Module 30 - Lab A: Executable Requirements &
Specifications — Mentor Graphics Version

Executable Requirements Modeling
using VHDL Tutorial

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced
Technology Institute (ATI), and may only be used for non-commercial educational purposes.
Any other use of this information without the express written permission of the ATI is
prohibited. Certain parts of this work belong to other copyright holders and are used with
their permission. All information contained, may be duplicated for non-commercial
educational use only provided this copyright notice and the copyright acknowledgements
herein are included. No warranty of any kind is provided or implied, nor is any liability
accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under
Contract F33615-94-C-1457. Such data may be liberally reproduced and disseminated by the
Government, in whole or in part, without restriction except as follows: Certain parts of this
work to other copyright holders and are used with their permission; This information
contained herein may be duplicated only for non-commercial educational use. Any vehicle, in

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and Limitation of
Liability Information concerning the material, VHDL code and software developed under the
RASSP programs or incorporated in RASSP material.

Module30- Lab A 2

1. Overview

In this lab experiment, you will be given a set of written design requirements and you
will be asked to capture these requirements in an executable form. The goal of this exerciseisto
highlight a methodology for describing requirements in an executable form and the role it plays
in the topdown design process. We will also differentiate between requirements and
specifications and show how the requirements help drive the design specifications. The
laboratory design will consist of a data source (represents the sensor system), a fast fourier
transform (FFT) signal processor, and a data sink (represents a display) as shown in Figure 1.

File Buffered | and Qdataarrays File
1/O Buffer 2 a 512 wordsx 16 hits |/O Buffer
e bit 5 32 bit detaword
ﬂ» T B : Integer val
Input Buf. AYl 0Ces0
32 bit Smsor% Latercy delay of 20us | OURMBLEL
dataword «——— | and noise specification e write data
@5 MW/s — of -35dB
Clock 2 phesedock 20 MHz 2-phaseclok of 2 phase otk Known
@5MHz
Golden
Input Data Word Format Reaults
3116 15:00
16 bitin-phase (1) data samples | 16 bit quadrature-phase (Q)data sampl es
from A/D converter from A/D converter

Figure 1 : Requirements for FFT Processor System
2. Design Requirements

The design requirements for this hypothetical signal processing system are listed below
and are also shown in Figure 1 above.

1) Sampled complex data arrive from a sensor system as 16 bit signed
integer values representing the data's real and imaginary parts. A 32-bit
dataword is created from the A/D sampled input signal and contains the 2
16-bit 1/Q (real and complex parts) data samples received at the specified
rate (in this case, the rate is 5 MW/s where the wordsize is 32 bits). The
format of the data word is shown in Figure 1 where the lower 16 bits
represent the complex part and the upper 16 bits represent the real part.

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A

2) The sensor collects data and buffers it until it receives 512 complex
samples. At this point, it must interrupt the processor to transfer data
across the sensor/processor interface. The sensor/processor interface must
send data to the processor in the same 32-bit format at an internal clock
rate of 20 MHz. The data transfer will begin when the 1/0 buffer of the
sensor notifies the processor it isfull (512 samples obtained from sensor).
There is a clock available to the system that must be utilized. The
clocking mechanism within the system is two-phase with a frequency of
20 MHz as shown in Figure 2. The data must be placed on the bus on the
rising edge of the phase 1 clock and the processor will read the data on
the rising edge of the phase 2 clock.

4* (tpw +tps)

dock period=2*(tpw +tp9 (tpw, tps) = (20, 5) for a20 MHz phi1 and phi2

Figure 2 : Internal two-phase clocking system requirements

3) The sensor continuously collects data and when its buffer is full it sends
the buffer full signal to the processor via an interrupt mechanism. The
processor will respond (notify the sensor: read data signal) when it is
ready to accept data from the sensor. This signa from the processor
should remain active high during the entire transfer of data from sensor to
processor and return low again after the processor has filled its input
buffers.

4) The systems processor block must buffer the data from the sensor into two
512 input data fifos, process the data using an FFT (in this case, only
move the data to the output buffers after a specified processing latency),
and finally send the processed data to the display unit.

5) The FFT processing must be completed within a delay latency of 20 us.

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A 4

6) The data interface from the processor to the display unit operates at a 20
MHz rate. In this system, the output data format is 32-bit integers where
aternating output samples from the processor represent the real and
imaginary parts of the FFT result.

