
Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 1

Copyright 1995-1999 SCRA 1

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and
may only be used for non-commercial educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their
permission. All information contained, may be duplicated for non-commercial educational use only provided this copyright
notice and the copyright acknowledgements herein are included. No warranty of any kind is provided or implied, nor is
any liability accepted regardless of use.

The United States Government holds "Unlimited Rights" in all data contained herein under Contract F33615-94-C-1457.
Such data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except
as follows: Certain parts of this work to other copyright holders and are used with their permission; This information
contained herein may be duplicated only for non-commercial educational use. Any vehicle, in which part or all of this data is
incorporated into, shall carry this notice .

Requirements and Specification
Modeling (RSM)

RASSP Education & Facilitation Program
Module 30

 Version 3.00

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 2

Copyright 1995-1999 SCRA 2

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Rapid Prototyping Design
Process

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

RSM

The Rapid Prototyping Design Process is applicable to all modules in
the E&F program. This slide indicates where in the process
Requirements and Specification Modeling (RSM) fits. Note that the dark
blue region, "System Definition," is the primary home of RSM. However,
the light blue area, Hardware/Software Codesign," which is the home of
other modules in the E&F series, also has a strong affinity to RSM.
Conformance between the light blue area and the RSM description is
what must be tested continually as the design proceeds.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 3

There are two major themes to this module: 1) RSM evaluation criteria
and its application, and 2) RSM in industry and academia.

Copyright 1995-1999 SCRA 3

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Goals

● To Investigate the State-of-the-Art in
Requirement and Specification Modeling
Methodologies

● To Show How RSM Is an Important Part of the
Top-Down Design Methodology

● To Describe a Unified Evaluation Framework for
Specification Modeling Methodologies

● To Describe an Existing RSM Methodology and
Apply various evaluation criteria to It

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 4

This module explains the role of RSM in the RASSP roadmap. Also of
interest is another program, CEENS, that has contributed results to the
development of executable requirements and specification using a
representation called SimSpec that will also be used to briefly illustrate
its role in capturing requirements and specifications.

Copyright 1995-1999 SCRA 4

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline

● The Motivation for RSM
❍ Where RSM fits in the RASSP Roadmap
❍ Goals of the Module
❍ Requirements & Specifications Defined
❍ Test Bench Development
❍ Where RSM fits in the Product Life-Cycle
❍ The System Definition Process

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 5

Requirements and Specifications each has a specific meaning.
Requirements are usually obtained from the customer with respect to
what a system should do. Specifications, on the other hand, describe
how a system would implement the required functionality. More precise
descriptions will be provided in the slides that follow.

Copyright 1995-1999 SCRA 5

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline (Cont.)

● Requirements Engineering and Requirements
Analysis

❍ Requirements Engineering Goals
❍ Requirements Analysis
❍ Requirements Validation

● Specification Modeling Methodologies (SMM)
❍ SMM Applied to Reactive Systems
❍ Methodology Attributes

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 6

Considerable amount of recent literature exists in the area of system
specification and modeling, and we attempt to survey a wide variety of
proposed methodologies, and include a dozen or so prominent
proposals as part of this module.

Copyright 1995-1999 SCRA 6

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline (Cont.)

● Methodology Survey
❍ Survey Content
❍ Review of Evaluative Parameters
❍ Ward and Mellor's Methodology (SDRTS or RTSA)
❍ Jackson System Development (JSD)
❍ Software Requirements Engineering Methodology

(SREM)
❍ Object Oriented Analysis (OOA)
❍ Specification and Design Language (SDL)
❍ Embedded Computer Systems (ECS)
❍ Vienna Development Method (VDM)
❍ Language of Temporal Ordering Specification (LOTOS)
❍ Electronic Systems Design Methodology (MCSE)
❍ Integrated Specification and Performance Modeling

Environment (ISPME)

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 7

Tools that support the RSM methodology at various levels of
abstraction are described in this module.

Copyright 1995-1999 SCRA 7

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline (Cont.)

● CASE Tools
❍ RDD-100
❍ DOORS
❍ SLATE
❍ Requirements and Traceability Management (RTM)
❍ Statemate
❍ ADEPT

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 8

We describe RASSP contributions to the RSM effort through a series of
detailed examples that illustrate the methodology proposed as part of
that effort.

Copyright 1995-1999 SCRA 8

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline (Cont.)

● RASSP Requirement Capture and Test Planning
❍ Review of the problem and the approach to solution
❍ Examples

❑ FFT
❑ SAR

❍ Use of the virtual prototype

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 9

In this section of the module we describe the RSM process and define a
number of terms and the methodology followed.

Copyright 1995-1999 SCRA 9

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● The Motivation for RSM
❍ Goals
❍ Requirement defined
❍ Specification defined
❍ Executable Requirements and Specifications
❍ Test Bench Planning and Development
❍ Where RSM fits in the Product Life-Cycle

● Requirements Engineering and Requirements Analysis
● Specification Modeling Methodology (SMM)
● SMM Survey
● CASE Tools
● RASSP Requirement Capture and Test Planning
● Summary

RSM Outline

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 10

These define and quantify the customer expectations for the system.

Copyright 1995-1999 SCRA 10

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
 Customer Expectations

● Customers expect:
❍ A system that accomplishes the desired overall

functionality
❍ An accurate implementation of each function
❍ A system with products that will be operational and

useful in its natural and induced environments
❍ Conformance to constraints on funding, schedule,

physical characteristics, technology, external interfaces
etc., during design and manufacture and after delivery

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 11

Other definitions of requirements:

" An identification of a characteristic, physical or functional, that defines
the need of a process or a product for which a solution will be
attempted. It describes the nature of a request as an expression of a
need."

" It is a condition or a capability that is:

-needed by a user to solve a problem or achieve an object.

-required to be met or possessed by a system or system component to
satisfy a contract, standard specification or other formally imposed
documents.

-a documented representation of a condition or capability as in the
above two."

Copyright 1995-1999 SCRA 11

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Requirements Defined

A requirement is:
● A statement identifying a capability, physical
characteristic, or quality factor that bounds a
product or process need for which a solution is
to be pursued
● A clear documentation of the customer's
expression of need so as to be directly usable in
the design process

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 12

Copyright 1995-1999 SCRA 12

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Requirements : Usual
Approach

● Traditional: paper documents in a natural
language

❍ Subject to omissions, ambiguities, and errors
❍ Interpretation needs to be manual: subjective errors
❍ Natural language documents: reader and writer give

different meanings to the same words
❍ Extraction of requirements from original document to a

requirements tracking tool adds to ambiguity and
chances of errors

❍ Need for manual mapping of written requirements into
diverse design tools

❍ No underlying formalisms to ensure consistency among
the various elements comprising the requirements
document

Traditionally, the detailed form, function, cost and features desired for
an electronic system are established in a set of requirements
documents. Misinterpretation, omissions, and errors in these
documents are often significant factors in slowing development of signal
processing systems. A requirement which is written in a formally
defined computer executable, rather than a natural, language provides
an unambiguous description which can be tested for
errors.Requirements for an embedded signal processor are conveyed in
the form of paper documents which are subject to omissions,
ambiguities, and errors on the part of the requirement generators
(authors) and recipients (readers). In many instances, the written
requirements are supplemented with supporting analysis and
simulations, but this aggregate of requirements documentation must still
be manually interpreted and judiciously applied to evaluate the
adequacy of candidate hardware and software designs.During the
course of design, it may be necessary to map written requirements into
several different tools to assist in requirements tracking and allocation,
performance analysis, simulation, and test development. Each mapping
of requirements into a tool adds to the total design cost, and introduces
opportunities for miscommunication and error. Executable
requirements, when used in conjunction with a compatible language-
based design methodology, reduce the need for manual mapping of
written requirements into diverse design tools.

[Lincoln3]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 13

Copyright 1995-1999 SCRA 13

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Executable Requirements

● A requirement modeled in a simulatable language
is known as an executable requirement

● Overcomes the problems associated with
traditional ways of documenting requirements

● Written in a machine-executable language
● Presents an external view of the system
● Especially well-suited for hardware and

hardware/software systems, e.g. embedded
systems

● A simulatable requirement evolves to a
executable specification

An executable requirement must be written in a language which can be
executed on a computer in order to test its syntactic correctness. It
should present an external view of the desired system which, for an
embedded signal processor, should include the following:

1. The desired signal transformation in each mode of operation.

2. The desired response to commands and other control inputs.

3. Protocol and timing at the data and control ports.

At some future time, an executable requirement may include other
facets of the requirement such as physical and environmental
constraints, testability goals, connector part numbers, etc. Executable
requirements with this broad a scope are not feasible at this time, given
the scope of available formal languages.

Many of the latter requirements, e.g., constraints may be captured
through new enhancements to VHDL such as those proposed by the
VSPEC effort in the RASSP Technology base program (University of
Cincinnati).

[Lincoln3]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 14

Copyright 1995-1999 SCRA 14

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Specifications Defined

● A specification is a complete but purely external
description of a system to be designed.

● A completed specification involves modeling the
environment in which the system is expected to
function, and describing relations between the
environment and the system in terms of a
functional description.

● (Requirements + Constraints + Behavior +
Design criteria) = Specifications

A specification is usually derived from the requirements, but includes
additional detailed information on its function, timing, and design related
behavior.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 15

Copyright 1995-1999 SCRA 15

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Specification Document

● The Specification Document is structured in the
following manner:

❍ Problem presentation
❍ Characteristics and modeling of the environment
❍ System I/O specifications
❍ Functional specifications- system function description
❍ Operational specifications- Operation sequence,

accuracy
❍ Technological specifications- implementation

constraints
❍ Additional information such as document source, and

explanations

The cost of obtaining the (final) specification document can be reduced
by using a suitable method and by specific analysis. The structure of
the specification document must be in such a way that it addresses the
following issues:

What questions should the document answer?

● Who are the readers and how will they use the document?

● What is the knowledge required to understand the document?

The document structure is a result of consideration of the above points.

The plan shows that the specifier gradually builds up the document
based on his analyzing the environment, taking the output of the
requirements phase as a chief input.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 16

Copyright 1995-1999 SCRA 16

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Executable Specification

● An executable specification
❍ A simulatable description of a component or system object

❑ Represents an arbitrarily high level of abstraction
➭ e.g. DSP system, architecture, or HW/SW component

level
❑ Reflects function and timing
❑ Incorporates a description of the object's interface
❑ Provides the proper data transformations

❍ May also describe electrical or physical aspects including
❑ Power, cost, size, fit, and weight

❍ Includes defined test requirements which leads to a test bench

● Denotational items (e.g. power) are
❍ Considered factual (derived) items to be checked
❍ Not executed

An executable specification is a behavioral description of a component
or system object that reflects the particular function and timing of the
intended design as seen from the object's interface when executed in a
computer simulation. The executable specification may describe the
electrical, behavioral, or physical aspects including the power, cost,
size, fit, and weight of the intended design. Denotational items such as
power are normally considered factual (derived) items to be checked
but not executed. Executable specifications describe the behavior or
function of an object at the highest level of abstraction that still provides
the proper data transformations (correct data in yields correct data out;
DEFINED bad data in has the SPECIFIED output results). Executable
specifications may describe an object at an arbitrary abstraction level
such as the DSP system, architecture, or hardware / software
component level. In contrast to a virtual prototype, the executable
specification need not describe a system's internal structure.

An executable specification is an electronic specification of the
requirements for an electronic product. This electronic specification
includes a formal requirements model, a simulatable model of the
required product interfaces, function and timing as seen from the
product's interface (includes hardware function and software function -
which may not yet be defined/partitioned), simulatable interface models
as required and the formal test benches to be used to assess the
compliance of any implementation with this requirement specification. It
also includes the captured product requirements which led to the
requirements model and the defined test requirements which led to the
test bench.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 17

Copyright 1995-1999 SCRA 17

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP The Role of the Executable
Requirement/Specification

● Executable Specification features:
❍ A description of a system or component to reflect function,

timing, and other aspects of the intended design
❍ Operational features of the intended design
❍ Abstract while retaining necessary detail

● Executable Specification contents:

❍ Fiscal and non-functional constraints
❍ Behavioral description
❍ Test bench

● Executable Specification Applications:
❍ At each level of design abstraction in a top-down design

methodology
❍ Decomposition of constraints into subsystems
❍ Checking of systems and subsystems against testbenches
❍ Deriving requirements for lower levels

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 18

Copyright 1995-1999 SCRA 18

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Need for Test Bench

● Test bench simulates the environment of a model
● Tests model functionality and timing
● Compares model output with expected output
● Provides a framework for the development of

executable requirements

While the test bench concept originates in the context of testing a
model of an integrated circuit, it is applicable to all levels of model
abstraction. The environmental conditions can be expressed in input-
data and command files and read by the test bench and applied to the
processor across the interfaces. The test bench also can read
precalculated 'known-good' image files and compare the processor
output images to them. In some applications, the test bench, itself,
might generate both the input and the comparison data. For systems in
which the subsystem being modeled affects the environment, the test
bench may be very reactive. Properly constructed, a test bench can be
used to test and verify successively more detailed models of a design
unit, whether the design unit corresponds to an integrated circuit, a
board, or an entire system. The test bench concept, combined with the
simulation capability of VHDL, provides a framework for the
development of executable requirements.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 19

Copyright 1995-1999 SCRA 19

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test Planning

● A test bench is an executable VHDL model which
instantiates the Model Under Test (MUT)

● The MUT output is compared against the
expected response as generated by the test
bench.

● Uses automatic test generation techniques
● Test planning is necessary for model validation

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 20

Copyright 1995-1999 SCRA 20

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
 Goals in Test Planning

● Goals can be evaluation or search goals
● Evaluation goals:

❍ Evaluate correctness of the MUT for all values within a
range of the adjustable requirement space. Choose a
set of samples from the evaluation space

❍ Form a test case by a sample value-constrained
requirements pair

❍ Trade-off between testing time and degree of
confidence of the test group

● Search goals:
❍ Search for extremes that may be attained by the

adjustable requirements taken into consideration
❍ Adjustable requirement needs to exhibit monotonic

behavior in the search range

Based on the numerical characteristics, we classify primitive goals into
evaluation goals and search goals. The objective of an evaluation goal
is to evaluate the correctness of the MUT for all values within a range of
the adjustable requirement space (called evaluation space), provided
that the other requirements remain unchanged. Instead of testing all
possible values, the test group chooses a set of samples from the
evaluation space. A test case is formed by a sample value as well as
the constrained requirements. Determining the number of test cases is
a trade-off between testing time and degree of confidence gained after
applying the test group. The more test cases the test group issues, the
more time it takes to simulate, and the more evidence one can collect to
draw conclusion on the primitive goal.

