
Module 30 - Lab A: Executable Requirements &
Specifications – Mentor Graphics Version

Executable Requirements Modeling
using VHDL Tutorial

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and Limitation of
Liability Information concerning the material, VHDL code and software developed under the
RASSP programs or incorporated in RASSP material.

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced
Technology Institute (ATI), and may only be used for non-commercial educational purposes.
Any other use of this information without the express written permission of the ATI is
prohibited. Certain parts of this work belong to other copyright holders and are used with
their permission. All information contained, may be duplicated for non-commercial
educational use only provided this copyright notice and the copyright acknowledgements
herein are included. No warranty of any kind is provided or implied, nor is any liability
accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under
Contract F33615-94-C-1457. Such data may be liberally reproduced and disseminated by the
Government, in whole or in part, without restriction except as follows: Certain parts of this
work to other copyright holders and are used with their permission; This information
contained herein may be duplicated only for non-commercial educational use. Any vehicle, in
which part or all of this data is incorporated into, shall carry this notice .

Module 30 - Lab A 2

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

1. Overview

In this lab experiment, you will be given a set of written design requirements and you

will be asked to capture these requirements in an executable form. The goal of this exercise is to

highlight a methodology for describing requirements in an executable form and the role it plays

in the topdown design process. We will also differentiate between requirements and

specifications and show how the requirements help drive the design specifications. The

laboratory design will consist of a data source (represents the sensor system), a fast fourier

transform (FFT) signal processor, and a data sink (represents a display) as shown in Figure 1.

Figure 1 : Requirements for FFT Processor System

2. Design Requirements

The design requirements for this hypothetical signal processing system are listed below

and are also shown in Figure 1 above.

1) Sampled complex data arrive from a sensor system as 16 bit signed

integer values representing the data's real and imaginary parts. A 32-bit

data word is created from the A/D sampled input signal and contains the 2

16-bit I/Q (real and complex parts) data samples received at the specified

rate (in this case, the rate is 5 MW/s where the wordsize is 32 bits). The

format of the data word is shown in Figure 1 where the lower 16 bits

represent the complex part and the upper 16 bits represent the real part.

Sensor Display

15:0031:16

16 bit in-phase (I) data samples
from A/D converter

16 bit quadrature-phase (Q)data samples
from A/D converter

File
I/O Buffer

File
I/O Buffer

Buffered I and Qdata arrays
2 at 512 words x 16 bits

FFT Processor
Latency delay of 20 us
and noise specification

Clock
@ 5 MHz

32 bit

@ 5 MW/s
data word

32 bit

@ rising edge

data word

of 20 MHz
2 phase clock Known

Golden
Results

32 bit data word
Integer valued

@ 20 MHz rate

Input Buf. Full

on rising edge
of 2 phase clock

Input Data Word Format

of -35 dB

read_data
write_data

Output Buf. Full

20 MHz 2-phase clock

Module 30 - Lab A 3

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

2) The sensor collects data and buffers it until it receives 512 complex

samples. At this point, it must interrupt the processor to transfer data

across the sensor/processor interface. The sensor/processor interface must

send data to the processor in the same 32-bit format at an internal clock

rate of 20 MHz. The data transfer will begin when the I/O buffer of the

sensor notifies the processor it is full (512 samples obtained from sensor).

There is a clock available to the system that must be utilized. The

clocking mechanism within the system is two-phase with a frequency of

20 MHz as shown in Figure 2. The data must be placed on the bus on the

rising edge of the phase 1 clock and the processor will read the data on

the rising edge of the phase 2 clock.

Figure 2 : Internal two-phase clocking system requirements

3) The sensor continuously collects data and when its buffer is full it sends

the buffer full signal to the processor via an interrupt mechanism. The

processor will respond (notify the sensor: read_data signal) when it is

ready to accept data from the sensor. This signal from the processor

should remain active high during the entire transfer of data from sensor to

processor and return low again after the processor has filled its input

buffers.

4) The system’s processor block must buffer the data from the sensor into two

512 input data fifos, process the data using an FFT (in this case, only

move the data to the output buffers after a specified processing latency),

and finally send the processed data to the display unit.