7) The processor must send an output buffer full signal to the display unit
when it has enough samples to send and the display unit must reply with
an active high acknowledge signal. The acknowledge signal must remain
high during the entire data transfer and become inactive when the display
units input buffers are full. The processor will send data while the
acknowledge signal is high or until its output buffer is empty, where in
this case, that implies 512 complex samples. The processor must place
the data on the data output bus on the rising edge of the phase 1 clock
signal and the display must read the data on the rising edge of the phase 2
clock signal. This must occur on the first rising edge of the phase 1 clock
after the acknowledge signal is received from the display.

8) We require the processing noise specification to be no worse than -35 dB
which will not be important for this experiment but will be used in the
executable specification laboratory, m30_lab_b.

9) A comparison mechanism must be designed into the display unit of the
test bench so that the output results can be compared with known good
results. This requires the use of file I/O to read the known good data from
afile prior to comparison.

10)The behavior of the system must be specified on reset. In this system, the
following output signals should be driven to the following states on reset:

Sensor entity:

buf full ='0" and data = tri-state 'Z'
Processor entity:

read_data ack ='0' and buf_full _out ='0" and data_out = tri-state 'Z'
Display entity:

write_data_ack ='0'

This design requirement experiment will be used to explore (1) how executable
requirements are captured, (2) the advantages of developing a executable requirement at the top
level, and (3) how these flow down to lower levelsin the design process.

3. What you will learn

3.1. What distinquishes executable requirements from executable specifications.
Copyright @995-1999 SCRA

See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A

3.2. How executable requirements can be used in atop-down design methodol ogy.

3.3. How to transform written design requirements into executable VHDL form.

3.4. How to specify the requirements of an embedded system design (1/O, processing
latency, throughput, etc.).

3.5. Why executable requirements are primarily a system testbench design problem.

3.6. How to develop an effective executable requirement's testbench.
4. Create the directory structure and component libraries

4.1. Create a working directory in your home directory (<home dir> in Figure 3)
with the name ™30 _lab_a’and go to that directory to begin executing the
laboratory. For UNIX systems, use the mkdir command.

< home dir >

<m30 lab a >

>///\\

< sre < data_files > <doc > <libs > Makefile
:ﬂgﬂi‘lﬁs m30_mentor_tutorial doc README
oUtpLE. bit wave.do
fft_compare .
= <clock_lib > .
exp.ixt - <source\lib >\
< conv_lib > <sink_lib > .
- . < proc_lib >
< system_lib > -
<source > < processor > <sink > <clock >
sensor_ent.vhd fft_proc_ent.vhd display_ent.vhd clockgen ent.vhd
sensor_arcvhd \ fft_proc_arc.vhd display_arc.vhd clockgen-dataflow_arc.vhd
< conversions > < >
Convert2IntTo2Bit_ent_arc.vhd sZr):\Steetwrpvhd
Convert2IntToBit_ent_arc.vhd Wst em arcvhd
ConvertBitTolnt_ent_arc.vhd wstem-_coni‘i vhd
ConvertintToBit_ent_arc.vhd cwom t gﬁd
Convert_pkg.vhd ponentsv

Figure 3 : Experiment File Hierarchy

4.2. Copy the executable requirements lab files to that directory from the CD-ROM.
For UNIX systems, use the cp command and copy the lab files into the
directory just created, i.e. n30 lab_a'.

4.3. Setup your VHDL environment correctly so that you have access to the
simulators executables on the UNIX system. For Mentor, the environment

variable MGC_HOME must point to the top-level directory of the Mentor
tools.

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A 6

4.4. Using the tar utility in UNIX, copy the file containing the component models,
m30_lab_atar, to your home directory. Untar the file, and look at the directory
structure. It should have the form shown in the Figure 3. If this utility is not
available on your machine, then copy the files directly from the CD-ROM.

<home _dir>>> tar xvf m30 lab atar

4.5. The files in the <src> directory contain the entity/architecture pairs for the
components of the system. These include the sensor (source), fft processor
(processor), display (sink), clock (clock), special conversion routines
(conversions), and system files (system). The <libs> directory contains the
compiled libraries after make has been executed. To compile the VHDL files
for this example into separate libraries, the following order of compilation is
required for each of the component elements.