A primitive goal can also be a search goal. In this situation, the test
group searches for the extreme value of the adjustable requirement with
which the MUT can barely pass/fail the test, provided that the
adjustable requirement has a monotonic effect on the MUT in the
search range.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 21

Copyright 1995-1999 SCRA 21

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
A Typical Testbench

Stimulus
Generator

Test
Vectors

Response

Expected Response

Model
Under
Test

Comparator Go/No Go

Model State

Adaptive Testing

Or
Noise

A test bench is an executable VHDL model which instantiates the model
under test (MUT), drives the MUT with a set of test vectors, and
compares its response with the expected response. The above figure
illustrates a typical test bench, which contains a stimulus generator, a
MUT, and a comparator. The stimulus generator generates the test
vectors, inputs them to the MUT and provides the comparator with the
expected response.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 22

Copyright 1995-1999 SCRA 22

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RSM Within the Product
Life-Cycle

Develop
Specification

Fabricate/
Compile

HW/SW Verification

Set
Requirements

Test

Use

Design

Implement/Code

Validate

Verify

Technologies
of interest

data

(SW &HW)

(simulatable)

Product Test

(HW/SW)

(System)

R
S
M

upgrade

System Test

(HW SW)

Verify / Test

Acquisition data
to multiple

vendors

The figure indicates the total life-cycle of an electronics product. A
design starts with the requirements that are to be met. Requirements
generate concepts which are abstract descriptions. The concepts
evolve to specifications and performance models which include the
environment and the function of the design. The internal behavior of the
software and hardware is next addressed. This is the step where a
preliminary attempt is made to partition the design into hardware and
software, although some of that decision may have taken place at a
much higher level of abstraction, because of the desire to reuse
hardware or software. Implementation of hardware and software is next
performed. The designer iterates between the specification (which must
remain constant) and the implementation to ensure that the
implementation of the code and hardware captures the intent of the
specification. The implementation must also comply with the design
rules required by the fabrication process. The fabrication and
compilation process further defines the product. Test is performed on
the product in several stages. The chips are tested, mounted chips are
tested, and so on. Software is tested on the hardware. The product then
moves to the end user. While the product is being used, new
requirements are often generated and the cycle begins again.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 23

Copyright 1995-1999 SCRA 23

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Detailed view of the RSM

DETERMINE SYSTEM
REQUIREMENTS

AND CONSTRAINTS

DEVELOP FORMAL
(EXECUTABLE)

REQUIREMENTS

ENVIRONMENT
SPECIFICATION

SYSTEM SPECIFICATION

ADAPT A SUITABLE
SPECIFICATION
METHODOLOGY

PLAN AND DEVELOP
TEST BENCH

TO SYSTEM
IMPLEMENTATION

REQUIREMENTS STAGE

SPECIFICATION STAGE

TEST BENCH STAGE

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 24

Copyright 1995-1999 SCRA 24

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP The System Definition
Process

System Requirements
Definition

Overall Architectural
Definition

HW Requirements SW Requirements

Production Rqmts
 - cost/schedule
 - methodology
Operational Description
 - environment, user, signal Tools

Editors
Spreadsheets
RDD-100 RTM
F2D2

B-2 Specifications
Interface Control Documents (ICD)

B-5 Specifications
Interface Control
Documents (ICD)

4-6 mo

Algorithm
Choice

- operational scenarios
- Algorithm
- Risk area/mitigation
- Development plan

Performance model
Architecture
HW/SW Requirements documents
Traceability matrix
Development plan
Simulation, test/stimulus response
Sizing

Technology Assessment (packaging...)
Alternative approaches
COTS vs. Custom
Bottlenecks and degradation
Scalability, fault tolerances,...

1-3 mo

Requirements "db"
Analysis Report
 - Completeness report
 - Cost
 - Traceability

Tools
VHDL Simulators
RDD-100 BONeS

1-3 mo

Tradeoff
Studies

Some tools are being developed and refined to handle the system
requirement flowdown. "Executable requirements and specifications"
would put the requirements into a machine readable and executable
form.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 25

Copyright 1995-1999 SCRA 25

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Methodology Comparison

Traditional

Re-specify

Specify

Design

I & T

Done

Re-engineer

Start Over

Re-specify

Re-design

RASSP/CEENS

Change = Complexity = Risk

Systematic & Predictable

Specify

Design

I & T

Done

Re-engineer

Form
ali

sm

Executable
Requirements
Specifications

The new approach to RSM is compared with the older approach both
in design of new systems, and in the re-design and re-engineering of
older systems.

In the both cases, the executable requirements/specifications form the
gold requirements/specifications of the design flow, and any changes
are captured and stored in that format. In older approach, the actual
implementation contained the requirements and specifications
(translated to lower levels of abstraction) making it very difficult to
upgrade or re-design the system, or validate lower levels of design to
higher levels of abstraction.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 26

2

Copyright 1995-1999 SCRA 26

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

9/29/98

Methodology Costs & Benefits

PHASE COST BENEFIT
Rqmt Elicitation added effort
Rqmt Specification added effort
Rqmt Modeling added phase
Rqmt Analysis added effort
Behavioral Modeling availability of Rqmt Model reduces effort
Simulation
(Design)
Integration & Test significantly reduced effort & cost; improved product
…
Re-engineering significantly reduced effort & cost; improved product

Benefits outweigh costsBenefits outweigh costs

The benefits and costs of the newer RSM approach is described in this
slide. Note that there are up front costs associated with the proposed
methodology, but the benefits are expected to outweigh costs.

These results were demonstrated in the RASSP and CEENS efforts.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 27

Copyright 1995-1999 SCRA 27

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline

● The Motivation for RSM

● Requirements Engineering and Requirements
Analysis

❍ Requirements Engineering Goals
❍ Requirements Analysis
❍ Requirements Validation

● Specification Modeling Methodologies (SMM)
● SMM Survey
● CASE Tools
● RASSP Requirement Capture and Test Planning
● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 28

 [Hsia]

Copyright 1995-1999 SCRA 28

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Requirements Engineering
Goals

● Requirements engineering is the description of
❍ A proposed system's intended behavior and
❍ Its associated constraints
❍ By a disciplined application of proven principles,

methods, tools and notations.

● The following are the chief aims of this activity:
❍ Identification and documentation of customer and user

needs
❍ Documentation of external behavior and associated

constraints
❍ Ensuring consistency, completeness and feasibility of

the required document by analysis and validation
❍ Sensitivity to the evolution of needs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 29

Copyright 1995-1999 SCRA 29

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Requirements Analysis

● Requirements Analysis Models:
❍ Functional Model: Analysis of the system by

considering its functional aspects

❍ Structural Model: Analysis of the components or
objects which form the system

❍ Mixed Level Model: Structural analysis and
decomposition of both the system and the functionality
of the system iteratively

❍ Communication Model: Description of message
exchange between the system components

❍ Behavioral Model: Description of the internal behavior
of the components based on FSMs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 30

Copyright 1995-1999 SCRA 30

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP The Requirements Analysis
Process

Requirements
Analysis

From:
 - Functional Analysis
 - Control

Customer
Expectations

Project &
Enterprise

Constraints

External
Constraints

Measures of
Effectiveness

Operational
Scenarios

System
Boundaries

Interfaces
Utilization

Environments
Life-cycle Process

Concepts

Functional
Requirements

Performance
Requirements

To:
Systems Analysis

Technical
Performance

Physical
Characteristics

Human
Factors

Modes of
Operations

Establish Requirements Baseline
Operational Functional Physical To Validation

From:
- Validation
- Functional Verification
- Physical Verification.

[IEEE1220]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 31

 The validation process consists of two types of activities:

- Ensure that the identified customer expectations and project,
enterprise, and external constraints are represented by the
requirements baseline.

- Assess the requirements baseline to ensure adequate addressing of
the entire gamut of possible system operations and system life cycle
support concepts.

Copyright 1995-1999 SCRA 31

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Requirements Validation

From
Requirements

Analysis

Validation

Customer
Expectations?

Enterprise &
Project Constraints? External Constraints?

Variances &
Conflicts

To Req. Analysis

Validated Req. Baseline

 To:
 - Control
 - Functional Analysis

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 32

Copyright 1995-1999 SCRA 32

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline

● The Motivation for RSM
● Requirements Engineering and Requirements Analysis

● Specification Modeling Methodologies
❍ Definition and Application to reactive systems

❍ Methodology Attributes

● SMM Survey
● CASE Tools
● RASSP Requirement Capture and Test Planning
● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 33

To appreciate the requirements of a specification modeling
methodology, one must understand its role in the overall design
process. The design process of a reactive system can be segmented
into three major phases: the specification phase, the design phase, and
the implementation phase. In the specification phase, the requirements
of the system under design are formulated and documented as a
specification. In the design phase, the possible implementation
strategies are considered and evaluated. Finally, in the implementation
phase of design, the specification is realized as a product. Note that
even though the three phases may be initiated in the order we mention
them, these phases often overlap. Overlapping of phases implies that
during the design process, one phase may not be completed before the
next phase is initiated. Another point to note is that in some
methodologies, it can be difficult to distinguish the three phases from
one another, especially when the difference in the levels of abstraction
between the specification and implementation is small. In such cases,
the specification is often a reflection of the implementation, and the
process of developing specification may reflect the design phase.

Copyright 1995-1999 SCRA 33

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Phases of the Design Process

● Specification Phase
❍ Formulation of system requirements
❍ Documentation as a specification

● Design Phase
❍ Alternative implementation strategies

❑ Considered
❑ Evaluated

● Implementation Phase
❍ Realization as a product

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 34

Copyright 1995-1999 SCRA 34

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP What is Specification
Modeling?

● Forms part of the Specification Phase of the
Design Process

● A Specification Model of a system incorporates
its

❍ Behavior
❍ Design, and
❍ Requirements

● A Specification Model helps in making
predictions about the system characteristics

● Enhances understanding of the system design
and behavior

We are concerned with the specification phase, where the designer, or
specifier, typically develops a model of the system called the
specification model. A specification model, or simply, a specification is a
document that prescribes the requirements, behavior, design, or other
characteristics of a system or system components. By developing and
analyzing the model, the specifier makes predictions and obtains a
better understanding of the modeled aspects of the system.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 35

Copyright 1995-1999 SCRA 35

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Defining a Specification
Modeling Methodology (SMM)

● A specification modeling methodology is a
coherent set of methods and tools to develop,
maintain and analyze the specification of a given
system

We now describe how a Specification Modeling Methodology is
described, evaluated and implemented.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 36

Copyright 1995-1999 SCRA 36

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Definition of Reactive Systems

● A reactive system is one that is in continual
interaction with its environment

● Reactive systems are typically control dominated
● Control-related activities form a major part of the

reactive system's behavior
● A reactive system typically responds or reacts by

changing its own state and generating further
stimuli

● A reactive system executes at a pace determined
by its environment

A reactive system is one that is in continual interaction with its
environment and executes at a pace determined by that environment.
This is to be contrasted to the type of system that merely transforms a
set of inputs to a defined set of outputs. These are known as
"transformational systems." A reactive system typically responds or
reacts by changing its own state and generating further stimuli.
Reactive systems are typically control dominated, in the sense that
control-related activities form a major part of the reactive system's
behavior.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 37

Copyright 1995-1999 SCRA 37

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Application of Reactive
Systems

● Reactive systems are prevalent in military as well
as in commercial applications

● Such systems represent a very large and
ubiquitous class of high technology products

● Such systems are often employed in highly
critical applications

● Examples of reactive systems
❍ Network protocols
❍ Air-traffic control systems
❍ Industrial-process control systems
❍ Fire-power systems
❍ Guided missiles

Reactive systems represent a very large and ubiquitous class of high
technology products, a class of products that are prevalent in military as
well as in commercial applications. Such products are often employed
in highly-critical applications. Even controlling the level of water in a
washing machine may be considered time-critical to the owner of the
washing machine. Examples of reactive systems are network protocols,
air-traffic control systems, industrial-process control systems, fire power
systems, guided missiles, etc.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 38

Copyright 1995-1999 SCRA 38

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Characterizing Reactive
Systems

● Important behavioral characteristics of reactive
systems

❍ State-transition oriented
❍ Concurrent
❍ Timing sensitive
❍ Exception-oriented
❍ Environment-sensitive

● Nonfunctional characteristics

Reactive systems have typically been contrasted with transformational
systems. The behavior of a transformational system can be adequately
characterized by specifying the outputs of the system that result from a
set of inputs to the system. In contrast, the behavior of a reactive
system is characterized by the notion of reactive behavior . To describe
reactive behavior, the relationship of the inputs and outputs over time
should be specified. Typically, such descriptions involve reactive
sequence of system states, generated and perceived events, actions,
conditions and event flow, often involving timing constraints.

The expression of all the characteristics of a reactive system should be
directly supported by the language of specification. Since a specification
methodology is typically associated with a specific set of specification
languages, the effectiveness of the methodology lies in how well its
specification languages support the expression of the above
characteristics. In addition to the language, the methodology plays an
important role in developing the representation in a methodical rather
than a haphazard manner.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 39

Copyright 1995-1999 SCRA 39

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
 Why Apply Specification

Modeling to Reactive
Systems?

● Designing reactive systems poses one of the
greatest challenges in the field of system design
and development

● Many reactive systems are employed in highly-
critical applications

● Reactive nature is extremely difficult to specify
and implement

● Reliability and safety issues must be considered
too

Due to their complex nature, reactive systems are extremely difficult to
specify and implement. Many reactive systems are employed in highly-
critical applications, making it crucial that one considers issues such as
reliability and safety while designing such systems. Designing reactive
systems is considered to be problematic, and poses one of the greatest
challenges in the field of system design and development.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 40

Copyright 1995-1999 SCRA 40

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Attributes of Reactive System
Specification Methodologies

● Three major attributes of a reactive system
specification modeling methodology:

❍ Language
❑ To support ability to provide conceptual models

❍ Complexity control
❑ To cope with the complex nature of the reactive system

❍ Model continuity
❑ To focus on development and maintenance of a

specification model instead of a proposed implementation

The language attribute represents the modeling languages that support
the methodology. This attribute distinguishes reactive system
specification modeling methodology from other specification
methodologies, since the chosen languages should provide appropriate
conceptual models and analysis techniques applicable to reactive
systems.

Complexity-control is necessary for any design methodology that is
applicable to design problems of nontrivial complexity. There are two
dimensions along which complexity control should be supported:
representational complexity and developmental complexity.

Model-continuity distinguishes a reactive system specification modeling
methodology as a specification methodology, instead of a design
methodology. The specification modeling methodology should be more
focused towards developing and maintaining a specification model
instead of a proposed implementation. Support of model-continuity
should be considered along three dimensions: integrated modeling,
implementation independence, and implementation assistance.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 41

A method, in the context of specification modeling, consists of three
components. The first component is an underlying model which is used
to conceptualize and comprehend the system requirements. The
second component is a set of languages that provides notations to
express the system requirements. Finally, the third component of a
method is a set of techniques ranging from loosely specified guidance
to detailed algorithms that is needed to develop a complete
specification from preliminary concepts.

We focus mostly on the methods. The tools are important. However, the
tools are primarily concerned with providing support for the methods.
Therefore, the tools can be characterized by the method component of
a methodology and are not considered separately.

Copyright 1995-1999 SCRA 41

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Components of a System
Specification Methodology

● Underlying model
❍ Used to conceptualize and comprehend the system

requirements

● Set of languages
❍ Provides notations to express system requirements

● Set of techniques, range
❍ From

❑ Loosely specified guidelines for proceeding with the
specification process

❍ To
❑ Detailed algorithms needed to develop a complete

specification from preliminary requirements and concepts

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 42

Based on the characteristics of a reactive system and the requirements
of a specification-modeling methodology, we define the necessary
attributes of a reactive-system specification modeling methodology.
There are three major attributes of a reactive system RSM
methodology: language attribute, complexity-control attribute, and
model-continuity attribute.

The language attribute represents the modeling languages that
support the methodology. This attribute distinguishes reactive system
RSM methodology from other specification methodologies, since the
chosen languages should provide appropriate conceptual models and
analysis techniques applicable to reactive systems.

The second attribute represents the support available in the
methodology for complexity control. Complexity-control is necessary
for any methodology that is applicable to problems of nontrivial
complexity.

The third attribute, support for model-continuity, distinguishes a
reactive system RSM methodology as a specification methodology,
instead of a design methodology. Specification modeling methodology
must be focused on specification model development and maintenance
instead of implementation.

[Sarkar95] and Sarkar under additional readings.

Copyright 1995-1999 SCRA 42

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Attributes of a Reactive
System SMM

reactive systems specification modeling methodology

conceptual implementation

independence

specification language complexity control model continuity

analysis
techniques

representational
complexity

developmental
complexity

model
integration

implementation
assistance

models

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 43

There are two dimensions of the language attribute. The conceptual-
models dimension determines the available conceptual models for
describing reactive systems. The analysis-technique dimension
determines the kind of support available for checking the specification
consistency.

