
Page 1
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 1

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

RASSP Methodology Overview
RASSP Education & Facilitation Program

Module 29

Version 3.00

Copyright  1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and may only
be used for non-commercial educational purposes. Any other use of this information without the express written permission of the
ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their permission. All
information contained, may be duplicated for non-commercial educational use only provided this copyright notice and the
copyright acknowledgements herein are included. No warranty of any kind is provided or implied, nor is any liability accepted
regardless of use.

The United States Government holds "Unlimited Rights" in all data contained herein under Contract F33615-94-C-1457. Such
data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except as follows:
Certain parts of this work to other copyright holders and are used with their permission; This information contained herein may
be duplicated only for non-commercial educational use. Any vehicle, in which part or all of this data is incorporated into, shall
carry this notice .

The successful Rapid Prototyping of Application-Specific Signal Processors
(RASSP) program of the US Department of Defense (DARPA and Tri-
Services) targets a 4X improvement in the design, prototyping,
manufacturing, and support processes (relative to current practice). We
present a recent industrial system design practice model and the RASSP
methodology for the design and prototyping of application-specific signal
processors developed as part of the DARPA's RASSP Education &
Facilitation (E&F) Program. A number of limitations in current design
practice are highlighted together with a number of candidate RASSP
solutions, and some of the future challenges.

Page 2
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The RASSP Methodology and Design Flow is shown in this slide. The
underlying basis of the RASSP design methodology is the technology of virtual
prototyping. Virtual prototyping begins with the early requirements
description and ends with the detailed test and fielding of the system.

We may also emphasize the role of VHDL in the RASSP program. VHDL can
be used for system definition, functional design, hardware-software
partitioning, hardware design and hardware-software integration and test. The
concept of virtual prototyping uses VHDL as the binding language of choice
for all design paradigms.

The most common usage of VHDL prior to RASSP was in the area of
hardware design. The RASSP program has extended VHDL's use to include
executable requirements, performance modeling/system level design as well as
system integration and test. Many of these developments have led to the
proposal for a System-Level Design Language (SLDL) in the late 90s.

Copyright  1995-1999 SCRA 2

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Rapid Prototyping Design
Process

Technical
Overview

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

Page 3
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A number of problems existed in current practice in digital systems design in
the early 1990s. As part of the RASSP effort, these problems were identified
and a new approach centered on the virtual prototyping process had been
proposed as a cost effective and efficient methodology for system-level design.

This module attempts to describe the problems that were endemic to system-
level design, and then discusses the RASSP approach.

Copyright  1995-1999 SCRA 3

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Goals

● Identify problems with current design
methodologies

● Introduce the RASSP design methodology and its
solution to current practices

● Introduce the concept of an evolving virtual
prototype

Page 4
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 4

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Methodology
Overview Outline

● Overview
❍ RASSP Technical Approach

● Methodology
❍ Overview

❑ Current Design Practices
❑ The RASSP Approach

❍ Virtual Prototyping
❑ Executable Requirements/Specifications

➭ Description
➭ Case Study

❑ Data/Control Flow Modeling
➭ Description
➭ Case Study

After presenting an overview of current methodology and RASSP design flow,
we will present the various phases in the RASSP design methodology, ranging
from requirements to detailed design.

Page 5
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 5

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Methodology
Overview Outline

❑ Cost Modeling
➭ Description
➭ Case Study

❑ Performance Modeling
➭ Description
➭ Case Study

❑ Fully Functional Modeling
➭ Description
➭ Case Study

❍ Model Year Architecture
❍ Reuse

● Results to Date
● Summary

We end the module with a summary of main results obtained in the program,
and references to RASSP publications.

Page 6
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 6

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Methodology
Overview Outline

●Overview
● Methodology

❍ Overview
❍ Virtual Prototyping
❍ Model Year Architecture
❍ Reuse

● Results to Date
● Summary

The overview presents a snapshot of RASSP design methodology in terms of
its fundamental technology thrusts.

Page 7
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 7

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Technical Approach

The RASSP technical
approach is three-pronged:

● Methodology
❍ Incremental refinement
❍ Top-down, VHDL-based
❍ Reuse and synthesis

● Architecture
❍ Tailored to DSP domain
❍ Tailored for ease of design

and redesign
❍ Scaleable in throughput and

interconnect

● Infrastructure
❍ Comprehensive EDA tools
❍ HW and SW re-use libraries
❍ Enterprise integration
❍ Electronic commerce

The RASSP technical approach rests on the three pillars of Methodology,
Architectural innovation, and Infrastructure support. The Methodology relies
on a top down methodology that iteratively and incrementally develops a
design through various stages of abstraction. Cost is minimized and design
time is reduced through reuse of previous stored information. The
Architectural effort relies on architectures that are application-specific, and
thus can be quickly tailored to a particular mission within that general
application, reducing risk and cost. In the area of Infrastructure, these are
extensive support for frameworks of EDA tools and database libraries of
models of COTS components.

If each of the above factors resulted in 5-10 % improvement over current
practice (independently of others), then the overall improvement can be truly
significant, leading to a promise of 4X improvement in cost and quality.

Page 8
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 8

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Methodology

MethodologyMethodology

Goal: Define and test an embedded systems development
methodology to support the RASSP 4x improvement goals
that capitalizes on concurrent engineering, top-down design,
and virtual prototyping concepts.

Goal: Define and test an embedded systems development
methodology to support the RASSP 4x improvement goals
that capitalizes on concurrent engineering, top-down design,
and virtual prototyping concepts.

Top-Down
Design

Virtual
Prototyping

Concurrent
Engineering

Model
Year

The main pillars of RASSP methodology are highlighted. The notion of
Virtual Prototyping will be expounded in detail in later slides. Concurrent
engineering (that involves concurrent coordinated interaction & activity
between design and product teams in the very least) is well understood in the
industrial community. Model Year approach favors incremental and iterative
improvement of an existing design over several iterations (or model years),
similar to the use of the term in the automotive industry.

Page 9
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 9

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP - How It Relates
to Methodology

● RASSP 4X improvement goals require that we
change the way we do design

❍ Efficiently leverage technology developments
❍ Promote reuse at all design levels

● Methodology is RASSP's key technology driver
❍ Automation (Enterprise System)

❑ Implements methodology
❑ Provides integrated tool and data access
❑ Electronically integrates product development teams
❑ Model Year architecture provides building block

framework to enable reuse

[Madisetti95B]

Methodology should be considered independent of tools, in that tools realize an
implementation of the proposed methodology.

Page 10
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

All along the process, the virtual prototype is having detail added to it.

The prototype includes:

Requirements tracking

Hardware description

Software description

Test patterns

Copyright  1995-1999 SCRA 10

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP - How it Relates
to Methodology (Cont.)

● Methodology defines key technology extensions

❍ Emphasizes concurrency and design reuse

❍ Links system requirements capture to architecture
tradeoffs

❍ Defines library-based design approach

❍ Verifies virtual prototype design at all levels before
manufacture

[Madisetti95B]

Page 11
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 11

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Methodology

• Traditional designs
— Static, sequential process

(waterfall model)
— Custom designs
— Technology dated when fielded
— High design (NRE) and life cycle

costs (LCC)

• RASSP Virtual Prototyping (VP)
— Dynamic, risk-driven concurrent

process (spiral model)
— Incorporates evolving requirements
— Rapid insertion of COTS technology
— State-of-the-art fielded product
— Low cost insertion, LCC

Threat

Requirements

Technology

Process

Concept Insertion

Traditional

Threat

Requirements

Technology

Concept Insertion Candidates

New Paradigm

VP VP VPProcess Build

[LMC-ATL]

• The major methodology change being pursued under RASSP is occurring
in how requirements are mapped to implementation approaches and
verified via virtual prototyping. The challenge of implementing this
methodology is to evolve modeling and simulation tools and models that
support the hierarchical design and verification process. This concept
supports deploying the latest technology design via a virtual prototype
that is easily mappable to a manufacturable approach.

Page 12
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 12

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Design Concepts and
Enablers

Integrated Design Environment

Objectives and
Alternatives

Phase 1 Evaluate Alternatives
Resolve risk

Phase 2

Plan Next
Phase

Phase 4

Develop, Verify
Next Level

Phase 3

Φ
∑

∏
∫
=

Algorithms

Architecture
Synthesis

Algorithm Graph

Custom
HW

Detailed
Hardware

Virtual
Prototype

VHDL

High-Level
Synthesis

COTS
Processor(s)

Behaviora
l

Synthesis

Logic
Synthesis/
Emulation

Manufacturing/Integration
and Test

VHDL

Autocode
Generation

Target SW
Build

Manager

RASSP De s ig n En viro n m en t

RAS S P En t erp r is e Fram ew o rk

M
e

th
o

do
lo

g
y

M

a
na

g
e

r
A

p
p

lic
a

ti
on

M

a
na

g
e

r

Re m ote
In te rfa ce

Dat e Ba se M an a ge m e n t S yst e m

Libr ary M an a ge m e n t

Objec t DBsRe lat iona l DBs

Us e r
In te rfa ce

P re se n ta tion
Se rv ic e s

Dat a M a na ge m e n t

Li
b

ra
ry

 M
o

d
el

s

H
ie

ra
rc

h
ic

a
l D

F
T

Sim ula t ion Ba ckp la ne

Proce s s M ana ge m e nt

De s ig n Fra m e w ork A

Des ign Fra m e w ork B

S
o

ft
w

a
re

 D
e

s.
 T

o
ol

s

H
a

rd
w

ar
e

D
es

.
To

o
ls

A
rc

hi
te

ct
. V

er
ifi

ca
ti

o
n

H
W

/S
W

 C
o

de
si

g
n

R
eq

u
ir

em
en

ts
 C

ap
tu

re

R
A

M
/I

LS
,C

os
t

S
o

u
rc

in
g/

P

ro
c

ur
e

m
en

t
M

an
u

fa
ct

ur
in

g
/T

es
t

S
y

st
em

 A
n

al
ys

is

Use r Inte rfac e

Methodology

[LMC-ATL]

• The Lockheed Martin ATL RASSP approach is pursuing a spiral model
concept that is supported by an integrated Enterprise environment that
supports design tools for use at all levels of the design hierarchy.

• Specific emphasis is being placed on developing a methodology and tool
set that allows starting with algorithms and mapping to a codesign trade-
off approach that supports developing hardware and software
approaches that support manufacturing and integration.

Codesign, Virtual Prototyping, and Design Reuse Enables the 4X+ Goal

Page 13
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 13

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Iterative Virtual Prototype -
the "Spiral" Model

● The main purpose of this model is to make
improvements over the traditional "waterfall"
model. It emphasizes:

❍ Objectives and alternatives studies
❍ Risk analysis reviews
❍ Development/design reviews
❍ Reevaluation of work-flows

● As the design develops, it spirals through these
reviews

● Each iteration of the spiral results in a more
sophisticated version

● This data package then drives the next iteration
of the design

A spiral model allows iterative improvement of the design with feedback between the
various stages of an evolving design. The spiral design thus minimizes risk by considering
a variety of alternatives along each axis before incrementing the current version of the design.

Page 14
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 14

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
"Spiral" Methodology Chart

[LMC-Meth]

Trade-off Mini-spiral
Results

Product Production Mini-spiral
Refinement risk analysis

Detailed HW/SW
HW partition co-design risk

analysis

Architecture architecture
Selection / risk

Algorithm Trades analysis

System Exec.
Work- life cycle Trades Spec perform. & Processor
flows plan behav. sim full virtual prototype

perf sim prototype
plan
development detailed S/W

performance H/W
system integration design

and test
SW/HW

integration
target SW generation
implementation

Data
Packages

Design Reviews

Go/No Go

Risk
Analysis
Reviews

Phase 2
Evaluate Alternatives

Resolve risk

Phase 3
Develop, Verify

Next Level

Phase 4
Plan Next

Phase

Phase 1
Objectives and

Alternatives

Four phases are associated with each major cycle of the spiral.

Phase 1: The baseline approach and appropriate alternatives are developed to
meet program objectives.

Phase 2: The approaches are evaluated against the objectives and alternatives,
and the risks associated with these approaches are evaluated.

Phase 3: The prototype is evaluated, and the next level of the product is
developed. This phase results in a prototype of the design.

Phase 4: The product is reviewed, and plans for the next development stage
are established.

The entire process is then repeated to the next level of detail.

Page 15
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 15

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Methodology
Overview Outline

● Overview

●Methodology
❍ Overview
❍ Virtual Prototyping
❍ Model Year Architecture
❍ Reuse

● Results to Date
● Summary

We will now present the RASSP methodology.

Page 16
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 16

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

● Overview

❍Current Design Practices
❍ The RASSP Approach

● Virtual Prototyping
❍ Executable Requirements/Specifications

❑ Description
❑ Case Study

❍ Data/Control Flow Modeling
❑ Description
❑ Case Study

❍ Cost Modeling
❑ Description
❑ Case Study

❍ Performance Modeling
❑ Description
❑ Case Study

A typical high-performance avionics parallel signal processor operation flow
consists of three stages - sensor signal processing (SSP), application-specific
signal processing (ASP), and mission-specific signal processing (MSP). The
inputs are recorded by sensor arrays, and the data is pre-processed by an array
of (typically hardwired) computational elements, comprising the sensor-
specific processing (SSP), that are optimized with the sensor array and the
recording environment. Typical SSP operations include range adjustment,
background subtraction,and matched filtering.Given the high computational
throughput and restricted functionality, and severe form constraints (size,
volume, area and power), the SSP functions are typically ASICs with non-
standard interfaces. SSP functions are also referred to as time-dependent
processing. After this time-critical processing is completed, the application-
specific(ASP) parallel processing (about 30-100 processors) is commenced on
an array.. (continued on next slide).

Page 17
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 17

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Detailed Section Outline
(Cont.)

❍ Fully Functional Modeling
❑ Description
❑ Case Study

● Model Year Architecture
● Reuse

of processors and communications elements, with appropriate test, control, and
maintenance structures. Typical ASP operations include coordinate
transformation, track-to-track correlation, Kalman filtering, tracking, and
parametric estimation and involve application related functionality. The ASP
functions also require relatively high throughput, and it is desired that they
have as much flexibility (i.e., programmability) as possible, together with
certain form factors. In an ASP implementation lie the multi-objective
function optimization and tradeoffs among form factors, performance,
programmability,ease of upgrades, and capability for test and diagnostics. ASP
functions can also be referred to as object-dependent processing.The mission-
specific (MSP) processing typically requires interpretation of the ASP
processing, and can be confined to a few processors that are often co-located
within the ASP box. These functions include clutter analysis, track handoff,
decision analysis, kill assessment, etc. Typical form factor constraints for
volume, power,weight, and I/O rates are in the order of 2-10 cuf, 40-500W, 10-
60 lbs, and 4-30 Mbytes/second, while for low-end low power portable
applications they are considerably more severe (in size and power). Inter-
processor communication bandwidth requirements can range between 40-1000
Mbytes/second.

Page 18
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 18

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Conventional Design Process

Customer Requirements
Capture

Design
Specifications

Design
Capture

Code
Generation Test

 Deliver?

Document?

Integrate with
Software?

In the conventional system design process (Circa 1993-1994), the customer
requirements are not captured in a systematic manner or in an executable form.
These, often very vague requirements are converted to design specifications,
usually in an ad hoc and manual fashion. This is followed by conversion of
the design specifications into an executable form, followed by code generation
(for hardware synthesis and software design) and test. Many issues are left
unverified or vague in this process, leading to lengthy design verification
cycles and errors in requirements, specifications, and test. Furthermore,
different teams are assigned to each of the intermediate steps leading to futher
inefficiency in the design process.

Page 19
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A current practice model is required as a baseline to help assess the
improvements afforded by the RASSP process.

The focus of the RASSP program is on signal processors consisting of a few to
hundreds of processing elements.

This diagram shows the time frames related to current practice broken down
into various phases of development. These include:

•Architecture Analysis (6 to 12 months)

•HW and SW Design along with integration (25 to 49 months)

•Field prototyping and test (6 to 12 months)

These will be decomposed further in the following slides.

This chart follows a waterfall approach to design methodology which is typical
of current practice circa 1993.

The underlying concept of the waterfall process is a progression through
various levels of abstraction, or phases, with the intent of fully characterizing
each level before moving to the next.

 The following bad design practices tend to result from this process:
•Limited use of concurrent engineering

•Solving wrong problems early in design process

•Inflexibility late in design process

•Significant rework and cost resulting from design flaws found late in the process

Copyright  1995-1999 SCRA 19

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Current Practice

System Requirements Def.

