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Algorithm design begins with the analysis of the design specification,
and guides the algorithm developer to the point of HW/SW partitioning.
This includes the domain of functional design.

Various environments and methodologies will be discussed throughout
this presentation to allow the algorithm designer the ability to extract
and analyze specification, develop algorithms for these applications,
and finally do initial trade-offs on architecture selection through HW/SW
partitioning.
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We will describe how DSP algorithm and application requirements and
specifications are captured in an executable form.
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● State of the art survey in DSP algorithm design
● Convey RASSP-related contributions and impact

❍ Learn how to unambiguously state the specifications of DSP
systems for later verification of the final implementation

❍ Learn about the various levels at which a DSP system can be
simulated

❍ Learn how to link the higher level algorithm design to lower
levels

❍ Know more about the different CAD tools which can be used
at the above levels to automate the task of algorithm
development and simulation

❍ Learn partitioning and codesign of the hardware and software
components of DSP systems.



Page 4Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Requirements are generated by the customer specifying the input
output properties of the intended application.   Requirements specify
what the system should do, as opposed to how it should do it.

Copyright  1995-1999 SCRA 4

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
Module Outline

● Introduction
● Requirements Capture

❍ Basic approach

❍ Requirements capture
❑ SAR application
❑ IRST application
❑ Requirements capture tool RDD-100 overview

❍ Code generation
❑ Viterbi decoder application

❍ Data generation

❍ Testbench simulation and control
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● Fixed-Point Design - A RASSP Approach
❍ Motivation for fixed-point processing

❍ Fixed-point representations
❑ Simple fixed point
❑ Generalized fixed point
❑ Examples

❍  VHDL fixed point modeling
❑ Fixed-point packages
❑ High level modeling of processors
❑ QuickFix environment

● Simulation-Based Algorithm/Functional Design
● Network-Level DSP

Continuation of table of contents
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● Link-Level DSP
● Signal Processing Simulators
● PGM/PGSE

❍ PGM/PGSE overview
❍ Application development in PGM

❍ Issues in the use of PGM

● RASSP Software Generation
● Summary

Continuation of table of contents
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We now describe how requirements can be captured in an executable
form.
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This motivates the need for a structured approach to algorithm design.
The constraints on the designer require a rapid methodology to obtain a
final HW/SW solution to a specified application.
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● The complexity of Signal Processing/
Communication Systems algorithms has grown
enormously

● The time-to-market requirements have reduced
considerably

● There is a mismatch and dichotomy between
algorithm development & design and algorithm
implementation

CONFLICTING REQUIREMENTS
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In the conventional approach for designing a DSP system the higher
level algorithm development and the lower level hardware
implementation are independent of each other.

In the RASSP approach both the higher and lower levels of the design
are dealt with simultaneously.

Copyright  1995-1999 SCRA 9

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Conventional Approach vs
RASSP Approach

Algorithm
Design Implementation

Algorithm
Design Implementation

Conventional Approach

RASSP Approach



Page 10Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide describes the changing nature of communications/DSP
system design given the changing scenarios of use, combined with
rising design costs.
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● New technologies are emerging
● Need to integrate networking, transmission,

sensors, data and signal processing
● Mission requirements are changing and

becoming flexible
● Numerical and storage requirements are growing
● There is often inadequate information on nature

of data
● There is little reuse of part designs (beyond

organizational barriers)
❍  Approach has been to REUSE the designer

● There is no automation at higher levels of
abstraction

● Work is done by multi-person teams of designers
and implementation experts



Page 11Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide outlines the wish list of features required of a RASSP-like
environment.
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Algorithm Development

Environment

● Model, analyze, design, and test large systems
(at multiple levels of abstraction)

● Allow rapid exploration of a variety of reuse-
based sources

● Link the algorithm design environment to lower
levels of abstraction

● Continue HW/SW modeling and use real data to
produce effective designs

● Allow efficient multi-person team collaboration
(product, design, and management teams)
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Given the previous wish-list, we would now like to start at the top and:

● Look at capturing the requirements of a given specification

● Show how these requirements can flow down the various
stages of the design process.

We start by looking at the testbench, which is the immediate
interpretation of the specification that our design must come up against
through the various levels of design abstraction.
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● Introduction

● Requirements capture
● Fixed-Point Design - A RASSP Approach

● Simulation-Based Algorithm/Functional Design

● Network-Level DSP

● Link-Level DSP

● Signal Processing Simulators

● PGM/PGSE

● RASSP Software Generation

● Summary



Page 13Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section will discuss the generation of high-level testbenches in
VHDL for studying the requirements of an algorithm.

The above topics on testbench generation will be discussed, and an
environment will be presented to perform this methodology.
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● Requirements Capture

❍ Basic approach

❍ Requirements capture

❍ Code generation

❍ Data generation

❍ Testbench simulation and control
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One of the goals of the DOD DID for electronic parts is to use testbench
as an immediate interpretation of the specification.

The above figure is a high-level testbench generation system to
implement this strategy.

The system specification contains both general and specific
requirements which together specify the system.

General requirements specify the class of system being modeled.

Specific requirements select a particular member of that class of
systems. There are primary and secondary specific requirements, and
these will be mentioned in more detail later.

Data files can be generated from either general or specific
requirements. These files are read by the testbench during execution
using file I/O.
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● Testbench immediate interpretation of spec
● General requirements

● Specific requirements

❍ Primary

❍ Secondary

● Data files

System
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[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.



Page 15Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram illustrates the requirements interface for the SAR algorithm. The
requirements capture tool can be the RDD-100, for example.

This diagram also shows the primary and secondary requirements for the SAR
algorithm.

The secondary requirements are derived from the primary requirements through use of
the mathematical modeling capabilities of the capture tool.

Primary requirements
● Squint angle

● Carrier frequency

● Swath width

● Nominal range to center of swath

● Pulse repetition frequency of transmitted signal

● BW of transmitted signal.

Secondary requirements
● Pulse width of signal used to do deramping

– = PW of trans. signal + swath width/speed of light

● Bandwidth of signal used to do deramping
– = rate of change of freq.* PW of signal

● Sampling frequency
– sampling frequency > 2 * carrier frequency

● PW of transmitted signal

● Speed of aircraft

● Sampling frequency for the resampling process.
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SAR
Requirements

Capture
Tool

i.e., RDD-100

• PW of transmitted
  signal
• Swath width
• Squint Angle
• Speed of light
• Speed of aircraft
• Nominal range
• PRF of trans. signal
• BW of trans. signal
• PW of trans. signal
• Sampling frequency
• Some margins

Primary Requirements

Secondary
Requirements

• PW of signal
  used for
  deramping
• BW of signal
  used for
  deramping
•Sampling freq.

[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.
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This is a similar diagram used for the IRST algorithm. The primary and
secondary requirements are listed. Their derivation is on the next slide’s
note page.

Primary requirements

● Target speed in Machs

● Platform type (three types VF-X, VF, VP)

● Sensor Resolution (High or Low)

● Revisit Period (frame update rate, fed as generic to testbench)

● Range of clutter and target from platform

Secondary requirements

● Target motion (pixels per frame)

● Clutter motion (pixels per frame)
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RASSP Requirements Interface
for Capture of IRST
Algorithm (Cont.)

IRST
Requirements

Capture
Tool

RDD-100

• Target Speed
• Platform Type
• Sensor Resolution
• Revisit Period
• Range
• Bars per frame
• Field of View

Primary Requirements

Secondary
Requirements

• Target Motion

• Clutter Motion

[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.
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This slide shows a plot of the math model for the IRST requirements. The derivations
for each of the parameters are listed below.

Total angular disp. = a1 + a2

Sin(a1) = (.5*PD)/range 1

a1 + a2 = 2*asin(PD/(2*range 1))

PD = (a1 + a2)/PAFOV

Sensor resolution factor =
● 100/1000000 if sensor resolution is high

● 250/1000000 if sensor resolution is low

Platform velocity =
● 448 m/s if platform type = VF-X

● 256 m/s if platform type = VF

● 192 m/s if platform type = VP

Clutter range = 1609.344 * range

Platform Disp. = Platform velocity * Revisit period

Clutter motion = (2*asin(platform disp/(2*clutter period))/sensor res. factor

Target range = 1609.344*range

Target velocity = Mach to m/s * target range

Target disp. = Target velocity * revisit period

Target motion = (2*asin(target disp./(2*target range))/sensor res. factor
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Range 1 Range 2
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[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.
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[Arm95]

The above chart gives some general terms and constituent components
associated with the RDD-100 environment. The following slide uses
some of the definitions to describe a high-level time function developed
for the IRST system.
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● Behavior diagram
❍ Graphical representation of behavior of functions in

terms of time-flow sequence

● Function
❍ Part of system that carries out an action, usually

converting an input to an output

● Item
❍ Something a function accepts or produces (i.e., I/O)

● Discrete function
❍ Function at lowest level of detail w/o subfunctions

● Time function
❍ Higher-level function which can have discrete functions

and/or time functions as sub-functions
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The highest-level time function developed was Requirements. It was
decomposed into discrete functions: Initialize, Platform Data Init.,
Clutter Data Proc., Target Data Proc 1, Target Data Proc 2, and Target
Data Proc 3. The inputs, outputs, and intermediate values were stored
as discrete items.

A description of each of discrete function follows:
● Initialize: used to assign values to the primary inputs, target speed, platform type,

etc.

● Platform Data Init: used to initialize the conversion factor mach to m/s based on
platform type and velocity

● Clutter data proc: used to derive Clutter Range using Range and Clutter Motion
from Clutter Range

● Target Data Proc 1: used to calculate Target Range from Range and Target
Velocity based on the mach m/s conversion factor and Target Speed in machs

● Target Data Proc 2: used to calculate Target Motion based on the calculated
Target Disp, Target Range and Sensor Res. factor.

The Requirements time function was verified using the Dynamic
Verification Facility of RDD-100. The primary requirements were
assigned to their respective items and the secondary requirements
were observed.
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[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.



Page 20Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Statemate is a graphical methodology for rapidly specifying reactive
systems. The types of characteristics found in a system include both
conceptual and physical. Conceptual characteristics include functional
views represented as data flow elements and behavioral views for
control and timing. The physical characteristics include elements for
representing structural views of elements such as modules and
communication links.   The reader may see more recent developments
that greatly extend Statemate capabilities in the Unified Modeling
Language (UML) methodology for requirements specification.
(Additional details are available at www.rational.com).
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Example of a functional activity chart in i-Logix for describing the list of
functions and dataflow.
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Example of the timing behavior of an alarm system captured as part of
i-Logix. Note: concurrency in activities.
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The module list is similar to an equipment list that describes the
allocation of hardware.
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Statecharts are modified versions of state transition diagrams. They are
made up of states and transition from one state to another. A label
event(cond)/action is placed on each transition arrow describing the
condition for transition and action to be taken.

The above figure shows the statechart for the IRST testbench. There
are two concurrent states, FUNC and CLOCK. CLOCK is responsible
for generating the clock for the output frame generation. The period is
an input parameter. FUNC describes the control flow behavior
associated with the testbench. INIT and TRIG control the entire flow of
the testbench. INIT initializes signal and default transitions and starts
the clock. TRIG controls the starting and stopping of frame generation.
TRIG high causes frame generation.

Lower-level statecharts exist for INIT, RUN_0, and RUN_1. These
perform the actions of the specified mode of operation.

VHDL and Verilog code generation is possible from the statechart tool
because there are underlying templates for each of the actions.
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RASSP IRST Testbench:
Top-level Statechart

Demo

FUNC CLOCK

@INIT
1

IDLE

@RUN_0 @RUN_1

FINISHED

tr(TRIG=1 and
MODE =0)

tr(TRIG=1 and
MODE=1)

tr(TRIG=0) tr(TRIG=0)

[INIT=1] [INIT=1]

RUN_CLK

IDLE_CLK

[INIT=1]/DO_ST_CLK

ST_CLK

EN_CLK

DONE_CLK

tr(TRIG=0)

ev(cond)/
DO_ST_CLK

ev(cond)/
DO_EN_CLK

[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.
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Data flow behavior is represented by the use of activity charts as found
in Express VHDL and shown above.