There are two dimensions along which complexity control should be
supported: representational complexity and developmental complexity.
Representational complexity deals with the clarity of the developed
specification, whereas developmental complexity provides support for
developing the specification in an organized and productive manner.

Model-continuity has three dimensions: integrated modeling,
implementation independence, and implementation assistance. Support
along these three dimensions ensures that usefulness of the
specification model is maintained beyond the specification modeling
stage of a design.

A reactive system SMM must strongly support the attributes stated.
Each of these attributes is described in the following sections. The
effectiveness of the methodology can be identified by evaluating the
strengths of each of these components.

The following slides will discuss each of these attributes and their
dimensions in greater detail.

Copyright 1995-1999 SCRA 43

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Attribute 1-Specification
Language

reactive systems specification modeling methodology

implementation

conceptual implementation

independence

specification language complexity control model continuity

analysis
techniques

representational
complexity

developmental
complexity

model
integration assistance

models

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 44

There are three views that are complementary to each other: activity,
behavior, and entity view. In the activity view, the specification
represents the activities that occur in the system. Activity in a system is
closely tied to the flow of data in a system. In the behavior view, the
specification represents the ordering and interaction of these activities.
Behavior in a system is often represented in terms of states and
transitions, or the flow of control. Finally, in the entity view, the entities
in the system, are identified. These entities represent the system
components that are responsible for the activities and behavior in the
system. Entities in a system are often represented as the data-items
present in a system.

Copyright 1995-1999 SCRA 44

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language-Conceptual Models
System Views

● Three complementary views
❍ Activity

❑ Specification represents the activities that occur in the
system

❑ Activity in a system closely tied to the flow of data in a
system

❍ Behavior
❑ Specification represents ordering and interaction of

activities
❑ Often represented in terms of states and transitions, or

the flow of control
❍ Entity view

❑ Entities in the system, are identified
❑ Entities represent the system components that are

responsible for the activities and behavior in the system
❑ Often represented as the data-items present in a system

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 45

There are two primary styles of specification: model-oriented and
property-oriented. In a model-oriented specification, the system is
specified in terms of a familiar structure such as state-machines,
processes, or set theory. In a property oriented specification, the
system is viewed as a black-box, and the properties of the system are
specified in terms of the directly observable behavior at the interface of
the black-box. Generally speaking, model-oriented specifications are
considered easier to understand than their property-oriented
counterparts. On the other hand, property-oriented specifications are
considered less implementation dependent since no assumption is
made about the internal structure or contents of the system.

Copyright 1995-1999 SCRA 45

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language-Conceptual Models
Specification Style

● Two primary styles of specification
❍ Model-oriented

❑ System is specified in terms of state-machines,
processes, or set theory

❍ Property-oriented
❑ System is viewed as a black-box
❑ Properties of the system specified in terms of the directly

observable behavior at the interface
❑ No assumption is made about the internal structure or

contents of the system.

● Model-oriented specifications considered easier to
understand than property-oriented specifications

● Property-oriented specifications considered less
implementation dependent than model-oriented
specifications

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 46

Reactive systems generally consist of concurrent behaviors that
cooperate with each other to achieve the desired functionality.
Concurrency is further characterized by the ability to express
communication and synchronization among concurrent behaviors.

Copyright 1995-1999 SCRA 46

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language-Conceptual Models
Concurrency

● Concurrent behaviors cooperate with each other
to achieve the desired functionality

● Concurrency is further characterized by the
ability to express communication and
synchronization among concurrent behaviors.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 47

Communication between concurrently acting portions of a system is
usually conceptualized in terms of shared-memory or message-passing
models. In the shared-memory model, a shared medium is used to
communicate information. The communication is initiated by the sender
process writing into a shared location, where it is available immediately
for all receiver processes to read. In the message-passing model, a
virtual channel is used, with "send" and "receive" primitives used for
data transfer across that channel. Both shared-memory and message-
passing models are interchangeable: each model can be expressed in
terms of the other model.

Copyright 1995-1999 SCRA 47

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
 Language-Conceptual Models

Communication Among
Concurrent Behaviors

● Information exchange usually conceptualized in
terms of

❍ Shared-memory models
❍ Message-passing models

● Both shared-memory and message-passing
models are interchangeable

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 48

In addition to exchanging of data, the concurrent components of a
system need to be synchronized with one another. Such
synchronization is needed since the concurrent components often need
to coordinate their activities, and have to wait for other components to
reach certain states or generate certain data or events. Synchronization
may be achieved using control constructs or communication
techniques. Examples of control constructs are fork-join primitives,
initialization techniques, barrier synchronization etc. Examples of using
communication techniques for synchronization are global-event
broadcasting, message passing, global status detection etc.

Copyright 1995-1999 SCRA 48

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
 Language-Conceptual Models

Synchronization Among
Concurrent Behaviors

● Synchronization needed to
❍ Coordinate the activities of the components
❍ Permit each component to wait for other components to

reach certain states or generate certain data or events

● Synchronization may be achieved using
❍ Control constructs
❍ Communication techniques

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 49

In addition to communication and synchronization, a specification
language often supports expression of nondeterminism among
concurrent behaviors . We consider nondeterminism an attribute for
complexity control rather than a reactive system characteristic, since it
allows the specifier to focus on the allowable alternative behaviors
without committing to any specific choice. This choice is determined at
a later stage depending upon the implementation.

Copyright 1995-1999 SCRA 49

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
 Language-Conceptual Models

Nondeterminism Among
Concurrent Behaviors

● Nondeterminism is an attribute for complexity
control

● Nondeterminism allows the specifier to:
❍ Focus on allowable alternative behaviors
❍ Not commit to any specific alternative

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 50

Timing constraints are an important part of any reactive system
behavior and can be specified either directly or indirectly. Timing
constraints can be specified directly as inter-event delays, data rates, or
execution time constraints for executing behaviors. Supporting temporal
logic can be seen as a direct specification technique. Indirect
specification of timing constraints occurs when the actual constraint is
implied through a collection of specification language constructs. This
approach is followed in Statecharts where timing constraints are
specified by a combination of states, transitions, and time-outs.

Copyright 1995-1999 SCRA 50

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language-Conceptual Models
Timing Constraints

● Direct specification of timing constraints
❍ Inter-event delays
❍ Data rates
❍ Execution time constraints for executing behaviors
❍ Temporal logic

● Indirect specification of timing constraints
❍ Implied through a collection of specification language

constructs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 51

Reactive system behavior is often specified in terms of their time metric
(e.g. wait for 5 minutes to warm up electromechanical equipment).
Consideration of time in a separately modeled entity increases the ease
with which the specifier can specify such timing behavior, instead of
referring to time indirectly.

Copyright 1995-1999 SCRA 51

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language-Conceptual Models
Modeling Time

● Reactive system behavior often specified in
terms of a time metric

● Time is considered in a separately modeled entity
rather than referred to indirectly, in order to
increase the ease of specifying timing behavior

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 52

Certain events may require instantaneous response from the system.
This requires the system to typically terminate the current mode of
operation and transition into a new mode. In some cases, the system is
required to resume in the original state at which the interrupt occurred.
Interrupt handling is one such case.

Exception handling can be provided through explicit specification
language constructs. Examples are text-oriented exception handling
mechanisms in Ada programming language or graphics-oriented
mechanisms such as reactive transitions and history operators in
Statecharts.

Copyright 1995-1999 SCRA 52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language-Conceptual Models
Exception Handling

● Exception handling needed when certain events
require instantaneous response from the system

● Exception handling can be provided through
explicit specification language constructs

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 53

Since the reactive system is expected to be in continual interaction with
its environment, it is important to be able to characterize the
environment. Since the environment itself is reactive in nature, one may
choose to model it using the same specification language. The
operational environment of a reactive system can therefore be specified
as an explicit model or as a set of properties. When specified as a
separate model, the environment is seen as a separate entity that
interacts with the model of the system under design. For property
oriented characterization, the system's operational environment can be
specified via hints about various operational conditions such as inter-
arrival of events (expected frequencies, timings), expected work-loads,
etc.

Copyright 1995-1999 SCRA 53

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language-Conceptual Models
Environment Characterization

● The reactive system expected to be in continual
interaction with its environment

● The environment itself is reactive in nature
● A reactive system's operational environment can

be specified as
❍ An explicit model
❍ A set of properties providing hints about various

operational conditions, such as sleep, active, reset,
modes, etc.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 54

In addition to providing conceptual models for specifying the
functionality of the system, a specification methodology for a reactive
system should also provide support for expressing nonfunctional
characteristics such as maintainability, safety, availability etc.
Mechanisms to represent hints, properties, or external constraints that a
system should follow should be provided.

Copyright 1995-1999 SCRA 54

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language-Conceptual Models
Nonfunctional Characterization

● Support for expression of nonfunctional
characteristics is required, e.g.

❍ Reliability
❍ Availability
❍ Maintainability
❍ Safety
❍ Power
❍ Size
❍ Footprint

● Mechanisms must be provided to represent
❍ Hints
❍ Properties
❍ External constraints

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 55

We examine whether the language itself has a sound mathematical
basis. Having a sound mathematical basis for the specification
language enables one to automatically check for inconsistencies in the
specification itself. Given the advances in formal techniques and the
ever increasing number of safety critical reactive systems being
designed, we consider that support for formal analysis of the
specification is important. We examine if the specification language has
a strong mathematical formalism as its basis. A number of formalisms
are available: Petri-nets, finite state machines, state diagram, temporal
logic, process algebras, abstract data types, etc. A specification
methodology may offer several of these formalisms as a choice for
analyzing its specification models. In this module, we observe whether
the specification-modeling methodology chose a language which has a
formal basis.

Copyright 1995-1999 SCRA 55

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language
Analysis Techniques

● Based on sound mathematical formalisms
● Enables automatic checking for

specification inconsistencies
● Formalisms available

❍ Petri-nets
❍ Finite state machines
❍ State diagram
❍ Temporal logic
❍ Process algebras
❍ Abstract data types

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 56

Given the typical nontrivial complexity of the systems being designed
today, executability of the specification is a big help in improving the
comprehensibility and robustness of the specification. Executability also
offers the ability to experiment with preliminary prototypes of the system
under design which is useful to validate the specification against the
requirements of the system.

Copyright 1995-1999 SCRA 56

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Language
Analysis Techniques (Cont.)

● Language Support for model executability
❍ Motivation- nontrivial complexity of the systems being

designed today
❍ Executability of the specification

❑ Helps to improve the comprehensibility and
robustness of the specification

❑ Offers the ability to experiment with preliminary
prototypes which are useful to validate the
specification against the requirements of the
system

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 57

There are two dimensions of the language attribute. The conceptual
models dimension determines the available conceptual models for
describing reactive systems. The analysis-technique dimension
determines the kind of support available for checking the specification
consistency.

There are two dimensions along which complexity control should be
supported: representational complexity and developmental complexity.
Representational complexity deals with the clarity of the developed
specification, whereas developmental complexity provides support for
developing the specification in an organized and productive manner.

Model continuity has three dimensions: integrated modeling,
implementation independence, and implementation assistance. Support
along these three dimensions ensures that usefulness of the
specification model is maintained beyond the specification modeling
stage of a design.

A reactive system SMM must strongly support the attributes stated.
Each of these attributes is described in the following sections. The
effectiveness of the methodology can be identified by evaluating the
strengths of each of these components.

The following slides will discuss each of these attributes and their
dimensions in greater detail.

Copyright 1995-1999 SCRA 57

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Attribute 2- Model Continuity

reactive systems specification modeling methodology

implementation

conceptual implementation

independence

specification language complexity control model continuity

analysis
techniques

representational

complexity
developmental

complexity

model
integration assistance

models

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 58

Model continuity can be defined as the maintenance of relationships
between models created in different model spaces such that the models
can interact in a controlled manner and may be utilized concurrently
throughout the design process. The problem of maintaining model
continuity for a specification can be divided into the following three
subproblems: model integration, implementation assistance, and
implementation independence. Model integration addresses the
challenge of making the specification model compatible with models
developed during the design and implementation stages.
Implementation assistance increases the usefulness of the specification
by helping during the design and implementation stages.
Implementation independence increases the useful life of the
specification by not committing it to a particular design/implementation
choice, thus avoiding restriction of creativity during the design process.

Copyright 1995-1999 SCRA 58

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Continuity

● The maintenance of relationships between
models created in different model spaces

❍ The models must be able to interact in a controlled
manner

❍ The models may be utilized concurrently throughout the
design process

● Maintaining model continuity for a specification
can be divided into three sub-problems:

❍ Model integration
❍ Implementation assistance
❍ Implementation independence

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 59

Copyright 1995-1999 SCRA 59

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Features and Benefits

● Supports transcending levels of abstractions for
testbench and functional representations

● Functional model evolves from functional
requirement, through specification,
implementation, detailed design, to fabrication

● Testbench evolves from executable specification,
through implementation to fabrication to provide
verification and validation at each level

Design continuity allows a top-down design process, with increasing
refinement and verification capability at each step.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 60

By integrated modeling, we imply that the flow of information occurs in
both directions across the model boundaries. This flow of information
can occur during either integrated simulation or integrated analysis of
both models. A methodology must support bidirectional information flow
across model boundaries.

Copyright 1995-1999 SCRA 60

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Model Continuity
Model Integration

● The flow of information must occur in both
directions across model boundaries

● A methodology must support bidirectional
information flow across model boundaries

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 61

The conformance attribute identifies how a methodology addresses the
first subproblem of model continuity, namely: checking conformance
among models developed. The methodology should provide either a
simulation-based support or an analysis-based support for checking
conformance between the models (or both).

We categorize conformance checking along two dimensions: vertical
and horizontal. Vertical-conformance checking involves validating
conformance between models representing different levels of
abstraction. Horizontal-conformance checking involves validating
conformance between models representing different modeling domains.
To be effective, the methodology must provide support for checking
conformance along both dimensions.

For example, one should be able to check the conformance between an
algorithmic-level model and a logic-level of a system. This is an
example of vertical-conformance checking. As an example of
horizontal-conformance checking, one should also be able to check the
conformance between a functional level behavioral model involving
register-transfers and state-sequencers and a structural model involving
ALUs, MUXs, registers etc.

Copyright 1995-1999 SCRA 61

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Continuity
Model Integration

Conformance

● The methodology should provide support for
checking conformance between the models at
various levels of abstraction or in different
domains

● Conformance checking may be viewed along two
dimensions:

❍ Vertical - involves validating conformance between
models representing different levels of abstraction

❍ Horizontal - involves validating conformance between
models representing different modeling domains

● The need may exist for checking both
horizontally and vertically

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 62

The interaction attribute identifies how a methodology addresses the
second and third subproblems of model continuity, namely: maintaining
visibility of the specification model during the implementation phase and
incorporating relevant details obtained from the implementation phase
back into the specification model. Supporting such a high degree of
interaction and information flow among these models requires
integrated modeling across different levels of abstraction and modeling
domains.

Analogous to conformance checking, we categorize model interaction
along two dimensions: vertical and horizontal. Vertical interaction
occurs between models belonging to different levels of abstractions,
whereas horizontal interaction occurs between models belonging to
different domains of modeling. A methodology must provide
mechanisms that support both vertical and horizontal model
interactions.

Copyright 1995-1999 SCRA 62

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Continuity
Model Integration
Model Interaction

● Requirements of performing integrated modeling
across different levels of abstraction and
modeling domains:

❍ A high degree of model interaction
❍ Information flow among the models

● Model interaction involves identification of how a
methodology addresses the following:

❍ Implementation assistance
❑ Maintaining visibility of the specification model

during the implementation phase
❍ Implementation independence

❑ Incorporating relevant details obtained from the
implementation phase back into the specification model

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 63

Complexity control is primarily achieved by supporting a hierarchy of
representations. Support of hierarchy significantly reduces design time,
as the designer is allowed to provide less detail in creating the original
representation. For adding or synthesizing further information, he or she
can then use automated or semi-automated design aids.