Sys. Architecture Def.
6-12 months

25-49 months

6-12 months

HW Design SW Design

HW Manufacture &
 Test

SW Code & Test

HW/SW Integration
& Test

Field Test

Optional

Manufacturing
Planning

Documentation

Deliverables

Production &
Deployment

System Size:
 30-150 processing elements
 80-700 Mbytes/sec

Total Timeline: 37-73 months

Page 20
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 20

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
System Definition

4-6 mo

1-3 mo

1-3 mo

System Requirements
Definition

Overall Architectural
Definition

HW Requirements SW Requirements

Tradeoff
Studies

Current practice is to provide processor and system requirements in written
form, often in hundreds of pages of documentation. The total time for this step
is 6 to 12 months.

To improve this time, tools are needed which automate the decomposition of
information down to the next level of design. Also, tools are needed which can
do trade-off analysis at each level of design.

System requirements must be converted into design functionality

Functionality must be linked so that it can be traced back to the system
requirements that it is meeting

Tests must be established which fulfill the requirements and are linked
back to the system requirements which they validate.

Page 21
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 21

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
System Definition (Cont.)

System Requirements
Definition

Overall Architectural
Definition

HW Requirements SW Requirements

Production Rqmts
 - Cost/schedule
 - Methodology
Operational Description
 - Environment, user, signal Tools

Editors
Spreadsheets
RDD-100 RTM
F2D2

B-2 Specifications
Interface Control Documents (ICD)

B-5 Specifications
Interface Control
Documents (ICD)

4-6 mo

Algorithm
Choice

- operational scenarios
- Algorithm
- Risk area/mitigation
- Development plan

Performance model
Architecture
HW/SW Requirements documents
Traceability matrix
Development plan
Simulation, test/stimulus response
Sizing

Technology Assessment (packaging...)
Alternative approaches
COTS vs. Custom
Bottlenecks and degradation
Scalability, fault tolerances,...

1-3 mo

Requirements "dB"
Analysis Report
 - Completeness report
 - Cost
 - Traceability

Tools
VHDL Simulators
RDD-100 BONeS

1-3 mo

Tradeoff
Studies

Some tools are being developed and refined to handle the system requirement
flow. "Executable requirements and specifications" would put the
requirements into a machine-readable and -executable form.

RDD-100 is a tool which captures requirements.

Page 22
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 22

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Hardware Design

Hardware Architecture
Analysis

Preliminary Hardware
Design

(Make/Buy)

Backplane
Module/
Board ASIC FPGA/PLD MCM

Microcode
Firmware

2-3 mo

8-12 mo

Detailed Hardware Design

This "waterfall" chart depicts hardware and firmware development. The entire
process currently takes from 10 to 15 months.

This has long been recognized as an area where computer simulation and
layout tools can be applied. There are many tools on the market which speed
up these engineering-intensive processes.

Page 23
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 23

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Hardware Design (Cont.)

Hardware Architecture
Analysis

B-2 Specs ICD

Preliminary Hardware
Design

(Make/Buy)

Tools
Drawing Editors
Schematic
editors

Preliminary Parts List
Preliminary Test Plan
Preliminary Block Diagram

Architecture Tradeoffs
Preliminary Function Partitioning
Make/Buy Decisions

Backplane
Module/
Board

ASIC FPGA/PLD MCM

Microcode
Firmware

2-3 mo

8-12 mo

Detailed Hardware Design Tools
Mentor Board Station
Mentor DSP Station
Synopsis
Cadence
ASIC Design Suites
PCAD LSI Logic Kits
Simulators
(Gate-level & Behavioral)

Post-Layout simulations
Production Test Vectors
Netlist

Bonding Diagrams
Release Packages (drawings, BOM, drill pkgs,
auto-insertion, mill, greater files)

Modeling tools, which create a model that can be expanded in detail at next-
lower levels, are now emerging. VHDL-based systems help meet this
requirement.

Recently, there have been efforts by some vendors to develop a common
product data description database that can be used to represent the design at all
levels of the design process.

Layout tools are also being developed which track layout effects and feed them
back to the simulation so that designers can verify that system requirements are
being met.

Page 24
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 24

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Design

Analysis

Preliminary SW Design
1-3 mo

Design, Source code, and debug CSU

CSCI Integration and Test

Detailed Software Design

6-8
mo

Redesign

CSC Integration and Test

The software design area typically takes from 7 to 11 months, and the issues of
integration can extend on for months more.

Problems:

Tradeoffs between hardware and software implementations are hard to
evaluate. System requirements are not easily represented or traceable through
software code. In-process changes to the system requirements are not easily
propagated to the system code.

Page 25
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 25

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Design (Cont.)

Analysis

B-5 Specs ICD

Preliminary SW Design1-3 mo
Block Diagram Descriptions
Communication Protocols
Pointers to Reuse Libraries

Preliminary SW Design/Model
Preliminary Test Plan
Preliminary Interface Design Document

Design, Source code, and debug CSU

CSCI Integration and Test

Detailed Software Design

Tools
Editors

Tools
Editors
Debuggers
Emulators

Source Code Listing
SW Design Documents
SW Test Descriptions

SW Test Descriptions
Source Code Listing

Updated Source Code
Software Test Report
Operation and Support Documents
Version Description Documentation
SW Product Specifications

CSCI Functional and Physical Conf. Audits

6-8 mo
Redesign

CSC Integration and Test

Software design is probably the best understood process in the system design
methodology, and the typical design flow is described above.

Page 26
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Integration occurs when the HW and most of the SW are ready. A plan for
integration must be created to guarantee sufficient coverage of the HW and
SW.

The actual integration and test can take from 8 to 18 months depending on the
number of design flaws and SW work-arounds required.

Copyright  1995-1999 SCRA 26

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Hardware/Software
Integration

Hardware Design Software Design

1-3 months

 8-18 months

Subsystem Integration
Plan

Subsystem Test Plan

Module-level integration & test
Backplane-level integration & test
Subsystem-level integration & test

Cost and product goals
Equipment delivery schedule
Schedule from HW/SW Design

Subsystem Integration
Plan

Test Plan
Multiframe Test Plan
Frame Test Plan
Backplane Test Plan
Module Test Plan

Redesign/Rework

Functional;
Test Benches

B-2, B-5
Specs

To Mfg. Field Test

 1-3 months

Page 27
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 27

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

● Overview
❍ Current Design Practices

❍The RASSP Approach
● Virtual Prototyping

❍ Executable Requirements/Specifications
❑ Description
❑ Case Study

❍ Data/Control Flow Modeling
❑ Description
❑ Case Study

❍ Cost Modeling
❑ Description
❑ Case Study

❍ Performance Modeling
❑ Description
❑ Case Study

We now describe the RASSP approach.

Page 28
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 28

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Proposed Approach

Customer

Requirements
Capture

Specification
Design

Architecture
Design

Test TestMetrics

Built "right" system?

Metrics

Right performance form fit?

TestMetrics
Integrate well?

Right function

HW/SW
Codesign

Deliver/
Document

Manufacture

To mitigate the risk involved in requirements and specifications capture and
derivation, RASSP puts emphasis on these early tasks to ensure that the
requirements and specifications are captured in an executable form together
with test benches to ensure early and rapid verification. The focus is on
building the right system, with the right architectures, and correct detailed
design through the use of hierarchical verification.

Page 29
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 29

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Rationale for New Process

• An industry survey of design practices highlights the
importance of the Requirements Capture and the Specifications
phases in the design process.
• The requirements phase and the integration/documentation
phases contribute to 70% of the design effort and 40% of the
possible errors that arise in a typical system design.
• On the average, a typical organization removes only 82% of
the possible errors in a delivered product, while top
organizations remove 95% of the errors in the delivered
product.
• Most of the these delivered defects arise from requirements
ambiguity and lack of a formal process for system level design.

1995 Software Productivity Research Inc. survey

Page 30
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

RASSP Target

Application

Behavior
Test & Stimuli

Performance
Constraints

No HW in in-cycle design loops

CONCEPTUAL
PROTOTYPING
Automated -
Estimation-based
system
exploration

Functional Design/
Area, Power
Tradeoffs

Metrics, Software,
workflow analysis

Documentation
and
life-cycle support

Preliminary
HW/SW
Partitioning,
Allocation,
Scheduling,
Assign

SW Reuse
Libraries

SW Design &
Verification

Integ. &
Simulation

based verification

Virtual HW
Design & Verif.

CoX

Automated

DFX

HW/SW Virtual Prototype

VHDL HW Model
Reuse Libraries

Interoperable Tool
Suites/Enterprise Int.

Compare
(partly
 auto.)

FAB
Manufact.
Assembly

Software

Field
Prototype

Evaluate
(Automated)

HW Modelers
Emulation Tools

Automated Metrics
Collection

Off-cycle updates

Off-cycle updates

Off-cycle updates

In the RASSP design flow, an early stage, defined as "conceptual prototyping"
which involves early design, and replaces the manual HW/SW partitioning
block of the "current practice". Conceptual prototyping utilizes automated tools
that allow rapid estimation and evaluation of algorithmic, functional,
architectural and enterprise-related trade-offs early in the design process. A
few candidate conceptual prototypes are then culled from the dozen or so
generated at this stage, and then passed on to the virtual prototyping stage.
Here, extensive evaluation and detailed design is done in virtual hardware and
software leading to successful and rapid integration, again through the use of
HW/SW reuse libraries, interoperable tools and enterprise integration. The
entire process depends heavily on automation, and feedback currently being
obtained from benchmark designs on candidate RASSP-like processes by the
primes and other RASSP participants will be used to refine and improve upon
both the rapidity, as well as the correctness of the first-time prototyping efforts
of large DSP systems. The envisioned process presents a number of open
problems related to both conceptual and virtual prototyping and verification
that are to be effectively addressed by various RASSP and the larger
electronic systems design and application community, promising an exciting
time for digital system designers trying to cut the prototyping times by a factor
of four. (See V. Madisetti, "Vive La Difference," The RASSP Digest, Vol 1,
4th Quarter 1994).

Page 31
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 31

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Features and Limitations of

Existing Codesign
Methodologies

DSP Codesign Features

Executable Functional
Specification

Executable Timing Specification

Automated Architecture Selection

Automated Partitioning

Model-based Performance
Estimation

Economic Cost/Profit Estimation

Models

HW/SW Cosimulation

Uses IEEE Standard Languages

Integrated Test Bench Generation

Thomas/
Adams

‘93

Kumar/
Aylor
‘93

Gupta/
De Micheli

‘93

Kalavade/
Lee

‘93 & ‘94

Ismail/
Jerraya

‘95

RASSP
Method

RASSP differs from current practice in many ways:

1. No hardware fabrication, assembly, and test is present in in-cycle design
loops.

2. Late binding of hardware allows the design product to be state-of-shelf at
time of manufacture or use.

3. Extensive use of conceptual and virtual prototyping optimizes efficiency of
the final product, and guarantees right-first time designs.

4.Design reuse supported by generation, maintenance, and upgrades of
application-specific VHDL libraries for rapid design of signal processors.

5. Enterprise integration and interoperability between various point design
tools facilitates design portability and standardization.

6. Extensive use of automation to facilitate --- a nested-loop and iterative
design process, automated metrics collection and distributed collaboration
facilities for large design project management speeds up the prototyping, a
documentation and life-cycle maintenance process. (For further details on this
table see V. Madisetti and J. DeBardelaben, "A RASSP Approach to HW/SW
Codesign, The RASSP Digest, Vol. 2, 4th Quarter, 1995).

Page 32
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 32

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

● Overview
❍ Current Design Practices
❍ The RASSP Approach

● Virtual Prototyping
❍ Executable Requirements/Specifications

❑ Description
❑ Case Study

❍ Data/Control Flow Modeling
❑ Description
❑ Case Study

❍ Cost Modeling
❑ Description
❑ Case Study

❍ Performance Modeling
❑ Description
❑ Case Study

A virtual prototype is a computer simulation model of a final product,
component, or system. Unlike the other modeling terms that distinguish models
based on their characteristics, the term virtual-prototype does not refer to any
particular model characteristic but rather it refers to the role of the model
within a design process; specifically for the role of: exploring design
alternatives, demonstrating design concepts, testing for requirements
satisfaction/correctness.

Virtual prototypes can be constructed at any level of abstraction and may
include a mixture of levels. Several virtual prototypes of a system under design
may exist as long as each fulfills the role of a prototype. To be useful in a
larger system design, a virtual-prototype model should define the interfaces of
the component or system under design.

In contrast to a physical prototype, which requires detailed hardware and
software design, a virtual prototype can be configured more quickly and cost-
effectively, can be more abstract, and can be invoked earlier in the design
process. A distinction is that a virtual prototype, being a computer simulation,
provides greater non-invasive observability of internal states than is normally
practical from physical prototypes (See RASSP Taxonomy Document).

Page 33
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 33

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

FUNCTL
DESIGN

.

RASSP DESIGN METHODOLOGY

RASSP Design
and Reuse
Libraries

virtual

INTEGRATION & TEST

EVOLVING PROTOTYPE

DESIGN ADVISORS

HW / SW
PARTITION

SW
CODE

HW
CODE

physical
HW DESIGN

SW DESIGN

Virtual
Prototyping is

allowing earlier
Integration &

Test

VirtualVirtual
Prototyping isPrototyping is

allowing earlierallowing earlier
Integration &Integration &

TestTest

RASSP Methodology:
Virtual Prototyping

Approach
● Simulation based Virtual Prototyping
● Full product verification prior to manufacturing
● Hardware / software codesign
● Reuse-based design
● Top-down design

Benefits
● Reduced time-to-market
● First-pass success
● Optimized solution
● Simulation at all levels

Rqmt/
Executable

Specification

The ability of designers to rapidly develop and field application–specific signal
processing is dependent on their ability to accurately model the systems that
they wish to build. This modeling starts with modeling of the application to be
developed, and it continues through architectural analyses and into detailed
design.

Accurate modeling of the system being developed is key to good selection of
architecture and to rapid development of hardware. Good models of hardware
speed development by reducing errors in design and by allowing simultaneous
hardware/software development.

The modeling begins with a functional description and proceeds through a
series of refinements to produce detailed hardware and software. During this
refinement process, as a sequence of models are developed to model system
function, system performance, system detailed behavior, and detailed system
design. The use of a common modeling allows the system engineers, the
hardware engineers, and the software engineers all to interact on a common,
executable, model of the processing problem.

The development of a complete system model with the proper structure allows
the development team to catch and eliminate several hardware interface errors
that would normally have been found after physical integration (See Madisetti
& Egolf, IEEE Micro, Fall 1995, pp. 9-21).

Page 34
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 34

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Representation of a
RASSP System

Independently Describe: 1) Resolution of INTERNAL (kernel) details
2) Representation of EXTERNAL (Interface) details

In terms of:
Temporal Resolution

High Res. Low Res.

High Res.

High Res.

High Res.

High Res.

Low Res.

Low Res.

Low Res.

Low Res.

Gate
Propagation (pS)

Clock Cycle
(10s of nS)

Instr. Cycle
(10s of uS)

System Event
(10s of mS)

Purely
Functional

Bit true
(0b01101)

Data Value Resolution

Value True
(13)

Composite
(13,req,(2.33, j89.2))

Token
(Blue)

Functional Resolution

All functions modeled
(Full-functional)

Some functions not modeled
(Interface-functional)

Structural Resolution

Structural
Gate netlist

(Full implementation)

Block diagram
Major blocks

(Some implementation info)

Single block box
(No implementation info)

Micro-
code

Assembly
code

(fmul r1,r2)

HLL (Ada,C)
Statements

(i := i+1)

DSP primitive
Block-oriented

(FFT(a,b,c))

Major
modes

(Search,Track)

Not
Programmable

(Pure HW)

(Note: Low resolution of details = High level of abstraction, High resolution of details = Low level of abstraction

Programming Level

 Copyright © 1998 RASSP Taxonomy Working Group used with permission [Hein98]

The taxonomy represents model attributes that are relevant to designers and
model users. It is based on common terminology that is readily understood and
used by designers. The taxonomy consists of a set of attributes or axes that
characterize a model's relative resolution of details for important model
aspects.The taxonomy axes, shown in the slide, identify five distinct model
characteristics:

 1. Temporal detail

 2. Data Value detail

 3. Functional detail

 4. Structural detail

 5. Programming level

The first four attributes do not completely address the hardware/software
codesign aspect of a model, because they do not describe how a hardware
model appears to software. The fifth axis represents the level of software
programmability of a hardware model or, conversely, the abstraction level of a
software component in terms of the complementary hardware model that will
interpret it (See RASSP Taxonomy Document).

Page 35
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 35

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Virtual Prototyping

Abstraction Level
Executable

Requirements
Modeling

Executable
Specification

Modeling

Data/Control
Flow Modeling

Cost/Performance
Modeling

Fully Functional
and Interface Modeling

RTL Level
Modeling

Actual
Hardware

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW/SW Architectural Design/Partitioning/Assign.