5) The FFT processing must be completed within a delay latency of 20 us.

phi1

phi2

reset

tpstpw tpstpw
4*(tpw + tps)

clock period = 2 *(tpw + tps) (tpw, tps) = (20, 5) for a 20 MHz phi1 and phi2

Module 30 - Lab A 4

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

6) The data interface from the processor to the display unit operates at a 20

MHz rate. In this system, the output data format is 32-bit integers where

alternating output samples from the processor represent the real and

imaginary parts of the FFT result.

7) The processor must send an output buffer full signal to the display unit

when it has enough samples to send and the display unit must reply with

an active high acknowledge signal. The acknowledge signal must remain

high during the entire data transfer and become inactive when the display

unit’s input buffers are full. The processor will send data while the

acknowledge signal is high or until its output buffer is empty, where in

this case, that implies 512 complex samples. The processor must place

the data on the data output bus on the rising edge of the phase 1 clock

signal and the display must read the data on the rising edge of the phase 2

clock signal. This must occur on the first rising edge of the phase 1 clock

after the acknowledge signal is received from the display.

8) We require the processing noise specification to be no worse than -35 dB

which will not be important for this experiment but will be used in the

executable specification laboratory, m30_lab_b.

9) A comparison mechanism must be designed into the display unit of the

test bench so that the output results can be compared with known good

results. This requires the use of file I/O to read the known good data from

a file prior to comparison.

10)The behavior of the system must be specified on reset. In this system, the

following output signals should be driven to the following states on reset:

Sensor entity:

buf_full = '0' and data = tri-state 'Z'

Processor entity:

read_data_ack = '0' and buf_full_out = '0' and data_out = tri-state 'Z'

Display entity:

write_data_ack = '0'

This design requirement experiment will be used to explore (1) how executable

requirements are captured, (2) the advantages of developing a executable requirement at the top

level, and (3) how these flow down to lower levels in the design process.

3. What you will learn

3.1. What distinquishes executable requirements from executable specifications.

Module 30 - Lab A 5

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

3.2. How executable requirements can be used in a top-down design methodology.

3.3. How to transform written design requirements into executable VHDL form.

3.4. How to specify the requirements of an embedded system design (I/O, processing

latency, throughput, etc.).

3.5. Why executable requirements are primarily a system testbench design problem.

3.6. How to develop an effective executable requirement's testbench.

4. Create the directory structure and component libraries

4.1. Create a working directory in your home directory (<home dir> in Figure 3)

with the name “m30_lab_a” and go to that directory to begin executing the

laboratory. For UNIX systems, use the mkdir command.

Figure 3 : Experiment File Hierarchy

4.2. Copy the executable requirements lab files to that directory from the CD-ROM.

For UNIX systems, use the cp command and copy the lab files into the

directory just created, i.e. “m30_lab_a".

4.3. Setup your VHDL environment correctly so that you have access to the

simulator’s executables on the UNIX system. For Mentor, the environment

variable MGC_HOME must point to the top-level directory of the Mentor

tools.

< home dir >

< m30_lab_a >

< src > < libs >
README
Makefile

< system >

< clock >

< clock_lib >

< doc >< data_files >

wave.do
input_int
input_bits
output_bit
fft_compare
exp.txt

m30_mentor_tutorial.doc

< conv_lib >
< source_lib >

< sink_lib >
< proc_lib >

< system_lib >

< conversions >

< processor > < sink >< source >
sensor_ent.vhd
sensor_arc.vhd

fft_proc_ent.vhd
fft_proc_arc.vhd

display_ent.vhd
display_arc.vhd

clockgen_ent.vhd
clockgen-dataflow_arc.vhd

Convert2IntTo2Bit_ent_arc.vhd
Convert2IntToBit_ent_arc.vhd
ConvertBitToInt_ent_arc.vhd
ConvertIntToBit_ent_arc.vhd
Convert_pkg.vhd

system_ent.vhd
system_arc.vhd
system-config.vhd
components.vhd

Module 30 - Lab A 6

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

4.4. Using the tar utility in UNIX, copy the file containing the component models,

m30_lab_a.tar, to your home directory. Untar the file, and look at the directory

structure. It should have the form shown in the Figure 3. If this utility is not

available on your machine, then copy the files directly from the CD-ROM.