Copyright 1995-1999 SCRA 63

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Continuity
Model Integration

Complexity Control

● Required: a means to control complexity during
the development and analysis of models
throughout the design stages

● Support for this attribute is necessary for
effective implementation of the conformance and
interaction attributes

● Complexity control achieved by supporting a
hierarchy of representations

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 64

In addition to the addition or the synthesis of details, a hierarchical
approach allows the designer to quickly identify what portion of the
design should be expanded upon, without necessarily expanding the
rest of the system. This incremental-expansion approach is of
tremendous advantage when the expanded representation is radically
different from the original representation. By enabling incremental
modifications, a hierarchical representation improves designer
comprehension of the effect of change on the original model.

Similar to conformance checking and model interaction, model
complexity can also be divided into two dimensions: vertical and
horizontal. Abstraction of a lower-level model into a higher-level is an
example of managing vertical complexity. Combination of models from
different modeling domains into a unified representation is an example
of managing horizontal complexity. The hierarchical representation
must possess capability to manage both horizontal and vertical
complexity.

Copyright 1995-1999 SCRA 64

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Continuity
Model Integration
Complexity (Cont.)

● A hierarchical approach allows incremental
expansion of design without expanding the rest
of the system

● Model complexity can be divided into two
dimensions:

❍ Vertical - abstraction of a lower-level model into a
higher-level is an example of managing vertical
complexity

❍ Horizontal - combining models from different modeling
domains an example of managing horizontal complexity

● The hierarchical representation must possess
capability to manage both horizontal and vertical
complexity

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 65

The task of developing an implementation from a specification is
reactive. As a result, there has been a significant research in the
automated synthesis of implementations from specifications. There are
two prime motivations for implementation assistance: reduction of
designer effort and increase in implementation accuracy. By supporting
automated/semi-automated techniques for the synthesis of a
design/implementation, there is a significant reduction in required
designer effort. Also, an automated technique avoids human errors that
can be introduced otherwise during the manual design process.
Synthesis of efficient implementations from system-level specifications
is still immature. Another limitation of current synthesis techniques is
that they are generally based on the structure of the specification, thus
limiting design space and therefore producing less optimal solutions.

Copyright 1995-1999 SCRA 65

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Model Continuity
Implementation Assistance

● Two prime motivations for implementation
assistance:

❍ Reduction of designer effort
❍ Increase in implementation accuracy

● Synthesis of efficient implementations from
system-level specifications

❍ Generally based on the structure of the specification
❍ Design space is limited

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 66

A specification has an implementation bias if it specifies externally
unobservable properties of the system it specifies. A specification is
therefore considered implementation independent if it lacks
implementation bias. While evaluating a specification methodology, we
examine how well it supports implementation independence. There are
two key advantages of an implementation independent specification.
First, it allows the specifier to focus on describing the behavior of the
system, rather than how it is implemented. Second, it avoids placing
unnecessary restrictions on designer freedom.

Copyright 1995-1999 SCRA 66

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Model Continuity
Implementation Independence

● A specification is considered implementation
independent if it lacks implementation bias

● Two key advantages of an implementation
independent specification

❍ The specifier can focus on describing the behavior of
the system, rather than how it is implemented

❍ Unnecessary restrictions are not placed on designer
freedom

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 67

There are two dimensions of the language attribute. The conceptual-
models dimension determines the available conceptual models for
describing reactive systems. The analysis-technique dimension
determines the kind of support available for checking the specification
consistency.

There are two dimensions along which complexity control should be
supported: representational complexity and developmental complexity.
Representational complexity deals with the clarity of the developed
specification, whereas developmental complexity provides support for
developing the specification in an organized and productive manner.

Model-continuity has three dimensions: integrated modeling,
implementation independence, and implementation assistance. Support
along these three dimensions ensures that usefulness of the
specification model is maintained beyond the specification modeling
stage of a design.

A reactive system SMM must strongly support the attributes stated.
Each of these attributes is described in the following sections. The
effectiveness of the methodology can be identified by evaluating the
strengths of each of these components.

The following slides will discuss each of these attributes and their
dimensions in greater detail.

Copyright 1995-1999 SCRA 67

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Attribute 3: Complexity Control

reactive systems specification modeling methodology

implementation

conceptual implementation

independence

specification language complexity control model continuity

analysis
techniques

representational

complexity
developmental

complexity

model
integration assistance

models

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 68

Support for complexity control in a specification-modeling methodology
can exist along two dimensions. The first dimension is the
representational complexity, which makes the specification itself
concise, understandable, and decomposable into simpler components.
The second dimension is developmental complexity, which supports the
development of the specification in an incremental, step-wise refined
manner.

Support for representational complexity is usually dependent on the
specification language chosen. We separate the complexity control
aspect of a specification language from its support for expressing
reactive system characteristics.

One of the main requirements of a design methodology is to be able to
control the complexity of the design process. Support for complexity
control in a specification-modeling methodology can exist along two
dimensions. The first dimension is the representational complexity,
which makes the specification itself concise, understandable, and
decomposable into simpler components. The second dimension is
developmental complexity, which supports the development of the
specification in an incremental, step-wise refined manner.

Copyright 1995-1999 SCRA 68

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Complexity Control

● Complexity control exists along two dimensions
❍ Representational complexity control makes the

specification concise, understandable and
decomposable

❍ Developmental complexity control supports incremental
development and step-wise refinement

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 69

We will discuss each of the elements of the two dimensions of
complexity control in the following charts.

Copyright 1995-1999 SCRA 69

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Complexity Control
Dimensions

● Representational complexity
❍ Hierarchy
❍ Orthogonality
❍ Representation scheme

● Developmental complexity
❍ Nondeterminism
❍ Perfect synchrony hypothesis
❍ Developmental guidance

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 70

The notion of hierarchy is an important tool in controlling complexity.
The basic idea in hierarchy is to group similar elements together and to
create a new element that represents this group of similar elements. By
introducing the common behavior in this way, multiple levels of
abstractions can be supported.

Copyright 1995-1999 SCRA 70

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Complexity Control

Representational Complexity
Hierarchy

● An important tool in controlling complexity
● Group similar elements together to create a new

element
❍ The new element represents the group of similar

elements

● Result
❍ Introduction of common behavior
❍ Support for multiple levels of abstraction

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 71

A reactive behavior can often be decomposed into a set of orthogonal
behaviors. By supporting such decomposition in the representation,
significant improvement in clarity and understandability can be attained.

Copyright 1995-1999 SCRA 71

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Complexity Control

Representational Complexity
Orthogonality

● Decomposition of a reactive behavior into a set
of orthogonal behaviors

● Result, significant improvement in:
❍ Clarity of intent
❍ Understandability of function

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 72

The representation scheme plays an important role in the
understandability of a specification. We make the distinction between
graphical and textual representation schemes. By graphical scheme, we
imply visual formalisms where both syntactic and semantic
interpretations are assigned to graphical entities. For example,
Statecharts, Petri-nets etc. are such visual formalisms. In our opinion,
graphical representation schemes are preferable to a textual ones since
the former allow the specifier to visualize the system behavior more
effectively, especially during execution of the specification. For many
textual approaches, however, tools exist today that transform the
textual approach into a graphical approach.

Copyright 1995-1999 SCRA 72

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Complexity Control

Representational Complexity
Representation Scheme

● Plays an important role in understandability of a
specification

● Two types of representation schemes
❍ Graphical
❍ Textual

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 73

In addition to the representation of system behavior, a specification
methodology must also support the evolution of the specification model
from initial conceptualization of system requirements.

By incorporating nondeterminism in a controlled manner, the
specification can leave details to the implementation and final stages.
For example, in a typical producer-consumer type system, if requests
for both element insertions and element deletions from a buffer arrive
simultaneously, the specification may non-deterministically select either
operation to be executed first. The commitment to an actual choice in
such a scenario is deferred to later design stages. Nondeterminism thus
supports an evolutionary approach to specification development. In
addition to the incorporation of nondeterminism, a specification
methodology should also provide mechanisms to detect and resolve
nondeterminism. It is often difficult to detect nondeterminism in
specifications of reactive systems, given the reactive interrelationships
of the behaviors of the system components. If left undetected and
consequently unresolved, nondeterminism is a potential source of
ambiguity.

Copyright 1995-1999 SCRA 73

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Complexity Control

Developmental Complexity
Nondeterminism

● Nondeterminism supports an evolutionary
approach to specification development

● Details of design are avoided till later stages of
implementation

● Mechanisms to detect and resolve
nondeterminism are required

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 74

Perfect-synchrony hypothesis implies that a reactive system produces it
outputs synchronously with its inputs. In other words, the outputs are
produced instantaneously after the inputs occur. This assumption of
perfect-synchrony is borne out in many cases, especially if the inputs
change at rates slower than the system can react. For example, in a
clocked system, if the clock cycle is long enough, the system gets a
chance to stabilize its output values before the next clock event occurs.

One of the main requirements of a design methodology is to be able to
control the complexity of the design process. Support for complexity
control in a specification-modeling methodology can exist along two
dimensions. The first dimension is the representational complexity,
which makes the specification itself concise, understandable, and
decomposable into simpler components. The second dimension is
developmental complexity, which supports the development of the
specification in an incremental, step-wise refined manner.

Perfect-synchrony assumption makes the specification concise,
composable with other specifications, and in general lend the
specification to a number of elegant analysis techniques. However, the
assumption of perfect synchrony may not be valid at all levels of
abstractions especially if the reaction of the system is complicated. For
example, if the reaction is a lengthy computation, clearly assumption of
perfect synchrony will be violated, as the input may change before the
computation is completed.

Copyright 1995-1999 SCRA 74

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Complexity Control

Developmental Complexity
Perfect Synchrony Hypothesis

● Perfect-synchrony hypothesis implies that a
reactive system produces it outputs
synchronously with its inputs

● This assumption is supported in systems where
the inputs change at rates slower than the
system can react

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 75

Guidance for model development is helpful in identifying the next step in
the process of specifying a system. One may do it bottom up, where the
primitives are first identified and then combined. Another guidance is in
the form of a top-down approach, where a specification is decomposing
into smaller and more detailed components. Yet another approach is
called the middle-out approach, which combines both top-down and
bottom-up approaches.

Typically, development style is a matter of choice and not strictly
enforced. In some methodologies, however, this can be enforced.
Enforcing the style may interfere with designer creativity.

Copyright 1995-1999 SCRA 75

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Complexity Control

Developmental Complexity
Developmental Guidance

● Guidance for model development
❍ Helpful in identifying the next step in the specification

process
❑ Bottom up approach

➭ The primitives are first identified and then combined

❑ A top-down approach
➭ Decomposing a specification into smaller and more

detailed components

❑ Middle-out approach
➭ Combines both top-down and bottom-up approaches

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 76

We now introduce several proposed methodologies in recent literature
and provide a relative evaluation of their suitability in a RSM
methodology.

Copyright 1995-1999 SCRA 76

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● The Motivation for RSM
● Requirements Engineering and Requirements Analysis
● Specification Modeling Methodology (SMM)

● SMM Survey

❍ Survey of ten representative methodologies

● CASE Tools
● RASSP Requirement Capture and Test Planning
● Summary

RSM Outline

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 77

Copyright 1995-1999 SCRA 77

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Methodology Survey

● Ten representative methodologies chosen:
❍ Ward and Mellor's Methodology (SDRTS or RTSA)
❍ Jackson System Development (JSD)
❍ Software Requirements Engineering Methodology (SREM)
❍ Object Oriented Analysis (OOA)
❍ Specification and Design Language (SDL)
❍ Embedded Computer Systems (ECS)
❍ Vienna Development Method (VDM)
❍ Language of Temporal Ordering Specification (LOTOS)
❍ Electronic Systems Design Methodology (MCSE)
❍ Integrated Specification and Performance Modeling

Environment (ISPME)

Ten methodologies selected are shown above. References contain
details about each of the methodologies, above and beyond what could
be included within this module.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 78

Copyright 1995-1999 SCRA 78

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Review of Evaluative
Parameters

● Specification Language
❍ Conceptual models
❍ Analysis techniques

● Complexity Control
❍ Representational complexity
❍ Developmental complexity

● Model Continuity
❍ Model integration
❍ Implementation Independence
❍ Implementation Assistance

We review the main metrics and parameters that will assist us in
evaluating the several proposed RSM methodologies.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 79

Copyright 1995-1999 SCRA 79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 1. Ward and Mellor's
Methodology (SDRTS or RTSA)

● SDRTS: Structured Development for Real-Time
Systems

● RTSA: Real-Time Structured Analysis
● Reason for development: Specification and

design of real-time applications

System Views

Data Flow Diagrams

Used to model activities
 of the system

Control Flow Diagrams

Used to express the
sequencing of the
system activities

Ward and Mellor's methodology called Structured Development for
Real-Time Systems (SDRTS), was developed for the specification and
design of real-time applications. Since the methodology is an extension
of the Structured Analysis methodology for real-time systems, it is also
called Real-Time Structured Analysis (RTSA).

There are two system-views adopted by RTSA: Data-Flow Diagrams
(DFD) and Control-Flow Diagrams (CFD). DFD is used to model the
activities in the system, whereas the CFD is used to express the
sequencing of these activities. The CFD itself is defined in terms of a
finite-state model such as FSM or decision table.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 80

Copyright 1995-1999 SCRA 80

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Ward and Mellor's
Methodology (Cont.)

Methodology basis: Structured analysis to express
system requirements graphically, concisely, and
with minimal redundancy

System Spec.

 Environment Model

• Operational context
• Stimulus

 System Model
• System behavior
• Development through
 successive iterations

The methodology is based on structured analysis, one of the earlier
approaches to express system requirements graphically, concisely, and
minimally redundant manner. To develop a specification of the system,
two models are created: the environment model and the system model.
The environment model describes the operational context in which the
system operates and the events to which the system reacts. The
system model, which expresses the system's behavior, is then
developed through successive refinements.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 81

Copyright 1995-1999 SCRA 81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Ward and Mellor's (Cont.)

● Language aspect not supported well
❍ No direct support for specifying timing constraints or

for handling exceptions

● Lack of Formal Method support
❍ Less useful in the specification and design of critical

systems

● Lack of orthogonality
❍ Complicated systems more difficult to represent

● Model continuity attribute not well supported

The language attribute is not supported well, since several aspects of
reactive system behavior cannot be modeled conveniently. For
example, there is no direct support for specifying timing constraints or
handling exceptions elegantly. A lack of any formal method support
makes the methodology less useful in specification and design of critical
systems. Lack of orthogonality makes it harder to conveniently
represent and understand the behavior of complicated systems. The
model-continuity attribute is also not well supported.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 82

Copyright 1995-1999 SCRA 82

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 2. Jackson System
Development (JSD)

● Originally developed for program design
● Considered suitable for design of information

systems and real-time systems
● Covers specification, design and implementation

stages
● Supports complexity control in development and

representation

Jackson System Development methodology, originally developed for
program design, is considered suitable for the design of information
systems and real-time systems. In its current stage, the methodology
covers specification, design and implementation stages.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 83

Copyright 1995-1999 SCRA 83

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
JSD (Cont.)

● Basis: "Structure of a system to be designed can
be determined from the structure and evolution
of the data it should manage"

● Representation of system requirements as
Jackson's diagram for entities

● System specification diagram- a network of
processes that model the real world

● Explicit time modeling by introducing delays

The methodology is based on entity modeling. The system
requirements are expressed as Jackson's diagram for entities. The
diagram presents a time-ordered specification of the actions performed
on or by an entity. A system specification diagram is also created,
which is a network of processes that model the real world. A process
communicates with others by transmitting data and state information. It
is also possible to model time explicitly by introducing explicit delays.

The basic modeling philosophy is that the structure of a system to be
designed can be determined from the structure and evolution of data it
must manage.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 84

Copyright 1995-1999 SCRA 84

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
JSD (Cont.)