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

This slide describes an outline of the virtual prototyping process where the
requirements are converted to specifications followed by other levels of the
design abstraction. The feedback loops support spiral design flow with test and
verification (through simulation) of each decision made in the virtual
prototyping process.

Each of the levels is supported by its library of models, and design exploration
and verification is supported in a hardware-less simulation based environment.

For futher details on the design flow shown, please see: T. Egolf, "VHDL-
Based Rapid System Prototyping," Journal of VLSI Signal Processing, Vol.
14, Issue 2, 1996.

Page 36
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 36

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

17

Definitions

● Virtual prototype
❍ An executable requirement or specification of an embedded system

and its stimuli that describes it in operation at multiple levels of
abstraction.

● Virtual prototyping
❍ A top down design process of creating a virtual prototype for

hardware and software cospecification, codesign, cosimulation, and
coverification of the embedded system.

● Conceptual prototyping
❍ A software representation of a component, board/MCM, or system

that supports early architectural design, modeling and performance
evaluation of candidate architectures including manufacturing and life
cycle cost functions.

● Hardware/Software virtual prototype
❍ A software representation of a hardware component, board/MCM, or

system integrated with its application, diagnostic, and control code
containing sufficient accuracy to guarantee its successful realization.

The RASSP design methodology is derived from the traditional top down
design paradigm with the incorporation of the Virtual Prototype concept. The
basis of this concept is to develop a complete description, in standard
languages like VHDL, C, Java, and Ada, prior to fabrication. The design is
checked out completely as a model prior to commitment to hardware. In this
way design errors are caught when they are easy to fix, and the system
performance can be validated in simulation.

The choice of VHDL as the modeling language is important because VHDL
provides:

 Completeness: VHDL provides the mechanism for capturing the system
behavior in a form that can be maintained and upgraded for twenty years or
more; and

Portability: VHDL is an industry standard so models developed in VHDL can
be ported to a wide range of simulation environments and can be maintained
over the system’s lifetime.

Page 37
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 37

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping Should
Provide the Following

● "Represent" the prototype during various stages
in system development process

● "Represent" the prototype at multiple levels of
abstraction in top-down design

● Allow optimization of design at multiple levels or
different stages

● "Document" the design for effective upgrades
and support

● Be cost effective (time and dollars)

One must understand the attributes of the system
being designed to be able to "represent" it accurately

"Represent" = Modeling

The ability of designers to rapidly develop and field application–specific signal
processing is dependent on their ability to accurately model the systems that
they wish to build. This modeling starts with modeling of the application to be
developed, and it continues through architectural analyses and into detailed
design.

Accurate modeling of the system being developed is key to good selection of
architecture and to rapid development of hardware. Good models of hardware
speed development by reducing errors in design and by allowing simultaneous
hardware/software development.

Page 38
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 38

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

● Overview
❍ Current Design Practices
❍ The RASSP Approach

● Virtual Prototyping

❍Executable Requirements/Specifications
❑ Description
❑ Case Study

❍ Data/Control Flow Modeling
❑ Description
❑ Case Study

❍ Cost Modeling
❑ Description
❑ Case Study

❍ Performance Modeling
❑ Description
❑ Case Study

The use of executable specifications is essential to the RASSP Model Year
concept which seeks to ensure that a signal processor will employ state-of-the-
art technology when fielded and that it will be possible to upgrade the system
throughout its lifetime. It is also a key to achieving improved design time and
quality because it can provide a thread of evolving models from system
definition to implementation. What constitutes an executable specification and
how to name the different varieties is a subject of active discussion, but
common to all definitions is simulation of the processor in its environment. A
design process can be thought of as a successive refinement and adding of
detail to a processor model beginning with initial requirements and ending with
a virtual prototype which models the hardware and software system in
complete detail. Important advantages of interoperability and reuse accrue to
use of one modeling language from requirement to virtual prototype but the
needs at different levels are quite different. In the requirement the algorithm
may not be specified in full detail. In conceptual models there is a high
premium on fast execution time to improve designer productivity. And the
virtual prototype must model hardware in detail and be capable of executing
application code if the device is programmable. Languages and software
environments such as Matlab, Processing Graph Methodology, C, Ptolemy and
VHDL are all candidates for executable specification languages. The optimum
strategy for design with executable specifications has been an important focus
in the RASSP community.

Page 39
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 39

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping
Executable Req./Spec.

Abstraction Level
Executable

Requirements
Modeling

Executable
Specification

Modeling

Data/Control
Flow Modeling

Cost/Performance
Modeling

Fully Functional
and Interface Modeling

RTL Level
Modeling

Actual
Hardware

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW/SW Architectural Design/Partitioning/Assign.

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

The functional definition phase produces a data flow model that defines the
systems behavior as a set of interconnected sub-functions prior to
hardware/software partitioning. These sub-function models are either used
directly or translated for reuse in lower level definition phases. RASSP
program has used VHDL modeling in the functional definition phase,
particularly in the context of the design of a SAR image processor for purposes
of benchmarking the RASSP Process. The use of VHDL modeling for a
functional specification of a signal processing algorithm is unusual. It has the
following advantages:

Consistent Testing Environment: Our design process is based on VHDL
modeling so the functional definition is captured in the same form that the
hardware development will be captured in. This allows for later side by side
comparison between the functional representation and the detailed hardware
design within the same environment.

Path to Synthesis: For those portions of the functional specification which will
be implemented in custom hardware, rather than in a programmable processor,
the VHDL description provides a better starting point for the hardware
synthesis problem.

Page 40
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 40

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Requirements
and Specifications

Executable Requirements

Executable Specifications
● Captures three general categories of information

❍ Timing/Performance (e.g. processing latency, throughput, I/O timing)
❍ Function (e.g. algorithms, control strategies)
❍ Physical constraints (e.g. size, weight, power, cost, reliability, maintainability, testability,

scalability, temperature, vibration)

● VHDL is applicable for conveying function, timing, and performance information
❍ High-level behavioral models

● Generate VHDL test bench and system model
❍ Test bench provides test procedures, stimuli, and expected responses to system model

● Supplied by customer in an executable format
● Removes ambiguity associated with written requirements
● Provides information on required

❍ Signal transformations
❍ Data formats and form constraints
❍ Modes of operation
❍ Timing at data and control ports
❍ Test capabilities
❍ Implementation constraints

● Provides human readable source code and test data

 As part of the RASSP program efforts, a SAR strip map algorithm was
implemented in VHDL through a straight forward translation of an existing C
program. It primarily uses real and integer variables and VHDL signal
variables very sparingly and executes the algorithm in zero simulated time.
The VHDL created strip maps are essentially identical to those created with the
C program. Data timing is modeled at the processor data input and output ports
and the user can set processor latency between 0.1 and 3 seconds.

The VHDL testbench simulates the sensor system output by reformatting data
from disk files and presenting it to the processor at the proper simulated time.
It presents commands and setup data to the processor as a simulated host and
writes output data from the processor to files and compares it with other disk
file data. Latency is measured and compared with a user supplied reference.
The processor and testbench model comprise 2430 lines of VHDL and use an
existing math library. The VHDL processor simulation is about 25 times
slower than a C program for the math parts of the SAR algorithm, that is, an
FIR filter, FFTs and vector multipliers. However, not all aspects of the internal
functionality will be simulated at early levels of the virtual prototyping process
and the focus is on the input/output requirements/specifications and their test
implications.

It is important to note the distinction between the requirements and
specifications as described in the slide.

Page 41
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The RASSP program uses benchmarks as a method to test the newly developed
RASSP processes and compares them with current practice (1993). The first
benchmark was a SAR processor and consisted of a test bench and processor
model. The code for the models were written in fully IEEE Std 1076-1987
compliant VHDL code. The SAR algorithm required on the order of a gigaflop
of computational power and was developed by MIT Lincoln laboratories.

Copyright  1995-1999 SCRA 41

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Benchmark SAR
Executable Requirement

● Developed code using
fully IEEE Std 1076-1987
compliant VHDL code

● Composed of the SAR
processor and its
corresponding test bench

● Required an estimated
1085 Mop/sec processing
load

● Developed for use on
Advanced Detection
Technology System
(ADTS) from MIT Lincoln
Laboratory

SAR
Processor

Test Bench

Storage

Data Control

Page 42
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide presents the goals of the processor model simulation. It accepts data
in the format of the ADTS sensor, creates output data in the required format of
the displays, models input and output timing as required by the specification,
simulates the amount of processor latency expected by the system, models all
control modes of operation, and performs the processing algorithm with at least
the accuracy specified in the system requirement.

Copyright  1995-1999 SCRA 42

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Goals of Processor

● Accept data in the format of the ADTS sensor
system

● Create output data in the specified format

● Model timing at the data input and output ports

● Model processor latency

● Model control modes

● Perform the processing algorithm with at least
the accuracy specified in the system requirement

Page 43
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The test bench controls the processor using commands and setup data read
from disk files. Sensor data is modeled using disk input files and the data read
from the files is transformed into that required by the ADTS system. The test
bench also monitors responses of the system under test. The processor latency
and pixel transformations are computed and written to disk files and compared
with expected results based on the specification.

Copyright  1995-1999 SCRA 43

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Goals of the Test Bench

● Control the processor from disk files with
commands and setup data

● Read input files from disk and transform the
compressed files to the ADTS format

● Measure processor latency

● Do a pixel magnitude comparison between
processor output and comparison data in disk
files

● Write output data to disk files

Page 44
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 44

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

• Signal processing
I/O data

– I/O timing
constraints

– I/O interface
structures

– I/O protocols
– Signal levels
– Message types

• Signal processing
latency

– Data acceptance
rate

• Signal processing
stimuli/response

System Timing and
Performance Data

System Functionality Data

• Algorithm descriptions
• Control strategies
• Task execution order
• Synchronization

primitives
• Inter-process

communication (IPC)
• BIT and fault diagnosis

Physical Constraint Data

• Size
• Weight
• Power
• Cost
• Reliability
• Maintainability
• Testability (fault

coverage, diagnosis, and
BIST goals)

• Repairability
• Scalability
• Environment constraints

– Temperature
– Vibration
– Pressure
– Stress and Strain
– Humidity
– EMI/EMF/EMP

Elements in Executable
Specification of the

System Model

The above slide represents the organization of the information in an executable
specification of a system. We suggest that the above information be included
as part of the executable specifications capture process.

Page 45
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 45

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Specifications

System Model

File I/O
Input Streams

Expected Results

Golden
C

Model

Requirements

Testbench

Model Verified /
 Model Error

Relationship Between
Executable Requirements and

Specifications

The relation between the executable specifications and requirements is shown
above. The requirements describe what a system should do, while the
specifications describe the model of the system (including details of its
implementation) that require that it satisfy the same test bench utilized as part
of the executable requirements capture process.

Page 46
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 46

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

● Overview
❍ Current Design Practices
❍ The RASSP Approach

● Virtual Prototyping
❍ Executable Requirements/Specifications

❑ Description
❑ Case Study

❍Data/Control Flow Modeling
❑ Description
❑ Case Study

❍ Cost Modeling
❑ Description
❑ Case Study

❍ Performance Modeling
❑ Description
❑ Case Study

The Data/Control Flow phase follows the Executable/Specifications phases.

Page 47
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 47

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Virtual Prototyping

Abstraction Level
Executable

Requirements
Modeling

Executable
Specification

Modeling

Data/Control
Flow Modeling

Cost/Performance
Modeling

Fully Functional
and Interface Modeling

RTL Level
Modeling

Actual
Hardware

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW/SW Architectural Design/Partitioning/Assign.

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

During Data/Control flow graph (DFCG) modeling the internals of the
executable specification are represented in an executable form to highlight
features such as concurrency. A DFCG describes an application algorithm in
terms of its inherent data dependencies of its mathematical operations. The
DFG is a directed graph containing nodes that represent mathematical
transformations and arcs that span between nodes and represent their data
dependencies and queues. It conveys the potential concurrencies within an
algorithm, which facilitates parallelization and mapping to arbitrary
architectures. The DFG is an architecture independent description of the
algorithm. It does not presume or preclude potential concurrency or
parallelization strategies. The DFG can be a formal notation that supports
analytical methods for decomposition, aggregation, analysis and
transformation.

Page 48
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 48

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Data/Control Flow Modeling

● Contained in the architecture selection design
process

● Accepts the algorithms processing flows as input
from the system design process

● Generates implementation-independent
representation of the system data flow

● Generates information for data flow graph control

● Verify virtual prototype at this level using data
passed down from the previous design phase

The DFG nodes usually correspond to DSP primitives such as FFT, vector
multiply, convolve or correlate. The DFG graph can be executed by itself in a
data-value-true mode without being mapped to a specific architecture, though
it can not resolve temporal details without co-simulation with an architecture
performance model. The primary purposes of a data flow graph are to express
algorithms in a form that allows convenient parallelization and to study and
select optimal parallelization or execution strategies through various methods
involving the aggregation, decomposition, mapping and scheduling of tasks
onto processor elements and data flow aspects of the behavior inside the
functional virtual prototype.

Page 49
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 49

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Data/Control Flow Graph
Generation

Processing
Flows

Demod.

BP Filter

PSD

Freq. Det.

Pwr Det.

S&H

Edge Det.

FFT

Corr. Mix

Peak Pick

Lag Domain
Beamform

Domain
Primitive

Graph

Demod

FIR1

FIR2

FFT REP8

PSD Det_PW

REP

Det_Freq.

Sum

Lag_Dom

S&H

MAG

EAVE

DIFF

FFT8

Covar_MA
Covar_SUB

Peak_PK

1

2

3

4

5

6

7

1 1
1

1

2

3

4

5

6

7

2

3

4

5

6

7

An example of a Data Flow Control Graph representation of a signal processor
is shown above using the Processor Graph Methodology (PGM) proposed by
the US Naval Research Laboratory in the late 70s and early 80s. The
functional process flow is described on the left and its implementation using
domain primitive graphs is described on the right. The specification on the
right is expected to be in a executable format.

Page 50
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 50

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Flow Graph Generation and
Simulation Mechanism

● PGM Tools: GRED and GRAIL

❍ Processing Graph Method (PGM)

❍ GRED is a graphical editor for building PGM graphs

❍ GRAIL is a translator from graphical format to Signal
Processing Graph Notation (SPGN)

● PGSE: Processing Graph Simulation
Environment

❍ Functional simulation of PGM graphs

❍ Provides standard interface to command program

❍ Provides ability to simulate command program
interacting with multiple PGM graphs

The PGM environment provides for the GRED and GRAIL utilities that assist
in the composition of the executable specification from domain primitives.
The PGSE is the simulation environment that links the functional specification
to the control/sequencing that complete the executable specification.

Page 51
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 51

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

● Overview
❍ Current Design Practices
❍ The RASSP Approach

● Virtual Prototyping
❍ Executable Requirements/Specifications

❑ Description
❑ Case Study

❍ Data/Control Flow Modeling
❑ Description
❑ Case Study

❍Cost Modeling
❑ Description
❑ Case Study

❍ Performance Modeling
❑ Description
❑ Case Study

Cost Modeling evaluates the cost (in terms of design time, design costs, life-
cycle costs and HW/SW costs, to name a few) of various possible architectural
candidates for implementation. Cost can be an independent variable in this
decision making process, and involves modeling various aspects of the design
and lifecycle costs in a form that allow them to be included in the virtual
prototyping process early on the in the system design process.

Page 52
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Virtual Prototyping

Abstraction Level
Executable

Requirements
Modeling

Executable
Specification

Modeling

Data/Control
Flow Modeling

Cost/Performance
Modeling

Fully Functional
and Interface Modeling

RTL Level
Modeling

Actual
Hardware

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW/SW Architectural Design/Partitioning/Assign.

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

We will focus on the cost modeling phase of the virtual prototyping process,
wherein cost modeling is used to synthesize candidate architectures based on
architectural partitioning, allocation, and scheduling algorithms, followed by
performance verification through performance modeling and simulation. For a
detailed discussion on Cost Modeling see J. DeBardelaben, V. Madisetti, and
A. Gadient, "On Incorporating Cost Modeling in Embedded Systems Design,"
IEEE Design & Test of Computers, Vol. 13, No. 3, July 1997.

Page 53
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The VP process spans multiple levels and multiple user’s viewpoints.

At the lowest level of HW integration, we have HW design being done and one
would typically see the following being used:

• Full-behavioral/Interface and RTL level models of application
specific and COTS parts being modeled

• Interconnection between devices are tested

The next level integrates the OS SW and application interface to the HW
system. This is where one would see SW running on the HW VPs to make sure
the device drivers work as expected.

At the highest level, application and test code is integrated and tested at the
system level. Performance level models help determine the number of
processing boards required. Full-behavioral models help insure test SW can
perform its functions at the node level. Executable specification helps
determine the application SW.

