of data from the architecture selection
process of Martin Marietta.

Copyright 1995-1999 SCRA 157

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Results from the RASSP
Architecture Selection Process

Processor, Scale Risk # Weight Power Relative Sched. for
Packaging ability VME (lbs) (watts) Devel. System
Interconnect Slots Cost (years)

RACEway/ SHARC Good Med 4 45 418 1.5x 2
(MCM-based)

Full Custom Fair High 30 300 3 to 4x 3 to 4
(ASIC, MCM)

COTS-based Poor High 6 40 400 1.5x 2+
dedicated HW
(FIR/FFT, PWB)

RACEway/i860 Good Low 6 45 600 1 1.8
(MCM-based)

RACEway/SHARC Good Med 8 50 525 1 1.5
(PWB-based)

SHARC only Fair Med 4 46 418 1.5x 2
(MCM-based)

Page 158Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This concludes the slide presentation. The above topics were covered
and architectures were presented as well as methods for choosing
these architectures. Some examples of how the process is carried out
were also shown.

Copyright 1995-1999 SCRA 158

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary

We described DSP architectures utilized as
candidates for RASSP implementations. We also
presented methods on how hardware and software
elements can be simulated together to evaluate
architectural tradeoffs early in the virtual
prototyping process, before any hardware or
software has been designed.

Page 159Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 1995-1999 SCRA 159

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

[IEEE] All referenced IEEE material is used with permission.

[Lee94] Lee J.C.Y., Siewiorek D.P., “Multiprocessor Architecture Trade-off Advisor Concepts”, Martin
Marietta RASSP Team Member, August 1994.

[Lockheed95] Shirley F., et. al., “RASSP Architecture Guide”, Revision B, Jan 5, 1995.

[LMC-ATL]Caracciolo G., Pridmore J., “Architectures for Rapid Prototyping of Embedded Signal
Processors” , The RASSP Digest, Vol. 2, No. 1, 1st Quarter 1995.

[LMC-MYA]Caracciolo G., “ Second RASSP Model Year Architecture Working Group Meeting” ,
Martin Marietta Laboratories, March 15, 1995.

[LMC-ARCH]Shamming B., “RASSP Methodology Working Group Meeting Architecture Process” ,
Martin Marietta Laboratories, March 16, 1995.

[LMC-Meth] “RASSP Methodology Version 1.0” , Martin Marietta Laboratories, December, 1994.

[Honeywell] Carpenter T., Rose F., Steeves T., “Performance Modeling with VHDL”, Honeywell
Systems & Research Center, Slide presentation. Used with permission.

[Hein95] Hein C., Nasoff D., “VHDL-Based Performance Modeling and Virtual Prototyping”, Second
Annual RASSP Conference, July 24-28.

[PGM90] Prepared by Naval Research Laboratory, Processing Graph Method: Tutorial, January 1990.

[Richards97] Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal
Processors, Kluwer Academic Publishers, Norwell, MA, 1997

[LMC-Review] “RASSP Semi-Annual Government Review” , Martin Marietta Laboratories, February 13-
14, 1995.

[Madisetti1995] Madisetti, V. “VLSI Digital Signal Processors,” IEEE Press, 1995.