Two phases

 Specification
•Environment described
in terms of entities and
actions
•Actions are ordered by
the expected sequence of
events
•Actions and entities
represented as a process
network using system
specification diagrams

 Design
•Identify processes needed
to execute the actions of
each entity
•Thus expand process
network
•Map completed process
network to a set of
hardware/software
components

The methodology consists of two phases: specification and design. In
the specification phase, the environment is described in terms of
entities (real world objects the system needs to use) and actions (real
world events that affect the entities). These actions are ordered by their
expected sequence of occurrences and represented with Jackson
diagrams. The actions and entities are then represented as a process
network using system specification diagrams. The connection between
these processes and the real world are defined. The creation of the
initial process network can be seen as the end of specification phase.

During the design phase that follows the specification phase, the
process network is successively elaborated by identifying further
processes that are needed to execute the actions associated with the
entities described in the Jackson Structure Diagram. The completed
process network represents the final design which is then mapped to a
set of hardware/software components.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 85

Copyright 1995-1999 SCRA 85

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
JSD (Cont.)

● Timing considerations come very late, nearly
after the design phase

● Specification is implementation-dependent, thus
reducing designer freedom

● Lacks support for expressing reactive system
characteristics such as exception handling

● Does not support formal analysis

The JSD methodology supports model continuity by carrying the
specification through further well defined design steps. However, timing
considerations come very late, almost after the design phase. The
specification is implementation dependent, since it is closely tied to an
implementation, thereby reducing designer freedom. The methodology
lacks support for expressing several reactive-system characteristics
such as exception handling. Neither does it support any formal analysis
or well defined execution semantics.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 86

Copyright 1995-1999 SCRA 86

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
3. Software Requirements
Engineering Methodology

(SREM)
● Developed for data processing applications of

Specifications
● Makes use of structured finite-state automata

called requirement nets (r-nets)
● Express the evolution of outputs and final state

starting from inputs and current state, using r-
nets. I/O - message sets

● Behavior of a reactive system well-represented
by this methodology

● Performance and timing constraints can be
added

● Supports the attribute of model continuity

Software Requirements Engineering Methodology (SREM) was
developed for creation, checking and validation of specifications of real-
time and distributed applications for data processing.

The SREM method is useful for specification making use of structured
finite-state automata called requirement nets (r-nets). R-nets express
the evolution of outputs and final state starting from inputs and current
state. Both inputs and outputs are structured as sets of messages,
communicated by an interface connected to the environment.

The behavior of a reactive system is well-represented by this
methodology. The addition of performance specifications and timing
constraints are also beneficial.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 87

Copyright 1995-1999 SCRA 87

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SREM (Cont.)

● Specification development steps in SREM:
● Specification of interface between the system

and the environment
● Data processing requirements
● Produce initial description using r-nets
● Add functional details, timing and performance

constraints
● Perform validation and coherency tests on the

specification
● Conduct final feasibility test

To develop a specification, the interface between the system and the
environment and the data-processing requirements are specified. The
initial description is produced using r-nets. Functional details, timing and
performance constraints are then added. Next, validation and
coherency checks are performed on the specification. A final feasibility
study is conducted to guarantee that the specification will result in a
feasible solution.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 88

Copyright 1995-1999 SCRA 88

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SREM (Cont.)

● Does not support hierarchical decomposition of
the specification

❍ Task of specification requires too much detail

● Specification and implementation are tied too
close to one another, thus limiting model
continuity support

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 89

Copyright 1995-1999 SCRA 89

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 4. Object Oriented Analysis
(OOA)

● Based on object-oriented paradigm of modeling
● Classes and objects used to express the problem

domain
● Extension of data or information modeling

approaches, and concerns data transformations
● Complexity control attribute well-supported

OOA stands for Object Oriented Analysis, and is based on the object-
oriented paradigm of modeling. The world is modeled in terms of
classes and objects that are suitable to express the problem domain.
Different schemes have been suggested for OOA [CY90, Pnu86,
SM88], they differ mostly in terms of notations and heuristics.

OOA can be seen as an extensions of data or information modeling
approaches. The latter approaches focus solely on data. In addition to
modeling data, OOA also concerns data transformations.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 90

Copyright 1995-1999 SCRA 90

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
OOA (Cont.)

● Major steps in OOA are:
❍ Identify objects, their attributes and the structure of

their interrelationships
❍ Entire specification developed as a hierarchy of

modules
❍ Refinement of modules take place vertically and

horizontally

The major steps in OOA consist of identifying objects, their attributes,
and the structure of their interrelationships. The entire specification is
developed as a hierarchy of modules, where each module is
successively refined both horizontally and vertically into further
modules. The vertical refinement adds further properties to a module,
whereas the horizontal refinement identifies a set of loosely-coupled,
strongly-cohesive interacting sub-modules that define the behavior of
the original module. The implementation of these modules is, however,
not considered at the specification stage.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 91

Copyright 1995-1999 SCRA 91

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
OOA (Cont.)

● Must be combined with languages that support
expression of reactive system characteristics

● Languages must have both formal and
operational semantics

To exploit the strength of OOA, it should be combined with languages
that support expression of reactive system characteristics and have
both formal and operational semantics. For application to the domain of
reactive systems, we find approaches that combine languages suitable
for expressing reactive systems with object-oriented design principles.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 92

Copyright 1995-1999 SCRA 92

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 5. Specification and
Description Language (SDL)

● Used for specifying and describing many types
of systems

● Standardized, semiformal
● Can be used graphically or textually
● Supports perfect synchrony hypothesis and has

an associated formal semantics

Specification and Description Language is a design methodology that
has been standardized by CCITT, and is used for specifying and
describing many types of systems. SDL is standardized, semiformal,
and can be used both as a graphical or a textual language. SDL is
primarily used for telecommunication systems .

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 93

Copyright 1995-1999 SCRA 93

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SDL (Cont.)

 System Views

Structural

(recursive decompo-
sition of hierarchical

blocks)

Structural

(recursive decompo-
sition of hierarchical

blocks)

Behavioral

(specifies reactive
nature of system)

Behavioral

(specifies reactive
nature of system)

Data

(modeled as an
abstract data type)

Data

(modeled as an
abstract data type)

SDL provides three views of a system: structural, behavioral and data.
It is the behavioral view of the system that is used to specify the
system's reactive nature. The structural model is generated
hierarchically, starting from a block that is recursively decomposed into
a number of blocks connected together by channels. The data is
modeled as an Abstract Data Type, where one describes the available
data-operations and data-values but not how they are implemented.

The system is modeled as a number of interconnected abstract
machines. The machines communicate asynchronously.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 94

Copyright 1995-1999 SCRA 94

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SDL (Cont.)

Environment

System
Block

ChannelsChannels

Topmost level

Behavioral Model

Process 2 Process 3 ...Process 1
Signals Signals

At the topmost level, the system block has channels that allow
interfacing with the system's environment. The behavioral model is a
set of processes that are extensions of deterministic finite-state
machines. The interaction between these processes is done via signals.
These processes can be dynamically created and collectively represent
the system behavior. Temporal ordering between the signals used in
inter-process communication is specified using message-sequence
charts, which are useful for debugging the specification.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 95

Copyright 1995-1999 SCRA 95

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SDL (Cont.)

● Does not support all reactive system
characteristics

❍ Exception handling not directly supported
❍ Inputs are processed only when receiving process is

ready to process them

● Model continuity not well-supported

SDL supports the perfect-synchrony hypothesis and has an associated
formal semantics. However, it does not support all the reactive system
characteristics. For example, exception handling is not directly
supported since the inputs are typically consumed by a process only
when the receiving process is ready to process the input. Thus, if an
exception condition is communicated as an input to the process, it may
not be acted upon immediately. Rather, the exception will be handled
when the receiving process is ready to process the arriving exception.
The complexity-control attribute is well supported. Model-continuity is
not well supported in the methodology.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 96

Copyright 1995-1999 SCRA 96

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 6. Embedded Computer
Systems (ECS)

● Based on the three views of system modeling:
activities, control and implementation

● Supports both behavioral and functional
decomposition of the system's specification

● Used by the CAD Tool Express VHDL that utilizes
the visual formalism of Statecharts

● Conceptual model of concurrency, hierarchy and
reactive transitions supported by Statecharts

● Supports both language and complexity control
attributes

The Embedded Computer Systems (ECS) methodology is based on the
three views of system modeling: activities, control, and implementation.
Express-VHDL is used as a computer-aided design tool for this
methodology.

ECS supports both behavioral and functional decomposition of the
system's specification. The system behavior is expressed using the
visual formalism of Statecharts, an extension of FSM that significantly
reduces the representational state-space explosion problem
encountered by ordinary FSMs. This reduction is achieved due to the
conceptual models of concurrency, hierarchy, and reactive transitions
supported by Statecharts. A history operator, useful for expressing
interrupt-handling, is also provided to significantly reduce the
representational complexity.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 97

Copyright 1995-1999 SCRA 97

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ECS (Cont.)

● System is functionally decomposed into a
number of subsystems using activity charts

● Viewed as a collection of interconnected
functions organized in a hierarchy

● Top-down and iterative analysis used to
gradually express all the requirements of the
system

The system is functionally decomposed using activity charts, and is
viewed as a collection of interconnected functions (activities) organized
in a hierarchy. The activity charts visually depict the flow of information
in the system, with the control of flow being represented by the
associated Statecharts model.

To develop the specification, the methodology recommends a top-down
and iterative analysis that gradually expresses all the requirements of
the system. Conceptually, a system is decomposed into a number of
subsystems, each carrying out a functionality, and a controller that
coordinates the activities between these subsystems. The behavior of
each system is represented by a Statecharts model. Each state in the
Statecharts model can be refined further into AND and OR states. The
default-entry states, needed synchronizations, associated timing
constraints, etc. are specified next.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 98

Copyright 1995-1999 SCRA 98

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 7. Vienna Development Method
(VDM)

● Abstract model-oriented formal specification and
design method

● Based on discrete mathematics
● Specification is written as a specification of an

abstract data type which is defined by a class of
objects and a set of operations acting on these
objects

● Supports model continuity very well

VDM (Vienna Development Method) is an abstract model-oriented
formal specification and design method based on discrete mathematics.
The formal specification language of VDM is known as META-IV.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 99

Copyright 1995-1999 SCRA 99

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VDM (Cont.)

● Specification in that of an of an abstract data
type

❍ A program is an abstract data type specified in terms of
variables and the operations allowed on them

● The design and specification processes are
closely tied

● Specification methodology:
❍ Use META-IV to develop a formal specification
❍ Check specification for consistency using formal

analysis
❍ Refine and further decompose specification to get a

realization
❍ Check realization against specification for conformance
❍ Do iterative step-wise refinement until realization and

implementation coincide

The specification is written as a specification of an abstract data type.
The abstract data type is defined by a class of objects and a set of
operations to act upon these objects while preserving their essential
properties. A program is itself specified as an abstract data type,
defined by a collection of variables and the operations allowed on these
variables. The variables make the notion of state explicit, as opposed to
property-based methods.

The specification development process is closely tied to the design
process. The steps of the specification methodology is as follows. A
formal specification is developed using the META-IV language. Once
the specification is checked via formal analysis and found to be
consistent, the specification is refined and further decomposed into
what is called a realization. The realization is checked against the
original specification for conformance. The specification is iteratively
and step-wise refined until the realization is effectively a complete
implementation.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 100

Copyright 1995-1999 SCRA 100

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
8. Language of Temporal
Ordering Specification

(LOTOS)

● Internationally standardized formal description
technique

● Originally developed for formal specification of
OSI protocols and services

● Based on process algebra and abstract data
types

❍ Process algebra: description of process behaviors and
interactions

❍ Abstract data type: deals with description of data
structures and value expressions

● Unambiguous precise and implementation
independent

LOTOS (Language Of Temporal Ordering Specification) is an
internationally standardized formal description technique, originally
developed for the formal specification of OSI (Open Systems
International) protocols and services.

The specification is based on two approaches: process algebras and
abstract data types. The process-algebra approach is concerned with
the description of process behaviors and interactions and is based on
Milner's Calculus of Communicating System and Hoare's work on
Communicating Sequential Processes. The abstract data type approach
is based on ACT-ONE which deals with the description of data
structures and value expressions. The resulting specifications are
unambiguous, precise, and implementation independent.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 101

Copyright 1995-1999 SCRA 101

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
LOTOS (Cont.)

● Specify system by defining the temporal
relationships among its externally observable
interactions as interactions between process
black boxes

● Specify processes using process algebra
techniques

● Achieve process interactions using events

A system is specified by defining the temporal relationships among the
interactions that make up its externally observable behavior. These
interactions are between processes, which act as black-boxes. A black-
box is an entity capable of performing both internal actions and external
actions. The internal actions are invisible beyond its boundaries
whereas the external actions are observable by an observer process.
Interactions between these processes is achieved using events. The
processes are specified using process algebra approach, which allows
the description of behavior as a composition of basic behaviors using a
rich set of combining rules.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 102

Copyright 1995-1999 SCRA 102

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
LOTOS (Cont.)

● Property-oriented: therefore supports
implementation independence

● Specification does not restrict structure of
implementation

● Hard to conceptualize the internal states of
reactive system

● Concept of time not directly supported

Being property-oriented makes LOTOS hard to conceptualize the
internal states of reactive system. Further, it also becomes hard to
generate an implementation from the specification. The concept of time
is also not directly supported.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 103

Copyright 1995-1999 SCRA 103

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 9. Electronic Systems Design
Methodology (MCSE)

● Methodology for specification, design and
implementation of industrial computing systems

● Structured approach to system design
● Approaches design of real-time systems in a top-

down style

MCSE (Methodologie de Conception des Systemes Electroniques) is a
methodology for the specification, design, and implementation of
industrial computing systems. The methodology is characterized by its
top-down approach to the design of real-time systems, and is structured
into several steps from system specification to system implementation.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 104

Copyright 1995-1999 SCRA 104

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
MCSE (Cont.)

● Specification process consists of two parts
❍ Environment modeling
❍ System modeling

● Specification processes produces three kinds of
specifications:

❍ Functional specifications
❍ Operational specifications
❍ Technological specifications

Three kinds of specifications are produced during the specification
process. First, functional specifications include a list of system functions
and a description of the behavior of the system's environment. Second,
operational specifications concern the performance and other
implementation details that are to be used in the system. Third and
finally, technological specifications include specifications of various
implementation constraints such as geographic distribution limitations,
interface characteristics etc.

 There are two main parts in the specification process: environment
modeling and system modeling. In the environment-modeling part, the
environment is first analyzed to identify the entities that are relevant to
the system. Next, a model is created representing the identified entities
and their interactions, thus providing a functional description of the
environment. In the system-modeling part, the system under design is
first delimited in terms of its inputs and outputs. Next, a functional
specification of the system is developed, which describes the functions
to be carried out by the system on its environment. This functional
specification is developed by characterizing the system in terms of
system inputs and outputs, system entities, or system activities.

There is a lack of support for formal techniques. While several modeling
techniques and system views are supported, a coherent integration of
these diverse approaches is not supported.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 105

Copyright 1995-1999 SCRA 105

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
MCSE (Cont.)

● Pros
❍ Provides a well defined methodology for developing a

specification
❍ Allows multiple system views and modeling approaches

● Cons
❍ Lack of support for formal techniques
❍ Does not support a coherent integration of modeling

approaches

Pros and Cons associated with MCSE are described.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 106

Copyright 1995-1999 SCRA 106

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 10. Integrated Specification and
Performance Modeling Environment

(IPSME)

● Supports strong interaction between the
specification, design and implementation phases

❍ Better communication of design intent among phases

● Based on Statecharts: supports behavioral view
of the system

● Also supports complementary modeling:
modeling using Statecharts and modeling
performance

● Performance model developed using ADEPT
● Supports activity view for a system

The Integrated Specification and Performance Modeling Environment is
an evolving specification modeling methodology that supports a strong
interaction between the specification phase of a design process with
design and implementation phases. As a result of this interaction, there
is an increased and better communication of design intent among these
phases.