The VP process covers all these domains (See Madisetti & Egolf, IEEE Micro,
Fall 1995).

Copyright  1995-1999 SCRA 53

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Embedded-System HW/SW
Design, Integration and Test

Application
Software

Test
Software

HW/SW Integration
& System Test

Applications Programming Interface
(API)

Real-time OS Device
Driver

Device
Driver

CPU
Board

CPU
Board

I/O
Board

I/O
Board

Software
Integration

Hardware
Integration

(COTS)

Page 54
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 54

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Autocoding

In case the architecture of the target platform is not fixed, then the architecture
has to be synthesized and verified prior to code generation and mapping. This
requires cost modeling to synthesize the candidate architectures, and
performance modeling to verify each candidate architecture. Extensive use of
re-use libraries for cost, performance and functionality is done in this phase of
the virtual prototyping process.

Page 55
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 55

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Data Flow Graph System performance
requirements

System-level
Power and Area

Constraints

Schedule Constraints

Performance
 Modeling

Back
Annotate
Updated
Model

Parameters

HW/SW
Architecture

does not meet
performance
constraints

HW/SW Architecture to VP Stage

HW/SW Reuse Library
Models and Parameters

System-level
Design
Engine

Automated System-level
Design Environment

In case the architecture of the target platform is not fixed, then the architecture
has to be synthesized and verified prior to code generation and mapping. This
requires cost modeling to synthesize the candidate architectures, and
performance modeling to verify each candidate architecture. Extensive use of
re-use libraries for cost, performance and functionality is done in this phase of
the virtual prototyping process.

Page 56
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

• The graph shows that hardware constrained architectures can significantly
increase total system costs especially in systems which are produced in small
quantities, such as systems for military applications.

• Reasons for increased software cost:

– code and data is trickier to program and debug

– more complex test procedures, harder test drivers and diagnostics

– added analysis, simulation, prototyping, validation

– added performance measurement functions

– complex resource management

– tight execution time budget and memory core control

• If physical constraints permit, the hardware platform can be relaxed to
achieve significant reductions in overall development cost and time.

• Many parametric software cost models support this principle of software
prototyping.

Further details are available in J. DeBardelaben, Incorporating Cost Modeling
in Embedded Systems Design," IEEE Design & Test of Computers, Vol 13,
No. 3, July 1997.

Copyright  1995-1999 SCRA 56

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

0.x 0.y 1.0

C
o

st
 (

p
er

so
n

 h
o

u
rs

, d
o

lla
rs

)

Utilization of available speed and memory

- Infeasible region due to form constraints

A

B

C
D

E

F

 Hardware cost
(large quantity production)

Software Cost

 Hardware cost
(small quantity production)

0.0

- Feasible region based on form constraints

HW/SW System
Prototyping Costs

Page 57
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

• Multi-chip module technology allows for increased packaging density over
single-chip packaging.

• This increased packaging density can allow for more slack to be added to
the hardware architecture without violating system-level form factor
constraints.

• This added slack margin can possibly lead to significant software cost
reductions.

• However, the reduction in software cost is traded off against the increase in
production costs due to MCM manufacturing.

Copyright  1995-1999 SCRA 57

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

C
o

st
 (

p
er

so
n

 h
o

u
rs

, d
o

lla
rs

)

Utilization of available speed and memory
0.x 0.y 1.00.z

Software Cost

 Hardware cost
(large quantity production)

 Hardware cost
(small quantity production)

A

B

C

DE

F

- Single chip packaging infeasible due to form constraints

- MCM and single chip packaging infeasible due to form constraints

0.0

The Effect of Packaging on
Prototyping Costs

Page 58
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

• The parametric equations used by REVIC software cost model
quantitatively describe the relationship between software cost and hardware
utilization.

• As the hardware utilization increases, so does the value of the execution
time and main storage constraint multipliers. This increase causes a
corresponding increase in the software development cost and time.

• Also, the model describes an associated increase in HW/SW integration
cost and time.

• In the above REVIC model, the development cycle includes the contract
award through hardware/software integration and testing.

• The software development time equals the system development when
hardware platform consists of mostly COTS hardware components.

• The units of development cost and time are person-months and calendar
months, respectively.

Copyright  1995-1999 SCRA 58

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Execution Time and Main Storage Constraint Effort Multipliers

REVIC Embedded Mode Model

Software Development Cost

Software Development Time

Rating Utilization FE FM

nominal up to 50% 1.00 1.00

high 70% 1.11 1.06

very high 85% 1.30 1.21

extra high 95% 1.66 1.56

(())S L KDSI F F F F Fc c E M MODP TOOL i
i

== •• •• ••



==

∏∏4 44 1 2

5

18
. .

(())S KDSI F F F F FT E M MODP TOOL i
i

== •• •• ••



==

∏∏6 2 4 44 1 2

5

18 0 32

. . .
.

REVIC Software Development
Cost/Schedule Model

Page 59
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

• The RASSP methodology strongly supports the use of modern
programming practices and advanced software tools. Modern programming
practices include reuse-driven development methodologies, spiral
development, incremental development and/or object-oriented approaches.
RASSP supports a fully integrated software tool suite including:

– VHDL performance models, instruction set architecture models,
executable specifications.

– Life cycle tools which are fully integrated with processes, methods,
and reuse.

• However, tight hardware resource constraints can have adverse effects on
the use of advanced software development tools. The use of high order
languages and compilers is very restricted when execution time and
memory margins decrease. Especially, the inefficiency of many DSP
compilers prohibits their use when memory core and execution time
budgets are very tight.

Copyright  1995-1999 SCRA 59

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP REVIC Software Development
Cost/Schedule Model

Factors Strongly Influenced by RASSP Tools and Methodology
Modern Programming Practices

Software Tool Usage

Rating Description FMODP

very low no use 1.24
low beginning or experimental use 1.10
nominal experienced in use of some 1.00
high experienced in use of most 0.91

very high routine use of all modern
programming practices

0.82

Rating Description FTOOL

very low very few - primitive tools 1.24
low basic microcomputer tools 1.10
nominal basic minicomputer tools 1.00
high Basic maxicomputer tools 0.91
very high extensive tools but little integration 0.83
extra high moderate tools with integrated env. 0.73

extremely high fully integrated environment 0.62

Page 60
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The SAR processor example has been used as part of the RASSP Benchmark
efforts to measure metrics on the efficacy of the virtual prototyping process.
The input requirements for the SAR processing efforts are provided above in
terms of form, fit and function, together with some performance and code size
values.

Copyright  1995-1999 SCRA 60

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Design Example:
SAR Processor Requirements

● Software Size
❍ 8,750 lines of uncommented source code

● Performance requirement
❍ 1 billion floating point operations per second

● Size limit
❍ 10.5" height x 20.5" length x 17.5" width

❑ Sufficient to hold 21-slot 6U VME card cage, etc.

● Average power limit
❍ 500 watts

● Weight limit
❍ 60 pounds

Page 61
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 61

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Dependence of Objection
Functions on Customer Class

● Commercial Applications
❍ Objective - select an architecture which will maximize

profits subject to design constraints
❑ Profit = Total potential revenue - HW/SW DEV/PROD cost

● Government Applications
❍ Objective - select an architecture which will minimize

life cycle costs (LCC) subject to design and schedule
constraints

❑ LCC = HW/SW Dev/Prod. Cost + HW/SW Maintenance Cost

This slide shows the differences in the objective functions of commercial and
government/military type applications. The virtual prototyping, as espoused
by the RASSP process, is applicable to both applications, with the provision
that different objective functions be included in the early architectural
synthesis process. The virtual prototyping ideas are also equally applicable to
the System-On-Chip (SOC) and Systems-on-Chip (SOP) design efforts.

Page 62
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 62

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SAR Multiprocessor

● SAR Processor is required to form images in
real-time on board an F-22 or an unmanned air
vehicle (UAV)

● Pulse Repetition Frequency - 556 Hz
❍ Delivers 512 pulses in 0.92 seconds
❍ Each pulse contains 4064 data samples for each of four

polarizations

● Processor must be able to form a 512-pulse
image for each of three polarizations in real-time

❍ Maximum latency is 3 seconds

● Computational Requirement - 1.1 Gflop/sec
● Memory Requirement - 77 MB

This slide provides some specific details of the executable requirements for the
SAR benchmark application.

Page 63
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 63

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Manual Tradeoffs

● Mercury MCV6 cards
❍ Four 40 MHz Intel i860 processors per card
❍ Each card weighs 1.875 pounds
❍ Maximum power dissipation of 28W per card

❑ Up to 14 cards could be used in the system

❍ Variable memory configurations

Model Memory
(Mbytes DRAM)

Price ($)

4x4m 16 30,200
4x8m 32 35,800
4x16m 64 47,000

Several target architectures are possible for the SAR application. One can
design a custom hardware architecture, and then develop software for that
architecture. One can also use off-the-shelf (COTS) signal processing boards
(such as Mercury MVC6) cards that come with supporting control and
diagnostic environments that assist in code development. Since the virtual
prototyping approach facilitates the use of cost as an independent variable, we
also enumerate the costs in terms of hardware costs and the design costs for
software developed during the prototyping phases.

At least three objective functions may be formulated:

1. A minimum HW cost system

2. A reduced cost system (that improves upon the minimum cost system, while
relaxing a few constraints that contribute to the total system costs).

3. A minimum HW+SW cost system(possibly the desired objective).

Page 64
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 64

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

1 Minimum Hardware Cost
• Lowest Production Cost
• Minimum size, weight, and power
• Nominal memory and computational

margins

2 Reduced Development Cost & Time
• Same number of cards and life cycle cost

as
• RAM added to improve memory margin,

allow use of advanced software
development tools and methodology

3 Minimum Development Cost and Time
• Processors added to
• Improved computational margin further

eases software development
1 2 3

1

2

3
 Development

Cost ($M)

Development
Schedule
(Years)

HW

SW

HW

SW

SW

TOTAL

HW

3.8X
TOTAL

1.5X

TOTAL

2

2

2

1

1

1

3

3

3

1

2

Design Tradeoff Case Study:
SAR Processor with COTS

Multiprocessor Cards

• In all three cases, use of a commercial off-the-shelf multiprocessor card
solution is assumed, but details of the processor and memory margins differ.
If the designer focuses entirely on minimizing hardware cost, the software
development cost is nearly four times that of a design which seeks to
minimize the overall development cost and time. The curves compare
development cost and time for a synthetic aperture radar processor under
three different assumptions regarding computation and storage requirements.
The minimum hardware cost implementation uses only six MCV6-4x4m
cards with a 88% execution time utilization and 86% memory utilization.
Resulting hardware component cost is $100,000 plus the cost of the six cards
- $281,000. Software cost development cost and time are $2,360,000 an 32
months, respectively (total cost - $2,640,000). The reduced development
cost/time implementation uses six MCV6-4x8m cards, thereby decreasing
memory utilization to 43% allowing for the use of advanced software
development tools and methodology. Software development cost and time
decrease to $1,030,000 and 24 months; while hardware cost slightly increases
to $315,000 (total cost - $1,350,000). The minimum development cost/time
implementation uses eleven MCV6-4x4m cards with less than 50% memory
and processor utilization. This further reduces software development cost and
time to $620,00 and 21 months; while hardware increases to $432,000 (total
cost - $1,050,000).

Page 65
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 65

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

● Overview
❍ Current Design Practices
❍ The RASSP Approach

● Virtual Prototyping
❍ Executable Requirements/Specifications

❑ Description
❑ Case Study

❍ Data/Control Flow Modeling
❑ Description
❑ Case Study

❍ Cost Modeling
❑ Description
❑ Case Study

❍Performance Modeling
❑ Description
❑ Case Study

Once cost modeling generates candidate architectures for HW and SW,
performance modeling plays an important role in verifying that these
architectures meet with performance constraints (e.g., throughput, sample rate,
etc.).

Page 66
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 66

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Modeling

Performance Modeling

HW/SW
Partitioning

Architecture
Selection

Compare

Application
Performance Constraints

Virtual Prototyping
HW/SW Co-design

Virtual Prototyping
HW/SW Co-design

Field
Prototype

Compare

Object:
• Rapidly evaluate the architectural trade-offs
• Verify a draft design
• Familiarize users with the candidate solution
 in the form of a prototype

Object:
• Rapidly evaluate the architectural trade-offs
• Verify a draft design
• Familiarize users with the candidate solution
 in the form of a prototype

Design Environment:
• Flow chart description language
• Statechart description language
• Honeywell PML and Georgia Tech CPL
• Automated Interconnect Model generation

Design Environment:
• Flow chart description language
• Statechart description language
• Honeywell PML and Georgia Tech CPL
• Automated Interconnect Model generation

HW/SW Reuse Libraries

The intention of performance modeling is to explore and verify architectural
tradeoffs such that the application's performance needs are met with efficiency.
Using the conceptual prototyping technology based on performance modeling,
system developers are able to determine the proper architecture components
and predict system performance before developing the embedded systems.
Thus, conceptual prototyping does improve the cost and design times of
embedded systems dramatically.

RASSP’s utilizes a VHDL-based executable performance-level models as part
of an interoperable validated RASSP component library.These performance
models do not really transfer data streams or access handshaking signals, but
do detect the states of components and transfer virtual packets between
components. Each virtual packet contains the information of a transaction, such
as the source , destination , packet size, packet identification number and
packet status.

Via simulation and debugging the performance-level models, conceptual
prototypes are generated by comparing candidate architectures in terms of
performance metrics, such as throughput, latency, utilization and scalability.

Page 67
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 67

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Architecture Selection
Process

C
o

n
cep

tu
al

p
ro

to
typ

es

Select
architectures

Select
architectures

Map partitions
onto

architectures

Map partitions
onto

architectures

Performance
modeling

Performance
modeling

Test and debug
architecture(s)

Test and debug
architecture(s)

HW/SW
partitions

• Processing element attributes
• Communication protocol attributes
• Topology attributes

• Processing element attributes
• Communication protocol attributes
• Topology attributes

Performance model
components

Performance model
components

Reuse VHDL Library

After selecting some candidate architectures and verifying their conceptual

prototypes, system developers can acquire the performance results and

select the most preferred architecture.

For further details see L-R. Dung, V. Madisetti, "Conceptual Prototyping of
Scalable Embedded DSP Systems," IEEE Design & Test of Computers , Vol
13, No 3., Fall 1996.

Page 68
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 68

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling in
System-level Design

Data Access Model

Response Handler

Request Handler

Interconnect ModelInterconnect Model

Link to the other nodes

Structure:
Definition of basic signals:
TYPE ucue IS
 RECORD
 dest_id :INTEGER;
 src_id :INTEGER;
 c_id :INTEGER;
 init_time :TIME;
 c_type :INTEGER;
 c_size :SIZE_TYPE;
 resp_size :SIZE_TYPE;
 c_state :INTEGER;
 priority :INTEGER;
 collisions :INTEGER;
 retries :INTEGER;
 routes :INTEGER;
 int_user1 :INTEGER;
 int_user2 :INTEGER;
 real_user1:REAL;
 real_user2:REAL;
 END RECORD;

Definition of basic signals:
TYPE ucue IS
 RECORD
 dest_id :INTEGER;
 src_id :INTEGER;
 c_id :INTEGER;
 init_time :TIME;
 c_type :INTEGER;
 c_size :SIZE_TYPE;
 resp_size :SIZE_TYPE;
 c_state :INTEGER;
 priority :INTEGER;
 collisions :INTEGER;
 retries :INTEGER;
 routes :INTEGER;
 int_user1 :INTEGER;
 int_user2 :INTEGER;
 real_user1:REAL;
 real_user2:REAL;
 END RECORD;

CPL

Processor Model

Task Model

The typical embedded platform consists of three fundamental components -
processing elements, communication protocols and configuration. The
performance models of processing components are created by simply setting
the component attributes, such as the processor throughput and latency,specific
task processing time, and memory access time, and configurations can be done
by VHDL port mapping.

However, the critical part of our performance modeling is the implementation
of communication protocols; we need to convert the communication protocol
to some flow charts or state diagrams and then write VHDL processes to
realize the flow charts or state diagram as shown in the above slide.