<home_dir> >> tar –xvf m30_lab_a.tar

4.5. The files in the <src> directory contain the entity/architecture pairs for the

components of the system. These include the sensor (source), fft processor

(processor), display (sink), clock (clock), special conversion routines

(conversions), and system files (system). The <libs> directory contains the

compiled libraries after make has been executed. To compile the VHDL files

for this example into separate libraries, the following order of compilation is

required for each of the component elements.

A. The files and compilation order for the clock (clock directory) model are the
following:

1. clockgen_ent.vhd

2. clockgen-dataflow_arc.vhd

B. The files and compilation order for the conversion (conversions directory)
models are the following:

1. Convert_pkg.vhd

2. Convert2IntTo2Bit_ent_arc.vhd

3. Convert2IntToBit_ent_arc.vhd

4. ConvertIntToBit_ent_arc.vhd

5. ConvertBitToInt_ent_arc.vhd

C. The files and compilation order for the sensor (source directory) model used in
this example are:

1. sensor_ent.vhd

2. sensor_arc.vhd

D. The files and compilation order for the processor (processor directory) model
used in this example are:

1. fft_proc_ent.vhd

2. fft_proc_arc.vhd

E. The files and compilation order for the display (sink directory) model are the
following:

1. display_ent.vhd

2. display_arc.vhd

Module 30 - Lab A 7

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

F. The files and compilation order for the system (system directory) models is the
following:

1. components.vhd

2. system_ent.vhd

3. system_arc.vhd

4. system-config.vhd

The makefile provided with the distribution is designed for use with Mentor

Graphics QuickHDL tool set and uses the make utility on UNIX systems. If you

have Mentor on your UNIX system and want to check if all environment

variables are currently configured, type the following at the UNIX prompt.

UNIX>> cd m30_lab_a

UNIX>> make check

If the above command line operation returns 'Proceed with compilation', then

make all the files using the following.

UNIX>> make initial

Upon completion of the make, six libraries now exist in the /m30_lab_a/libs

directory with the names, conv_lib, source_lib, proc_lib, sink_lib, clock_lib,

and system_lib. As these libraries are being generated, proceed to the next

section to acquaint yourself with the methodology for capturing design

requirements in an executable form.

5. Capturing the written requirements in an executable form

In the following sections, we will show how to capture the written requirements

of this system in an executable VHDL form.

5.1. Requirement 1: The system clock will operate with 2 phases and at a 20 MHz

frequency and reset will be active for 2 clock periods on system initialization.

Using the clock entity and architecture files in the /src/clock directory, create a

clock that will meet this system requirement. Edit the file clockgen_ent.vhd and

modify the generic parameters found within the entity description to create the

clock waveforms shown in Figure 2. This requires changes to the tps and tpw

parameters. Reset must also be set to match that shown in the figure. For all

references to editors within this document, emacs has been selected as the shell

command line input. You can choose your own editor as a replacement in each

case.

UNIX>> emacs ./src/clock/clockgen_ent.vhd &

Module 30 - Lab A 8

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

editor>> search for tpw and tps and modify to create

the correct waveforms in Figure 2 (ctrl-s tpw) (ctrl-s

tps)

editor>> save the file (ctrl-x, ctrl-s)

Now that the file has been modified, recompile both the entity and architecture

files for the clock circuit and simulate. Execute 'make' operations from the

/m30_lab_a directory where the makefile is located.

UNIX>> make clock_lib

You should now have an update of the clock and reset functionality. Next,

simulate the design and check the timing for correctness. Listed below are the

command line inputs to the version of the tool used to execute the models

during the laboratory development. The names, qhmap and qhsim, may change

in later versions of the simulator and the user must make modifications to the

makefile where necessary.

UNIX>> qhmap work ./libs/clock_lib/

UNIX>> qhsim &

You should now be entering the simulator. Select the clockgen_ent entity

during elaboration. Within the simulator follow the commands below.

QuickHDL>> select 'clockgen_ent' entity from the library

QuickHDL>> select 'dataflow' architecture

QHSIM>> wave /*

QHSIM>> run 200 ns

Verify that your clock waveform has a period of 50 ns for both phases of the

clock and that the reset is active high for 2 clock periods as shown in Figure 4.