ISPME is based upon the language of Statecharts, similar to ECS
modeling methodology. As a result, it supports the behavioral view of
the system. However, ISPME also supports complementary modeling,
where some aspects of the system are modeled using Statecharts,
while the remaining aspects are represented as a performance model.
The performance model is developed using ADEPT which is based on
an extension of Petri-nets. Since a performance-model can coexist with
the Statecharts specification, ISPME supports the activity view for a
system.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 107

Copyright 1995-1999 SCRA 107

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
IPSME (Cont.)

● Development in an incremental manner from
specification to implementation

● Increments correspond to implementation of a
Statecharts component

● Performance model verified against Statecharts
specification

● Refinement of Statecharts and ADEPT models
simultaneously

The methodology supports the development of a complete
implementation from the specification in a incremental and iteratively
refined manner. Each increment represents a proposed implementation
of a component of the Statecharts model. The performance model of
the proposed implementation is verified against its Statecharts
counterpart. At each iteration, both the Statecharts and the ADEPT
models can be refined, since it is possible that one may encounter
inconsistencies between the specification and the implementation. As a
result of this integrated-modeling approach, the methodology extends
the specification phase to later design stages. Such extension improves
communication of design intent between various phases of design.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 108

Copyright 1995-1999 SCRA 108

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
IPSME (Cont.)

● Supports the three reactive system attributes
❍ Language and complexity approaches: Statecharts
❍ Model interaction component of model continuity:

ADEPT

● Performance model developed independent of
structure: implementation independence
Implementation assistance supported by
synthesizing Statecharts model itself

Description of IPSME continued.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 109

Copyright 1995-1999 SCRA 109

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Overall Comparison

Specification Modeling
Methodologies

Language Complexity Control Model Continuity

SDRTS limited limited limited

JSD limited supported limited

SREM supported limited limited

OOA limited supported limited

SDL supported supported limited

ECS supported supported limited

VDM supported limited limited

LOTOS supported limited limited

MCSE supported supported limited

ISPME supported supported supported

We now tabulate the various methodologies and the metrics as shown.
Our rankings are relative, and subjective.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 110

Copyright 1995-1999 SCRA 110

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Support for Language
Attributes

Methodologies

Available Conceptual ModelsSpecification
Model

System Views Specification
Style

Environment
Characterization

activity+behavior model model
JSD entity model model

SREM behavior model property

OOA entity+behavior model limited

SDL entity+behavior model limited

ECS activity+behavior model model

VDM entity model limited

LOTOS entity+behavior property property

MCSE activity+behavior model, property model

ISPME activity+behavior model model

SDRTS

We now tabulate the various methodologies and the metrics as shown.
Our rankings are relative, and subjective.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 111

Copyright 1995-1999 SCRA 111

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Support for Language Attribute
(Cont.)

Available Conceptual ModelsSpecification
Model

Methodologies Timing
Constraints

Modeling
Time

Exception
Handling

indirect limited limited
JSD direct supported limited

SREM direct supported limited

OOA indirect limited limited

SDL indirect supported limited

ECS indirect supported supported

VDM indirect limited supported

LOTOS indirect limited supported

MCSE direct supported limited

ISPME indirect supported supported

SDRTS

We now tabulate the various methodologies and the metrics as shown.
Our rankings are relative, and subjective.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 112

Copyright 1995-1999 SCRA 112

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Support for Language Attribute
(Cont.)

Analysis TechniquesSpecification
Modeling

Methodologies
Model

Executability

SDRTS limited limited

JSD limited limited

SREM semiformal supported

OOA limited limited

SDL supported supported

ECS supported supported

VDM supported supported

LOTOS formal limited

MCSE semiformal limited

ISPME formal supported

Formal
Analysis

We now tabulate the various methodologies and the metrics as shown.
Our rankings are relative, and subjective.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 113

Copyright 1995-1999 SCRA 113

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Support for Complexity
Control

Representational ComplexitySpecification
Modeling

Methodologies Hierarchy Orthogonality Representation
Scheme

JSD supported supported graphical

SREM limited limited graphical

OOA supported supported textual

SDL supported supported graphical

ECS supported supported graphical

VDM supported supported textual

LOTOS supported supported textual

MCSE supported supported graphical

ISPME supported supported graphical

SDRTS supported limited graphical

We continue to tabulate the various methodologies and the metrics as
shown. Our rankings are relative, and subjective.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 114

Copyright 1995-1999 SCRA 114

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Specification
Modeling

Methodologies

Support for Complexity
Control (Cont.)

Developmental Complexity

Nondeterminism Perfect
Synchrony

Assumption

Developmental
Guidance

SDRTS limited asynch top down

JSD limited asynch top down

SREM limited asynch bottom up

OOA limited asynch top down

SDL supported synch top down

ECS supported synch top down

VDM supported synch top down

LOTOS supported synch top down

MCSE limited synch top down

ISPME supported synch/
asynch

top down /
bottom up

We continue to tabulate the various methodologies and the metrics as
shown. Our rankings are relative, and subjective.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 115

Copyright 1995-1999 SCRA 115

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Support for Model-Continuity
Attribute

Model IntegrationSpecification
Modeling

Methodologies
Conformance Interaction Complexity

JSD limited vertical vertical

SREM limited vertical vertical

OOA limited limited vertical

SDL limited limited vertical

ECS limited limited vertical

VDM supported vertical vertical

LOTOS limited vertical limited

MCSE limited limited supported

ISPME supported supported supported

SDRTS limited vertical vertical

We continue to tabulate the various methodologies and the metrics as
shown. Our rankings are relative, and subjective.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 116

Copyright 1995-1999 SCRA 116

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Support for Model-Continuity
Attribute (Cont.)

Specification
Modeling

Methodologies

Implementation

Assistance

Implementation

Independence

JSD limited supported

SREM supported limited

OOA limited supported

SDL supported supported

ECS supported supported

VDM supported limited

LOTOS limited supported

MCSE limited supported

ISPME supported supported

SDRTS limited limited

We continue to tabulate the various methodologies and the metrics as
shown. Our rankings are relative, and subjective.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 117

Several tools exist in current practice that could assist in the
implementation of the RSM methodology. We will describe some of
them briefly.

Copyright 1995-1999 SCRA 117

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline

● The Motivation for RSM
● Requirements Engineering and Requirements Analysis
● Specification Modeling Methodologies
● SMM Survey

● CASE Tools
❍ RDD-100
❍ DOORS
❍ SLATE
❍ Requirements and Traceability Management (RTM)
❍ Statemate
❍ ADEPT

● RASSP Requirement Capture and Test Planning
● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 118

RDD-100 is a commonly used tool for capturing requirements.

Copyright 1995-1999 SCRA 118

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RDD-100 Requirements
Manager

● Functional Flow Block Diagrams, N-Squared Charts
and Hierarchy Views are used in graphical display

● Configuration management done using a Multi-user
Merge feature

● Can run on a superior or subordinate capacity
● Technical extraction and text editing from external

source documents into the system design data; data
can be navigated and edited

● Equipped with a behavior modeling tool that allows
for the modeling of predicted or anticipated
operational scenarios

● Coordination of work between all team members
made possible by the allocation of superior or
subordinate capacity

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 119

Copyright 1995-1999 SCRA 119

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP RDD-100 Requirements
Manager

● Core Features of Automated tools for
Requirements Management:

❍ Requirements Capture
❍ Requirements Specification production
❍ Requirements Specification Management
❍ Text-oriented or model-oriented view of Requirements

Management
❍ Provide links between requirements and other elements

of the System Engineering Process

The functionality of RDD-100 is described in the above slide.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 120

DOORS is another tool that supports the RSM process.

Copyright 1995-1999 SCRA 120

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Dynamic Object-Oriented

Requirements System
(DOORS)

● Generate, parse existing and link to external
requirements documents

● Assign attributes to requirements and restructure
requirements into documents, tree structures,
matrices and back-to-back trees

● Create views of requirements by interactive sorting
and filtering

● Provides for requirements traceability by creating
links between the tool and various other external
documents and tools

● Includes modifiable routines for cost-benefit analysis,
bottom-up weight calculation, impact analysis and
test results

● Creation and customization of new document
templates

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 121

SLATE also supports the RSM process.

Copyright 1995-1999 SCRA 121

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Systems Level Automation
Tool for Engineers (SLATE)

● Integrates requirements, design alternatives and
technical performance measures

● Use of textual outline, graphic block diagram and a
functional, control or data flow diagram

● Translate requirements into a system architecture
and display it as a hierarchical block diagram/
functional flow diagram

● Maps a requirements audit trial across system levels
● Evaluation of alternative designs and implementation

decisions before implementation
● Multiple-perspective display of a conceptual design
● Functional decomposition and requirements

flowdown and traceability
● Measures for technical performance

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 122

RTM also supports the RSM process as outlined in this module.

Copyright 1995-1999 SCRA 122

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Requirements and Traceability
Management (RTM)

● Implementation independent
● Requirements gathered in a central repository and

apparent inconsistencies refined
● Provides functionality, user interfaces, and hardware

platform support relevant for each of the disciplines
associated within a project's development

● All project info stored in a central on-line database
● Graphical tool to represent the chosen information flow
● Standard template that can be reused and redesigned for

each project
● Manages information objects and relationships between

them
● Specifies user-defined attributes to be defined for each

information class

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 123

RTM description is continued on this slide.

Copyright 1995-1999 SCRA 123

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Requirements and Traceability
Management (RTM)- (Cont.)

● Captures the contents of requirements documents into a
project database

● Identifies requirements by selecting the style or component
type in the document corresponding to an information
class

● Requirements can be extracted from an ASCII document
and stored in the database as information objects

● Edit, merge or expand information to show information
which is implied

● Combine different documents in a number of different
views

● Assign attribute values to characterize each requirement
● Select, view and edit individual records
● Track dynamically, individual requirements through the

project life-cycle

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 124

Statemate is a tool developed by iLogix that allows capture of the
requirements/specifications.

Copyright 1995-1999 SCRA 124

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Statemate Requirements
Tracer

● Parsing of requirements from original, imported or locally
created documents

● Linkages between original and derived requirements, and
between system models and requirements

● Checks for ensuring completeness and correctness of
allocation

● Access, modify or link requirements while editing or
modifying model element

● Link derived requirements to originals, and original
requirements to design elements

● Process development using multiple requirements files
● Back-reference model elements to requirements
● Impact assessment on requirements due to modification of

design elements
● Identification of requirements and design elements that have

not been updated on changing original requirements

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 125

ADEPT is a tool developed at the University of Virginia and models
architectures of systems using Petri net representations of systems.

Copyright 1995-1999 SCRA 125

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Advanced Design Environment
Prototyping Tool (ADEPT)

● Developed by The Center for Semicustom Integrated
Systems (CSIS) at The University of Virginia

● Employs both simulation-based and mathematical
approaches for analysis

● Supports the integrated performance and dependability
analysis of system level models

● Extended version supports operational specification
modeling and hardware / software codesign

● Capable of simulating both interpreted and uninterpreted
models in a common simulation environment using hybrid
modeling

● Founded on VHDL descriptions and Petri Net
Representations of models

● Spans numerous design phases, enabling the possibility of
a common simulation environment

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 126

We now describe some RASSP contributions in the area of RSM
methodologies.

Copyright 1995-1999 SCRA 126

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● The Motivation for RSM
● Requirements Engineering and Requirements Analysis
● Specification Modeling Methodology
● SMM Survey
● CASE Tools

● RASSP Requirement Capture and Test Planning
❍ Review of the problem and the approach to solution
❍ Examples

❑ FFT
❑ SAR

❍ Use of the virtual prototype

● Summary

RSM Outline

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 127

Copyright 1995-1999 SCRA 127

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Problem

● A written set of requirements for the design must
be converted to executable requirements

● A methodology must be identified to proceed
from the written to the executable, and then to
the specifications, ultimately leading to synthesis
of hardware

● The design specifications would be driven by the
requirements thus captured

● The specifications are tested and validated
against a test bench

The technical problem within RSM is described in the context of the
RASSP methodology.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 128

Copyright 1995-1999 SCRA 128

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Requirements vs.
Specifications

● A Requirement describes a set of constraints
which must be satisfied by the design, while a
Specification describes the characteristics of the
system developed to meet those constraints

● Requirement denotes input to the overall design
cycle; Specification denotes the detailed design
data produced at the output of the design cycle

● Requirements defines what needs to be done,
while specifications outline how to do it

The difference between Requirements and Specifications is highlighted
in this slide.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 129

Copyright 1995-1999 SCRA 129

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP CEENSS-supported
System Design Process

Requirements Capture
(product, systems, etc.)

Requirements Modeling
and Analysis

Functional Architecture
(high-level behavioral
VHDL specification)

Architecture
Definition
(hw-sw partitioning)

Software Simulatable
Specification (e.g, SDL)

Autocode Generation
or SW Reuse

Software
Compilation

Hardware/Software
Codesign, Cosimulation

Hardware Simulatable
Specification
(Behavioral or RTL)

VSPECDOORS

Hardware Synthesis

Hardware Architecture
and Partitioning
(Technology Independent)

Renoir

Analog/RF Models
Technology Specific
(VHDL-AMS)

Digital Models
Technology Specific
(VHDL)

Monet, Visual Architect

The CEENSS program has recently proposed a RSM methodology and
supporting Tools that are very similar to the RASSP process, and are
shown in this slide. A top down design flow is shown together with the
verification steps, and the detailed software/hardware design/integration
steps.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 130

The design requirements for a hypothetical signal processor is shown
above. The written requirements corresponding to this figure are
outlined in the lab document, where the process of Requirements and
Specifications is demonstrated using this example.

Copyright 1995-1999 SCRA 130

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

FFT Processor
Latency delay of 200 us
and noise specification

of X dB

Example1:
FFT Description

Sensor
32 bit data word

@ 5 MW/s

Clock
@ 5 MHz

Clock
@ 20 MHz

32 bit data word

FILE
I/O Buffer

15:0031:16

16 bit in phase data samples
from A/D converter

16 bit quadrature-phase (Q) data samples
from A/D converter

Buffered I and Q data arrays
2 at 512 words X 16 bits

Sink

FILE
I/O Buffer

32 bit data word
Integer Valued

Known
Golden
Results

@ rising_edge
of 20 MHz 2 phase clock

read_data

Input Buf. Full
Output Buf. Full

@ rising_edge
of 20 MHz 2 phase clock

write_data

Requirements for an FFT Processor System

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 131

Copyright 1995-1999 SCRA 131

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example1: Requirement to
Executable Requirement

● Requirement: " The system clock will operate
with 2 phases and at a certain given frequency"

● VHDL Code Fragment:
Begin -- architecture

…

internal_signals:

 phase1 <= NOT phase1 AFTER period;

 phase2 <= phase1 AFTER phase_delay;

generated_signals:

 ph1 <= phase1 AND NOT phase2;

 ph2 <= NOT phase1 AND phase2;

End;

These examples are also taken from the Lab 1 document and the
corresponding VHDL code.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 132

Copyright 1995-1999 SCRA 132

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Example 1:Requirement to
Executable Requirement-

(Cont.)
● Requirement: "The processor shall buffer input

data into 512 element buffers and process the
data with max. latency of 20 us"

● VHDL code:
…
IF counter = 512 THEN

 stop_read_data <= '1', '0' after 5 ns;

 -- do Signal Processing here

 start_write_data <= '1' after 20 ns; -- start
writing data to the output

 counter := 0; -- reset the counter so that more
data can be read

END IF;

...

The English requirement is converted to an executable form as shown
in the VHDL code.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 133

The requirements for the example signal processor are summarized in
the above table. The scope of the executable requirements is shown by
tick marks.