Page 69
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 69

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP SCI (IEEE Std 1596-1992)
Component Elements

SCI Node Structure Performance Report

MUX State Diagram

(sci_rcv_queue.vhdl)(sci_rcv_queue.vhdl)

res_q_proc req_q_proc

(sci_tr_queue.vhdl)(sci_tr_queue.vhdl)

res_q_proc req_q_proc

tr_q_pr
oc

echo_proc

(sci_process.vhdl)(sci_process.vhdl)
responder

res_handler
token
generator

M
U

X
_

p
ro

c

Bypass_FIFO Stripper

(sci_linc.vhdl)

idle

mux_state

busy_tr busy_pass

idle

busy_pass busy_tr

req_pass

TR_Token’Event Not TR_Token’Event
ST_Token’Event

Not TR_Token’Event
Not BF_Token’Event

 BF_Token’Event

NODE NAME ==> p0000001
 AVG THROUGHPUT RATE (Gbyte/sec) ==> 2.600000E-01
 AVG LATENCY (nsec) ==> 3.430400E+03
 NODE NAME ==> p0000002
 AVG THROUGHPUT RATE (Gbyte/sec) ==> 2.600000E-01
 AVG LATENCY (nsec) ==> 3.430400E+03
 NODE NAME ==> p0000003
 AVG THROUGHPUT RATE (Gbyte/sec) ==> 2.600000E-01
 AVG LATENCY (nsec) ==> 3.430400E+03
 NODE NAME ==> p0000004
 AVG THROUGHPUT RATE (Gbyte/sec) ==> 2.600000E-01
 AVG LATENCY (nsec) ==> 3.430400E+03
 NODE NAME ==> p0000005
 AVG THROUGHPUT RATE (Gbyte/sec) ==> 2.600000E-01
 AVG LATENCY (nsec) ==> 3.430400E+03
 NODE NAME ==> p0000006
 AVG THROUGHPUT RATE (Gbyte/sec) ==> 2.600000E-01
 AVG LATENCY (nsec) ==> 3.430400E+03

CPL

In general, there are four basic elements in communication components -
requester, responder, arbiter and the handshaking signals. The handshaking
signals control the data flow and transactions among components and indicate
the states of components or the types of transactions.

The slide shows how these various functional blocks are captured for the SCI
(IEEE Std 1596-1992) communications protocol.

The basic SCI interconnect model is shown above in the pm_scinode. The linc
is a link channel that receives packets from the preceding interconnect model
and sends packets to the successive node.

A linc contains three components: stripper, bypass FIFO and a MUX. The
stripper selectively strips incoming packets, creates echo packets and replaces
the selected non-idle symbol by an idle symbol. The bypass FIFO is employed
to delay pass-through packets while a transmit-queue packet is being sent. The
MUX is used to determine the output packet among the queuing input packets.

For further details see L-R. Dung, V. Madisetti, "Conceptual Prototyping of
Scalable Embedded DSP Systems,'' IEEE Design & Test of Computers , Vol
13, No 3., Fall 1996.

Page 70
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 70

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SCI (IEEE Std 1596-1992)

Multiprocessor Performance
Simulation

SSMP

MSMP

11

p1

Sensor_node
Sensor_node22

p2

NN

pN

sensor

22

p2s2

11

p1s1

33

p3s3

NN

pNsN

packet.retries 1

Input Rate = 100 MBytes/sec Input Rate = 10 MBytes/sec

packet.retries 0

retry bandwidth

retry packets are generated retry packets do not exist

CPL

Input streams may be suspended
for slow processors

In the above slide two architectures for a sensors-based multiprocessor
platform are evaluated. The performance of a real-time scheduling protocol is
evaluated and it is observed that in one case "retry" packets are generated
implying that the system has errors and may not meet real-time processing
constraints due to non-determinism. Plots of bandwidth analyses and processor
vs. performance tradeoffs can be quickly explored using the performance
modeling environment (as shown in the next slide).

Page 71
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 71

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Scalability Tradeoffs

Task Model

The simulation results of SSMP with
compressed input streams

Case
Study

Using an executable representation of SW executing on various nodes (using a
high-level pseudo code) one can evaluate HW/SW partitioning tradeoffs prior
to developed detailed software and hardware designs, facilitating quick early
tradeoffs and scalability analyses.

Page 72
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 72

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling of
SAR Processor

CADE

Azimuth DFT

The performance modeling activity was carried out for the SAR benchmark as
shown above that results in an acceptable schedule and partitioning after the
performance modeling effort. This tradeoff was carried out at Georgia Tech’s
RASSP Laboratory at the Center for Signal and Image Processing.

Page 73
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 73

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

❍Fully Functional Modeling
❑ Description
❑ Case Study

● Model Year Architecture
● Reuse

We now describe the next stage of virtual prototyping (after the performance
modeling/cost modeling-based HW/SW partitioning and architectural design
has been completed).

Page 74
Copyright  1995-1999 SCRA

Copyright  1995-1999 SCRA 74

Methodology

Infrastructure

DARPA Tri-Service

RASSP
Virtual Prototyping

Abstraction Level
Executable

Requirements
Modeling

Executable
Specification

Modeling

Data/Control
Flow Modeling

Cost/Performance
Modeling

Fully Functional
and Interface Modeling

RTL Level
Modeling

Actual
Hardware

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW/SW Architectural Design/Partitioning/Assign.

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

The detailed behavioral (= fully functional and interface) model is a
behavioral model that describes the component's interface explicitly at the pin
level. It exhibits all the documented timing and functionality of the modeled
component, without specifying internal implementation structure. This type of
model has traditionally been called a full-functional model and is therefore a
synonym. However, the newer term is preferred for its better accuracy and
consistency to the definitions of the related models.

The primary purpose of a detailed behavioral model is to develop and
comprehensively test the structure, timing and function of component
interfaces, especially of a board level design. Also to examine the detailed
interactions between hardware and software (drivers), and to provide timing
values that are used to replace initial estimates in the higher level models to
increase their accuracy.

Page 75
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 75

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping at the Fully
Functional and Detailed Levels

● What ?
❍ Software "simulatable" model of a hardware

component, board, or system containing sufficient
accuracy to guarantee its successful realization in
hardware

● Why ?
❍ Eliminate hardware prototyping from the in-cycle

design loop

❍ Allow for concurrent design of HW and SW

❍ Provide rapid HW/SW integration

❍ Maintain the ARPA thrust through RASSP

❍ Document the system characteristics for future
supportability

Virtual prototyping at the fully-functional and detailed levels is used to
facilitate early software development and also to ensure simpler and easier
hardware/software integration and test. While several methodologies support
the use of virtual prototyping, the primary impediment to the success of virtual
prototyping is the availability of libraries of detailed models of hardware and
software.

Page 76
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 76

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping:
Fully Functional Level

LD R0, R3, 0EFFH
ST R1, R2, 0EEEH
OR R1, R0, R3

Entering State 0
Entering State 1
Entering State 2

Interrupt 1
Interrupt 5
Interrupt 3

A Full Functional Model provides a model that is structurally correct and
exhibits the functional and performance characteristics of the entities being
modeled. At this level dedicated hardware elements are modeled by their
behavior, not in a way that implies their implementation. For example, a
dedicated filtering chip would be modeled in way that was correct bit-wise but
did not imply the implementation structure.

At this level of modeling, RASSP has proposed using Instruction Set
Architecture (ISA) and Instruction Set Simulator (ISS) models. The ISA
modeling approach is to develop VHDL behavioral models of a processor that
can execute software and provide complete access to the internal registers of
the processor [5]. The ISS modeling approach is to integrate a commercial
processor simulator into a VHDL environment. In either case, the processor
model is combined with a Bus Interface Model(BIM), which models the
detailed interaction of the processor at its connections, to make the full
functional model. This approach both to model individual chips, i.e., the i860,
and to model single board computers (See Madisetti & Egolf, IEEE Micro, Fall
1995).

Page 77
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 77

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simulation Performance vs
Fidelity

1:1000

Gate Level
Register Transfer

Level
Board
Level

Board Level
with Integrated

Memory

1:200

1:2

1:1000000

Architecture
Level

Memory Memory Memory

Process (Clk, Reset)
begin
 if (Reset=‘1’) then
 elsif clk=‘0’ then
 else
 end if;
end process;

Process (Clk, Reset)
 variable Mem;
begin
 if (Reset=‘1’) then
 elsif(clk=‘1’) then
 Mem(Addr) := D;
 elsif(clk=‘0’) then
 D <= Mem(Addr) ;
 else
 D <= ‘Z’;
 end if;
end process;

Process (Event, Reset)
begin
 if (Reset=‘1’) then
 elsif(Event=FFT) then
 wait for FFT_time;
 elsif(Event=FIR) then
 wait for FIR_time;
 else
end if;
end process;

Both the ISA and the ISS approaches allow the application software that is to
run on the target hardware to be run in the simulation environment prior to
physical hardware delivery. It is at this stage in the modeling process that
detailed errors about the meaning of interfaces can be identified and corrected.
Additionally, this type of model gives the software much more accessibility to
the state of hardware than is often the case when the software is run on the
physical hardware.

This slide shows that while increasing the modeling accuracy can improve on
the capability for performing certain tasks, it will burden the simulation
performance in terms of speed. Thus a right compromise is needed to tailor the
requirements of the simulation and its level of fidelity and accuracy. A gate
level model of an entire radar system would be unacceptable, however, early
performance modeling of radar systems can be completed in minutes using
performance models instead of gate level models.

Page 78
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright 

Reinventing
Electronic

Design
Architecture Infrastructure

Control
Computer

Case Study: Design
IRST System Prototype

❍ Data Input Distribution
card

❍ Sensor Interface card
❍ Video output card

❍ VME interface
❍ RACEway

RACEway Crossbar

D
at

a
In

p
u

t
D

is
tr

ib
u

ti
o

n

M
C

V
9

P
ro

ce
ss

in
g

 b
o

ar
d

V
id

eo
 O

u
tp

u
t

C
ar

d

In
p

u
t/

O
u

tp
u

t

Gimbel

created and simulated

, Fall 1995, pp. 9-21,
http://www.computer.org.

Page 79
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Control
Computer

Case Study:
MCV9 Processing Boards

● Hardware Elements
❍ Data Input Distribution

card
❍ RS-170 Daughter card
❍ Sensor Interface card
❍ Video output card

❍MCV9 processing
boards

❍ VME interface
❍ RACEway XBAR network

RACEway Crossbar

D
at

a
In

p
u

t
D

is
tr

ib
u

ti
o

n

D
at

a
In

p
u

t
D

is
tr

ib
u

ti
o

n

M
C

V
9

P
ro

ce
ss

in
g

 b
o

ar
d

M
C

V
9

P
ro

ce
ss

in
g

 b
o

ar
d

V
id

eo
 O

u
tp

u
t

C
ar

d

S
p

ar
c2

 C
ar

d

In
p

u
t/

O
u

tp
u

t

Tape

VME bus

Disk Sensor
Gimbel

Sensor
Data
135
Mb/s

Elements of Hardware VP
created and simulated

In the case study, the MCV9 board was virtually prototyped entirely in
software, wherein actual software was executed on fully functional models for
the hardware and the interconnect (RACEWAY and VME).

Page 80
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing

Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:

● Software Reset

❍ Verify all boards could be reset via software

❍ Specific registers should be configured with correct

● VME Register Test

❍ SW written to read and write all registers on data

❍ Known pattern placed in memory if tests are passed

This and the following slides describe the types of test run at the system level
to help verify that the system was implemented correctly.

Again, the reset test was the first to be done to verify that everything initializes
correctly.

The VME register test was used to verify that registers in the data input and
distribution card and video cards could be configured correctly. If the test was
passed successfully, then a known pattern was written to memory.

Page 81
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
System Tests (Cont.)

● Floating Point RAM Test

❍ Same as the previous RAM test, but different portion of
RAM dedicated for FP

● Interrupt tests to check correct behavior of HW
and SW responses

❍ FIFO Overflow

❍ Data Overflow

❍ Beginning of Frame

❍ End of Frame

The floating point RAM test was similar to the previous RAM test, but a
different memory was verified.

Interrupt tests were important to test both the HW and SW. The HW of the four
designed boards could interrupt the processor based on whether their data and
FIFO buffers were full. In this case the processor can take the appropriate
measures to alleviate the problem. The HW also can send the processor
information as to when the frame starts and stops. These tests usually took a
long amount of time because some of these events happen much later in the
timeline, as the next chart will show.

Page 82
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 82

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
System Tests (Cont.)

● RAM test

❍ Read/Write portions of RAM on the video card via VME

❍ 128 locations written, then read back

❍ Test disclosed major design error in VME logic of video
and data distribution card

❍ Misinterpretation of VME specification with respect to
address lines A1 and A2; i.e., they were not used for
decoding and therefore limited addressing to 32-bit
locations

The RAM test was used to read and write portions of memory on the video and
the data and input distribution cards via the VME bus. A total of 128 locations
were written and read back, and when this was tested an error was found on
both cards. The designer misinterpreted the VME specification and did not use
address lines A1 and A2 for decoding. This prohibited the use of addressing
less than 32-bit locations, and the error was found during this test. This was a
significant error that would have required a difficult fix later in the design
cycle, but because no HW had been created at the time, the fix was done to the
VHDL code. The new code was synthesized again with the fix.

Page
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 83

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Test Process

● Phase I: Initial Integration (Processing Element)
❍ i860 <=> CE-ASIC <=> Memory

● Phase II:
❍ PE <=> XBAR

● Phase III:
❍ Multiple XBARs
❍ Communications with boundaries

❑ VME
❑ RACEway

❍ Added VME Driver and Interlink at this point
❍ Multiple Processing Elements

Various tests were used to verify the integration of the components. These
were done in phases and were part of a test and integration plan. The first
phase tested the processing element alone, which included the memory, the
i860, and the CE-ASIC, along with some buffer registers. Phase II attached the
processing element to a single XBAR and phase III connected multiple
XBARs. Phase III also included tests to write to the interface of the MCV9
(VME and RACEway Interlink).

Page 84
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The actual tests run at this phase included those listed above.

Control information is passed over the VME bus in the actual system
architecture, and video data was passed over the RACEway interlink.

Copyright  1995-1999 SCRA 84

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Phase II/III Integration Tests

● Tests at this stage

❍ i860 <=> XBARs <=> RACEway <=> Interlink

❑ Verify writing data to RACEway from the i860

❍ i860 <=> XBARs <=> VME <=> VME Driver

❑ Verify writing data to the VME interface

❍ i860 <=> XBARs <=> i860

❑ Verify multiprocessor communication

● VME used for passing control information

● RACEway used for passing video data

Page 85
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 85

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

XBAR

XBAR

XBAR

XBAR

XBAR

XBAR

XBAR

Memory

CE-ASIC

Buffers

i860

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

VME I/F Logic

VME Driver

Interlink
Model

Master
Process

Slave
Process

XBAR

MCV9 Subsystem
Architecture

 Total Modeled
16 PE 1 PE

 6 XBARs 3 XBARs

 Total Modeled
16 PE 1 PE

 6 XBARs 3 XBARs

This figure shows more detail of what is contained on an MCV9 board. The
shaded regions represent the items that were modeled in VHDL. The XBAR
models were generated from lower level gate models of the components. The
processing element was developed at the detailed behavioral level. In order to
run code on the system, only one processing element was required. The control
code resided on the processor and configured external hardware via the VME
bus. Interrupt information from external hardware was also sent to the
processor via the VME bus. When the input sensor buffers were full of data,
they would notify the processor to configure a transfer to the internal memory
the processing elements.

● i860 was developed from the data manual description

• Clock Cycle accurate

• Behavioral Description

● CE-ASIC and XBAR models developed by converting existing schematics

• Translation tools from Mentor Graphics and Viewlogic

• Not straight-forward and not what was expected in all cases

• A configuration file was generated for entire subsystem

This slide describes how and at what level the VHDL models for the various
component elements of the system were created.The i860XP model was
created at the detailed behavioral level while the XBAR models were created
from translation tools which used gate-level models. The entire was configured
and tied together using a configuration file at the top-level.

Page 86
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 86

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
MCV9 VHDL Creation

● i860 was developed from the data manual
description

❍ Clock Cycle accurate

❍ Behavioral Description

● CE-ASIC and XBAR models developed by
converting existing schematics

❍ Translation tools from Mentor Graphics and Viewlogic

❍ Not straight-forward and not what was expected in all
cases

● Configuration File for entire subsystem

This slide describes the top level view of a board model.

Page 87
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 87

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Package 2:
Instruction Set

Clock/ResetClock/Reset

i860 Detailed-behavioral Model

Encapsulation of Common Functionality in Packages
Package N:

i860 Internal Model
1) Instruction Decoding
2) Pipeline Processing
3) Register/Cache Storage
4) Procedural calls for implementation
 of instruction functionality

Handlers
Trap/Reset Package 1:

Datatypes
Package 2:

Memory Functions

i860 Interface Wrapper

1) Interface Timing as specified in users manual

i860 testbench

Memory

Memory
Controller

Package 1:
Datatypes

Case Study: i860XP
Test Bench

This diagram outlines the i860XP component model. It is composed of the
i860XP design unit and a testbench. The i860XP is represented as a fully
functional model.

The internal model is at the behavioral level.

The interface model, which accurately models the timing information at the
interface, has hooks to the internal model.