The operation of the SAR testbench is described as follows:

● First, the transmitted signal is produced by generating a chirp
and then multiplying it with a complex tone.

● The received signal is now simulated by delaying the
transmitted signal.

● The two signals are then passed to the two down-converters.
This is done by multiplying them with the complex conjugate of
the complex tone.

● They are then sent to the deramp section, where correlation is
done between the received and transmitted signals.

● The complex conjugate of the down-converted transmitted
signal is multiplied with the down-converted received signal.

● The output of the deramping section is fed to a decimation
section, where the samples are reduced for analysis.

● The output of decimation is of type real and is converted to bit-
vector (40-bit) and assigned to the final output.

● These 40-bit words are used to feed to the SAR processor
model as test cases.
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RASSP SAR Testbench:
Activity Chart Model

BW SAMP_FREQ FREQ PW PRF N

Environment

SAR-TB
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Comp
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Comp
tfp2
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Mul1

Comp
Mul2

Comp
Mul3
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Mul4

Comp
Mul5
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Neg3
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Neg5
Comp
tfp5

Comp
Mul6

Comp
tfp3

Assign1

Deci
Mat1

Deci
Mat2

Change1

Change2

Change3

Change4
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RC1

IC1

RC2

IC2
R2

I2

R1

I1

NR2

NI2

DR1

DI1

R6

I6

NR6

NI6

R7

I7

R4

I4

R3

I3

NR3

NI3

R5

I5

NR4 NI4

RRH1
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VRRH
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VRRV

VIRV

[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.
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[Arm95]

Code generation can be done from CASE tools such as i-Logix’s
Express VHDL.

Two approaches to code generation will be discussed in the following
slides. These include behavioral testbench development (using CASE
tools) and structural testbench development (using schematic capture
tools). The advantages of using each approach are listed above.

The CASE tool used for the first approach was i-Logix’s Express VHDL
which uses Statecharts to describe control flow and activity charts to
describe data flow.
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● Two main approaches
❍ Behavioral testbench development

❑ Uses CASE tools to develop high-level models
(i.e., i-Logix Express VHDL)

❑ Statecharts and activity charts describe behavior

❑ Advantages include
➭ Reduced test time required for large models
➭ Testbenches can be used for a class of systems which

have same general functionality
➭ No detailed internal structure required

❍ Structural testbench development

❑ Uses schematic capture tools to construct the
testbench from library of primitives

❑ Advantage
➭ Uses existing commercial schematic capture tools
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Let us consider a communication system. The input signal x[n] is
encoded using a rate 1/2 linear convolutional code. The encoder
outputs y0 and y1 are then modulated using binary phase shift keying
(BPSK) to produce s[n]. This signal is basically a sequence of -1’s and
+1’s. s[n] is then transmitted over an additive white gaussian noise
(AWGN) channel. The output of the channel is demodulated and then
quantized using 3 bits. The digitized output of the quantizer is then fed
to the Viterbi decoder which generates the final output sequence.

The numbers next to each variable gives the kind of values the variable
may take. For e.g., a (0,1) next to x[n] means that x[n] can be a 0 or a 1
and nothing else.
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Decoder

Modulator

Encoder

Channel De-modulator

Quantizer

Decoder

x[n]

y0[n],  y1[n]

s[n]                                           sn[n]
Analog r0[n], r1[n]

r0[n],  r1[n]

y0’[n],  y1’[n],  x’[n]

(0,1)

(0,1)

(-1,1)                                     Real #’s

Real #’s

(0,1)

(0,1)
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This is a graphical description of the flow graph of a linear convolutional
encoder (the input is x[n] and the output is y[n]).
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Delayx[n]

y0[n]

y1[n]

x[n-1]
x[n-2]Delay



Page 29Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 29

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
VHDL Code for the Encoder

ARCHITECTURE fsmd OF encoder IS

BEGIN
PROCESS (clock)
  VARIABLE state : integer RANGE 0 to 3 := 0;
BEGIN
  IF rising edge of the clock THEN
       CASE state IS

Set the next state and the two outputs

depending on the present state and the

input

       END CASE;
  END IF;                              User defined variables are

END PROCESS;                  underlined. Key words are

END fsmd;                                         in capitals.

The graphical description is captured in VHDL with clock-level fidelity.
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BPSK Modulator

● Convert parallel output of encoder to serial

❍ Send y0[n] at the rising clock edge

❍ Send y1[n] at the falling clock edge

● Transmit

❍ -1 to represent a 0

❍ +1 to represent a 1

Another example of a commonly used communications subsystem.
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VHDL for the Modulator

ARCHITECTURE behavior OF bpsk IS

BEGIN
PROCESS (clock)
BEGIN
  IF rising edge of the clock THEN
       If first input = 1 then transmit a +1

                                    if it is 0 then transmit a -1

  ELSIF falling edge of the clock THEN
       If second input = 1 then transmit a +1

                                    if it is 0 then transmit a -1

END PROCESS;
END behavior;

VHDL executable requirements of the same BPSK modulator.
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AWGN Channel

● Signal to Noise Ratio (SNR) and Variance
                          SNR        =  -10 log10N0

                                                          Variance =   σ  σ22  =  N0

                 Therefore,  σ    σ    =    10-(SNR/20)

● Gaussian Noise Generation
x1 = exp(- (y12+y22)/2)

                          x2 = (arctan(y2/y1)) / (2ππ)
❍ Choose x1 and x2 to be Uniform random variables over

(-1,1)

❍ Then y1 and y2 are Gaussian random variables with
mean 0 and variance 1

❍ Scale y1 and y2 to get the right variance

The channel is represented conventionally with specification of the
noise and the signal to noise requirements.
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VHDL for the Channel

ARCHITECTURE behavior OF channel IS

BEGIN
PROCESS (input)
BEGIN
    sigma := 10**(-snr/20.0);
    gaussian(seed1,seed2,temp);
    noise := sigma * temp;
    output  <= REAL (input) + noise;
END PROCESS;

END behavior;

gaussian is a function defined by the programmer in a library

Representation of the channel in VHDL (executable requirements)
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3-bit Quantizer

● 3-bits => 8 levels

-0.9     -0.7          -0.3          0       0.3          0.7      0.9

 3

 2

 1

     -1
     
     -2

     -3

     -4

Input

Output

No need to express the output
in terms of bits since the Viterbi 
algorithm simply looks for the 
Euclidean distance between the 
signals

A quantizer is represented in graphical form.
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VHDL for the Quantizer

ARCHITECTURE behavior OF quantizer IS

BEGIN
PROCESS (clock)
BEGIN
  IF event on the clock THEN

Depending on the range in which the

input lies decide the output

IF rising edge of the clock THEN
   actually send the output

IF falling edge of the clock THEN
   update the internal registers

  END IF;
END PROCESS;

END behavior;

The high level representation (in executable form) of the quantizer.
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Feedback to update 
   Path metric

Viterbi Decoder Using the
Register Exchange Method

● Maximum Likelihood Sequence Estimation
(MLSE)

● Most efficient decoder for convolutional codes
● Applications

❍ High performance equalizer for mobile communication

❍ TCM decoder for V.32 modem

● Implementation Structure

Branch Metric
Computation

Add Compare
Select

Survivor 
Memory

r0
r1 x’[n]

Another commonly used communication subsystem that uses the
Viterbi decoder.
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Each of these individual blocks are first simulated and tested. Then
finally all these entities  are connected according to the system block
diagram and simulated.

Thus we have been able to test  the functionality of an entire
communication system using behavioral level specifications. Such
simulations help to refine and perfect the algorithm before going to
lower levels of design.
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RASSP
VHDL for the Viterbi Decoder

ARCHITECTURE behavior OF quantizer IS

BEGIN
PROCESS (clock)
BEGIN
  Delay activation of the decoder till the first sample

                               reaches it

  IF rising edge of the clock  and THEN
Calculate branch metrics using inner

 products between the received word and

the code word

    Compare and select the surviving path

Exchange register contents

  END IF;
END PROCESS;

END behavior;
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Signal Processing Workstation (SPW) from Comdisco/Cadence was
used to create the simulation model of the data flow for the SAR
algorithm. SPW can then generate VHDL code from its schematic
capture tool. It cannot generate real data types because it only supports
fixed-point designs.

A real number model extraction tool that interfaces to SPW had to be
developed.

In SPW, every structural model has a schematic description file called
“$netlist”. This file contains all the information about the parameters of
the blocks and connection information. The above figure shows the
methodology of the SPW tool to do this.

The Integration tool is used to integrate all the structural information, I/O
information, and parameters captured by shell scripts. It also uses a
VHDL support file which is a package of library VHDL procedures
corresponding to SPW primitives.
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Development

Extract structural info
Extract I/O ports
Extract parameters

VHDL Support
File

Integration
Tool

VHDL
Model

[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.
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[Arm95]

Algorithm design tools (Matlab, etc.) can be used to generate numerical
testbenches for use in system design environments.
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Data Generation

● Comdisco/Cadence SPW, xpatch, or Matlab used
to generated data files for model under test

❍ SPW uses “sink” primitive to dump to file in ascii format

❍ xpatch used to generate radar sensor data files

❍ Matlab used to generate clutter file data
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This shows a combination of all the previous techniques mentioned as
part of a complete environment for testbench generation and model
simulation.

The next slide describes the IUI in more detail.  Note that recent
languages such as The Unified Modeling Language (UML) can also be
used with advantage (just like VHDL has been used in this module).
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RASSP Testbench Simulation &
Control System

Requirements
Capture

Tool

Inputs from
User

Environmental
Data

Generator

Data
Files

Intelligent
User

Interface
(IUI)
in C

i-Logix
Express VHDL

Behavioral
Model for
Testbench

Final
Simulation

Control
File

Synopsis
Graphical

Environment
Structural
Model for
Testbench

SPW
Schematic

Capture
Tool

Synopsis
VHDL

Simulator
(vhdlsim)

VHDL
Model
Under
Test

Comparator

[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.
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The main purpose of the IUI is to configure a testbench that is
appropriate to a test or a set of tests, given that all the VHDL
components needed for the testbench are available.

The system requirements can be applied to the testbench model
through the IUI. It can also generate the necessary input data values
(target initial position, etc.) for the testbenches by either user interaction
or through file I/O.

The IUI forms the simulation control file for the simulator. This file is
used to create displays during or after simulation of the testbench and
controls the overall operation of the simulator.

The IUI forwards the testbench outputs to the model under test for
testing that model.

The IUI was developed in C and runs on a Sun-OS platform.

The menu structure is shown in the above diagram.

It provides the user with a choice of categories such as application
domain, type of testbench, etc.

Based on all input values gathered by the IUI, a simulation control file is
formed to control the simulation of the the testbench model.
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RASSP Intelligent User Interface
Menu Structure

IUI

Requirements
Driven

(for IRST)

Type of
Testbench

Mode of
Processing

User
Driven

Application
Domain

Type of
Testbench

Mode of
Processing

[Arm95]Copyright 1995 VHDL International Users Forum. Used with permission.
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After the high level simulation of the requirements, it is often necessary
to refine the requirements one step further within a fixed point
simulation environment.
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Module Outline

● Introduction

● Requirements Capture

● Fixed-Point Design - A RASSP Approach
● Simulation-Based Algorithm/Functional Design

● Network-Level DSP

● Link-Level DSP

● Signal Processing Simulators

● PGM/PGSE

● RASSP Software Generation

● Summary
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Section Outline

● Fixed-Point Design

❍ Motivation for fixed-point processing

❍ Fixed-point representations

❑ Simple fixed point

❑ Generalized fixed point

❑ Examples

❍  VHDL fixed point modeling

❑ Fixed-point packages

❑ High level modeling of processors

❑ QuickFix environment

This section will present an overview of modeling and simulating fixed-
point representations of algorithms.

Typically the algorithm is simulated in double-precision floating point in
an environment such as Matlab. After the performance is studied at this
level, fixed-point implementation can be explored to save on hardware
cost and power consumption.
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The above slide lists some reasons for using fixed point processing
when the requirements for the algorithm can be met with this accuracy.
The power and size are less when compared to floating point, and the
complexity tends to be less.