Copyright 1995-1999 SCRA 133

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example1: Scope of
Executable Requirements

Item Requirement Represented by
executable requirement

Data I/O ports Data format specified aa

Protocol specified aa

Timing & data rate specified aa

Physical -

Control port Commands and behavior specified aa

Data format specified aa

Protocol specified aa

Timing & data rate specified aa

Physical -

Modes of operation A 512 point FFT algorithm aa
Accuracy Max. error to be specified aa

Latency 20 us aa

Physical constraints Size, weight, power -
Testability Best practice -
Scalability TBD -
Environment Air cooled -
Assumed quantity TBD -

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 134

This example will be used to illustrate how an executable requirement
may be specified in executable form.

This is a simple example for illustrative purposes only. Speech is
sampled at 8 kHz and input to a signal processor in frame sizes of 240
samples representing 30 ms of speech data. The processor must
window the speech data using a hamming window function and
calculate the linear prediction model for each of the speech segments.

The test bench inputs data to the signal processor and monitors its
outputs. The test bench reads its speech data from a file and outputs
the linear prediction coefficients to a file after the processor has
completed its computations.

Copyright 1995-1999 SCRA 134

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Example2:

Executable Requirement to
Executable Specification

● Compute the linear
prediction model for a
segment of speech
samples

● Frame size is 240 samples
with 12 bit resolution
minimum

● Frame rate is 30ms
● Speech sampled at 8 KHz
● Use hamming weighted

window on input data

Speech
Data

Linear
Prediction

Coefficients• Window Data
• Compute prediction
coefficients

Signal Processor Model

Test Bench Model
• Read speech data
from file

• Send to processor
every 30 ms in
correct format

• Read results from
processor

• Compare results
with expected data

Control

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 135

This is the entity description of the signal processor. Since the
processor is a linear prediction computational engine, the linear
prediction (LP) order is passed as a generic. The ports used for input
and output to the processor include its data and control lines. The data
lines consist of 240 samples of speech data in the format "SpeechType"
and the output data are the LP coefficients. The control input
information indicates when the processor starts computing the
coefficients and the output control line indicates to the test bench when
to read the results.

Copyright 1995-1999 SCRA 135

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Requirements
Signal Processor Entity

ENTITY SignalProcessor IS
GENERIC (LP_ORDER : INTEGER := 10);
PORT (--

-- SpeechType can be an array of 240 integers
-- or an array of 240-12 bit data values. Integer is
-- more efficient for simulation. lp_coeffType is an array
-- of real numbers.
--
data : IN SpeechType;
lpCoef : OUT lp_coeffType;
--
-- "start_processor" is the control line from the test bench
-- telling the processor when to begin computing
--
start_processor : IN OnOffType;
start_read : OUT OnOffType);

END SignalProcessor;

Control
Information

Data

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 136

The architecture describing the functionality of the signal processor is
shown above. It consists of one process executed in zero time and
sensitive to the "start_processor" signal from its input port. When it
receives this signal, the speech data is assumed to present and the
processor begins calculating the LP coefficients, It calls a sequence of
procedures to perform the necessary functions (window_data, corr,
levinson-durbin). When it has finished, it puts the results on the lpCoef
lines and sets the trigger to the testbench.

Procedural calls used to perform functionality.

Results put on output lines after the maximum specified delay time.

Copyright 1995-1999 SCRA 136

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Requirements
Signal Processor Architecture

ARCHITECTURE behavior OF SignalProcessor IS
TYPE window_array_type IS ARRAY (0 to data'LENGTH -1);
CONSTANT window_size_real : REAL := real (data'LENGTH);

BEGIN
Compute: PROCESS (start_processor)

VARIABLE first_time : BOOLEAN := FALSE;
VARIABLE window_coeff : window_array_type;
VARIABLE windowed_data : window_array_type;
VARIABLE gamma, lp_coeff : lp_coeffType;
VARIABLE autocorr : corr_lags_type;

BEGIN
IF (start _processor= ON) THEN

if (first_time = FALSE) THEN
-- Calculate the window coefficients for hamming window in "double" precision
hamming_wgts (window_size_real, window_coeff);
first_time := TRUE;

END IF;
-- Window the data using the coefficients calculated
window_data (window_coeff, data, windowed_data);
-- Do the autocorrelation of this data set
corr (windowed_data, autocorr);
-- Do L-D Recursion to finds all the prediction coefficients excluding lp_coeff(0) = 1
levinson_durbin (autocorr, gamma, lp_coeff, LP_ORDER-1);
lpCoef <= lp_coeff AFTER 30 ms;
start_read <= ON AFTER 30 ms, OFF AFTER 30 ms + default_delay;
wait for 0 ns;

END IF;
END PROCESS Compute;

END behavior;

Window
Data

Find
Autocorrelations

Levinson-
Durbin

Recursion

Sensitivity
List

Write Data
to Testbench

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 137

This is the entity description of the test bench for the signal processor.
The ports used for input and output to the test bench include its data
and control lines. The output data lines consist of 240 samples of
speech data in the format "SpeechType" and the input data are the LP
coefficients. The control input information indicates when the test bench
starts reading the coefficients and the output control line indicates to the
processor when to start processing the data sent by the test bench.

Copyright 1995-1999 SCRA 137

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Requirements
Test Bench Entity

ENTITY TestBench IS
PORT (--

-- SpeechType can be an array of integers
-- or an array of 12 bit data array. Integer is
-- more efficient. lp_coeffType is an array
-- of real numbers.
--
data : OUT SpeechType;
lpCoef : IN lp_coeffType;
--
-- "start_processor" is the control line from the test bench
-- telling the processor when to begin computing
--
start_processor : OUT OnOffType;
start_read : IN OnOffType);

END TestBench;

Control
Information

Data

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 138

This is a possible architecture for the given test bench. It contains two
processes, one to start the reading of data at time zero and the second
to read and store data at the appropriate times in the future. The data is
read from a file in the form of 12 bit speech samples. It is then sent to
the processor by assigning it to the signal "data" and setting the trigger
signal "start_processor". The results are stored at the end of the routine
when the "start_read" signal is set to ON.

Copyright 1995-1999 SCRA 138

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Requirements
Test Bench Architecture

ARCHITECTURE behavior OF TestBench IS
TYPE window_array_type IS ARRAY (0 to data'LENGTH -1);
SIGNAL start_data : OnOffType := OFF;

BEGIN
Start: PROCESS

VARIABLE start : OnOfdType := ON;
BEGIN

IF (start = ON) THEN
start_data <= ON, OFF AFTER default_delay;
start := OFF;

END IF;
END PROCESS Start;
Test_bench: PROCESS (start_read, start_data)

VARIABLE data_in : window_array_type;
 VARIABLE in_line : LINE;

 FILE input_data : text is in "DATAFILE.in";
FILE output_data : text is out "DATAFILE.out";

BEGIN
IF (start_data = ON or start_read = ON) THEN

-- Load a block of data of data'HIGH samples
i := 0;
while ((NOT ENDFILE (input_data)) and

(i <= data'HIGH)) loop
readline (input_data, in_line);
read (in_line, data_in(i));
i := i+1;

end loop;
data <= data_in;

start_processor <= ON, OFF AFTER
 default_delay;

IF (start _read = ON) THEN
-- Write the results to a file for
-- later processing
for i in lpCoef'RANGE loop

write (in_line, lpCoef(i));
writeline (output_data, in_line);

end loop;
END IF;
wait for 0 ns;

END IF;
END PROCESS Test_bench;

END behavior;

Sensitivity
List

Read data
from file

Send to processor

Write results
to file

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 139

This chart presents the elements contained in the executable
specification. The three main categories of the previous slides are
expanded upon. The data in this simulation is not fixed at the end of the
systems definition design process but can be modified as more
information becomes available from future design stages. For example,
the size and weight can be estimated initially and as more numbers
become available the high level model is updated to track the lower
level details.

Copyright 1995-1999 SCRA 139

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Elements in Executable
Specification of System Model

[LMC-Meth]

• Signal processing I/O
data

–I/O timing
constraints

–I/O interface
structures

–I/O protocols
–Signal levels
–Message types

• Signal processing
latency

–Data acceptance
rate

• Signal processing
stimuli/response

System Timing and
Performance Data System Functionality Data

• Algorithm descriptions
• Control strategies
• Task execution order
• Synchronization primitives
• Inter-process

communication (IPC)
• BIT and fault diagnosis

Physical Constraint Data

• Size
• Weight
• Power
• Cost
• Reliability
• Maintainability
• Testability (fault coverage),

diagnosis, and BIST goals)
• Repairability
• Scalability
• Environment constraints

–Temperature
–Vibration
–Pressure
–Stress and Strain
–Humidity
–EMI/EMF/EMP

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 140

This is the entity description of the signal processor. Since the
processor is a linear prediction computational engine, the linear
prediction (LP) order is passed as a generic. The ports used for input
and output to the processor include its data and control lines. The data
lines consist of 240 samples of speech data in the format "SpeechType"
and the output data are the LP coefficients. The control input
information indicates when the processor starts computing the
coefficients and the output control line indicates to the test bench when
to read the results.

Additional information passed to this entity include some of the physical
constraints from the previous slide such as cost, weight, etc. Additional
information could be included such as power, test inputs, etc.

This example shows the case where physical parameters were added
to the model entity description.

Copyright 1995-1999 SCRA 140

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Specification
Signal Processor Entity

ENTITY SignalProcessor IS
GENERIC (LP_ORDER : INTEGER := 10;

COST : CostType := 1; -- Dollars
WEIGHT : WeightType := 5); -- Kilograms

PORT (--
-- SpeechType can be an array of 240 integers
-- or an array of 240-12 bit data values. Integer is
-- more efficient for simulation. lp_coeffType is an array
-- of real numbers.
--
data : IN SpeechType;
lpCoef : OUT lp_coeffType;
--
-- "start_processor" is the control line from the test bench
-- telling the processor when to begin computing
--
start_processor : IN OnOffType;
start_read : OUT OnOffType);

END SignalProcessor;

Control
Information

Data

Physical
Parameters

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 141

The architecture describing the functionality of the signal processor is
shown above. It consists of one process executed in zero time and
sensitive to the "start_processor" signal from its input port. When it
receives this signal, the speech data is assumed to present and the
processor begins calculating the LP coefficients. It calls a sequence of
procedures to perform the necessary functions (window_data, corr,
levinson-durbin). When it has finished, it puts the results on the lpCoef
lines and sets the trigger to the testbench.

We include additional information at this stage by defining the process
flow, functionality and the task breakdown. Fixed/floating point
decisions are made at this point by determining the optimal bit widths to
do the computations without loosing the quality of the speech data.

The physical constraint information can be added to global signals to
keep information on cost, weight, etc. when there are other components
in the system contributing to the total.

Copyright 1995-1999 SCRA 141

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Specification
Signal Processor Architecture

ARCHITECTURE behavior OF SignalProcessor IS
TYPE window_array_type IS ARRAY (0 to data'LENGTH -1);
CONSTANT window_size_real : REAL := real (data'LENGTH);

BEGIN
Compute: PROCESS (start_processor)

VARIABLEfirst_time : BOOLEAN := FALSE;
VARIABLEwindow_coeff, windowed_data: window_array_type;
VARIABLEgamma, lp_coeff : lp_coeffType;
VARIABLEautocorr : corr_lags_type;

BEGIN
IF (start _processor= ON) THEN

if (first_time = FALSE) THEN
-- Calculate the window coefficients for hamming window in "double" precision
hamming_wgts (window_size_real, window_coeff);
Add_cost_info (COST, cost_global);
Add_weight_info (WEIGHT, weight_global);
first_time := TRUE;

END IF;
window_data (window_coeff, data, windowed_data); -- Window data
-- Do the autocorrelation of this data set
corr (windowed_data, autocorr);
-- Do L-D Recursion to finds all the prediction coefficients excluding lp_coeff(0) = 1
levinson_durbin (autocorr, gamma, lp_coeff, LP_ORDER-1);
lpCoef <= lp_coeff AFTER 30 ms;
start_read <= ON AFTER 30 ms, OFF AFTER 30 ms + default_delay;
wait for 0 ns;

END IF;
END PROCESS Compute;

END behavior;

Task 1Task 2

Task 3

Sensitivity
List

Control flow
information

Define functional
information and
task breakdown

Perform
fixed/floating
point tradeoffs
(16 bit arith)

Add cost and
weight info to
global values

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 142

Also in this stage, we define how each of the algorithms are to be
implemented. The hamming weights would most likely be implemented
in a lookup table but computed from the equations above and rounded
to the amount of digits required. The procedures for windowing data
and computing the autocorrelation are also defined.

Copyright 1995-1999 SCRA 142

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Specification
Algorithm Descriptions

procedure hamming_wgts (
size_of_window : in REAL;
window_weights : out WINDOW)

is
constant pi : REAL := 3.14159265358979323846;
variable arg : REAL;
variable inc : REAL;

begin
arg := 2.0*pi/(size_of_window-1.0);
inc := 0.0;
for i in window_weights'RANGE loop

window_weights(i) := 0.54 - 0.46*cos(arg*inc);
inc := inc+1.0;

end loop;
end hamming_wgts;

procedure window_data (
window_coeff : in WINDOW;
data_in : in

WINDOW;
window_data : out WINDOW)

is
begin

for i in window_coeff'RANGE loop
window_data(i) := window_coeff(i) * data_in(i);

end loop;
end window_data;

procedure corr (
window_data : in WINDOW;
autocorr : inout CORR_LAGS) is

begin
for i in autocorr'RANGE loop

autocorr(i) := 0.0;
for k in i to window_data'HIGH loop

autocorr(i) := autocorr(i) +
window_data(k)*window_data(k-i);

end loop;
end loop;

end corr;

• Algorithms chosen to
perform necessary functions

• Perform bit width trade-offs

• Implement hamming weights
using look-up tables

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 143

There are many algorithms for computing the linear prediction
coefficients. In this design stage, we determine the best algorithm to
use for the application. In this case, the levinson-durbin algorithm was
chosen due to its efficient method for computation.

Copyright 1995-1999 SCRA 143

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Specification
Algorithms Descriptions (Cont.)

procedure levinson_durbin (
autocorr : in CORR_LAGS;
gamma : inout LP_COEFFS;
lp_coeff : inout LP_COEFFS;
size : in INTEGER) is

variable alpha : REAL;
variable beta : REAL;
variable tmp : LP_COEFFS;

begin
-- Initialization
alpha := autocorr(0);
beta := autocorr(1);
lp_coeff(0) := -beta / alpha;
gamma(0) := lp_coeff(0);
-- Recursion
for i in 1 to size loop

alpha := alpha + beta * gamma(i-1);
beta := autocorr(i+1);
for j in 0 to i-1 loop

beta := beta +
autocorr(j+1)*lp_coeff(i-j-1);

end loop;
gamma(i) := -beta/alpha;
for j in 0 to i-1 loop

tmp(j) := gamma(i) *
lp_coeff(i-j-1);

end loop;
for j in 0 to i-1 loop

lp_coeff(j) := lp_coeff(j) + tmp(j);
end loop;
lp_coeff(i) := gamma(i);

end loop;
end levinson_durbin;

• Determine from possible
candidate algorithms the
best to compute the
prediction coefficients

• Find the minimum bit widths
causing the least amount of
degradation

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 144

Copyright 1995-1999 SCRA 144

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
 Example3: A Test Planning

System used for the SAR
model

Primitives
 Library

Simulatable
Test

Bench

Requirements

Interface

Goal Tree
System

Specification
Repository

Design Tool
(Code Generator)

VHDL
Primitives

MUT &
Stimulus

Generator
Model

Selection

Derived
Requirements

(Generic Values)

General
Requirements

Specific
Requirements

Default
Specification

Requirements

Test Plan
Specific Requirements

See [Armstrong94] is there a library for each class of system.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 145

Copyright 1995-1999 SCRA 145

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example3: An Example Test
Bench Requirement

● The SAR processor test bench must generate a
sequence of samples for the returned 'linear FM
pulses' at a fixed sampling rate (general
requirement)

● Specific requirements specify the values of the
system parameters

❍ Linear FM pulses is a system parameter that implies
several system parameters including bandwidth, pulse
width, carrier frequency and the pulse repetition rate,
whose values form specific requirements

[Armstrong] Test Planning for CHDL DSP models

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 146

Copyright 1995-1999 SCRA 146

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example3: Storing System
Requirements

● Specification Repository
❍ Associate primary requirements with physical system

components
❍ Provide mechanism for changing the default

requirements values used in the test plan

● Extract the requirements values and feed them to
the test plan and the goal tree system using a
parser

A specification repository is a system level block diagram, where the
blocks correspond to the physical system components with associated
primary requirements. The system diagram can be developed using
schematic capture tools such as SGE. With SGE, the primary
requirements are represented as symbol attributes of their associated
blocks. One can click the mouse on a block and an associated window
then pops up, where the primary requirements can be edited and
altered. A parser extracts the requirements values and feeds them
forward to the test plan and the goal tree system. The specification
repository provides a mechanism for the test engineer to change the
default requirements values used in the test plan.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 147

Copyright 1995-1999 SCRA 147

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

● Link the test plan to the test bench using the
Requirements Interface

❍ The RI takes primary specific requirements from the test plan
and produces the derived requirements as output

Example3: Linking Using the
Requirements Interface for

SAR

SAR
Requirements

Interface

Target sizes &ranges
carrier freq.

pulse repetition freq.
b/w of signal transmitted

noise std. Deviation
pulse width of signal trans

nominal range
swath width

 decimation factor
sampling freq.