Packages used for functionality encapsulation:

• Datatype/Conversion

• Instruction Set Implementation

• Trap/Reset/Interrupt/Exception Handling

• IEEE Standard 754 Floating Point Math

The test bench consists of a memory, a memory controller, a clock and reset
generator for synchronization, and assorted packages to encapsulate specific
functionality related to each element. The test bench also contains the test
program which is stored in files and read into memory as needed.

Page 88
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Given the various processor elements, the first step was to break down its
functionality into specific processes. The initial attempt was to place all the
functionality into a single process similar to instruction set simulator type
models. This permitted faster running models, but could not capture all the
concurrency issues of the processor. For example, if a cache miss occurred, the
processor would need to go to external memory for data. In this case we do not
want to stop the main process from executing what was already in, for
example, one of the floating point pipelines, to wait for the data to arrive.
Because multiple processes were required, the above 7 were chosen to
represent the behavior of the device. The next slide lists the type of
functionality in each process.

Copyright  1995-1999 SCRA 88

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study i860:
Functionality Breakdown

● Seven Processes
❍ Needed to simulate concurrency of units
❍ Approx. 200 instructions/sec

● Initially single process (ISS)
❍ Interface behavior not needed
❍ Approx. 2000 instructions/sec

Instruction Fetch

Decode/Execute

MMU

Data Load/Store

Single Cycle

Two Cycle

Cache Read/Write

Page 89
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

When doing subsystem integration, a plan was required to determine the
objectives expected from doing this simulation and when to end. The
objectives are listed above. At this level of abstraction the main information to
be gathered included whether the components interface correctly and if the
data rates between components are at the rate required to meet performance
objectives. Lastly, to end simulation runs, one needs to determine how much
simulation is enough, and this is based on the degree of confidence the
designers have as to whether the actual HW will work based on the
simulations. Because the MCV9 is a COTS part, there was a high degree of
confidence from the beginning, and detailed simulations were not required. It
was sufficient to have the units talk together correctly, and the data was sent
across the crossbar network in the correct time.

Copyright  1995-1999 SCRA 89

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Subsystem-level Test

● Objectives of Subsystem Testing

❍ Does each component model behave correctly stand-alone?

❍ Is the handshaking protocol between components or buses
functioning?

❍ Are the data rates between components within the specified
limits?

❍ Does the prototype provide a high level of confidence for HW
prototyping?

Page 90
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 90

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Phase I Integration Objectives

● Tests at this stage
❍ Reset

❑ Did anything reset to an
unexpected state?

❍ CE-ASIC registers
❑ Can the i860 set key

registers in the CE-ASIC?

❍ Reading/Writing to CE-ASIC
❑ Is the handshaking logic

working between the i860
and the CE-ASIC?

❍ Memory
❑ Can we read and write data

to the memory?

Processing Element

Memory

CE-ASIC i860

Buffers

To
XBAR

The phase I tests run are listed above. Their intent was to test the integration in
the processing element of the MCV9. The first test performed was a reset test
to verify that all the elements came up in expected states after reset. Once this
was verified, then various register tests were implemented to test the ability of
the processor to set registers in the CE-ASIC. At the same time, the
handshaking protocol was verified between the i860 and the CE-ASIC. Finally,
reads and writes to memory were tested to verify the interface connection was
correct.

Page 91
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The diagram shows the communication from a processing element across the
RACEWAY communications channel to another processing element on
another board. This level of detail is visible without any hardware emulation
and only using VHDL and executable software running on the processor
models.

For futher details see Madisetti & Egolf (IEEE Micro, Fall 1995, pp. 9-21)

Case Study MCV9: Timing
Diagram of RACEway Write

Page 92
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 92

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9: Phase II/III
Integration Objectives

● Interface a single XBAR to the PE, then multiple
XBARs

● Check Communications at boundaries
● Two major interfaces

❍ VME
❑ VME bus model added to test bench

❍ RACEway
❑ Interlink model added to test bench

● Full MCV9 16 processor instantiation
❍ Data written between processors

Once it was guaranteed that the processing element was functioning properly, a
XBAR, and then multiple XBARs, were added to the model. The handshaking
protocol was again verified, and communications were checked to the
subsystem boundaries. These included the two major interfaces: the VME and
the RACEway interlink. When it was verified that this communication was
working properly, a full instantiation of 16 processors was tested on the
MCV9. In this case data was written between processors to make sure the
routing was working correctly.

Page 93
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 93

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Phase II/III Integration Tests

● Tests at this stage

❍ i860 <=> XBARs <=> RACEway <=> Interlink

❑ Verify writing data to RACEway from the i860

❍ i860 <=> XBARs <=> VME <=> VME Driver

❑ Verify writing data to the VME interface

❍ i860 <=> XBARs <=> i860

❑ Verify multiprocessor communication

● VME used for passing control information

● RACEway used for passing video data

The actual tests run at this phase included those listed above.

Control information is passed over the VME bus in the actual system
architecture, and video data was passed over the RACEway interlink.

Page 94
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 94

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Simulation Results

● Application code requires significant simulation
time

● Diagnostic and test code may be less compute
intensive

● Test and Diagnostic can represent the majority of
code

Internal
Simulation

Time
Instr/sec.

1200 ns 7.5

Test Case

MCV9 to Interlink

MCV9 to VME Driver 3000 ns 5.5

Simulation results were collected for two of the tests. The two tests included
the i860-to-interlink data writes and the i860-to-VME writes.

The number of instructions/sec executed with all the additional models added
to the subsystem prototype has decreased significantly. This prohibited the
running of application code on the virtual prototype.

Application code was not run on the prototype because it required too many
computing resources, but test and diagnostic code is a viable candidate for
code running on a virtual prototype. In some systems, the test and diagnostic
code can represent the majority of the code.

Page 95
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 95

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
Simulation Results

● Events happening far into
simulation timeline not able to
be seen

● Large amount of disk space
required for results database
storage

● Test plan must be established
early in the prototyping effort
to account for long
simulations

● Methods must be devised to
stop long simulations if bad
results occur early in the
simulation

Class of Machine: Sparc10 / 128 Meg. RAM / 1.2G Disk
Signals archived: 1,048
Components: 13,257

Simulation Time
(msec)

CPU
Time

(hours)

Disk
Space
(MB)

1.0

2.0

3.0

4.0

5.0

3 - 4

5 - 6

7 - 9

10 - 11

11 - 13

10 - 20

60 - 80

90 - 110

130 150

170 - 190

As can be seen from the chart on the right hand side, there is a near-linear
relationship between simulation time and amount of CPU time to run the test
code. The same applies to the amount of memory required to save the results
database.

From this information, it is obviously critical that a test plan be devised at the
beginning of the modeling effort to account for these long simulations and to
institute methods to stop long runs when an error occurs early in the
simulation. The test plan must also address the issue of how much simulation is
satisfactory before acceptance of the HW design and HW prototyping can
begin.

Page 96
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 96

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
HW/SW Integration

Approx. 23 days
for Initial integration

Simulation Week Number

Errors
Found

Simulation
Man Hours

Bus Operation
Functional
Control Logic
Data Handling
Chip-to-Chip I/F

3
3
7
2
1

1 2 3 4 5 6 7 8 9 10 11 12

6
5
4
3
2
1
0

60
50
40
30
20
10
0

Timing Fix Induced 6

FrequencyType of Error
Data Input and
Distribution Card

Simulation of Hardware Virtual Prototype and Errors Found

● Board Fabrication Avg. = 5 days
● Board Assembly Avg. = 3 days
● HW Checkout Avg. = 3 days
● HW/SW Driver Integ. Avg. = 12 days

This slide illustrates the types of errors found during early integration and
testing using the detailed behavioral virtual prototype in the design process.
The errors were found on the data input and distribution card when software
was being executed on the processing elements of the MCV9 board. From the
figure, it is seen that the errors were tracked over the 12 week period of testing
and as the errors start to decrease, it was determined that the board could go to
fabrication with a high degree of confidence in correctness. After fabrication,
the final hardware was integrated in 23 days and there were no bugs in the
digital hardware that was tested using the virtual prototyping approach.

Page 97
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 97

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

❍ Fully Functional Modeling
❑ Description
❑ Case Study

● Model Year Architecture
● Reuse

Page 98
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 98

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● The Model Year Architecture (MYA) framework

❍ MYA within the design process

❍ Components of the MYA

❍ The Standard Virtual Interface (SVI) and reuse

❍ Design for test architectures

❍ Software architectures

Model Year Architecture (MYA) is a framework for reuse that provides a
structured approach to ensure that designs incorporate the features required to
promote upgradability. The basic elements that comprise the MYA are the
Functional Architecture, Encapsulated Library Components and Design
Guidelines and Constraints. Synergism between the Model Year Architecture
Framework and the RASSP Methodology is required, as all areas of the
methodology, including architecture development, hardware/software
codesign, reuse library management, hardware synthesis, target software
generation, and design for test are impacted by the MYA Framework. The
Functional Architecture defines the necessary components, and their interfaces,
to ensure that the design is upgradable and facilitates technology insertion. It is
a starting point for developing solutions for an application-specific set of
problems, not a detailed instantiation of an architecture.

Page 99
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Three keys aspects of the RASSP design methodology that support the
"Model-Year Approach":

Re-Use Library

Architectural-level reuse library element class definition.

Library management reuse library element generation/validation.

Virtual prototyping

Virtual testbench analysis of each model year system.

Use of Standards

Common bus and system architectures, code and data structures, and
design protocols.

Copyright  1995-1999 SCRA 99

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Year Chart

1

2

4

8

16

32

1 2 3 4 5 6 7 8

4x

2x
point design

TIME

P

E

R

F

O

R

M

A

N

C

E

DEAD

END

Page 100
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The model year architectural approach should adhere to the following
principles:

• Be open, promoting hardware/software upgradability and reusability
in other applications.

• Utilize emerging state-of-the-art commercial technology whenever
possible.

• Support a range of applications to maintain low, non-recurring
engineering costs.

Copyright  1995-1999 SCRA 100

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Year Architecture

Model year architecture goals:
❍ Design current generation with a view to change and

upgrade on a regular basis
❍ Develop the design as a series of incremental (model year)

stages (as opposed to a single design effort spanning a
multi-year design schedule) that can incorporate emerging
technologies as they become available during the
successive model years

The key is to make provisions in the early model
years to make including new technologies easy in the
later years.

Page 101
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As technology is evolving faster than systems can be developed, the concept of Model
Year Architecture allows the incorporation of new technologies to be inserted into the
design as they appear.

The objective of the Model Year Architecture (MYA) is to develop a framework for
signal processor architectures. The MYA should address the following issues:

•Contribute to the 4X reduction in design cycle time required by RASSP

• Provide life cycle support

• Provide scalability to support changing mission scenarios and different
deployment environments

• Support heterogeneity in the design process by providing cost effective
implementations of functions with a wide range of performance requirements

• Provide flexible interfaces to a wide range of subsystems

• Utilize modular software in the form of reusable components and support
upgrades to operating systems, services, and libraries

• Support hardware upgrades

• Provide for testability in the design process and detect and isolate faults with
high probability

• Support for RASSP signal processor retrofit into non-RASSP (legacy)
systems

• HW and SW elements within the library of components are encapsulated by
functional wrappers, which add a level of abstraction to hide implementation
details and facilitate efficient technology insertion

Copyright  1995-1999 SCRA 101

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Year Architecture

● Objectives

❍ Develop framework for signal processor architectures

❍ Support sufficient model-year upgrades by minimizing
hardware/software breakage

❍ Develop model-year instantiations to support
benchmarks and demonstrations

❍ Promote design upgrades and reuse via standardized,
open interfaces while leveraging commercial
technology

❍ Support scalability, heterogeneity, modular software,
life cycle support, testability, and system retrofit

[LMC-ATL][LMC-MYA]

Page 102
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

To dramatically improve the process by which complex digital systems are specified,
designed, documented, manufactured and supported requires a signal processing design
methodology that recognizes a number of application domains. A key element to
implement this methodology is a Model Year Architecture approach that adheres to a
specific set of principles which include:

•The architectures must be open to promote HW/SW upgradability and reusability in
 other applications.

•The architectures must use emerging, state-of-the-art commercial technology whenever
possible.

•The architectures must support a wide range of applications to maintain low non-
recurring engineering (NRE) costs.

•The architectures must facilitate continuous product improvement and substantial life-
cycle-cost (LCC) savings in fielded system upgrades.

The RASSP Model Year Architecture(s) (MYA) must be supported by the necessary
library models to facilitate trade-offs and optimizations for specific applications.
Reusable HW and SW libraries facilitate growth and enhancement in direct support of
the RASSP model year concept. The notion of model year upgrades is embodied in the
reuse libraries and the methodology for their use. As technology advances, new
architectural elements may be included in the library. Rapid insertion of a new element
into an existing, RASSP-generated design is the goal of the Model Year concept.

Copyright  1995-1999 SCRA 102

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RASSP Model Year

Architecture within the Design
Process

[LMC-Meth]

RASSP Model Year
Architecture

System
Definition

Architecture
Definition

Detailed
Design

RASSP Reuse Library

Library Population

Reqmts
Analysis

Functional
Analysis

Functional
Design

HW

SW

HW

SW

HW

SW

Architecture
Selection

Architecture
Verification

Algorithmic
Primitive

Development

OS Services
Primitive

Development

Architecture/
HW Model

Development

Page 103
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The RASSP design process is based on true HW/SW codesign and is no longer
partitioned by discipline (e.g. HW and SW), but rather by levels of abstraction
represented in the system, architecture, and detailed design processes. The
above figure shows the RASSP methodology as a library-based process that
transitions from architecture independence in the systems design process to
architecture dependence in the architecture process.

Various levels of virtual prototypes are generated throughout the design
process. The first is output from the systems process, where an executable
specification is generated, the architecture process generates two more with
increasing detail and verification. The final prototype is created before
HW/SW sign-off and full system verification is done at the RTL and gate
levels with application and test SW running on the prototype.

Copyright  1995-1999 SCRA 103

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP HW/SW Codesign - Key Part of
Model Year Architecture

System Req.

Arch Indep. Model

HW Perf. Model SW Perf. Model

Beh.-level model

ISA Model

Arch. Depen. Model

RTL Model

Gate-level Model

Prototype HW

Source Code

HOL
Assembly

Load Module

L
I
B
R
A
R
Y

S
I
M
U
L
A
T
I
O
N

Virtual Prototype
level 0 (VP0)

VP1

VP2

VP3

[LMC-Meth]

Page 104
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The basic elements of a MYA are listed above.

The functional architecture defines the necessary components and the manner
in which their interfaces must be defined to ensure that the design is
upgradable and facilitates technology insertion. As such, the functional
architecture is a starting point for developing solutions for an application-
specific set of problems, not a detailed instantiation of an architecture.

An important aspect of the functional architecture is that application-specific
realizations of a signal processor are embodied in the proper definition and use
of encapsulated library elements. Encapsulation refers to additional structure
added to otherwise raw library elements to support the functional architecture
and ensure library element interoperability and technology independence.

A modular software architecture simplifies the development of high-
performance, real-time DSP applications allowing the developers to easily
describe, implement, and control signal processing applications for
multiprocessor implementations. It supports upgrades for operating system
kernels, external services, and application libraries.

Open interface standards are used to help ensure interoperability between
components and ensure a wide availability of commercial components and
support.

Design guidelines and constraints are provided for general architectural
development, such as how to use the functional architecture framework, use of
encapsulated libraries and procedures and templates to encapsulate new library
components.

Copyright  1995-1999 SCRA 104

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Components of
Model Year Architecture

● Functional architecture
❍ Provides a starting point for developing application-

specific architectures

● Encapsulated library components
❍ Provides component interoperability and upgradability

at the architectural level

● Modular software architecture
❍ Supports upgrades for operating system kernels,

external services, and application libraries

● Open interface standards
❍ Ensure wide availability of commercial components and

support

● Design guidelines and constraints

[LMC-ATL][LMC-MYA]

Page 105
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 105

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Model Year Architecture
Approach

Funct ional Arch it ecture De sign
Guidelines ,
Const ra in ts ,
I/ F S tandards

Model Year Architecture Framework

Applica t ion
Notes

Encapsu la ted
Libra ry Elem entsRASSP

Re-Use
Libra ries

uK

Cmd Prog SPGN
Ctrl I/F DF I/F Prim

Posix Posix

Modula r
Softw are
Architecture

Sys tem Applicat ion
- Ra dar - ...
- IRST - ...
- UW Acou. - ...

RASSP
Methodo logy

Mode l Yea r
Arch itectu re
Fram ew ork
In teg ra ted
in to RASSP
Methodo logy

Specific Ins tan t ia t ion o f
Mode l Year Arch tectu re

[LMC-ATL]

Model-Year architecture provides a framework for reuse and reuse-affordance
technology upgrades.