What is needed is a good front-end tool to help make rapid tradeoffs
between specific floating-point and fixed-point implementations because
most simulations are done in floating point. It takes more time and effort
to simulate in fixed point.
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RASSP
Motivation for Fixed Point

● Lower cost implementation and design
complexity

● Less power
● Smaller area
● Processor examples

❍ Fixed-point processors

❑ Motorola 56000, Power: 90 mA @ 5 V

❑ Texas Instruments TMS320C50, Power: 60 mA @ 5V

❑ Analog Devices 2100, Power: 60 mA @ 5V

❍ Floating-point processors

❑ AT&T DSP3210, Power: 220 mA @ 5V
❑ Texas Instruments TMS320C30, Power:

300 mA @ 5V
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[Baudendistel93]

Fixed point can be represented by either the simple form or a more
generalized form as shown above. Most simulators of fixed point use
the simple form (Ptolemy, Mentor Graphics, Virtuoso). The generalized
form is more difficult to implement but provides benefits when it is
preferable that the radix point not lie on a bit boundary.
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Fixed-point Representations

● Simple fixed point
❍ Field of bits with radix point on bit boundary
❍ Power of 2 scaling
❍ Notation: fix<x.y>
❍ Integer form: Radix point to right of LSB
❍ Fractional form: Radix point one bit to right of MSB

(sign bit)

● Generalized fixed point
❍ Radix point not necessarily on bit boundary
❍ Integral (exact) and fractional (approximate) forms
❍ Notation: Integral form

❑ ix∆∆x  where ix is the integral field and ∆∆x is the
stepsize

❍ Notation: Fractional form
❑ ααxφφx where ααx is the fractional field and φφx is the

fieldsize
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This slide shows an example of both the simple and generalized fixed-
point representations.

The simple form represents the radix point on bit boundaries and, as
can be seen, 3.75 maps exactly to the value shown using the fix<3.2>
format. This is the maximum value represented by this format because
the first bit is the sign bit. The resolution is .25 and numbers such as 3.2
cannot be represented exactly.

The generalized form specifies numbers with a slight difference. The
precision and stepsize are used for the integral form, and the precision
and fieldsize are used for the fractional form. Although the same
number of numbers can be represented in both when the precision is
the same, there is a slight difference in interpretation. In the integral
form all numbers are represented exactly, while in fractional form
approximations are used to represent specific numbers, as can be seen
from the examples. The fieldsize represents a range of possible real
numbers, while the integral form represents a range of integers.
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Fixed-point Examples

● Simple fixed point
❍ Given the following simple fixed-point type: fix<3.2>

3.75   |-->    011.11

● Generalized fixed point
❍ Integral form: Given a precision of 5 bits and a stepsize

of 1/5, then the number 2 maps to 01010

2   |-->   01010

❍ Fractional form: Given a precision of 8 bits and a
fieldsize of -10 to 10, then the number 1/7 maps to
00000001 or 00000010 based on the rounding mode

1/7   |-->    00000001 or 00000010
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This is how the fixed-point representation can be done in VHDL. The
use of operator overloading can help the developer define the
operations on this scaled-fractional data type. Additional operations
besides the ones listed above must also be included, such as greater
than, less that, negation, and not equal to.
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High-level Modeling

● VHDL has two basic data
types (scalar and
composite)

❍ Numeric (Integer and
Real)

❍ Enumeration (boolean, bit,
and character)

❍ Physical (time)

● Fixed-point packages to
perform specific
calculations

❍ Overloaded operators

package BIT_16pack is
  type FIX16 is
    record
      field  : real;
      frac   : integer;
    end record
  function “+” (op1 :  FIX16;
                         op2 :  FIX16) return FIX16;

  function “*” (op1 :  FIX16;
                        op2 :  FIX16) return FIX16;

  function “-” (op1 :  FIX16;
                       op2 :  FIX16) return FIX16;

  function “/” (op1 :  FIX16;
                        op2 :  FIX16) return FIX16;

end BIT_16pack;

[Egolf]© IEEE 1995
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Using the same concept as in the last slide, we can also use VHDL to
make processor-specific packages. These mimic the behavior of a
specific fixed-point processor by representing its internal functionality in
a package with procedures and overloaded operators that behave
exactly like the processor. As we can see from above for the Analog
Devices 2100 fixed-point package, there are functions to model its
accumulator, adder, multiplier, shifter, and its rounding or truncation
behavior.
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RASSP VHDL Processor-specific
High-level Modeling

● Package expresses
the functionality of the
processor to be
modeled

● Important
functionality

❍ Adder and multiplier
input and output widths

❍ Accumulator sizes

❍ Shifter functionality
❍ Rounding/Truncation

and overflow properties

package ADSP2100pack is
  function “+” (op1 :  BIT_16;
                         op2 :  BIT_16) return BIT_16;
  function MULT (op1 : integer;
                                 op2 :  integer;
                                 mode: string)  return BIT_40;
  function RND (op1 :  BIT_32)  return integer;
  function TRUNC (op1 : BIT_32)  return integer;
  function ADD_40 (ad1 : BIT_40;
                                 ad2 : BIT_40) return BIT_40;
  function MAC (accum : BIT_40;
                            mp1    : integer;
                            mp2    : integer;
                            mode  : string)  return BIT_40;
  function GET_EXP (op1 :  BIT_VECTOR)
          return integer;
  function NORMALIZE (op1 : BIT_VECTOR;
                                         shift: integer);
          return BIT_32;
end ADSP2100pack;

[Egolf]© IEEE 1995
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When all the previous methods are combined, we arrive at an
environment in VHDL that allows a algorithm designer to quickly
examine the behavior of the algorithm using various bit widths to
examine its performance requirements.

This can then point the designer to the correct architecture to use to
implement the algorithm’s behavior.
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QuickFix Environment

QuickFix Environment

Technology Independent Technology Dependent ASIC

TMS320C50 ADSP2100 ASIC

CELP, JPEG, etc. ADSP2100, TMS320C50, etc.

Floating-point solution
Compare Metrics

Technology Selection

Implementation

Verification
[Egolf]

© IEEE 1995
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Module Outline

● Introduction

● Requirements Capture

● Fixed-Point Design - A RASSP Approach

● Simulation-Based Algorithm/Functional Design
● Network-Level DSP

● Link-Level DSP

● Signal Processing Simulators

● PGM/PGSE

● RASSP Software Generation

● Summary
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Here we compare the advantages of a simulation-based design
methodology with respect to an analytical approach.
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RASSP Simulation-based vs Analytical
Approach

● SIMPLE or COMPLEX (as
required by application)

● FAST to SLOW (tailored by
application)

● Finely explore the design
space

● Very accurate, if necessary

● Combines mathematical &
empirical models

● Intermediate & transient
state available

● Testing

● SIMPLE to use (formula)

● FAST

● Generally APPROXIMATE
(assumptions usually
artificial)

● DIFFICULT to analyze
COMPLEX systems

● Usually specific to
application -- little reuse

Simulation-based Approach Analytical Approach
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This slide describes the progression in simulation-based design
environments.

Copyright  1995-1999 SCRA 52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Trends in Simulations/Tools
and Environments

● 1970s - Individual programs
❍ Batch mode execution on mainframes

❍ Outputs consist of tables and numbers

❍ Considerable time on debugging and less time on
application

● 1980s - Simulation environments and languages
❍ Model libraries

❍ Interoperability

❍ Computer-aided design and analysis

❍ Better user interfaces

❍ Distributed and parallel environments

❍ Advanced database management
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The trends for the 90’s are listed above.  The Unified Modeling
Language (UML) is a late 90s evolution that promises to unify the
advantages of various modeling paradigms.
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RASSP Trends in Simulations/Tools
and Environments (Cont.)

● 1990s - Managing simulation complexity, inter-
operability, and reuse (little programming
required, if any)

❍ Hierarchical simulation and Block-oriented

❍ Mixed domains of computation and interaction

❍ Larger application-specific focus

❍ Simulation and verification
❍ Automation

❍ Links to lower levels of abstraction
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We find this convenient as a unified picture of the “layered” DSP
algorithm design environment. We will discuss the different
environments in the context of this slide.
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RASSP Hierarchical Approach to DSP
Design

 Wide dynamic range in complexity:
     Custom Chips               Large distributed multi-
                                            processor systems

NETWORK Level

LINK Level

Signal
Processing

EVENT-DRIVEN

WAVEFORM / TIME DRIVEN
• Channel, Modulation
  formats, etc.

 TIME-DRIVEN
• Signal Processing
  (SNR, finite-precision, etc.)

[Shanmugan89]© IEEE 1989
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This slide describes the “heterogeneous” or “mixed domains of
computation” found in modern environments such as Comdisco,
COSSAP, and Ptolemy.
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RASSP Hierarchical Approach to DSP
Design (Cont.)

● NETWORK LAYER
❍ Performance of network in terms of throughput and

error rates as functions of load, protocols, and data
distribution

❍ Usually event-driven

● LINK Level
❍ Physical level, including modulation and data formats,

modem, filter bandwidths, effects of noise, and
interference

❍ Usually time-driven

● Signal Processing Level
❍ Alternate algorithms for application-specific

image/signal processing, finite precision effects,
limitations of computational power and approximate
processing, SW/HW design trade-offs

❍ Usually time-driven (clocked)

Data

Data



Page 56Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide breaks down the design environment into its functional
components.
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RASSP Major Structural Features of
Design and Analysis

Environments

Block-oriented (graphical) or Language Description

SYSTEM CONFIGURATOR

Simulation Exerciser

Post Processor
(Simulation Interpretation)

REUSE MODEL 
LIBRARIES

Model & System
Parameters

New
Topology

New
Parameters

Performance output results
[Shanmugan88]

© IEEE 1989
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The functional tasks of a simulation-based environment are described.
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RASSP
Functional Tasks

● System Configurator
❍ Selects functional blocks from model library
❍ Connects them in the desired topology
❍ Can set parameters

● Simulation Exerciser
❍ Sets up the execution of the simulation
❍ Schedules, assigns, and allocates resources
❍ Generates and uses testbenches
❍ Performs checkpointing and storage of simulation state
❍ Performs garbage collection and recovery

● Post Processor
❍ Examines time & event histories
❍ Computes performance metrics
❍ Formats and displays interpreted results
❍ Decides on the termination conditions (iterations)
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The typical tradeoffs TO BE MADE between graphical AND language-
driven approaches.
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RASSP Simulation Inputs
(Graphical and Language)

● Preferred approach - functional blocks/package
to be written in C & FORTRAN

❍ Do not allow input via block diagram (engineer’s
approach)

● Special-purpose Simulation languages that are
portable across various computing platforms

❍ E.g.: SIMSCRIPT, GPSS, SLAM, SIMULA, VHDL

● Graphical Languages such as:
❍ Statemate/Statechart

❍ PGM/PGSE environments

❍ Ptolemy

❍ Blosim

❍ Comdisco (SPW, BOSS, BONES)

❍ COSSAP
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Please refer to The Unified Modeling Language (UML) site at
www.rational.com/uml/index.jtmpl
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RASSP Features Required from an
Input Language

● Training Required
❍ Ease of learning the language

❍ Ease of conceptualizing design problems

❍ Ease of programming

● Coding Considerations
❍ Integration

❍ Degree to which code is self-documenting

● Portability
❍ Language availability on various platforms

● Flexibility
❍ Supports various modeling domains

❍ Statistics/metric calculation capabilities

❍ List/queue processing capabilities
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Features of languages (Contd.)
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Input Language (Cont.)