5.2. Requirement 2: On reset the following output signals shall be set to the values

listed below

Sensor entity:

buf_full = '0' and data = tri-state 'Z'

Processor entity:

read_data_ack = '0' and buf_full_out = '0' and data_out = tri-

state 'Z'

Display entity:

 write_data_ack = ‘0'

Module 30 - Lab A 9

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Figure 4 : Clock Waveform with tpw = 20 ns and tps = 5 ns

To model this requirement, each functional architecture of the three main

components (sensor, processor, and display) must have a section of code

sensitive to reset = '1'. Open the following files and go to the lines listed below

to observe where this is modeled in the code. For sensor_arc.vhd

editor>> emacs ./src/source/sensor_arc.vhd &

Observe line numbers 116-124, where in this section of code, buf_full is

assigned '0' and data is assigned 'Z'.

editor>> emacs ./src/processor/fft_proc_arc.vhd &

Observe line numbers 112-132, 216-219, and 249-251 in this code where the

signals listed above are set appropriately. Also in these sections, various

internal signals are set to inactive values.

editor>> emacs ./src/sink/display_arc.vhd &

Observe line numbers 119-123 in this code where the signal write_data_ack is

set to '0'.

Next, run the full system for two clock periods to observe the output waveform

resulting from a system reset. Since the for the clock has been modified,

recompile the system configuration files by typing the following.

UNIX>> make system_lib

You should now be ready to run the simulator.

UNIX>> make simulate

Load the system-config configuration into the design and at the QHSIM prompt

execute the wave.do file and run the simulator for 110 ns.

Module 30 - Lab A 10

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

QuickHDL>> select the 'system-config' configuration

QuickHDL>> select File->Execute command file from the menu

QuickHDL>> select the file 'wave.do' from FILE listing

and execute

QHSIM>> run 110 ns

At this point you should now be able to observe the waveform resulting from

the system reset. Verify that the output signals of each of the three main

components has been properly set. This can be done by placing a cursor at 100

ns and observing the signal values in the left hand window of the waveform

viewer.

5.3. Requirement 3: Complex sensor data is continuously sampled at a 5MHz rate

and is stored in an input buffer. The buffer shall be large enough to store 512

samples plus any input samples that arrive during the send operation to the

processor.

Since this is a sensor-related requirement, open the sensor_arc.vhd file if it is

not already open. First, there is a requirement for data to be sampled at a 5 MHz

rate. This implies the need for a 5 MHz clock signal. Since the system clock is

20 MHz, we can divide the system clock by 4 and obtain the 5 MHz sampling

clock. This can be achieved through the use of a special process running inside

the sensor architecture that is sensitive to phase one of the system clock.

Observe lines 189-215 of this file to see how this can be accomplished. The

generic parameters divide_count and half_clock_period can be set within the

entity file sensor_ent.vhd and can be overridden by setting these parameters in

the system configuration file, system-config.vhd.

There is also the requirement for buffering the input data. This can be modeled

using array types to represent the buffers. Observe the declaration lines 104-

108. A buffer type is defined that has a length specified by the generic

parameter buffer_size as well as two buffers, one each for the real and

imaginary parts of the sampled data (i_buffer_array and q_buffer_array). The

buffer size is defined to have a length of 1024 samples. It is defined in this

manner so that when 512 samples have been collected, the sensor can send data

to the processor from half the buffer while continuously collecting more data

samples in the second half of the buffer. Sensor hardware is modeled using file

I/O where data is taken from the file specified by the generic parameter

input_sensor_data. Those samples coming from an actual sensor are, in our

model, coming from a file. Observe lines 126-142 where on each rising edge of

Module 30 - Lab A 11

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

the 5 MHz clock, data is read from a file, placed into the I and Q buffers, and

buffer pointers are incremented.

We will next run the model and observe the behavior of this requirement.

Restart the simulation by selecting 'restart design' from the ‘File’ pull down

menu.