Page 106
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The functional architecture defines the necessary components and the manner in which their
interfaces must be defined to ensure that the design is upgradable and facilitates technology
insertion. The functional architecture is the starting point for developing solutions for an
application-specific set of problems, not a detailed instantiation of an architecture. The
functional architecture DOES NOT specify the topology or configuration of the signal
processing architecture.

The functional architecture specifies a high-level framework for launching application-specific
architecture development. Architecture-level reuse element classes are provided. Open
interface candidates for the interconnect fabric, sensor, and interchassis interfaces are provided
for selection. The functional architecture also specifies the test methodology to be used for
design.

The STDx demarcations illustrate the types of interfaces found in various portions of the
functional architecture.

The Reconfigurable Network Interface (RNI) is divided into three logical elements: 1) Fabric
interface, 2) External network interface, and 3) Bridge element. The fabric and external
interfaces implement the specific protocols to the elements being interconnected, for example a
High-speed Parallel Port Interface (HIPPI) could be used for the external interface and a VME
interface can be used for the fabric interface. The bridge element, which typically consists of a
buffer memory and a controller implemented via custom logic (e.g. FPGA, ASIC) or a
programmable processor, performs the actual bridging function. The buffer memory facilitates
asynchronous coupling and flow control between the two networks, while the controller
coordinates data transfers. The three logical elements of the RNI are implemented as
encapsulated library elements that serve to isolate changes resulting from upgrades. For
example, the VME interface can be replaced with an encapsulated SCI interface.

The processing element is also encapsulated so links to the internal interconnect fabric is made
easier, reusable and provides a better route to upgradability.

Copyright  1995-1999 SCRA 106

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP High-Level Functional
Architecture

Chassis 1

TM **
Controller

Shar.
Mem.

Proc.
Elem.

Interconnect Fabric

RNI* RNI* RNI*

Bus

Sensor
(e.g. A/D)

• Operator Consoles
• Loosely Coupled Proc. Subsystems
• Ancillary Equipment
• Mass Storage

* Reconfigurable Network Interface
** Test and Maintenance

STD1 / STD6

STD3

STD5

STD2

STD1/
STD6

STD1/
STD6

Layering

Functional
Interface Encapsulated

Library
Elements

Encapsulated
Library

Elements

Functional
Interfaces

Internal Node

Fabric Interface

Fabric Interface

RNI Bridge Element

External Network
Interface

Internal Module

STD2,
STD3, or
STD5

STD4
Interchassis Link

to Chassis 2

STD1 -- Internal / Module I/F e.g. Mercury RACEway
STD2 -- Subsystem I/F e.g. 1553B
STD3 -- Sensor I/F e.g. HIPPI
STD4 -- Interchassis I/F e.g. Fiber Channel
STD5 -- Multidrop Bus e.g. Futurebus+
STD6 -- Test/Maintenance I/F e.g. IEEE 1149.5

[LMC-ARCH]

Page 107
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A layered approach can be used for handling the interfacing between
components. This decomposes the architecture into smaller, manageable, and
reusable parts. A standard functional interface was defined supporting
technology independence and model year upgrades. The interface is
implemented using a Standard Virtual Interface (SVI) which is general enough
to support different communication paradigms and adds an additional layer to
the hardware interfacing. SVI will be discussed in more detail in the following
slides. An Application Programming Interface (API) is used to isolate the SW
from the underlying operating system implementation.

Copyright  1995-1999 SCRA 107

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Interface Approach

● Use layered approach
❍ Decompose architecture into smaller, manageable, and

reusable parts
● Define standard functional interfaces, not

physical interfaces
❍ Technology independence to support model year

upgrades
● Provide guidelines for a Standard Virtual

Interface (SVI)
❍ General interface to support different communication

paradigms
❍ Adds additional layer to hardware interfacing

● Use standard Application Programming Interface
(API)

❍ Data flow graph approach similar to PGM
❍ Isolate application SW from underlying operating

system implementation

Page 108
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The above diagram illustrates an application of a functional interface at the
hardware level for a construct called an Reconfigurable Network Interface
(RNI). The RNI is divided into three logical elements: 1) local interface, 2)
external interface, and 3) bridge element. The local and external interfaces
implement the specific protocols to the elements being interconnected, in this
example a HIgh speed Parallel Port Interface (HIPPI) and VME interface. The
bridge element, which typically consists of a buffer memory and a controller
implemented via custom logic (e.g. FPGA, ASIC) or a programmable
processor, performs the actual bridging function. The buffer memory facilitates
asynchronous coupling and flow control between the two networks, while the
controller coordinates data transfers.

The three logical elements of the RNI are implemented as encapsulated library
elements that serve to isolate changes resulting from upgrades. For example,
the VME interface could be replaced by another encapsulated interface, such as
SCI, with little or no impact on the HIPPI HW and SW.

Copyright  1995-1999 SCRA 108

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Functional Interface Example
Applied to RNI

Local Network (e.g. VME)

External Network (e.g. HIPPI)

Interface
Logic

Buffer
Memory

Interface
Logic

Processor
or Control

Logic

Functional
Interfaces

Encapsulated
Library

Elements

[LMC-ATL]

Local
Interface

External
Interface

RNI Bridge Element

Page 109
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

SVI encapsulates library elements to support reusability and rapid
upgradability. The interconnection of library elements is done by connecting
their SVIs. A protocol is defined for the SVI to SVI interface. Each library
element needs the SVI to operate in this environment. A possible hardware
realization is shown above. The SVI interface is implemented on an FPGA, or
an equivalent technology, using optimized hardware synthesis tools.

Copyright  1995-1999 SCRA 109

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Approach to Standard Virtual
Interface (SVI)

[LMC-ATL][LMC-MYA]

Encapsulated Processor
Library Element

Encapsulated Interface
Library Element

SVI
Low Level
Software
Interface

Processing Element
(single or cluster) Processing Element

(single or cluster)

Possible Hardware
Realization

Wrappers
Combined

SVI logic optimized
during hardware
synthesis

FPGA

Raw Interface
Element

SVI Encapsulation
Logic (wrapper)

SVI Encapsulation
Logic (wrapper)

Raw Interface
Element

Internal / Module Fabric
(STD1) e.g. Mercury RaceWay

SVI signals internal
to FPGA. Some
may be implicit

Page 110
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

SVI can be used at any encapsulation level (LRM, MCM, component), but
should be used where it makes the most sense. Considerations of HW overhead
and reusable design elements should be taken into account.

Copyright  1995-1999 SCRA 110

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Guidelines for Using SVI

● Use SVI only down to the smallest desirable
upgradable LRM in the system

● If the line replaceable module (LRM) is a board:
SVI should be associated with the board-level
interface only and not for any intra-board
interfaces

● If the LRM is an MCM or a daughter card: SVI
should be associated with the MCM-level
interface only and not for any intra-MCM
interfaces

● The final choice for using SVI at an
architecturally finer-grained level depends on the
relative HW overhead incurred by SVI for a given
scenario

Page 111
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

SVI can be applied at the module level to encapsulate processing and shared
memory nodes, at interconnect boundaries to allow for plug and play
interoperability between internal and interface elements, etc.

The choice of encapsulation depends on issues of supportability, design
overhead, etc.

Copyright  1995-1999 SCRA 111

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Applications of SVI

● Internal modules
❍ Use for processing nodes and shared memory nodes
❍ Use between internal node and node-to-interconnect

interface
❍ Allows "plug and play" interoperability between internal

nodes and node-to-fabric interfaces

● Reconfigurable Network Interface (RNI)
❍ Implements system-level interfaces: sensors, loosely

coupled processor subsystems, operator consoles, etc.
❍ Implements bridge between internal interconnect fabric

and particular system-level interfaces
❍ Contains three logical components: fabric interface,

external network interface, and RNI bridge element

Page 112
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Layering can cause performance penalties due to the additional HW overhead.
This can be acceptable if the layering is chosen judiciously and only important
architectural elements are isolated where possible technology insertion can
occur.

Copyright  1995-1999 SCRA 112

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Implications of Layering

● Can cause performance penalties and
unacceptable hardware or software growth

● Resolution
❍ Trade off performance vs. functionality
❍ Overhead reduction techniques -> SVI

● Use layering judiciously; only isolate important
architectural elements subject to upgrades/
technology insertion

● Some layering overhead must be accepted
❍ Tradeoff to realize greater benefits of design/life cycle

and cost reduction

[LMC-ATL][LMC-MYA]

Page 113
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As part of the MYA framework, an important feature is the capture of
guidelines of various workflows in the design process and incorporate them
into the RASSP methodology. Guidelines are also described for encapsulating
new elements to be placed in the design library.

Copyright  1995-1999 SCRA 113

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Design Guidelines and
Constraints

● Incorporated into the RASSP design
methodology

● Describe how to properly use the functional
architecture

● Describe how to use encapsulated library
elements

● Contains procedures and templates to help aid
the encapsulation of new library elements

[LMC-ATL]

Page 114
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

To provide an integrated diagnostic capability, a structured test approach is
required for the various levels of system integration: component, module and
box (rack).

Component: High degree of fault coverage (>95%) should be provided. BIST
should conform to the IEEE 1149.1 standard (JTAG). Many IC vendors now
provide for it.

Module: IEEE 1149.1 boundary scan architecture is used to detect interconnect
faults between components. Modules are designed with built-in-test (BIT) to
detect, diagnose and isolate module faults. This is usually controlled by a BIT
controller.

Rack: A test and maintenance (TM) controller manages system-level testing,
including the initiation of BIT for each of the modules. IEEE 1149.5 proposes
a TM bus standard.

System Test requirements may vary significantly based on the application.

Copyright  1995-1999 SCRA 114

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architectures for Testability

Component
BIST/JTAG

Module
IEEE 1149.1

Rack
IEEE 1149.5

SYSTEM-LEVEL TEST & MAINTENANCE

Page 115
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Designers of complex systems cannot afford to postpone test considerations
until the final stages of design and still deliver a quality product. Testable
systems are not a natural product of a design team unless BIT and scan features
are included up front and knitted together seamlessly throughout the system
hierarchy.

To ensure consistency between levels of the design hierarchy, a system-level
test architecture and strategy must be developed and passed down to each
level. The DFT methodology uses the hierarchical partitioning to manage test
development complexity and to provide solutions to the incorporation of COTS
components.

The RASSP design process is shown above with specific information flow and
activities relative for design for test. A prime goal of the RASSP methodology
is to eliminate design modification efforts late in the design cycle, including
those to correct testability problems. VHDL and WAVES are used, as
appropriate, throughout the methodology to capture and refine test and DFT-
related information.

Copyright  1995-1999 SCRA 115

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Design For Test Tasks

Customer
Requirements
and Feedback

System
Definition

Architecture
Development

SW Design
Library

HW Design
Library

Detailed
Design

Manufacturing
and Production

Field Maintenance
and Repair

Feedback of
Tradeoff results

Model Year N-1 results

Testability & Diagnostic Requirements

Partition
Strategies

Functional Test
SW Routines

Product
Descriptions

• Diagnostic concepts
• Test requirements
• Testability trades and analysis
• Subsystem test plans &

testbenches
• Risk analysis

• Test & Diagnostic strategies
• Testability partitioning
• BIT architecture
• Prototype TPS
• Architecture component test

plans & testbenches

• Develop BITE, BIST, and scan
components

• Develop test vectors
• Fault simulation
• Fault dictionaries
• UUT product descriptions

• Develop test program sets (TPS)
• Provide input to design reviews
• Build & test special fixtures &

equipment
• Conduct in-process tests
• Feedback results

[LMC-Meth]

Page 116
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The test architecture is an important part of the MYA. Standard test interfaces
should be augmented to the signal and control interfaces to chips, modules and
subsystems.

The test architecture hierarchy should parallel the system architecture
hierarchy incorporating elements at the system level, chassis level, all the way
down to the functional or logic block.

Copyright  1995-1999 SCRA 116

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test Architecture

● Required as an integral part of MYA: Formal
structure required to ensure testable design

● Use of standard test interfaces as required
augmentations to signal/control interface to
chips, module, and systems

● Test architecture parallels system architecture
hierarchy

❍ Processor system
❍ Chassis
❍ Sub-chassis/functional group
❍ Printed circuit board
❍ Line replaceable module (LRM)
❍ Multichip assembly
❍ Chip
❍ Functional or logic block

[LMC-ATL][LMC-MYA]

Page 117
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Test and maintenance controllers (TMCs) should be used to implement the
hierarchy and should communicate via standard test interface buses. The test
and maintenance controllers have the responsibility to interface with the master
TMC, collect results and compile status reports.

Copyright  1995-1999 SCRA 117

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test Architecture (Cont.)

● Test architecture implemented by hierarchy of
test and maintenance controllers (TMCs)

❍ Participate in all TM activities
❍ Communicate via standard test interfaces buses

● TMC responsibilities
❍ Interface with master TMC (at highest level of hierarchy)

❑ Receive test instruction
❑ Receive test data and control
❑ Send test and status results

❍ Internal responsibilities
❑ Execute/supervise testing of components within its scope
❑ Collect results and compile status reports
❑ Send test instructions and data to subordinate TMCs (if

any)

[LMC-ATL][LMC-MYA]

Page 118
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Attributes of software are considered architectural when they express relationships between HW and SW
that contribute to long term capacity for change. They are considered design when they are
implementation specific.

The SW architecture must make provisions for several levels of control and task management. Open
systems protocols should be considered. The architecture also must provide for an orderly flow of data
throughout the system.

Operating System: An open systems approach should be selected for greater resistance to system
obsolescence. POSIX provides for standard interfaces. They are called the Operating System Interface
(OSI) and the Application Program Interface (API). Use of the POSIX standards should allow SW to be
portable across similar platforms.

Programming Language: PDL (Program Design Language) is a mixture of language statement and control
structures. It has the following characteristics:

• States design in a easily read fashion.

• It allows concentration on the design logic rather than implementation details.

• Documentation can be done concurrently.

• It is convertible to a high order language (HOL).

Ada is the official language of choice for large complex SW projects of the U.S. Govt. Ada 95 provides
for object-oriented features. C and C++ code can be used when COTS technology is specified for use.

Structured Design: A SW development methodology that follows a hierarchical structure of SW module
development and test.

Object-oriented Design: Results in a more modular design. There are three phases to this approach. One,
Object Oriented Analysis (OOA), two, Object Oriented Design (OOD), and last, Object Oriented
Programming (OOP). OOA and OOD are embedded in the CASE tools such as Cadre’s Teamwork, and
IDE’s Software Through Pictures.

CSR (Control and Status Registers) architectures can be used to identify the module, select a working
subset of its performance capabilities, enable BIST, and record the health status history. IEEE 1212-1991
specifies a standard CSR architecture.

Copyright  1995-1999 SCRA 118

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Overview

Programming Languages OS Support/Standards

• PDL
• Ada PDL
• C and C++

• POSIX (IEEE 1003.1b)
 (not an OS)
• Real Time OS (RTOS)
 (commercial developments)

Structured Design
Object-oriented Design
CASE Tools
CSR Architectures (Control & Status Registers)

Page 119
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide presents a list of the SW architecture process goals desired by the
RASSP process. These include a formalized approach to reuse, DFG-driven
autocode generation for application code, CASE-based code development for
general command and control software when autocode generation is not
available.

Copyright  1995-1999 SCRA 119

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Software Architecture
Process Goals

● Formalize reuse
● Emphasize DFG-driven autocode generation
● Focus on three major areas of SW functionality

❍ Algorithm, as specified by a flow graph
❍ Scheduling, communication, execution, as specified by

mapping a graph to a specific architecture
❍ General command/control software

● RASSP is attempting to automate the first two
● Use CASE-based code development,

documentation, and verification for the general
command/control software

[LMC-Meth]

Page 120
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The requirements of the SW architecture include those listed above.

Support should be included that simplifies high-performance real-time DSP
application SW development. The SW architecture should provide predictable
responses to provided services and easy description, implementation, and
control execution of signal processing algorithms. The architecture should
support HW upgrades, OS kernel upgrades, and application development in a
platform independent fashion.

Copyright  1995-1999 SCRA 120

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Software Architecture
Requirements

● Support a methodology that simplifies high-
performance, real-time DSP application software
development

● Provides easy description, implementation, and
control execution of signal processing
algorithms

● Supports application development in a platform
independent fashion

● Provides predictable deterministic response to
all provided services

● Supports upgrades of operating system kernels,
external services, and application libraries

● Supports hardware upgrades via hardware-
specific software modules

[LMC-ATL][LMC-MYA]

Page 121
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The approach used on RASSP to implement the SW architecture is listed
above.

A layered approach is used to support the MYA concept where the replacement
of a specific processor and its microkernel would maintain the same API so
applications developed for one processor need not be changed when porting it
to a new system.