● Processing Considerations
❍ Ease of producing reports

❍ Ease of user-interface usage

● Debugging Capabilities
❍ Ease of debugging

❍ Reliability and efficiency of compilers

● Run-time  Considerations
❍ Execution speed
❍ Memory management

❍ Concurrency extraction
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RASSP emphasizes reuse and library generation, and management is
a crucial component of the design environment.
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Other Functional Components

● Model Library
❍ Contains large number of validated models of functional

behavior
❍ Should be capable of being expanded by user
❍ Provides inter-operability and standardized interfaces

● Model Builder
❍ Selects building blocks
❍ Sets parameter values
❍ Operates at schematic capture-level
❍ Is hierarchical
❍ Eliminates programming by user

● Simulation Manager
❍ Translates model to executable program
❍ Links to libraries
❍ Assigns, schedules, and allocates resources
❍ Performs database management

Free the Algorithm 
Developer from 
burdensome tasks
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We now progress to modeling a DSP algorithm at a higher level of
abstraction - the network level.
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Module Outline

● Introduction

● Requirements Capture

● Fixed-Point Design - A RASSP Approach

● Simulation-Based Algorithm/Functional Design

● Network-Level DSP
● Link-Level DSP

● Signal Processing Simulators

● PGM/PGSE

● RASSP Software Generation

● Summary
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We now describe the highest layer of abstraction - network level.
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Network-level CAD Tools

● Analytic tools
● Simulation tools - most powerful
● Emulation tools & testbeds (usually for testing

protocols)
● Focus on a NETWORK-LEVEL simulator

❍ Finite state machines and Petri nets

❍ Queuing theory

❍ Collection of interacting procedures (SIMULA, GPSS)

● Network design and modeling consists of three
major tasks

❍ Protocol Design and Test - majority of the work

❍ Topology (physical)
❍ Processing nodes (attributes)
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This example shows that one can’t use the CPU from the terminal
unless the token enters the “idle” state.
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Network Level CAD Tools

Protocol Design & Verification: Petri nets

Computer
Idle

Terminal
Ready

Computer
Busy

Example of interaction with
a KEYBOARD

Token

Directed 
    Arc

Trigger

PlaceSource

[Jackman88]© IEEE 1988
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Conventional Petri nets have limitations.

These are improved by the so called “modified Petri net”

Copyright  1995-1999 SCRA 65

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
Petri Nets

● Petri nets have NO time delays and can be used
for protocol verification only

❍ We need modified Petri nets (used in most simulation
environments, e.g., BONES)

MODIFIED PETRI NET               STANDARD PETRI NET

Regular Place                             Place

Delay Place                                 Trigger

Link Place                                   Directed Arc

Trigger                                         Token

Directed Arc

Not Edge

Primary Edge
Token

[Jackman88]

© IEEE 1988
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Explanation of some of the features of modified Petri nets.
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Petri Nets (Cont.)

INTERRUPTED DELAY

                                 -   Start of Transmission

                                 -   End of Transmission

                                 -   Message Arrival

SOT

EOT

Arrive

[Jackman88]© IEEE 1988
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Example of the use of modified Petri nets in timing simulation in addition
to protocol verification.
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Bus Protocol Using Petri Nets

Arrive SOT

WAIT Traffic EOT

Transmit SOT

DONE EOT

Bus
Busy

[Jackman88]

© IEEE 1988
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We will now discuss the design of a complex protocol of a
multiprocessor network design.
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Detailed Example

● Topology
❍ Physical connections

❍ Propagation velocity of the medium

❍ Transmission rate of the medium

❍ Transmission type

● Node
❍ Arrival distribution of packets

❍ Packet-length distribution

❍ Location of node on the network
❍ Traffic pattern

● Protocol
❍ Routing table for source/sink

configuration

2µµs 2µµs propagation 
delay

 From/To      1           2          3

     1                           4

     2                                        4

     3              6

delay in µµs

[Jackman88]© IEEE 1988
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The first example shows the limitations of a simplistic protocol - possibly
unfair.
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Detailed Example (Cont.)

● Protocol 1 - Each node can transmit as much
data as possible if it has a permit to do so

SOT EOT Arrive

WAIT

Transmit

Present

Token SOT

EOT

Data for
transferPermit

Arrives

[Jackman88]

© IEEE 1988
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We include the provision of a “time-up” that puts an upper bound on the
“hold” time of each node. Actual input load characteristics can then be
simulated.
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Detailed Example (Cont.)

● Protocol 2 - A fair protocol with TIME-OUT

SOT EOT Arrive

WAIT

Transmit

Present

Token SOT

EOT

Possess

Time Up

SOT

Simulation results
are close to
Analytical results

[Jackman88]© IEEE 1988
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This environment was discussed earlier in the module.
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Design with Statemate

● Statemate - A graphical specification mechanism
for reactive systems from i-Logix

● Characteristics of a reactive system

❍ Continuously interacts with its environment - event-
driven

❍ Able to respond to interrupts

❍ Real time constraints

❍ Provides high level of concurrency in system operation
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● Introduction

● Requirements Capture

● Fixed-Point Design - A RASSP Approach

● Simulation-Based Algorithm/Functional Design

● Network-Level DSP

● Link-Level DSP
● Signal Processing Simulators

● PGM/PGSE

● RASSP Software Generation

● Summary
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Link-level design environments.
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Environments

● Usually time-driven and export parameters to the
network level

● Same “structure” as the network-level
environments

● Consist of model libraries, block diagram editors,
simulation managers, postprocessors, database
manager, and consistency checker

● Model libraries contain
❍ Signal sources

❍ Modulators/demodulators

❍ Encoders/decoders

❍ Channel models

❍ Arithmetic and logic operations

Compiled to a C/FORTRAN
Program for execution
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The difference between the execution times of various simulators is
closely dependent on the resource management issues related to the
domain of computation.
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The Execution Manager

● DSP algorithms are modeled by data flow graphs
similar to Fully Specified Flow Graphs (FSFGs)

● Data flow graphs: execution model
❍ Fully dynamic DFGs

❍ Static allocated DFGs

❍ Self-timed DFGs

❍ Fully static DFGs

● More on this topic in the scheduling and
assignment module
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The impact of scheduling methodology, application specific of execution
time.
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The Execution Manager (Cont.)

● Two tasks undertaken by the Execution Manager
❍ Assignment: Assigning tasks to processors

❍ Scheduling:

❑ Precedence

❑ Start times of tasks

   Assignment   Precedence   Start-Timing

Fully Dynamic         Run-Time      Run-Time       Run-Time

Static Allocation     Compile         Run-Time       Run-Time

Self-Timed               Compile         Compile         Run-Time

Fully Static              Compile         Compile          Compile

Increasing
Application-
-specificity
& Domain
Knowledge
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We will now describe some library-based signal processing simulators.

See http://ptolemy.eecs.berkeley.edu for a comprehensive list of
publications related to the Ptolemy environment that is not repeated
here.
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● Introduction

● Requirements Capture

● Fixed-point Design - A RASSP Approach

● Simulation-based Algorithm/Functional Design

● Network-level DSP

● Link-level DSP

● Signal Processing Simulators
● PGM/PGSE

● RASSP Software Generation

● Summary
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Signal processing environments relate to the lowest level of the
hierarchy - the functional level.
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Block Oriented Simulators

● Block-oriented simulators
❍ Matlab/Simulink

❍ Mathematica

❍ Khoros

❍ Ptolemy/Blossim

❍ BOSS/SPW
❍ COSSAP

Primarily BLOCK-ORIENTED simulators capable of
TIME and FREQUENCY domain operations
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Khoros is widely used in image processing applications.
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Khoros 2.0

● Khoros is a complete data exploration and
software development environment

● Advantages
❍ Reduces time to solve complex problems

❍ Provides free sharing of code modules

❍ Promotes portability

● Primary emphasis
❍ Software development

❍ Data visualization

● KHOROS software is divided into several
toolboxes

● Toolboxes are organized by function and
common objective
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Additional information on Khoros may be obtained at
http://www.khoral.com

Copyright  1995-1999 SCRA 79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
Software Organization

● Software organization is based on toolbox and
software objects

❍ Craftsman: toolbox management tool
❍ Composer: software object editor

❍ Guise: GUI design tool

● Craftsman, Composer and Guise are stand-alone
tools

● Cantata is the visual programming language
environment

❍ Complete software development environment

❍ Data visualization tool

❍ Algorithm layout tool
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Additional information can be obtained at http://www.khoral.com
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Flexibility

● Easily configurable to include desired toolboxes
and programs

❍ Simple to add new toolboxes and programs to system

● Use of code generators integrated into Composer
❍ Composer writes interface code for new programs to

reduce programming time

❑ I/O structure, library includes etc.

● Data processing “operations” based on multi-
dimensional polymorphic data model

❍ Same operator (i.e., FFT) works on 1D, 2D, 3D,... signals
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Additional information can be obtained at http://www.khoral.com

Copyright  1995-1999 SCRA 81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
Flexibility (Cont.)

● KHOROS 2 programs operate on data
independent of storage format

❍ Example

❑ Can add 256x300 color Sun raster image with
512x512 VIFF-formatted image without any
conversion

● KHOROS 2 can handle large data sets

❍ Example

❑ Can take FFT of 2K x 2K x 2K float volume
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Additional information can be obtained at http://www.khoral.com
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KHOROS Availability

● Free access to KHOROS system
❍ Not public domain, licensing is done through Khoros

Research Inc.

● Available via FTP
❍ USA ftp.khoros.unm.edu     /pub/khoros/khoros2.0

❍ USA ftp.sdsc.edu                 /pub/other/khoros/khoros-2
❍ Germany ftp.uni-koeln.de   /graph/khoros2.0

● Web site home page
❍ http://www.khoros.unm.edu
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Blosim allows people to write efficient custom simulation programs yet
reuse them later.
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BLOSIM/Ptolemy

● Precursor to Ptolemy (http://ptolemy.eecs.berkeley.edu)
● User writes code for functional blocks, BLOSIM allows blocks to

be interconnected and executed as ONE EXECUTABLE in C
● Equivalent to writing a special-purpose simulation for an

application, but standard interface allows blocks to be reusable.
Allows multiple sampling rates

● Ptolemy adds C++ and links to execution on parallel processors,
adds model libraries, and adds a few additional domains

❍ Essentially a multi-level simulation model described earlier
❍ Attractive features - Matlab blocks can be included
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The user has to write all code. Blosim combines the blocks.  There is
extensive literature available on Ptolemy at

http://ptolemy.eecs.berkeley.edu regarding its recent progress and
updates.
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Program Structure in BLOSIM

FIFO Buffer Management

BLOSIM Kernel

User Topology 
Definition

User Block
Routines

Blocks communicate through standardized interfaces
[Messerschmitt84]© IEEE 1984
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Another example (in addition to Khoros, Ptolemy, Blosim) is
BOSS/SPW by Comdisco.
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Software Structure

Display Screen

Display Manager

Post Processor Block Diagram

Database Code GeneratorSignals

Simulation
Manager

[BOSS86]
© IEEE 1986
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Processing Graph Methodology (PGM) is one of the original
environments, developed by the US Navy, that is targeted towards
RASSP applications (data flow and control flow specifications).
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● Introduction

● Requirements Capture

● Fixed-Point Design - A RASSP Approach

● Simulation-Based Algorithm/Functional Design

● Network-Level DSP

● Link-Level DSP

● Signal Processing Simulators

● PGM/PGSE
● RASSP Software Generation

● Summary
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Section Outline

● PGM/PGSE

❍ PGM/PGSE overview

❍ Application development in PGM

❍ Issues in the use of PGM

We now introduce PGM and PGSE environments with examples.
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PGM facilitates an executable specification of the application.
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PGM

● The PGM allows to develop signal processing
applications without any knowledge of the
underlying machine architecture

● PGM achieves this goal by providing
❍ A high level specification

❍ A graph oriented language

❍ Tools for translating the graphs into load modules for
target machines

❍ And a run-time support environment which expands the
graph instances
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Dataflow Vs. Control flow

In a Control flow paradigm the order of execution of elements of the
program are embedded in the program description. On the other hand,
in a Dataflow paradigm the execution of the elements are based on the
availability of the data. The environment provides a set of atomic
operations that can consume data and produce data. Upon the
execution of the program, the elements that have data ready will
produce data that will enable other elements to be ready for execution.
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PGM Fundamentals

● PGM is based on a modified “data flow”
methodology

● It differs from the classical data flow in the
following

❍ The input queue threshold can be set more than 1

❍ An offset can be specified to skip a certain number of
input data from the queue before reading data

❍ The number of elements to read into a node can be
specified

❍ The number of elements to consume from input queues
can be specified

❍ PGM is Data Flow only down to the level of scheduling
nodes for execution
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Description:

Signal processing applications are normally described using block
diagrams that lend themselves very naturally to Dataflow paradigm. The
block diagram is built out of certain black boxes that perform certain
functionalities. These black boxes are further described based on more
primitive signal processing elements. Each box in the block diagram
processes the data that appears at its inputs and provides the result at
the output where it is used by another box.
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PGM and DSP

● PGM is to be used to build up signal processing
applications

● The signal processing application is defined as a
set of graphs and command programs

● The graphs are analogous to flow diagrams used
to summarize signal processing flow

● The command programs define the graphs
interaction among themselves and the outside
world

● The result is a set of graphs and command
programs that are translated into load modules
which are subsequently executed under the PGM
runtime environment
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Description:
The basic elements of a Dataflow graph are graph nodes that process
the data and arcs which guide the data through the nodes of the graph.
The same basic ideas are true for PGM. The queues act as the arcs of
the graph, where the head of the queue corresponds to the arrow of the
arc, and the primitive signal processing elements provide the atomic
operation of the graph.
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The Graph

● A graph is a description of the signal processing
algorithm for a particular function

● The basic elements of a graph are
❍ Queues, representing the directed information flow

through the graph

❍ Auxiliary data storage entities holding additional
information

❍ And nodes representing the primitive signal processing
elements of the graph

● PGM supports a hierarchical form for the graph
description
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Description:
FIFO are memory storage devices that are accessed sequentially
based on their arrival order to the device. The first element to arrive is
the first element to be supplied by the first read to the device.