Pulse width of recv signal
b/w of recv signal

no. of samples

Primary
Derived

Here we describe the testbench descriptions (primary and derived)
within the context of executable requirements/specifications process.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 148

Copyright 1995-1999 SCRA 148

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Example3: Test Generation

● Two approaches to test vector generation
❍ Model-based:

❑ Specific implementation used in generating tests
❑ State-based or path-based

❍ Environment-based:
❑ Uses environment surrounding model under test to

develop the test vectors
❑ Tester not concerned about internal behavior of the

MUT

Test generation (TG) is the process of determining the stimuli to test a
digital system. Test vectors can be developed manually, but for large
system models this is an arduous task. A number of approaches to
automatic test generation for hardware description language models
have been developed recently. There are two approaches to test vector
generation. One approach is model-based test generation. It is a form
of white box testing, where the specific implementation of the model
under test is used to generate the tests. The model-based approach
includes two types: state-based testing and path-based testing. In state-
based testing, the state of the MUT is characterized by the state of its
internal signals and variables. Stuck-at-fault testing belongs to this type.
Path-based testing looks at the control structure of the MUT and then
develops test vectors to ensure that all paths through the code for the
system are executed during a test session. A second approach to test
vector generation is environment-based test generation as it uses the
environment surrounding the model under test to develop the test
vectors. It is a form of black box testing since the tester is completely
unconcerned about the internal behavior and structure of the MUT. This
later approach employs environment-based test generation as the type
of inputs experienced by the signal processing models are a
complicated function of the model environment and could not be directly
generated from the models themselves.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 149

We now summarize the contents of this module.

Copyright 1995-1999 SCRA 149

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Outline

● The Motivation for RSM
● Requirements in the Systems Definition Phase
● Requirements Engineering and Requirements Analysis
● Specification Modeling Methodologies
● SMM Survey
● CASE Tools
● RASSP Requirement Capture and Test Planning

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 150

Copyright 1995-1999 SCRA 150

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Challenges of the
Requirements Process

● Requirements, especially for automated processes, are
difficult to uncover

● Because of the dynamic nature of requirements, it is
often difficult to establish baselines as well as to justify
cost investment based upon them

● Design might begin prematurely if inappropriate
requirements techniques are used

● A over-reliance of CASE (Computer-Aided Systems
Engineering) tools may result in compromises in

❍ Comprehension of requirements and
❍ In the establishment of requirements engineering

processes, techniques and principles

● Lack of confidence in requirements engineering often
results due to lack of convincing evidence that works

The main challenges of the requirements process as described
in this module are recited above.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 151

A number of RASSP benchmarks and case studies show detailed
implementation of the RSM methodology as described in this module.

Copyright 1995-1999 SCRA 151

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
RSM Proven Useful

● Applied throughout major industries
● Many practical methodologies
● Many useful tools
● Evaluation techniques exist

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 152

Copyright 1995-1999 SCRA 152

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

● [ARMSTRONG94] Armstrong, James R., Frank, Geoffrey. "Test Bench Development
for RASSP DSP Models", 1st Annual RASSP Conference Proceedings, August 15-18,
1994.

● [CY90] Coad P., Yourdon E. Object-Oriented Analysis. Prentice-Hall, 1990.
● [Pnu86] Pnueli A. "Application of temporal logic to the specification and verification

of reactive systems." Current Trends in Concurrency. Lecture Notes in Computer
Science. Eds: de Bakker et al. Vol. 224, No. 9. Sep 1992.

● [Sarkar94] A., Waxman, R. and Cohoon, J.P.,“Specification Modeling Methodologies
for Reactive System Design,” University of Virginia, Departmental Report.

● [SM88] Schlaer S., Mellor S.J. Object-Oriented Systems Analysis. Yourdon Press,
1988.

● [IEEE] All referenced IEEE material is used with permission.
● [IEEE1220] IEEE Standard 1220-1994 Trial-Use Standard for Application and

Management of the Systems Engineering Process
● [Lincoln3] "Executable Requirements: Opportunities and Impediments," MIT-LL

RASSP Program, Anderson A.H.
● [LMC-Meth] RASSP Methodology Version 2.0, Lochkeed Martin ATL
● [Hsia] "Status Report- Requirements Engineering", Hsia, Davis and Kung

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 153

Copyright 1995-1999 SCRA 153

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● Alford M.W., Ansart J.P., Hommel G., Lamport L., Liskov B., Mullery G.P., Schneider
F.B. Distributed Systems. Methods and Tools for Specification. Lecture Notes in
Computer Science, Springer-Verlag 1982.

● Aylor J. H. and Waxman R. and Johnson B.W. and Williams R.D. The Integration of
Performance and Functional Modeling in VHDL. In Performance and Fault Modeling
with VHDL. Schoen, J. M., Prentice Hall, Englewood Cliffs, NJ 07632, 1992, pages 22-
145.

● Aylor J. H., Williams R. D., Waxman R., Johnson B. W., and Blackburn R. L. A
Fundamental Approach to Uninterpreted/Interpreted Modeling of Digital Systems in a
Common Simulation Environment. UVA Technical Report TR # 900724.0, University
of Virginia, Charlottesville, USA, July 24, 1990.

● Budkowski S. and Dembinski P. An Introduction to Estelle: A Specification
Language for Distributed Systems. Computer Networks and ISDN Systems. North-
Holland, Vol. 14, 1987.

● Belina F., Hogrefe D., and Sarma A. SDL with Applications from Protocol
Specifications. Prentice Hall, 1991.

Detailed references provide additional material related to the topic of
this module.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 154

Copyright 1995-1999 SCRA 154

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● Bjorner D., Jones C.B. The Vienna Development Method: The Meta-Language.
Lecture Notes in Computer Science. No. 61. Springer-Verlag. 1978.

● Blackburn R. L., and Thomas D. E. Linking the Behavioral and Structural Domains of
Representation in a Synthesis System. DAC 85:374-380.

● Calvez J.P. Embedded Real-Time Systems: A Specification and Design Methodology.
Wiley Series in Software Engineering Practice. 1993.

● Cameron J.R. "An overview of JSD". IEEE Transactions on Software Engineering. Vol
SE-12. No. 2. February 1986.

● CCITT. Recommendation Z.100: Specification and Description language (SDL).
Volume X, Fascicle X.1, Blue Book, October 1988.

● Coleman D. "Introducing Objectcharts or How to Use Statecharts in Object-Oriented
Design". IEEE Transactions on Software Engineering. Vol. 18, No. 1. Jan 1992.

● Chu C. M., Potkonjak M., Thaler M., and Rabaey J. HYPER: An Interactive Synthesis
Environment for High Performance Real Time Applications. Proceeding of the
International Conference on Computer Design, pages 432-435, 1989.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 155

Copyright 1995-1999 SCRA 155

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● Davis A. " A Comparison of Techniques for the Specification of External System
Behavior". Communications of the ACM. Vol 31, No. 9. 1988.

● DeMarco T. Structured Analysis and System Specification. Yourdon Computing
Series, Yourdon Press, Prentice Hall, 1979.

● Dutt N. D. and Gajski D. D. Designer Controlled Behavioral Synthesis Proceedings of
the 26th Design Automation Conference, pages 754-757, 1989.

● Drusinsky D. and Harel D. Using Statecharts for hardware description and synthesis.
In IEEE Transactions on Computer-Aided Design, 1989.

● Dijkstra E.W. "Guarded commands, nondeterminacy, and formal derivation of
programs". Communications of the ACM, Vol 18, No. 8. 1975.

● Ehrig H. and Mahr B. Fundamentals of Algebraic Specification - 1. EATCS
Monographs on Theoretical Computer Science 6. Springer-Verlag. 1985.

● Feijs L.M.G. and Jonkers H.B.M. Specification and Design with COLD-K. LNCS 490,
pp. 277-301.

● Fraser M.D., Kumar K., Vaishnavi V.K. "Strategies for Incorporating Formal
Specifications in Software Development". Communications of the ACM. Vol. 37, No.
10. Oct 1994 p 74-86.

● Færgemand O. and Olsen A. New Features in SDL-92. Tutorial, Telecommunications
Research Laboratory, TFL, Denmark. 1992.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 156

Copyright 1995-1999 SCRA 156

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● Gajski D.D., Vahid F., and Narayan S. A system-design methodology: Executable-
specification refinement. In Proceedings of the European Conference on Design
Automation (EDAC), 1994.

● Halbwachs N. Synchronous Programming of reactive Systems. Kluwer Academic
Publishers, 1993.

● Harel D. "Biting the Silver Bullet: Toward a Brighter Future for System Development".
IEEE Computer. Vol. 25, No. 1. Jan 1992, pages 8-24.

● Harel D. "On Visual Formalisms". Communications of the ACM. Vol. 31, No. 5. 1988 p
514-530.

● Harel D. "Statecharts: A Visual Formalism For reactive Systems". Science of
Computer Programming, Vol 8. 1987, pages 231-274.

● Hu D.C. and DeMicheli G. HardwareC - a language for hardware design. Stanford
University, Technical Report CSL-TR-90-419, 1988.

● Harel D., Lachover H., Naamad A., Pnueli A., Politi M., Sherman R., Shtull-Trauring A.,
Trakhtenbrot M. "Statemate: A working environment for the development of reactive
systems". Proceedings of 10th International Conference on Software Engineering.
Singapore, 11-15 April 1988, p 122-129.

● Hatley D.J. and Pirbhai I.A. Strategies for Real-time System Specification. Dorset
House Publishing, New York, 1987.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 157

Copyright 1995-1999 SCRA 157

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● IEEE Standard VHDL Language Reference Manual. IEEE Inc., NY, 1988.
● i-Logix Inc. ExpressVHDL Documentation, Version 3.0. 1992.
● ISO/IS 8807. Information Processing Systems - Open Systems Interconnection:

LOTOS - A Formal Description Technique. 1989.
● Jackson M.A. System Development. Prentice-Hall, 1983.
● Jackson M.A. Principles of Program Design. Academic Press, 1975.
● Lor K. E. and Berry D. M. Automatic Synthesis of SARA Design Models from System

Requirements. IEEE Transactions on Software Engineering 17(12):1229-1240
December 1991.

● Lavi J.Z. and Winokur M. "Embedded computer systems: requirements analysis and
specification: An industrial course". Proceedings of SEI Conference, Virginia April
1988. Lecture Notes in Computer Science: Software Engineering Education, No. 327.
Ed. G. A. Ford, Springer-Verlag p 81-105.

● Maraninchi F. Argos: A graphical synchronous language for the description of
reactive systems. Report RT-C29, Univeriste Joseph Fourier, 1991.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 158

Copyright 1995-1999 SCRA 158

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● Monarchi D.E. and Puhr G.I. "A Research Typology for Object-Oriented Ananlysis
and Design". Communications of the ACM. Vol. 35, No. 9. Sep 1992.

● Manna A. and Pnueli A. The temporal logic of reactive and concurrent systems:
specification. Berlin Heidelberg New York: Springer. 1991.

● Peterson "Role of Executable Specifications", Capt.Greg Peterson, Wright Lab
● Saracco R., Smith J., Reed R. Telecommunication Systems Engineering using SDL.

Elsevier Science Publishers. 1989.
● Sarkar A. An Integrated Specification and Performance Modeling Approach for

Digital System Design. Ph.D. Thesis. University of Virginia. Charlottesville, U.S.A.
1995.

● Sarkar A., Waxman, R. and Cohoon, J.P.,“Specification Modeling Methodologies for
Reactive System Design,”, which appears in the book: High-Level System Modeling:
Specification Languages, Edited by Berge, Levia, & Rouillard, Kluwer, 1995, pp 1-34.

● Sarkar A., Waxman R., and Cohoon J.P. "System Design Utilizing Integrated
Specification and Performance Models". Proceedings, VHDL International Users
Forum, Oakland, California, May 1-4, 1994, pp 90-100.

● Spivey J.M. Understanding Z: A specification Language and its Formal Semantics.
Cambridge University Press. 1988.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 159

Copyright 1995-1999 SCRA 159

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● Thomas D.E. and Moorby P. The Verilog Hardware Description Language. Kluwer
Academic Publishers, 1991.

● Wing J.M. "A specifier's introduction to formal methods". IEEE Computer, Vol 23, No.
9. 1990. pp 8-24.

● Woo N., Wolf W., and Dunlop A. Compilation of a single specification into hardware
and software. AT&T Bell Labs, 1992.

● Ward P.T., Mellor S.J. Structured Development for Real-time Systems, Vols 1 & 2.
Yourdon Computing Series, Yourdon Press, Prentice Hall 1985.

● Zave P. and Shell W. Salient features of an executable specification language and its
environment. IEEE Transactions on Software Engineering 12(2):312-325 Feb, 1986.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 160

Copyright 1995-1999 SCRA 160

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● EIA Standard 632 for Systems Engineering
● A Systems Engineering Process Model: Conceptual Approach
● Systems Engineering-Capability Maturity Model, Software Engineering Institute,

Carnegie Mellon University, url
http://www.sei.cmu.edu/publications/documents/95.reports/95.mm.003.html

● Dept. of Air Force Acquisition Risk Management Guide
● High-Level System Modeling Specification & Design Methodologies, Edited by

Waxman, Berge, Levia, & Rouillard, Kluwer, 1996
● "Embedded Real-Time Systems - A Specification and Design Methodology", Jean

Paul Calvez, John Wiley & Sons, 1993
● "Method Integration- Concepts and Case Studies", Edited by Klaus Kronlof, John

Wiley&Sons, 1993

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 161

Copyright 1995-1999 SCRA 161

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Additional Reading

● "Benchmark I Requirements", Alan H Anderson, MIT Lincoln Lab
● "Executable Requirements Benchmarking," Alan H Anderson, MIT Lincoln Lab
● EIA-IS 632 Standard
● "Rapid Digital System Prototyping-Current practice, Future Challenges", V K

Madisetti, IEEE D&T, Fall '96, pp18
● Richards M., Gadient A., Frank G., eds. Rapid Prototyping of Application Specific

Signal Processors, Kluwer Academic Publishers, Norwell, MA, 1997
● Advanced Design Environment Prototyping Tool Tutorial, University of Virginia
● "Role of Executable Specifications", Capt. Greg Peterson, Wright Labs
● "Final Review", TRW, September 29, 1998.