The RASSP run-time system (RRTS) is built on the microkernel to provide
higher-level services to control and execute applications on multi-processor
systems.

Copyright  1995-1999 SCRA 121

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture

● Layered architecture to support model year
concept

● Uses commercial microkernel technology to
provide underlying services to support high-level
application programming interface (API)

● RASSP Run-Time System (RRTS) builds on the
microkernel services to provide higher level
services to control and execute applications on
multiple processors

● RRTS support to implement required services is
external to microkernel

● Scheduling and execution paradigms being re-
defined for RASSP: more distributed

[LMC-ATL][LMC-MYA]

Page 122
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Application Programming Interface (API) is a set of functions developed
in PGM used to develop data flow applications. These functions serve as a
buffer between the application program and the microkernel and need not be
changed as the kernel is changed during model year upgrades. The API will be
highly transportable from platform to platform.

Copyright  1995-1999 SCRA 122

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture (Cont.)

● Application Programming Interface (API)
❍ Uses Processing Graph Method (PGM) developed by

NRL
❍ PGM serves as a data flow graph API for signal

processing algorithm descriptions
❍ PGM serves as a command program API for

❑ Data flow graph execution control (starting, stopping) and
monitoring

❑ Managing I/O devices
❑ Starting other command programs
❑ Setting flow graph parameters
❑ Responding to external inputs

[LMC-ATL][LMC-MYA]

Page 123
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Run time support is provided for static and dynamic graph mapping to
processors with static or dynamic scheduling.

Copyright  1995-1999 SCRA 123

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture (Cont.)

● Run-time support for three ranges of application
requirements

❍ Static graph mapping to processors with static
scheduling (initially)

❍ Static graph mapping to processors with dynamic
scheduling

❍ Dynamic graph mapping to processors with dynamic
scheduling

[LMC-ATL][LMC-MYA]

Page 124
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The operating systems requirements for the MYA are presented above. It must
support the RASSP run-time system (RRTS) and support COTS products with
proprietary operating systems.

Copyright  1995-1999 SCRA 124

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture (Cont.)

● Operating system requirements
❍ Service requirements to support RRTS

❑ Process creation (spawning)
❑ Protected address space for processes
❑ Preemptive multitasking
❑ Support for dynamic priorities
❑ Round robin time-slicing for equal priority ready tasks
❑ Mutex and counting semaphores
❑ Interprocess communication
❑ Sequential message passing (sockets)

❍ Support for COTS products with proprietary O/S
❑ O/S meets service requirements for RASSP
❑ O/S provides open interface on which the RRTS and

associated API can be ported

[LMC-ATL][LMC-MYA]

Page 125
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Various real-time microkernels can be used for the operating system. They
must be suited for high performance embedded signal processing and a few
candidates are listed above.

Copyright  1995-1999 SCRA 125

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture (Cont.)

● Real-time microkernel/operating system
candidates

❍ Large commercial offering

❍ Not all suited for high performance embedded signal
processing

❍ Current promising candidates

❑ SPOX - Spectron Microsystems Inc.

❑ PSOS+/UNISON - Multiprocessor Toolsmiths

❑ Real Time Executive for Military Systems (RTEMS) -
Developed by On-Line Applications Research Corporation
under contract to the US Army Missile Command

❑ Real-Time MACH - Open Software Foundation (OSF)

[LMC-ATL][LMC-MYA]

Page 126
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The software supports the Model Year Architecture (MYA) concept by
providing a common Application Programming Interface (API) to the
underlying real-time operating system services. This allows a new hardware
platform with a new microkernel to change for each model year while
maintaining the API. Support for the API is through the RASSP Run-Time
System (RRTS), which provides the services required for the control and
execution of multiple graphs on a multi-processor system. The RRTS and its
support for the API forms the essential component of software encapsulation
for a processor object.

The application layer is divided into two parts. The first part is the command
program, which provides response to external control inputs, starting and
stopping data flow graphs, managing I/O devices, monitoring flow graph
execution and performance, starting other command programs and setting flow
graph parameters. The control interface provides services that implement these
operations.

The second part of the application layer is the data flow graphs (DFGs)
implemented using a data flow language. Services provided by the DFG
interface are largely invisible to the developer and include managing graph
queues, interprocessor communication and scheduling. The constructed flow
graphs will be converted to HOLs such as C or Ada via autocode generation
and will contain calls to a standard set of domain primitives.

Copyright  1995-1999 SCRA 126

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Architecture Diagram

Application

Application
Programmer’s
Interface

PGM Run-Time
System

Micro /
Nanokernel

Command Program(s) Data Flow Graph(s)

Control Interface
Data Flow
Interface

Target Proc.
Map

Target Proc.
Prim. Libraries

RRTS* RRTS*

RRTS
Support

RRTS
Support

Real Time
POSIX

Real Time
POSIX

Micro / Nanokernel

*RRTS: RASSP Run-Time Support

[LMC-ARCH]

Page 127
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Software development cannot be discussed without its relationship to the
architecture. The software portion of architectural objects is handled by the
process shown above.

This process depicts the progression of software generation from the
requirements to the load image, with emphasis on the graph objects involved
and the general RASSP process in which they occur.

Architecture definition involves the creation and refinement of the DFGs that
drive both the architecture design and the SW generation for the signal
processor. The DFGs of the signal processor are developed, and the nodes are
allocated to either hardware or software. Automated generation of the software
partitions is performed to provide executable threads that are to be run on the
DSPs. These autocoded partitions are combined into an application graph
which is functionally equivalent to the original.

The final step in the SW development, which is the production of the load
image, occurs during detailed design. The load image generation is an
automatic build process that is driven by the autocode generation results. The
inputs to the process include the architectural description, the detailed DFGs
describing the processing, the partitioning and the mapping information, the
autocode results and the command program.

The process is controlled by a software build management function which
extracts the necessary information from the library and manages the
construction of all the downloadable code.

Copyright  1995-1999 SCRA 127

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Graph-Based Software
Development Scenario

Reqmts
Analysis

Exec.
Functional

Spec.

Command
Program

Spec.

Arch.
Indep.
Graph

Allocated
Graph

Partitioned
SW

Graph

Partition
Code

Generation

Equivalent
Application

Code

Load
Image

Command
Program

DFG/
Command
Functional
Simulation

Target
Code

Generation

Systems Architecture Detailed Design

[LMC-ARCH]

Page 128
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 128

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed Section Outline

❍ Fully Functional Modeling
❑ Description
❑ Case Study

● Model Year Architecture

● Reuse

We address the final aspect of RASSP methodology, which includes "reuse" at
multiple levels of abstraction. This includes reuse of past designs, past
software and hardware libraries, reuse of modeling and simulation
environments, etc.

Page 129
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Examples:

•A bus controller card design, including related schematics, VHDL
models, timing, software, test data, etc.

•An ASIC design, including related artwork and schematics, VHDL
model, test data, software, etc.

•A released catalog entry for an individual component, including
component properties, schematic symbol, etc.

Copyright  1995-1999 SCRA 129

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
How Re-use Fits into RASSP

● The model year approach designs and builds a system
iteratively

● In order for this to work, previous versions of the design
must have been made in a way that enables them to be
reused with minimum rework. This would include elements
like system software and processor architecture

● Each subsequent "model year" should take less time than
the previous because of the reuse philosophy

● Definition of a Re-Use element
❍ Any design element that is complete and consistent to the

extent that it can provide value in a new design

Page 130
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The contents of the hardware and software component reuse library has models
and data at various levels as shown in the chart above. These models support
concurrent codesign throughout the selection and verification process. The
reuse library drives both the architecture synthesis and the software synthesis
processes in an integrated fashion.

Copyright  1995-1999 SCRA 130

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Contents of Reuse Library

Software Reuse Library Hardware Reuse Library

• SW Performance Models

• Application code / code
fragments

• OS Kernel(s) / OS services

• Application DFGs

• Control/support software

• Test data

• Documentation elements

• Performance models

• Behavioral models

• RTL models

• DFG partitions and mappings

• Architecture configurations

• Test plans and test sets

• Documentation elements

[LMC-Meth]

Page 131
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

When any of the required support components are not present in the library,
one must define (at least) a prototype element. Adding any component function
to the library "library population".

The library set must be extended over time to accommodate new technology
and applications.

There are three library population software development activities that must be
supported:
1) building a signal processing primitive library element,
2) building an operating system primitive library element, and
3) developing hardware models.

For operating system services primitive development, there are four instances
where one must generate or modify operating system services:
1) new operating system
2) new processing element
3) new communication element
4) new processor interface

Copyright  1995-1999 SCRA 131

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Library Population

SP Primitive Development

Build New
Algorithm
Primitives

Validate
Functionality

Generate Timing
Estimate on HW
or ISA Simulator

Complete all
Formal Validation
& Documentation

Update
Library

Build OS
Services

Primitives

• new OS
• new PE
• new Comm EI
• new PE interface

Validate
Functionality

Complete all
Formal Validation
& Documentation

Update
Library

Generate Timing
Estimate on HW
or ISA Simulator

Build Required
HW Models at

the Appropriate
Level (IS, RTL, ...)

Validate
Functionality

Complete all
Formal Validation
& Documentation

Update
Library

OS Services Primitive Devel HW Model Development

Page 132
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 132

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Methodology
Overview Outline

● Overview
● Methodology

❍ Overview
❍ Virtual Prototyping
❍ Model Year Architecture
❍ Reuse

●Results to Date
● Summary

We present some of the several results from the RASSP program. The reader
is requested to refer to the proceedings of the two RASSP conferences for
detailed discussions of these results.

Page 133
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 133

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Results to Date

Significant use and success of RASSP spans a number of projects:
• UAV / ATDS SAR Signal Processor Development

• AIRMS IRST Development and Insertion

• F-14D IRST (AN/AAS-42 WRA-2) Technology Upgrade

• SH-60 ALFS / LAMPS (AN/UYS2a FPCAP) Technology Upgrade

• ACOMMS SONAR Buoy Upgrade

• NSA "Kindling" Model Year Studies

• JAST Integrated Sensor System (ISS) Development

• F-15C (APG-63U) Multi-mode RADAR Reliability Upgrade and Insertion

Projects have funding or support from the SPO / PMA / PMO / PME of the
platform and module with plans for flight test of the successful systems
produced. Projects will yield first pass, form / fit / (enhanced) function
prototype systems.

Sites testing or using RASSP: Alliant Tech, ARL, Hughes, Johnson Space Center,
LM Baltimore Labs, LM Comm, LM Electronics, LM Orlando, Motorola, NSA,
Sanders, TRW, Woods Hole, Wright Laboratories

RASSP has now spurred several developments in the commercial arena as
well, with terms like behavioral models, virtual prototyping, design-with-
resuse becoming standard terminology within the industry.

Page 134
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 134

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RASSP Methodology
Overview Outline

● Overview
● Methodology

❍ Overview
❍ Virtual Prototyping
❍ Model Year Architecture
❍ Reuse

● Results to Date

●Summary

Page 135
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 135

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary: Addressing
System Level Design

Enables Achievement of 4x

Virtual Prototyping and
Model Year Architectures

allow the discovery of
problems early in the

design cycle

RASSP

1

4

8

2

16

32

64

p r
o

d
uc

tiv
ity

(adapted f rom AT &T)

schematic
capture

logic synthesis,
behavioral sim

timing-driven synthesis,
system-level sim, BIST

year
'82 '86 '88 '90 '92 '94 '96'84 '98

concept
design

engineering

testing
process
planning

production

time
0%

20%

40%

60%

80%

100%

COST COMMITTED

COST INCURRED

RASSP 4x will come
from applying more
rigorous tools and

methodologies
earlier in the design

process

Productivity doubles every three years (and
lags technology performance improvement!)

Production costs are committed early in the
design cycle; long before the actual cost

RASSP had advanced system-level design to a new arena above and beyond
traditional practice. We describe the many steps of the RASSP process in
other E&F modules.

Page 136
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 136

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary

● RASSP Seeks a 4x Improvement in Design Time,
Quality and Life-Cycle Cost for Embedded DSPs

● RASSP is focused at formalizing the early stages
of design, in assisting with design re-use, and
with enabling model year upgrades through the
effective use of virtual prototyping and HW/SW
Codesign

● Demonstration of significant cost and cycle time
savings using the RASSP methodology and tools
has been shown

● Process change and education is being
developed, demonstrated, and proliferated

In the past, the commercial Electronic Design Automation (EDA) and the
academic/industrial research communities have been aware of the
requirement for an intensive effort to study the digital system design process in
its entirety; however, resource needs, fuzzy objectives, and short-time horizon
have handicapped progress. Currently, the Rapid Prototyping of Application
Specific Signal Processors (RASSP) program is overcoming these handicaps
and is developing a number of new technologies that will lead to shorter
prototyping times, improved productivity quality and reduced life cycle costs.

Successfully transferring the technology being developed by the RASSP
program to industry and academia is a critical component of the overall
RASSP effort. To accomplish this goal, a novel, ground breaking RASSP
Education & Facilitation (RASSP E&F) program was explicitly funded and a
team tasked with leading the RASSP efforts to transfer technology from the
RASSP program to the university and industrial communities.

Page 137
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 137

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Exercises

● Describe the problems with the current system design
practice?

● What is cost modeling and determine how it can provide
savings on the design and life cycle costs.

● What is the difference between performance modeling and
fully behavioral modeling?

● In the table comparing the various detailed integration and
test methodologies, try to justify the various metrics and
their costs provided.

● Why would upgrades be simpler with a model year
architecture? What about legacy systems?

● Is VHDL necessary to implement the RASSP methodology?

Page 138
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 138

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

[DeBardelaben 97] J. DeBardelaben, V. Madisetti, and A. Gadient, "On Incorporating Cost Modeling in Embedded

 Systems Design," IEEE Design & Test of Computers, Vol. 13, No. 3, July 1997.

[Dung 96] L-R Dung, V. Madisetti, "Conceptual Prototyping of Scalable Embedded DSP Systems," IEEE Design

 & Test of Computers , Vol 13, No 3., Fall 1996.

[Egolf 96] T.Egolf, et al, "VHDL-Based Rapid System Prototyping, "Journal of VLSI Signal Processing, Vol. 14, Issue 2,

1996.

[IEEE] All referenced IEEE material is used with permission.

[LMC-ATL] Caracciolo G., Pridmore J., “Architectures for Rapid Prototyping of Embedded Signal Processors” , The

RASSP Digest, Vol. 2, No. 1, 1st Quarter 1995.

[LMC-MYA] Caracciolo G., “ Second RASSP Model Year Architecture Working Group Meeting” , Martin Marietta

Laboratories, March 15, 1995.

[LMC-ARCH] Shamming B., “RASSP Methodology Working Group Meeting Architecture Process” , Martin Marietta

Laboratories, March 16, 1995.

[LMC-Meth] “RASSP Methodology Version 1.0” , Martin Marietta Laboratories, December, 1994.

[Hein98] Hein, et al, “RASSP VHDL Modeling Terminology and Taxonomy,” Version3.0, July 29, 1998.

[Madisetti 94] V. Madisetti,"Vive La Difference," The RASSP Digest, Vol 1, 4th Quarter 1994.

[Madisetti 95A] V.Madisetti, T. Egolf, "Virtual Prototyping of Embedded DSP Systems," IEEE Micro, pp. 9-21, Fall 1995.

[Madisetti 95B] V. Madisetti and J. DeBardelaben, "A RASSP Approach to HW/SW Codesign, The RASSP Digest, Vol.

2, 4th Quarter, 1995.

References

Page 139
Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 139

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

[Madisetti 95C]V.Madisetti, T. Egolf, "Virtual Prototyping of Embedded DSP Systems," IEEE Micro, Fall 1995, pp. 9-21

[Madisetti 96]V.K. Madisetti, "Rapid Digital System Prototyping: Current Practice, Future Challenges, IEEE Design &

Test of Computers, Vol. 13, No. 3, Fall 1996.

[Malley 96] J. Malley, "RASSP: Changing the Paradigm of Electronic-System Design," IEEE Design & Test of

Computers, Vol. 13, No. 3, Fall 1996.

[Richards 97] M.A. Richards, A. Gadient, G. Frank, R. Harr, "The RASSP Program: Origin, Concepts, and Status,"

Editorial in Journal of VLSI Signal Processing Systems, Volume 15, No. 1, 2, February 1997, pp 7-28.

[Richards 97] M.A. Richards, A. Gadient, G. Frank, eds., Rapid Prototyping of Application Specific Processors, Kluwer

Academic Publishers, Norwell, MA, 1997.

[Saultz 97] J. Saultz, "Rapid Prototyping of Application-Specific Signal Processors (RASSP): Progress Report,''

Journal of VLSI Signal Processing Systems, Volume 15, No. 1, 2, February 1997, pp. 29-48.