QuickHDL>> Choose FILE->Restart Design from the menu

QuickHDL>> Push the button Restart and keep all settings

QHSIM>> run 50000 ns

Next we will set a breakpoint in the sensor architecture at line number 129 so

that we can observe internal buffer arrays. This can be done by selecting 'view'

from the pull down menu and selecting structure within the ‘View’ menu. Also

do the same for viewing the source code. When the structure of the system

appears, select the sensor element.

QuickHDL>> Select View->Structure... from the menu

QuickHDL>> Select View->Source... from the same menu

QuickHDL>> Click on sensor: sensor_ent(behavioral) in the

structure window

Now the breakpoint can be set in the source window by either clicking on the

line number on the left-hand side or by typing the following within the QHSIM

window.

QHSIM>> bp ./src/source/sensor_arc.vhd 129

Continue running the simulation from this point and wait until it reaches the

breakpoint. Type run within the QHSIM window.

QHSIM>> run 150 ns

View the variables within the simulations sensor architecture by selecting the

View pull down menu and the Variables... option.

QuickHDL>> Select View->Variables... from the menu

At this point you should see 250 nonzero values withing the I and Q internal

buffers of the sensor as shown in Figure 5. Data continues to fill the buffer until

it has reached a point where it is ready to send data to the processor. This

occurs when 512 samples are read into the buffer (the number of samples is

specified by the generic parameter 'send_amount' within the sensor entity).

Remove this breakpoint and run the simulator for another 52400 ns and observe

the waveform results when the sensor buffer becomes full. This occurs at time

102400 ns.

QHSIM>> bd ./src/source/sensor_arc.vhd 129

Module 30 - Lab A 12

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

QHSIM>> run 52400 ns

Wave>> select Zoom->Range... in the Wave window

Wave>> Start = 102300 ns

Wave>> Stop = 102557 ns

Figure 5 : Sample values contained within the sensor's I input buffer array

The buf_full_sig signal becomes active and waits for a response from the

processor unit to acknowledge the beginning of data transfer.

5.4. Requirement 4: The data word format shall be 32 bits containing both the real

and imaginary parts of the complex data (16 bits signed integer for each)

where the upper 16 bits shall contain the I samples and the lower 16 bits shall

contain the Q samples.

For this requirement, set the range of viewing the waveform data as follows.

Wave>> select Zoom->Range...

Wave>> Start = 102440 ns

Wave>> Stop = 102480 ns

Observe the values on the sensor data output signals and compare them with

those values contained within the I and Q sensor buffers. Since this is the first

value sent to the processor, the upper 16 bits should match the first element in

the I buffer and the lower 16 bits should match the first element in the Q buffer.

This requirement can also be observed in the code of the sensor architecture

model by observing lines 160-162 of sensor_arc.vhd. In this code segment we

Module 30 - Lab A 13

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

see that data values are assigned to their outputs by concatenating the I and Q

buffer values. Figure 6 shows the results that should be seen on the waveform

viewer.

Figure 6 : First Sensor Data Output to the Processor

5.5. Requirement 5: Sensor data must be placed on the bus on the rising edge of the

phase one clock and read by the processor on the rising edge of the phase 2

clock. The trransfer rate shall be 20 MW/s (32 bits/word).

This requirement can be viewed on the waveform plot by zooming into the

following range and observing that data is placed on the bus 5 ns after the rising

edge of the clock and driven until 5 ns after the rising edge of the phase 2 clock.

as shown in Figure 6.

Wave>> select Zoom->Range...

Wave>> Start = 102380 ns

Wave>> Stop = 102560 ns

5.6. Requirement 6: The processor shall respond with a acknowledge signal when it

is ready to accept data from the sensor after the sensor sends it a notification

that its buffer is full.It shall hold this signal active high until it has received

enough data to process.

This can be observed in Figure 7 by noticing that when the buf_full_sig signal

from the sensor goes active high, the FFT processor signal, read_data_ack,

goes high 5 ns later. Next, data is sent until the input buffer of the processor is

full, at which point the processor deactivates the acknowledge signal. This

return of the acknowledge can be observed in the file fft_proc_arc.vhd at lines

223-226. The process is sensitive to the buffer full signal from the sensor. Data

is placed into the internal buffer of the processor by observing the code lines

134-149 of the same file. In this section of code, the read_data signal from the

processor must be active and phase two of the clock must be active in order for

data to be taken off the bus. When the input buffer becomes full (lines 151-164

of fft_proc_arc.vhd), processing can begin and the data acknowledge signal to

the sensor will be disabled.