A. Thefilesand compilation order for the clock (clock directory) model are the
following:
1. clockgen ent.vhd
2. clockgen-dataflow_arc.vhd

B. Thefilesand compilation order for the conversion (conversions directory)
models are the following:

Convert_pkg.vhd

Convert2IntTo2Bit_ent_arc.vhd

Convert2IntToBit_ent_arc.vhd

ConvertIntToBit_ent_arc.vhd

5. ConvertBitTolnt_ent_arc.vhd

A wDd PP

C. Thefilesand compilation order for the sensor (source directory) model used in
this example are:

1. sensor_ent.vhd
2. sensor_arc.vhd
D. Thefilesand compilation order for the processor (processor directory) model
used in this example are:
1. fft_proc_ent.vhd
2. fft_proc arc.vhd
E. Thefilesand compilation order for the display (sink directory) model are the
following:
1. display_ent.vhd
2. display_arc.vhd

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A 7

F. Thefilesand compilation order for the system (system directory) modelsisthe
following:

1. components.vhd
2. system ent.vhd
3. system arc.vhd
4. system-config.vhd
The makefile provided with the distribution is designed for use with Mentor
Graphics QuickHDL tool set and uses the make utility on UNIX systems. If you
have Mentor on your UNIX system and want to check if all environment
variables are currently configured, type the following at the UNIX prompt.
UNI X>> cd nB0O | ab_a
UNI X>> make check
If the above command line operation returns 'Proceed with compilation’, then
make all the files using the following.
UNI X>> make initial
Upon completion of the make, six libraries now exist in the /m30_lab_a/libs
directory with the names, conv_lib, source_lib, proc_lib, sink_lib, clock_lib,
and system_lib. As these libraries are being generated, proceed to the next
section to acquaint yourself with the methodology for capturing design
requirementsin an executable form.
5. Capturing the written requirements in an executable form
In the following sections, we will show how to capture the written requirements
of this system in an executable VHDL form.

5.1. Requirement 1: The system clock will operate with 2 phases and at a 20 MHz
frequency and reset will be active for 2 clock periods on system initialization.
Using the clock entity and architecture files in the /src/clock directory, create a
clock that will meet this system requirement. Edit the file clockgen_ent.vhd and
modify the generic parameters found within the entity description to create the
clock waveforms shown in Figure 2. This requires changes to the tps and tpw
parameters. Reset must also be set to match that shown in the figure. For all
references to editors within this document, emacs has been selected as the shell
command line input. You can choose your own editor as a replacement in each
case.

UNI X>> emacs ./src/cl ock/clockgen_ent.vhd &

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A 8

editor>> search for tpw and tps and nodify to create
the correct waveforns in Figure 2 (ctrl-s tpw) (ctrl-s
t ps)
editor>> save the file (ctrl-x, ctrl-s)
Now that the file has been modified, recompile both the entity and architecture
files for the clock circuit and simulate. Execute 'make’ operations from the
/m30_lab_a directory where the makefile is |ocated.
UNI X>> make clock_lib
You should now have an update of the clock and reset functionality. Next,
simulate the design and check the timing for correctness. Listed below are the
command line inputs to the version of the tool used to execute the models
during the laboratory development. The names, ghmap and ghsim, may change
in later versions of the smulator and the user must make modifications to the
makefile where necessary.
UNI X>> ghmap work ./1libs/clock_lib/
UNI X>> ghsim &
You should now be entering the simulator. Select the clockgen_ent entity
during elaboration. Within the simulator follow the commands below.
Qui ckHDL>> sel ect ' clockgen_ent' entity fromthe library
Qui ckHDL>> sel ect ' dataflow’ architecture
QHSI V> wave /*
QHSI M>> run 200 ns
Verify that your clock waveform has a period of 50 ns for both phases of the
clock and that the reset is active high for 2 clock periods as shown in Figure 4.
5.2. Requirement 2: On reset the following output signals shall be set to the values
listed below
Sensor entity:
buf _full ='0" and data = tri-state 'Z'
Processor entity:
read_data_ack = '0" and buf full out = '0" and data_out = tri-
state 'Z'
Display entity:
write_data_ack = 0'