Trigger queues are used to send trigger pulses to graph nodes so that
the execution of a number of them can be synchronized.
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The Queues

● Queues provide the primary data storage and
transfer medium for the graph

● The queues are implemented as expandable FIFO
● There are two kinds of queues in PGM

❍ Data queues, used for passing data between two nodes

❍ Trigger queue, used for passing channel
synchronization signals

● Trigger queues can force a synchronization of an
otherwise asynchronous, data driven sequence of
operations
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Additional data structures used in PGM are described.
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The Auxiliary Data Storage

● The auxiliary data storage entities are used to
hold additional information which would be
inconvenient to send using queues

● They are different from queues in that they hold a
single datum of the declared mode at a time

● PGM has two auxiliary data storage entities
❍ Graph Variables(GV)

❑ Internal graph variables, defined within a graph
definition with local scope

❑ A dynamic graph variable, defined within a command
program and its scope is all graphs and other
command programs to which the command program
passes its identifiers

❑ And Graph Instantiation Parameters(GIP), a start time
constant passed at instantiation or or defined within
the graph definition
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Nodes store the computational primitives and their interfaces.
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The Node

● The node is the basic signal processing entity in
PGM

● It is executed when its scheduling criteria have
been met

● There are three scheduling criteria
❍ All input queues must meet or exceed their thresholds

❍ Machine resources must be available

❍ Downstream queues must have enough space

● A Node is made up of a
❍ Primitive

❍ Port(s)

❍ And a Primitive Interface Procedure (PIP)
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The primitive is the mathematical operation.
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The Primitive

● The primitive is the signal processing entity
within the node

● It takes input values passed to it by PIP and
calculates the output values which it passes back
to PIP for appropriate action

● EMSP Common Operational Support Software,
ECOS, primitive specification contains
information on each primitive that is available to
the PGM programmer
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Ports are part of the node interface
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Ports

● The port is a logical concept defined as the point
at which data enter or leave the node

● The classification of ports depends on whether
the data are

❍ Input or output from the node

❍ From or to queue or auxiliary data storage entity, or

❍ Used by the primitive alone or by the PIP

● A node must have
❍ a port attached to an input queue to allow for a node

scheduling criterion

❍ An output port from which more than one datum of the
declared mode must be to a queue
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Description:
It is important here to differentiate between port input/output and PIP.

PRIM_IN Vs. PIP_IN:

Neither start time or run time expressions can not be attached to a
PIP_IN port. Further restrictions also apply:

1) A queue must be of mode integer or trigger.

2) If the queue is of mode integer, it can only be used for, run-time
expression in a PRIM_IN, selector, or variable NEP.

PRIM_OUT Vs PIP_OUT:

Only queues may be connected to a PIP_OUT port, queues of mode
integer or trigger.
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Primitive Interface Procedure

● The Primitive Interface Procedure (PIP) provides
the primitive with appropriate values from the
node’s various ports

● The PIP allows for data transfer into and out of
the primitive by providing

❍ A logical connection between the primitives input and
output and the input and output queues

❍ Removal and generation of trigger queue pulses

❍ Introduction and transmission of graph variable to or
from the primitive

❍ Transmission of constants defined by start time
expressions to the primitive

❍ Calculation of variable Node Execution Parameters
(NEPs)
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Subgraphs allow the construction of super-nodes (hierarchy)
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RASSP
Subgraphs

● Subgraphs allow hierarchical structures to be
contained within graph definitions

● A subgraph acts like a macro definition in that a
subgraph is replaced during the graph
instantiation is replaced by the nodes and
queues of which the subgraph is composed

● A subgraph may be used several times in the
definition of a graph in a manner similar to the
way a primitive may be used in several different
nodes in a graph
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Description:
The implied threshold, read, consume, and offset values are set by
PGM and can not be changed by the graph-writer.
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Merge

● Merge allows for data dependent data processing
● Merge has several input queues, one being a

control queue
● The control queue contains information that tells

the merge which one of several input queues is
to be read, and then places data to a single
output queue

● Control queues are mode integer, they have an
implied

❍ Threshold
❍ Read
❍ Consume
❍ And offset, zero
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The command programs control the execution of the signal task graphs.
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Command Program

● Command programs are application dependent and control
graph execution and interaction

● Command programs are to be used for control rather than
signal processing

● They are written by the application programmer, using a
High Order Language (HOL) together with a set of
procedure calls defined in the PGM specification

● The HOL provides control structures within which the
SPGN procedure calls are embedded

● In addition, communication between the command
program and the outside world is supported by the HOL
and the underlying operating systems
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Description:
The figure displays the functions of the command program. Notice that
at one end it interfaces to the host system and at the other end it
interfaces to graphs and dynamic queues that it creates and manages.
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RASSP Functions of the Command
Program

Responses
To Host 
System

Requests 
From Host
System

Command 
Program

Sensor
Data  In

   Graph 
        1

   Graph 
        2

Processed
Data Out

I/O Control

Queue Control 

Graph Inst. Control

Graph Var.. Control

I/O Control

Queue Control 

Graph Inst. Control
Queue Control 

Graph Var.. Control

[PGM90]
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For additional information please consult

http://pms428.uswinfo.com/pgm-1.htm
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RASSP Functions of the Command
Program (Cont.)

● The command program has the capability of
❍ Defining a queue and and its connections (Queue

Control).  This capability is important because the graph
is defined as having no external queues

❍ Defining the connection of such a queue to an I/O
procedure starting or stopping the procedure (I/O
Control)

❍ Interacting with a graph (Graph Instance Control) by
starting, stopping, or reinitializing the graph,

❍ Or by changing the values of graph variables passed to
the graph (Graph Variable Control)
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For additional information please consult

http://pms428.uswinfo.com/pgm-1.htm
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I/O Procedures

● I/O procedures are implementation and
application specific processes that provide the
capability for

❍ Passing signal input data between external devices and
graphs and command programs

❍ Passing processed output data between graphs and
command programs and external devices

● An input I/O procedure takes data from one or
more external devices, processes it, and outputs
it to one or more dynamic queues

● An output I/O procedure takes data from one or
more dynamic queues, processes and outputs it
to one or more external devices



Page 104Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

For additional information please consult

http://pms428.uswinfo.com/pgm-1.htm
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RASSP
PGM Runtime Environment

● The command program accomplishes its
functions by making calls to the PGM runtime
environment

● In addition to providing system calls for the
command program, the runtime environment
takes care of

❍ Scheduling the signal processing tasks for execution

❍ Managing and allocating processing resources

❍ Performing memory management services
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For additional information please consult

http://pms428.uswinfo.com/pgm-1.htm
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PGM Overview Summary

● PGM is based on a modified data flow
methodology

● A PGM application consists of graphs and
command programs

● PGM graph is composed of
❍ Node (s)

❍ Queue (s)

❍ Sub-graphs

● PGM command programs perform
❍ Queue Control

❍ I/O control

❍ Graph Instance Control

❍ Graph Variable Control
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For additional information please consult

http://pms428.uswinfo.com/pgm-1.htm
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RASSP Application Development in
PGM

● The starting point for developing a PGM graph is
a signal processing flow diagram

● Consider the simple example band definition
filtering on one beam of acoustic time-series data

● The frequency band is defined by the bandshift
and subsequent low pass filtering. The sampling
rate is to be reduced by a factor of 8 (8:1
decimation)

Beam_in Band_out
Bandshift Filter

Signal Processing Flow Diagram for Band Definition Filtering
[PGM90]
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Descriptions:
The basic steps of converting a signal flow graph to a PGM graph is
presented.
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RASSP Application Development in
PGM (Cont.)

● Each of the distinct operations in the previous
block diagram corresponds to a node of a the
PGM graph

● The data passed between these nodes
corresponds to the data queue

● To change the block diagram to a PGM graph, the
following steps are required

❍ Lay out the nodes and queues

❍ Select a descriptive name for each node

❍ Select a name for each queue

❍ Find the appropriate primitives to perform the required
signal processing functions in the block diagram using
the ECOS primitive specification



Page 108Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Description:
The complete description of these primitives are available in Q003
specification library.
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RASSP Application Development in
PGM (Cont.)

● For the simple example given, there is a one-to-
one correspondence between the block diagram
and the ECOS primitives

● The band-shift operation can be performed by
❍ CDM_RFF, a complex demodulation primitive

❍ Low pass filtering can be performed by the FIR_C1S,
the FIR filter with decimation primitive

Band_shift

CDM_RFF

Low Pass
Filter

FIR_C1SBeam_in Beam_out

Q1

[PGM90]
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For additional information please consult
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● Each primitive in the ECOS has a data sheet that
specifies

❍ Description

❑  Specifies the functionality of the primitive
❑ The method of implementation

❑ Errors inherent in the algorithm

❑  Reference for the algorithm

❍ Pseudo Code

❍ Parameter List, a listing of all input and output
parameters with descriptions

❍ A list of constraints for the primitive
❍ Performance Features

❍ Performance Guidelines for Exception Handling

❍ Execution time formulas
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Description:
Entity Name refers to the data storage element.

Type specifies one of GIP, QUEUE, or VAR...

Scope specifies the degree to which the entity is visible to others.

Mode defines its data mode.

Initial values contain the start up values for the entity.
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● Once the appropriate primitives have been found,
the next step is to define all graph entities
involved in the storage and passing of data, this
is done by means of Queue and Variable
Attribute Table (QVAT)

Entity Name

TYPE
GIP
VAR.
QUEUE

SCOPE
LOCAL
FORMAL IN
                  OUT

MODE Initial Values Description

A1 GIP Local
FLOAT
Array(7)

-1.0E-1, 1.0E-1
2.5E-1, etc....

Filter Weights for
the FIR filter

[PGM90]
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Description:
The header contains information about the node.

PIP_IN, PRIM_IN, PRIM_OUT and PIP_OUT all specify information
with regard to who they are connected and the threshold, read, offset,
and consume amounts for each queue.
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● The next step in the process is to define all the
connections among the different nodes of the
graph: this is done by means of node attribute
table

● For each node in a graph, there should be a
corresponding node attribute table

Node
Name
FIR_NOD
E

Primitive Name
FIR_C1S

INDEXING Description
Finite Impulse Response Filter

PIP_INs Threshold Read V| Offset V| Consume Description

PRIM_INs Threshold V|Read V| Offset V| Consume Description

Q1 137 137 0 128 Input Data

PRIM_OUTs V|   Valve Output Data

PIP_OUTs V | Pulse/Produce

Description

Description

[PGM90]
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For additional information please consult
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● Functions of command program fall into five
categories

❍ Command program control
❍ Input/Output control
❍ Graph instance control
❍ Queue control
❍ Graph variable control

● A combination of HOL and command program,
SPGN, procedures are used to

❍ Define the control flow structure
❍ I/O to an “operator” or controlling computer

● Command program, SPGN is used to coordinate
the interactions

❍ Between command programs and graph instances
❍ Between two command programs



Page 113Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

For additional information please consult

http://pms428.uswinfo.com/pgm-1.htm

Copyright  1995-1999 SCRA 113

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Application Development in
PGM (Cont.)