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A

[=] Wave E

File Edit Zoom Prop Cursor

| 57— =l = I =
0 nz to 200 ns

Figure 4 : Clock Waveform with tpw = 20 ns and tps =5 ns
To model this requirement, each functional architecture of the three main
components (sensor, processor, and display) must have a section of code
sensitive to reset = '1". Open the following files and go to the lines listed below
to observe where thisis modeled in the code. For sensor_arc.vhd

editor>> enacs ./src/source/sensor_arc.vhd &
Observe line numbers 116-124, where in this section of code, buf full is
assigned '0' and datais assigned 'Z'.

editor>> emacs ./src/processor/fft_proc_arc.vhd &
Observe line numbers 112-132, 216-219, and 249-251 in this code where the
signals listed above are set appropriately. Also in these sections, various
internal signals are set to inactive values.

editor>> emacs ./src/sink/display_arc.vhd &
Observe line numbers 119-123 in this code where the signal write_data_ack is
setto'0'.
Next, run the full system for two clock periods to observe the output waveform
resulting from a system reset. Since the for the clock has been modified,
recompile the system configuration files by typing the following.

UNI X>> make systemlib
Y ou should now be ready to run the simulator.

UNI X>> nake sinul ate
Load the system-config configuration into the design and at the QHSIM prompt
execute the wave.do file and run the simulator for 110 ns.

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A 10

Qui ckHDL>> sel ect the 'system-config’ configuration
Qui ckHDL>> sel ect File->Execute command filefrom t he nenu
Qui ckHDL>> select the file 'wavedo' from FILE listing
and execute
QHSI M>> run 110 ns
At this point you should now be able to observe the waveform resulting from
the system reset. Verify that the output signals of each of the three main
components has been properly set. This can be done by placing a cursor at 100
ns and observing the signal values in the left hand window of the waveform
viewer.

5.3. Requirement 3: Complex sensor data is continuously sampled at a 5SMHz rate
and is stored in an input buffer. The buffer shall be large enough to store 512
samples plus any input samples that arrive during the send operation to the
processor.

Since this is a sensor-related requirement, open the sensor_arc.vhd file if it is
not already open. First, there is arequirement for data to be sampled at a5 MHz
rate. Thisimplies the need for a5 MHz clock signal. Since the system clock is
20 MHz, we can divide the system clock by 4 and obtain the 5 MHz sampling
clock. This can be achieved through the use of a special process running inside
the sensor architecture that is sensitive to phase one of the system clock.
Observe lines 189-215 of this file to see how this can be accomplished. The
generic parameters divide_count and half _clock period can be set within the
entity file sensor_ent.vhd and can be overridden by setting these parameters in
the system configuration file, system-config.vhd.

There is also the requirement for buffering the input data. This can be modeled
using array types to represent the buffers. Observe the declaration lines 104-
108. A buffer type is defined that has a length specified by the generic
parameter buffer_size as well as two buffers, one each for the real and
imaginary parts of the sampled data (i_buffer_array and q_buffer_array). The
buffer size is defined to have a length of 1024 samples. It is defined in this
manner so that when 512 samples have been collected, the sensor can send data
to the processor from half the buffer while continuously collecting more data
samples in the second half of the buffer. Sensor hardware is modeled using file
/O where data is taken from the file specified by the generic parameter
input_sensor_data. Those samples coming from an actual sensor are, in our

model, coming from afile. Observe lines 126-142 where on each rising edge of

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A 11

the 5 MHz clock, datais read from afile, placed into the | and Q buffers, and
buffer pointers are incremented.
We will next run the model and observe the behavior of this requirement.
Restart the simulation by selecting 'restart design' from the File pull down
menul.

Qui ckHDL>> Choose FILE->Restart Designfrom t he nenu

Qui ckHDL>> Push the button Restartand keep all settings

QHSI M>> run 50000 ns
Next we will set a breakpoint in the sensor architecture at line number 129 so
that we can observe interna buffer arrays. This can be done by selecting 'view'
from the pull down menu and selecting structure within the View’ menu. Also
do the same for viewing the source code. When the structure of the system
appears, select the sensor element.

Qui ckHDL>> Sel ect View->Structure...from the nenu

Qui ckHDL>> Sel ect View->Source...from the sanme nenu

Qui ckHDL>> C i ck on sensor: sensor_ent(behavioral) i n the

structure w ndow
Now the breakpoint can be set in the source window by either clicking on the
line number on the left-hand side or by typing the following within the QHSIM
window.