● Command program control
❍ One command program is designated as the initial

command program and is started at startup

❍ All other command programs are created (spawned) by
this initial command program

❍ There are two procedures for command program
control

❑ %SPAWN, used to start another command program
and to pass arguments to it

➭ The procedure returns the identifier
Command_Program_id

❑ %ABORT, used to abort a command program
➭ A command program can only abort itself or any other

command programs that it had spawned.
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http://www.ait.nrl.navy.mil/pgmt/
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● Input/Output control provides three procedures
for interacting with graph I/O

❍ %INITIO, provides for connection of an I/O channel with
one or more I/O queues

❑ Return a IO_Procedure_id used subsequently to
identify the procedure for  starting and stopping the
I/O

❍ %STARTIO, starts a previously defined and initialized
I/O

❍ %STOPIO, suspends a previously started I/O

❑ The I/O process can be started again with a
STARTIO procedure
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See http://www.ait.nrl.navy.mil/pgmt/ for additional information on PGM.
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● Graph instance control is responsible for
transforming the applications graph into a static
description of the signal processing graph

● In order for a graph to be executed, graph
realization must be used to

❍ Create a particular graph instance with particular
❑ Queues

❑ Nodes

❑ Graph variables

● It is possible to have many different graph
instances that started from the same graph
realization active at the same time
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● The following command program, SPGN,
procedures are available for graph instance
control

❍ %START, returns a Graph_id that is used by the
command program to refer to a particular instance of
the graph

❍ %STOP, stops a graph instance

❑ The stopping of the graph instance terminates and
destroys a particular graph instance

❑ Disconnects, but does not destroy, any queue from
the graph
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● There are eleven procedures available under
command program, SPGN, for manipulating
queues

❍ %CreateQ, causes a queue to be created dynamically
❍ %DestroyQ, destroys a dynamically created queue
❍ %INITQ, Initializes a dynamically created queue
❍ %FLUSHQ, removes all data elements from a queue
❍ %CONNECTQ, connects the command program to head or tail of a

previously created queue
❍ %DISCONNECTQ, releases the queue from the command program
❍ %ADDDATA, adds data to a queue behind the data already in the

queue
❍ %READQ, reads a number of data elements from a queue to a

command program, when enough data present.
❍ %WAIT, waits for a specified event to occur
❍ %UNLINK, disconnect dynamically created queue from a graph
❍ %LINK, allows dynamically created queues to connect to graph I/O

ports
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● PGM provides four procedures for command
programs to interact with graph variables

❍ %CREATEGV

❑ Dynamically creates a graph variable and returns an
identifier which it can be referenced

❍ %DESTROYGV

❑ Destroys a a previously dynamically created graph
variable

❍ %READGV

❑ Enables the command program to read a data
element or group of array elements from a graph
variable

❍ %WRITEGV

❑ Used by the command program to place data onto a
graph variable
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Application of PGM in RASSP

● PGM may be used to capture the
algorithmic/functional flows developed by higher
level math tools

● The data flow graph functional specifications
may be easily expanded to full specification of
application by adding

❍ Family structure to specify channelization
❍ Fixed and variable parameters to govern the processing

within each node of PGM graphs and relative node
execution rates, and sequences of the nodes

❍ Variations of data flow through paths of the graph
● The graphical programming has demonstrated a

reduction in development cost by order of
magnitude

● PGM inherently is capable of making all aspects
of application execution visible.

[MMC/LMC 94]
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Issues in the use of PGM

● There are some processes that do not lend
themselves to data flow specification. How will
PGM accommodate these?

● The overhead associated with scheduling and
data flow, communication, may be intolerable for
some high data rate applications?

● The only available run time support for PGM at
this time is the AN/UYS-2 which provides
hardware support that is not portable to RASSP
Model Year Architectures (MYA). The
development cost of such run time systems
would rise the application development cost
considerably

[MMC/LMC 94]
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(Cont.)

● The data flow laws for deterministic
implementation of discrete processes on a
continuous data stream are well established

● The data flow laws specify scheduling data
dependencies, schedule sequences, and data
transfer

● Continuous data streams of sensor signals are
exactly the class of signals that systems
developed with RASSP tools are designed to
process

● In addition, PGM provides mechanisms for the
odd auxiliary computation that may be necessary
within a signal flow application

[MMC/LMC 94]
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(Cont.)

● Considerable amount of progress has been made
in developing techniques to translate PGM
graphs into executable forms that minimize the
amount of overhead associated with data flow
paradigm

● These forms include
❍ Sequential lists of primitive executions that execute a

cycle of the translated graph
❍ Time line programs
❍ Parallel forms of list or time line programs

● Applications may be translated to
❍ Completely static form
❍ Hybrid forms of static representation of the segments of

an application graph which may be dynamically
scheduled by data flow scheduling of equivalent nodes
replacing the segments in an equivalent graph

[MMC/LMC 94]
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Module Outline

● Introduction

● Requirements Capture

● Fixed-Point Design - A RASSP Approach

● Simulation-Based Algorithm/Functional Design

● Network-Level DSP

● Link-Level DSP

● Signal Processing Simulators

● PGM/PGSE

● RASSP Software Generation
● Summary
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RASSP Architecture Definition
Process

Functional
Design 

Architecture Selection

Architecture 
Verification 

Detailed Design 

• Refine Size, Weight, Power, Reliability, Testability
& Cost Requirements
• Refine Algorithms - Functional Flows, All Modes
• Develop Detailed DFGs

• Architecture Tradeoffs
• HW/SW Allocation
• Iterative Simulation
• Selection of 1 or more candidates
• Non-DFG Software Design
• Virtual Prototype VP1

• Develop Required New Fcns & Models
• Autocode Generation
• Integrated DFG/Non-DFG SW Functional
Simulation
• Develop Verification Plan
• Hierarchical Simulation
• VP2

The overall flow of the architecture definition process that begins with
functional design and inputs into detailed design.  PGM fits in well as a
representation of input specification.
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PGM is currently being used in the design process at the algorithm
specification level. Data flow graphs are generated in PGM from Ada
primitives. These are used to simulate the processing flows for the
given application. The PGM primitives are simulated using the PGSE
environment. After satisfactory simulation results are obtained, the PGM
graphs are input to the NetSyn tool to begin architecture trade-offs.
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RASSP PGM Utilization in the Design
Process

[LMC-ARCH]

• PGM Tools

• PGSE

• NetSyn

• Autocode
Tools

• NetSyn

Algorithm
Specification

PGM DFG
Simulation

Architecture
Tradeoffs

Autocode
Generation

Performance
Resimulation

• User must be familiar with PGM
• Data flow control is considered

at outset as part of graph

• Used to verify PGM graph with
respect to functional spec.

• Driven from PGM graph and
PGSE simulation results

• Driven from architecture and
DFG mapping to processors

• Provides verification of
autocode results with original
graph
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The functional design step provides a more detailed analysis of the processing requirements
resulting in initial sizing estimates, detailed data and control flow graphs for all required
processing modes to drive the HW/SW codesign, and the criteria for architecture selection. The
control flow graphs provide the overall signal processor control, such as mode switching
(referred to as the command program). Functional simulators support the execution of both the
data and control flow graphs.

Architecture sizing helps to analyze the system requirements and processing flows for all the
required modes of the system in terms of estimated operations per second, memory
requirements, and I/O bandwidths.

Selection criteria definition helps prioritize the overall system requirements and the derived
requirements and establishes a selection criteria. The selection criteria provides the necessary
basis for subsequent architecture trade-off analysis. A trade-off matrix is used to formalize the
selection criteria. It contains top-level requirements allocated to the signal processor.

Flow graph generation transforms the finalized algorithm processing flows into detailed DFGs
as the first step in HW/SW codesign. The DFGs are based upon the Processing Graph Method
(PGM) developed by the Navy. PGM is a specification for defining detailed DFGs for signal
processing applications. The DFGs are made up of reusable library elements, which may
represent either hardware or software. The DFGs are the basis for both the architecture
synthesis, the detailed software generation, and potentially custom processor synthesis. Each
DFG is simulated to provide data for comparison with the algorithmic flows developed during
the systems process (executable spec). Control flow requirements are transformed into the
control flow graphs (CFGs) required to manipulate the DFGs according to a defined set of rules.
This DFG control is referred to as command processing. Conceptually, the command program
manipulates objects. The objects are the DFGs and their data structures. The command
program must be able to accept messages from outside the signal processor, interpret those
messages, and generate the appropriate control information to stop graphs, start graphs, initiate
I/O, set graph parameters, etc. The command program can be developed through standard
software development CASE tools or through the tools that provide autocode generation
capability.

Functional simulation verifies both the DFGs and the CFGs and their interrelationships.
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Functional Design

[LMC-ARCH]

Architecture
Sizing

Initiate
Primitive

Development
Selection
Criteria

Definition

Flow Graph
Generation

DFG
Simulation

Develop
Command
Program

Functional
Simulation

• Algorithm implementation analysis (ops/s, mem, I/O)
• Algorithm simulation/ optimization
• Develop functional models
• ‘ilitities and cost assessment
• Refine processing flows (all modes)

To architecture selection

• Transform processing
flows to detailed DFGs

• Translate control reqmts.
to control flow graphs

• Validate DFG
functionality for all
modes

• Prioritize requirements
• Define selection criteria

• CASE tools
• Autocode

generation

• Joint CFG/DFG
simulation

• Validate functional
interaction
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Algorithm design refers to functional design.
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RASSP Algorithm Design
Process in RASSP

● Algorithm flows specified in SPW, or any other
higher level math tool,  form are captured as PGM
graphs

● The initial graph is functional only, expressing
the mathematical operations in the algorithm flow
as nodes or subgraphs and the data flow as
queues

● Recording queue contents during execution will
provide intermediate result for comparison from
those of the SPW representation

● This functional graph is then expanded into a full
application specification

[MMC/LMC 94]
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RASSP Application Development
Process in RASSP

● Topology is expanded to represent
❍ All possible data paths

❍ Controls are specified for all operating modes

❍ Sets or ranges of values for all variables are specified

● Graphical specification and execution tools are
used to produce a full PGM specification of the
applications

● Primitive support is target independent, allowing
for the execution of domain primitives on general
purpose hardware running the graph execution
tool

● Provisional primitives may be added through
library population for SPW functions for which no
library support exist

[MMC/LMC 94]
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Please refer to Lockheed Martin ATL documents for further discussion
on how PGM was used to represent executable specifications.
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RASSP Application Development
Process in RASSP: System

Definition

● Algorithm flows
❍ Are block diagrams depicting the high-level

computations associated with an application, e.g. SPW,
MATLAB

● I/O requirements
❍ Identify the amount of throughput the application will

have to handle, modes of data, and the source(s) of the
data

● External commands
❍ Are formal definitions of all commands allowable to the

operator

● State transition diagrams
❍ Depict the major modes of system operation, and the

state changes between them. They, along with the
external commands, are the basis for the command
program specifications

[MMC/LMC 94]



Page 131Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 131

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Application Development
Process in RASSP:

Requirement Refinement

● Executable Requirements Specification

❍ A PGM graph is composed of domain primitives,
domain subgraphs, provisional primitives  or
subgraphs or any entity which can specify the workings
of an algorithm

❍ Command Program Specifications

❍ Derived from the state transition diagrams and the
external definitions defined in the previous phase

[MMC/LMC 94]
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The architecture definition process transforms processing requirements
into a candidate architecture of hardware and software elements.

The architecture definition process is a new HW/SW codesign process
in the RASSP methodology for high-level virtual prototyping and
simulation. The primary concern in the architectural definition process is
to select and verify an architecture for the signal processor that satisfies
the requirements passed down from the systems definition process.

The overall task is to:

● Define and evaluate various architectures

● Select one or more for detailed evaluation that appear to meet
the requirements

● Validate the chosen architecture(s) for both function and
performance before detailed design

Concurrently, each selected architecture is evaluated with respect to
size, power, weight, cost, schedule, testability, reliability etc.

The process is library based and DFG-driven. The DFGs are created
from the processing flows passed down from the systems definition
process. Reuse of both architecture elements and software primitives
significantly shortens the design cycle. VHDL performance model
simulations are used to verify system requirements are met. Software
performance is also modeled for its impact on the total processing time.
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RASSP Architecture Selection
Process

[LMC-ARCH]
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The transformation of the finalized algorithm processing flows into the
detailed DFGs is the first step in the HW/SW codesign process. These
DFGs are based upon the Processing Graph Method (PGM) developed
by the Navy. PGM is a specification for defining detailed DFGs for
signal processing applications. The DFGs are made up of reusable
library elements, which may represent either HW or SW.

The DFGs are the basis for architecture synthesis, detailed software
generation, and potentially custom processor synthesis.

The left side of this figure represents the processing flows as passed
down from the systems definition stage. The right side represents the
detailed DFG constructed from reuse library elements.

If suitable library components do not exist, then they need to be
developed and added to the library.
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RASSP Application Development
Process in RASSP: Architecture

Selection/Verification

● Domain Primitive Graph
❍ Is the executable requirement specification refined to

contain only domain level primitives and subgraphs

❍ Becomes the functional baseline graph for the
application once it has been validated with the test
vectors developed for the executable refinement
specification

❍ Allocated Graph

❍ Produced by assigning each domain primitive node or
subgraph of the domain primitive graph onto hardware
or software components

[MMC/LMC 94]
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RASSP Application Development
Process in RASSP: Architecture

Selection/Verification (Cont.)
● Partitioned Graph

❍ Is the state of the domain primitive graph after the
partitioning process

❍ Is not a separate graph, but merely the domain primitive
graph with partitioning information

● Partitioned Software Graph
❍ Is the subset of the partitioned graph which will be used

by the software development team
❍ May be partitioned separately from the full partitioned

graph so that software partition performance may be
optimized

❍ Criteria to be used in determining the optimal scheme
are:

❑ The best processor class for each partition in the
graph

❑ The selection of run-time system to be used based on
the characteristics of the application, i.e. static,
hybrid, etc

[MMC/LMC 94]
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RASSP Application Development
Process in RASSP: Architecture

Selection/Verification (Cont.)

● Partition Graph
❍ Is a stand-alone SPGN graph which represents either a

hardware or a software partition

● Corepresentation Validation Graph
❍ Is a PGM graph in which all partitions identified in the

partitioned graph have been replaced with equivalent
nodes

❍ This graph is used to simulate the functionality and
performance of the entire application graph on selected
candidate architecture

❍ Partition Specification

❍ For each partition graph, a partition specification is
produced providing an interface to the partition PID
which is produced to represent the partition graph

[MMC/LMC 94]
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RASSP Application Development
Process in RASSP: Target

Software Generation

● Equivalent Application Graph
❍ Is produced from the partitioned software graph 

by replacing each software partition with an equivalent
node produced by Multi-processor Primitive Interface
Description (MPID) generator

❍ Graph Realization

❍ Is the compiled version of the equivalent application
graph

● Partition PID
❍ A partition PID is the source code that represents a

partition graph, written in the computational element’s
native language

● Load Image
❍ Is the end product of software development process

[MMC/LMC 94]
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Description:

The figure shows all the elements that are needed to obtain a load
image of the application.

Top level application graph SPGN specification is compiled using the
graph realization.  The DSP libraries provide object code for specific
implementation of some of the primitives . All run-time utilities, schedule
and control routines are also partitioned and then presented to the load
image box to be integrated with the application code. Kernel OS is also
presented to the load image, the run-time functions use the OS calls.
The partitioned application code is also compiled and then presented to
the load image.
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RASSP Application Development
Process in RASSP: Target

Software Generation
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Description:
The figure shows the software architecture of RASSP signal processing
application running on a multi-processor platform.

The external interface can choose among a number of command
programs. Based on the command program, application graphs are
loaded on the multiprocessor platform based on the partitioning
information that is available for each application. Based on the
command program the graphs and the I/O procedure are started
through the run time support.
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Baseline Software architecture provides common interface for 
implementing both control and signal processing aspects of application. 

Real Time
POSIX

[MYA95]

This architecture is similar to the virtual machine.



Page 141Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

[LMC-ARCH]

NetSyn allows performance trade-offs to be done in a more
automated/user friendly fashion. The input to this tool will be the PGM
data flow graph and PGSE output. Rapid performance trade-offs are
made within the environment by choosing candidate architectures and
simulating them using performance models from Honeywell. Outputs
include reports, improved architectural candidates, SW mappings, and
improved flow graphs.

Copyright  1995-1999 SCRA 141

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Tools for Architecture
Selection and Verification

● NetSyn: (Assignment/Performance Simulation)

❍ Driven from PGM data flow graph and PGSE output

❍ Performance simulation for candidate architectures

❍ Library primitives

❑ PGSE executables

❑ Target dependent timing database

❍ Outputs include reports, architecture, mapping, and
graph

[MYA95]
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The NetSyn tool contains three reusable parts libraries to aid in the
selection and verification of an architecture. They consist of 1) a
Reusable Software System (RSS) which contains functional graph
primitives to help in the building of applications, 2) a reusable
architectural parts library which contains architectural classes,
components, and configurations, capable of being simulated at the
performance level in VHDL and 3) a timing library which contains timing
information for the execution of the specific primitives on various
processors.

Copyright  1995-1999 SCRA 142

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
NetSyn Functional Diagram
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The Reusable Software Subsystem (RSS) captures functional graph
primitives in the form of C, Ada, Microcode etc.. It also captures test
datasets, analysis reports to aid application developers, reusable graph
instantiation parameter lists, reusable graph environments, and
primitive tests. The graphical editor for generating PGM graphs (GRED)
can access the primitives for building new graphs.
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RASSP Reusable Software Subsystem
(RSS)
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[LMC-ARCH]

The reusable architectures are hierarchically composed. Connection
rules are used to rapidly generate architectures from entities. The
performance models use size, weight, power, and cost values so the
tool can quickly generate estimates for the entire system. The
environment includes capabilities for testing the behavioral models of
entities. Timing is included in the library for each of the parts. Currently,
the complete RACE architecture from Mercury is part of this library.
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RASSP Reusable Architectural Parts
Library

● Hierarchies of architectures are handled
● Connection rules generate architectures from

entities
● Size, weight, power, cost values generated for

architectures
● Includes environment for testing behavioral

models of entities
● Timing functions included
● Mercury entities and architectures included:

RACE

[LMC-Review]
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[LMC-ARCH]

Autocode is a tool that takes as input, PGM data flow graphs, and
generates a modified graph with updated timing estimates for the code
which has been mapped to a target processor. The target code is
compatible with the run-time system. The next slide shows more detail
of the autocode generation process.
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RASSP Tools for Architecture Selection
and Verification (Cont.)

● Autocode: (Code generation and run-time
control)

❍ Driven from PGM data flow graph, architecture, and
mapping

❍ Library primitives
❑ Target independent PGSE executables
❑ Target primitive maps (TPMs) to specific target processors

❍ Outputs include

❑ Modified graph

❑ Timing estimates for graph

❑ Target code compatible with run time system

[LMC-Review]
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The autocoding process is shown above. The main elements of the
process include:

● Equivalent graph generation

● Partition target-independent autocoding

● Equivalent graph autocoding

● Partition target-dependent autocoding

● Load image specification

The inputs to the equivalent graph generation process are domain-
primitive graphs, configuration files, and partition lists. Equivalent graph
generation generates standalone PGM graphs for each partition.
Partition autocoding generates Ada procedures implementing each
partition (behavior model) and ‘C’ programs implementing each
software partition using target math libraries. Equivalent graph
autocoding creates run-time data structures implementing the
equivalent graphs. Load image specification generates “make” files
specifying complete run-time system.
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[LMC-Review]

This slide lists the inputs and outputs of the autocoding process.

Copyright  1995-1999 SCRA 147

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Autocoding Process Inputs
and Outputs

● Inputs to the autocoding process
❍ PGM application graph SPGN file

❍ Candidate architecture configuration file

❍ Lists of nodes in processor software partitions

❍ Lists of nodes in hardware partitions

● Autocoding outputs
❍ Partition “C” programs for target processors

❍ Partition and application performance estimates
generated

❍ Run-time system load image for candidate architecture

❍ Behavior models for hardware or software partition

[LMC-Review]
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Run-time support is partitioned into user, RASSP user, and Model Year
Architecture parts. There are driver-level interfaces between the reuse
and model year partitions. Application interfaces are isolated from the
target OS. Ports to the external world include the load port, BIT
interface, and the command interface. The load manager, graph
manager, and BIT manager are run-time managers that execute run-
time service routines. Applications are instanced as equivalent node
tasks and multiple instances, priorities, and preemption are possible.
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RASSP
Autocoding Run-Time Support
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The main tool used by the ATL branch of Lockheed-Martin is the PGM
tool developed by the Naval Research Labs. PGM is used to model the
data flow of the system and contains hundreds of primitives written in
Ada to develop algorithm designs.  GRED and GRAIL are graphical
tools to aid in PGM development while PGSE is the simulation
environment used to perform the functional simulation on PGM graphs.
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RASSP Flow Graph Generation and
Simulation Mechanism

● PGM Tools: GRED and GRAIL
❍ GRED is a graphical editor for building PGM graphs

❍ GRAIL is a translator from graphical format to Signal
Processing Graph Notation (SPGN)

● PGSE: Simulation Environment
❍ Functional simulation of PGM graphs

❍ Provides standard interface to command program

❍ Provides ability to simulate command program
interacting with multiple PGM graphs
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RASSP
GEDAE™

● The Graphical Entry Distributed Application
Environment closely relates to PGM and its
supporting tools.

● The environment is used to
❍ Graphically construct application graphs

❍ Distribute the application graph on remote processors

Please refer to http://www.gedae.com for additional information.
GEDAE is a tool developed by Lockheed Martin ATL on the RASSP
program and the next few slides describe the algorithm design and
mapping process using GEDAE.
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RASSP GEDAE’s Software
Architecture

Flow Graph Editor
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• Software for
interconnecting processing
functions on a
heterogeneous network

• Isolate data flow software
from the application-specific
computation
• Facilitates timing analyses
of computation and
communication • Provide object-oriented

programming concept to
heterogeneous network

• Provides processor-
independent
communications

Network

Please refer to http://www.gedae.com for additional information.
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RASSP A Case Study of RASSP Software
Development Using GEDAE

l Reduce development/lifecycle cost of  DSPs
l Minimize hardware dependence
¡  Enable rapid porting to new  hardware

l Maximize software reuse
¡  Minimize  rework between algorithm stage and   system

implementation

l Enable rapid HW/SW tradeoffs of candidate system
architectures prior to implementation
¡  Enable rapid repartitioning and assignment of functionality between

microprocessors
¡  Minimize rework for system upgrades
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RASSP
RASSP Software Generation

• RASSP graph-based autocode generation (GEDAE) capability significantly
improves software  productivity

• Supporting Run-Time System provides all graph management, interprocessor
communication, and external interface

• Command program autocoding (AIB and ObjectGeode)
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RASSP
ETC Algorithm Description

● Front-end Processing (Acoustic signal processing)
❍ Normalizer (Norm)- compensation for underlying noise background,

dynamic intensity variations such as may occur in reverbation-limited
shallow water.

❑ The Coded Pulse (CP) normalizer is a single dimension normalizer,
range only

❑ The Coherent Waveform (CW) normalizer is a two dimensional
normalizer, range and Doppler

❍ Fine Bearing Estimator (FBE)- high resolution bearing information
❑ Interpolation between beams with Doppler compensation

❍ Clustering and single ping Feature Extraction (CFE)
❑ The data is first thresholded and then the single celled clusters are

merged into multi-celled clusters according to their proximities to
one another. Single ping features are extracted from each cluster.
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RASSP
ETC Algorithm Description

● Back-end Processing (detection and
classification)

❍ Single Ping Cluster Filtering (SPF)- weed out some
of the echo returns from clutter

❍ Automatic Detection and Tracking (ADT)-
automates the detection of potential targets over
multiple pings.