QHSI M>> bp ./src/source/ sensor_arc.vhd 129
Continue running the simulation from this point and wait until it reaches the
breakpoint. Type run within the QHSIM window.

QHSI M>> run 150 ns
View the variables within the simulations sensor architecture by selecting the
View pull down menu and the Variables... option.

Qui ckHDL>> Sel ect View->Variables... from the nenu
At this point you should see 250 nonzero values withing the | and Q internal
buffers of the sensor as shown in Figure 5. Data continues to fill the buffer until
it has reached a point where it is ready to send data to the processor. This
occurs when 512 samples are read into the buffer (the number of samples is
specified by the generic parameter 'send _amount’ within the sensor entity).
Remove this breakpoint and run the ssmulator for another 52400 ns and observe
the waveform results when the sensor buffer becomes full. This occurs at time
102400 ns.

QHSI M>> bd ./src/source/ sensor_arc.vhd 129

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A

QHSI M>> run 52400 ns

Wave>> sel ect Zoom->Range...i n t he Wave w ndow
Wave>> Start = 102300 ns

Wave>> St op = 102557 ns

[=] Yariable=

n
)
1l
3
i
T

=1 i_buffer_array = (011010131303 71:0707 .
0 = 0110101110313 a] 01
£1F = 2117131331313 13171710
23 = 02131331 o] O] O
C52 = A0l o0 ool
A = Q] o] Gy Ciocc
C53 = 1A 0d A o] G
CE> = 100131333 0] Q]
CF 3 = Aocoocdd ad] G
CEF = 100 o] 0 Qo] O
1 Pl T T N o 0 1 O o O T T |

SzensorsSget _sensor_data

Figure 5 : Sample values contained within the sensor's | input buffer array
The buf_full_sig signal becomes active and waits for a response from the
processor unit to acknowledge the beginning of data transfer.

5.4. Requirement 4: The data word format shall be 32 bits containing both the real
and imaginary parts of the complex data (16 bits signed integer for each)
where the upper 16 bits shall contain the | samples and the lower 16 bits shall
contain the Q samples.

For this requirement, set the range of viewing the waveform data as follows.
Wave>> sel ect Zoom->Range...
Wave>> Start = 102440 ns
Wave>> St op = 102480 ns

Observe the values on the sensor data output signals and compare them with
those values contained within the | and Q sensor buffers. Since this is the first
value sent to the processor, the upper 16 bits should match the first element in
the | buffer and the lower 16 bits should match the first element in the Q buffer.
This requirement can also be observed in the code of the sensor architecture
model by observing lines 160-162 of sensor_arc.vhd. In this code segment we

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A

5.5.

5.6.

see that data values are assigned to their outputs by concatenating the | and Q
buffer values. Figure 6 shows the results that should be seen on the waveform
viewer.

Figure 6 : First Sensor Data Output to the Processor
Requirement 5: Sensor data must be placed on the bus on the rising edge of the
phase one clock and read by the processor on the rising edge of the phase 2
clock. The trransfer rate shall be 20 MW/s (32 bits/word).

This requirement can be viewed on the waveform plot by zooming into the
following range and observing that datais placed on the bus 5 ns after the rising
edge of the clock and driven until 5 ns after the rising edge of the phase 2 clock.
as shown in Figure 6.

Wave>> sel ect Zoom->Range...

Wave>> Start = 102380 ns

Wave>> St op = 102560 ns
Requirement 6: The processor shall respond with a acknowledge signal when it
is ready to accept data from the sensor after the sensor sends it a notification
that its buffer is full.lt shall hold this signal active high until it has received
enough data to process.
This can be observed in Figure 7 by noticing that when the buf_full_sig signal
from the sensor goes active high, the FFT processor signal, read data_ack,
goes high 5 ns later. Next, data is sent until the input buffer of the processor is
full, at which point the processor deactivates the acknowledge signal. This
return of the acknowledge can be observed in the file fft_proc_arc.vhd at lines
223-226. The process is sensitive to the buffer full signal from the sensor. Data
is placed into the internal buffer of the processor by observing the code lines
134-149 of the same file. In this section of code, the read_data signal from the
processor must be active and phase two of the clock must be active in order for
data to be taken off the bus. When the input buffer becomes full (lines 151-164
of fft_proc_arc.vhd), processing can begin and the data acknowledge signal to
the sensor will be disabled.

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

13

Module30- Lab A 14

[*] Wave

File Edit Zoom Prop Cursor

| B R

Figure 7 : Waveform capturing requirements 5 and 6
5.7. Requirement 7: The processor shall buffer the input data into 2-512 element

buffers and process the data with a maximum latency of 20 us at which point it
shall send the processed data to the display unit.
To observe and model this behavior, restart the smulation and run it for 302 us.
Remove all breakpointsif this has not already been done.

Qui ckHDL>> Choose FILE->Restart Designfrom the nenu

Qui ckHDL>> Push the button Restartand keep all settings

QHSI M>> run 302 us
Zoom into the region that represents the processing. The processing begins
when the read_data_ack signal from the processor becomes inactive.

Wave>> sel ect Zoom->Range...

Wave>> Start = 127000 ns

Wave>> St op = 149000 ns
Observe the point where the last data item is received by the processor and
when the first data item is sent to the display. This can be measured by looking
at the time difference between when the processor sets read _data_ack inactive
low (128030 ns) and when it sends a output buffer full signal to the display
(148050 ns). How the latency is modeled in the code can be observed by
looking at lines 151-164 of fft_proc_arc.vhd. This code segment is entered
when the receive data counter value has reached the input buffer size and it
responds with a signal to stop reading data. The signal to write data to the

display is not assigned its value until after a delay of 'latency' time units. When

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A 15

the process sets this signal, the data is transferred from the input buffer to the
output buffer (lines 166-175), it setsthe buf_full_out signal (lines 255-258), and
then monitors the transfer acknowledge signal from the display (line 181).

5.8. Requirement 8: The processor to display interface shall operate at a 20 MHz
frequency passing 32 bit real and imaginary integer data values where the real
and imaginary values are alternately sent on the bus (real is sent first). Data is
sent when the acknowledge signal from the display is active high. This signal
remains high during the entire transfer. As in the sensor to processor interface,
data is placed on the bus on the rising edge of the phase 1 clock and read by
the display on the rising edge of the phase 2 clock.

Since both real and imaginary data must be sent totaling 1024 data values, the
time required to send all samples will be double that of the sensor to processor
interface. Observe the values being placed on the data output bus of the FFT
processor and compare them with the values in its output buffer as well as the
original valuesin its input buffer. All values should match, however the values
in the output buffer should be sign extended 32 bit versions of the original
values in the input buffer. Restart the design and run it for 150 us to observe
this behavior.

Qui ckHDL>> Choose FILE->Restart Designfrom t he nenu

Qui ckHDL>> Push the button Restartand keep all settings

QHSI M>> run 150 us

Qui ckHDL>> dick on fft_proc: fft_proc_ent(behavioral) in

the structure w ndow

QHSI M>> bp ./src/processor/fft_proc_arc.vhd 166

Qui ckHDL>> run 150 ns

Wave>> sel ect Zoom->Range...

Wave>> Start = 148000 ns

Wave>> St op = 148200 ns
In the ‘'variables window of the smulator look at i buffer_array,
g_buffer_array, and output_buffer and compare them with the values being
placed on the data_out bus of the processor. Observe the code segments that are
doing these operations. The data is being placed on the bus in the
fft_proc_arc.vhd file (lines 181-193) only when the acknowledge signa is high
from the display and on the rising edge of the phase 1 clock. The display unit
file (display_arc.vhd) receives data from the bus on the rising edge of the phase

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Module30- Lab A

2 clock (lines 170-187) and places it into two input buffers named
fft_i_result_buffer and fft_qg_result_buffer.

5.9. Requirement 9: A comparison mechanism must be designed into the display

unit of the test bench so that the output results can be compared with known
good results.
This mechanism should read known good results from afile and compare them
with the data received in the input buffers of the display unit. The comparison
only should take place when the input buffers are full and data is not in the
process of being sent from the processor. This mechanism can be seen in the
file display_arc.vhd at lines 192-224. Assertion statements are used if the
comparison results in an error. The name of the input file to use for the
comparison is passed to the display unit via generic parameters and can be
found in display entvhd at line 65. The parameter is caled
fft_comparison_data and is a string type. At this point, we have successfully
modeled all the key parameters of the system requirements.

Copyright @995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