❍ Multi-ping Classifier (MPC)- classifies each track
into three possible states, sub, non-sub or pending.

CLUSTER
AND

SINGLE
PING

FEATURE
EXTRACT

(CFE)

DETECT &
TRACK
(ADT)

MULTI-PING
FEATURE
EXTRACT

AND
CLASSIFY

(MPC)

NORMALIZER
(NOR)

FINE
BEARING

ESTIMATOR
(FBE)

SINGLE 
PING

FILTER
(SPF)
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RASSP Legacy Software - Converting Lab
Code into a Real-time

Embedded System
● Laboratory  C/Matlab code delivered as executable specification

❍ Messaging backplane for data and parameter distribution
❍ Large use of gobal variables
❍ Non-segmented processing on a per ping basis
❍ Combination of data and control flow
❍ ~50,000 lines of code

● Migration
❍ Analyzed c-code hierarchy (in-house tools)
❍ Extracted core processing code
❍ Encapsulated code into GEDAE at highest level
❍ Decomposed only high load DSP functions for distributing
❍ Parallalize and segmentize signal processing code
❍ Graph results were required to match within 10E-5 of output of

NUWC simulation at each stage of output, this required more
custom primitives to be generated

● Matlab called directly from GEDAE
❍ Supported migration while on development host
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RASSP What This Team Considered
As Critical Contributors to

Success
● Modern graphical design and development

environment
❍ Easy capture of graph and fexibility to modify
❍ Easy finding of primitives for reuse
❍ Easy addition of new primitives

❑ Tools being used by new users
❍ Good error checking as graph is built

● Robust,  visually rich test  and integration
environment

❍ Unified environment enabling seamless design flow
from functional/data flow  simulation to autocode and
multiprocessor distribution

❍ Good error comments from tools and help in debugging
process

❍ Good vizualization aids to eliminate problems of “black
box” effects of using code not completing generated by
team on this project
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 Real-time Code Generation

GEDAE / AIB
on Target
Hardware

GEDAE

on Host

Algorithm Spec /
Graph Generation

Data Flow
 Evaluation

Graph mapping 
to HW Testbed

Modify

Autocode & 
Execute on
HW Testbed

Modify

Autocode Generation
for Target Architecture

Target 
Hardware

I & T

OS Kernel
GEDAE RTS
Support Software

Command Program
Specification & 

Autocode Generation

Command Program
Functional Simulation

GEDAE

on Target Hardware

GEDAE / AIB
on Host

Functional
 Evaluation

Modify

Data Timing 
Extraction
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Graph Development Process

Graph Generation
l Determine Data Flow

mScalar stream, vectors, matrices, variable
vectors/matrices, structures

m Instantiation
mQueue sizing

l Determine Functional Flow
m   Custom vs. built-in primitives

n Tradeoffs include - entry  time, readability,
maintainability, debug and test, runtime
performance, portability, distribution

m   Determine baseline hierarchy

l Write  Custom Primitives
m  Written in portable math library  (e-library)
m  Can make direct call to custom c-function

l Enter Graph and Parameters
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Norm CP Data Flow Example

● Use non-deterministic box to support variable
threshold, and variable  consume and
produce for variable segmentation

● Use family construct to parrellaize
numerically intensive processing

● Use V-arrays to support parameter dependent
variations in data flow

Folder Demux Split Window
Median Filter

Split Window
Median Filter

DivDiv

Demux

Mux
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Norm CP GEDAE Graph
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RASSP Addition of new custom
 processing primitives

Data transfer separated
from application module
design

— programmer only
concerned with
application specific
code

• Data flow specification
separated from
application module

— programmer provides
simple specification
wrapper to
encapsulate module

GEDAE 
Function Box

split

in re

im

Data Processing Function
split (in, re, im)

derive output arrays 
("re" and "im") according 
to some algorithms applied 
to input array ("in").

Data Flow Requirements
applysplit (  )

1. Get inputs and outputs 
2. Call split data processing function 
3. Note data produced and consumed

Standard Interface

Module Code
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RASSP GEDAE™ CODE Generation

#include <stddef.h>
#include <staticFunction.h>
typedef struct {
  float *a;
  int N_a;
  float *b;
  int N_b;
} StateRec, *State;

static OffsetTable OT[] = {
  {VALUE_OFFSET, "a"},  {SIZE_OFFSET , "a"},
  {VALUE_OFFSET, "b"},  {SIZE_OFFSET , "b"},
  {0,0}
};
static int Offsets[] = {
  offsetof(StateRec,a), offsetof(StateRec,N_a),
  offsetof(StateRec,b), offsetof(StateRec,N_b),
  -1
};
static int Offset(char *name, OffsetType type) {
  return internal_offset(name,type,OT,Offsets);
}
#include <e_vadd.h>
static void Apply(void *vstate) {
  State state = vstate;
  float *b = (state->b);
  float *a = (state->a);
  int _size_a = state->N_a;
  e_vadd(a,1,b,1,a,1,_size_a);
}
void Init__embeddable__stream__add(void) {
  OCreateStaticBoxClass("embeddable/stream/add",sizeof(StateRec),
                                         "offset", Offset,
                                         "apply",  Apply,
                                         0);
}

Name: add
Type: static
Comment: "Addition
out = a + b"
Input: {
  stream float a;
  stream float b;
}
Output: {
  inplace stream float out=a;
}
Include: {
#include <e_vadd.h>
}
Apply: {
  e_vadd(a,1,b,1,a,1,size(a));  /* vector add */
}

Library Function
embeddable/stream/add

Automatic Code
Generation

C source
of add.c

GEDAE™ library functions are simple
to add and generated source code is not
difficult to read
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Test and Integration Process

● Test Data Flow  on Host
❍ Primitive  connection ensures  data flow compatibility

prior to test
❍ Box table/data table, show Q's and boxes graphically

facilitate debug of data flow
❍ Optimization of memory

● Test Functional Flow  on Host
❍  Scope and/or files facilitates debug of functional flow
❍  Standard debuggers used to debug custom  c-code

● Collect Timelines Host
❍ Identify  processing requiring further optimization

● Embed on target hardware verify performance
❍ Optimize partitioning and mapping for load balancing
❍ Optimize transfer methods
❍ Identify  processing requiring further optimization
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RASSP Data Flow and Memory
 Usage Visualization

• Static Schedule Table
displays detailed
information about
statically scheduled
processes

— execution sequence
— memory usage vs.

time
— process execution

time

Data 
generation

Data 
in use

Data 
storage

In-place
calculation

Data 
consumption

Memory Usage Time

Execution 
Sequence
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RASSP
Time Line Visualization

• GEDAE provides
visualization from both
hardware and software
perspectives

• Trace Table displays
detailed timelines and
processor loading for
each function and data
transfer

Hardware profile

Compute time

Data flow profile

I/O time

Software profile
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RASSP ETC4ALFS  Timeline
 Example

● Timeline of graph
running on host

❍ First run identifies a
problem

■ ADT initialization
routines need to
be done on reset
method at graph
initialization time
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RASSP
Top Level Graph
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RASSP
ETC4ALFS Top Level Graph

The graph is composed of
● Source_Box which simulates real-time input data
● The Front end CP (cp_nd) composed of

❍ Norm,
❍ FBE
❍ CFE.

● The Front end CW (va_ndCW) composed
❍ Norm
❍  FBE
❍ CFE.

● A switch to control flow of data to backend graph
● The Back end composed of

❍ SPF,
❍ ADT
❍ MPC.

● QueueManager box to sync up beam data to ping time data and other data
from Command Program

● Sync_Box to tell the command program when the graph is complete with
each ping of data
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RASSP Hardware Architecture
Description

● Two Mercury modules each with 4 Power PC
processors

● Command Program on Sun workstation

Power
PC

CN ASIC

16 Meg
RAM

Power
PC

CN ASIC

16 Meg
RAM

RACE Crossbar

Power
PC

CN ASIC

16 Meg
RAM

Power
PC

CN ASIC

16 Meg
RAM

Power
PC

CN ASIC

16 Meg
RAM

Power
PC

CN ASIC

16 Meg
RAM

Power
PC

CN ASIC

16 Meg
RAM

Power
PC

CN ASIC

16 Meg
RAM
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RASSP

Command Program

Command & Control System

Operator
Interface

Data
Processing

Command Program

Signal Processing System

● Fundamental Command
Program Requirement

❍ Translate high level (user)
input (e.g., stop track model,
start weather mode) into
lower level signal processor
control commands (e.g.,
create queue, write graph
variable)

❍ Forward signal processor
results
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AIB - Application Interface

Builder
● Builds Application Programmer Interface

(API)
❍ Each mode is an object
❍ Methods for mode entry/exit
❍ Methods for submode entry/exit
❍ Methods for execution state transition
❍ Methods for buffering operator/DSP data

● Input
❍ Enhanced top level graph declarations
❍ 90% previously generated by DSP

autocode process
● Output

❍ C source
● Future

❍ Integrate with GEDAE GUI
❍ Tighter integration with ObjectGeode

Used successfully to support ETC for ALFS integration -
300 lines in yielded 3000 lines out

Command Program

Autocoded Application

Command Program Interface

Data Flow Interface

Signal Processing System

Views Signal 

Processing 

System as modes 

and submodes

Presents Signal 

Processing System 

as graphs
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RASSP

Command Program
GEDAE™
Workstation

Command Program API
(Application Independent Interface)

Host Communication Layer

Embedded Communication Layer

Embedded Kernel

Intrinsic Function Boxes User Supplied Boxes

Command Program API
(Application Specific Interface)

Layer and Conquer

•state machine that manages
mode objects

•AIB- A bridge that transforms
collections of graph objects
into mode objects

•A wrapper hiding the signal
processor implementation
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RASSP ETC GEDAE
Conversion Summary

● Training - 1 week
● CP frontend captured, tested, and optimized on  Host  -

3 weeks
❍ CP Front End is well partitioned into primitives

● CW frontend captured, tested, and and optimized on
Host - 5 week

❍ CW Front End is well partitioned into primitives

● Back End captured, tested, and optimized on Host - 2
weeks

❍ Backend is largely unpartitioned c-code, needs further
breakdown to maximize advantages gained by using graphical
data flow paradigm

● Waited for delivery of Mercury hardware and release of
AIB for ~ one month
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RASSP
Lesson Learned from Tool Usage

● The GEDAE development environment greatly
simplified  capture and test of applications targeted for
real-time distributed environments.

❍ tools were easy to learn and use

● Concerns of team with “black box” effect of autocoding
software turn out to be unfounded

❍ visualization aids were very effective
❍ insight to what the software was doing was actually better then

some handcoded real-time software projects we have worked
on

● The primary shortcomings of GEDAE are consistent
with the level of maturity of the embedded capability
which has been operational for less then a year.
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RASSP
Tool Improvements

● Tool improvements made during project development
❍ Command program interface (AIB) added
❍ Improvements to facilitate data flow and test

❑ Automatic resizing of queues (Q)  in GEDAE to minimize
memory requirements and help isolate data flow problems

❍ Improved and added primitives for V-array support especially for
dynamic (variable consume and/or produce) and non-deterministic
(variable threshold) boxes

❍ System build (make) process improved
●  Future improvements or additional features we would like to see

❍ Better documentation of tool needed for embedding process,
documentation for graph development on host is good

❍ File management system is limited for large multi-user program
development

❍ More refined methods of shared data management to reduce amount
of memory usage

❍ Final documentation generator of graph, parameters, and command
program interface would be very useful and save time

❍ Summaries of trace,  schedule and queue tables would be useful
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RASSP
Module Outline

● Introduction

● Requirements Capture

● Fixed-Point Design - A RASSP Approach

● Simulation-Based Algorithm/Functional Design

● Network-Level DSP

● Link-Level DSP

● Signal Processing Simulators

● PGM/PGSE

● RASSP Software Generation

● Summary
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RASSP
Summary

● Introduced the algorithm and functional design
environments for DSP

● Described the interaction between
implementation and front end algorithm design

● Presented recent RASSP developments
❍ Executable specifications

❍ High-level test benches

❍ Simulation-based design

❍ Graphical and block-oriented algorithm capture

❍ Examples of the above
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