Module 30 - Lab A 14

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Figure 7 : Waveform capturing requirements 5 and 6

5.7. Requirement 7: The processor shall buffer the input data into 2-512 element

buffers and process the data with a maximum latency of 20 us at which point it

shall send the processed data to the display unit.

To observe and model this behavior, restart the simulation and run it for 302 us.

Remove all breakpoints if this has not already been done.

QuickHDL>> Choose FILE->Restart Design from the menu

QuickHDL>> Push the button Restart and keep all settings

QHSIM>> run 302 us

Zoom into the region that represents the processing. The processing begins

when the read_data_ack signal from the processor becomes inactive.

Wave>> select Zoom->Range...

Wave>> Start = 127000 ns

Wave>> Stop = 149000 ns

Observe the point where the last data item is received by the processor and

when the first data item is sent to the display. This can be measured by looking

at the time difference between when the processor sets read_data_ack inactive

low (128030 ns) and when it sends a output buffer full signal to the display

(148050 ns). How the latency is modeled in the code can be observed by

looking at lines 151-164 of fft_proc_arc.vhd. This code segment is entered

when the receive data counter value has reached the input buffer size and it

responds with a signal to stop reading data. The signal to write data to the

display is not assigned its value until after a delay of 'latency' time units. When

Module 30 - Lab A 15

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

the process sets this signal, the data is transferred from the input buffer to the

output buffer (lines 166-175), it sets the buf_full_out signal (lines 255-258), and

then monitors the transfer acknowledge signal from the display (line 181).

5.8. Requirement 8: The processor to display interface shall operate at a 20 MHz

frequency passing 32 bit real and imaginary integer data values where the real

and imaginary values are alternately sent on the bus (real is sent first). Data is

sent when the acknowledge signal from the display is active high. This signal

remains high during the entire transfer. As in the sensor to processor interface,

data is placed on the bus on the rising edge of the phase 1 clock and read by

the display on the rising edge of the phase 2 clock.

Since both real and imaginary data must be sent totaling 1024 data values, the

time required to send all samples will be double that of the sensor to processor

interface. Observe the values being placed on the data output bus of the FFT

processor and compare them with the values in its output buffer as well as the

original values in its input buffer. All values should match, however the values

in the output buffer should be sign extended 32 bit versions of the original

values in the input buffer. Restart the design and run it for 150 us to observe

this behavior.

QuickHDL>> Choose FILE->Restart Design from the menu

QuickHDL>> Push the button Restart and keep all settings

QHSIM>> run 150 us

QuickHDL>> Click on fft_proc: fft_proc_ent(behavioral) in

the structure window

QHSIM>> bp ./src/processor/fft_proc_arc.vhd 166

QuickHDL>> run 150 ns

Wave>> select Zoom->Range...

Wave>> Start = 148000 ns

Wave>> Stop = 148200 ns

In the 'variables' window of the simulator look at i_buffer_array,

q_buffer_array, and output_buffer and compare them with the values being

placed on the data_out bus of the processor. Observe the code segments that are

doing these operations. The data is being placed on the bus in the

fft_proc_arc.vhd file (lines 181-193) only when the acknowledge signal is high

from the display and on the rising edge of the phase 1 clock. The display unit

file (display_arc.vhd) receives data from the bus on the rising edge of the phase

Module 30 - Lab A 16

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

2 clock (lines 170-187) and places it into two input buffers named

fft_i_result_buffer and fft_q_result_buffer.

5.9. Requirement 9: A comparison mechanism must be designed into the display

unit of the test bench so that the output results can be compared with known

good results.

This mechanism should read known good results from a file and compare them

with the data received in the input buffers of the display unit. The comparison

only should take place when the input buffers are full and data is not in the

process of being sent from the processor. This mechanism can be seen in the

file display_arc.vhd at lines 192-224. Assertion statements are used if the

comparison results in an error. The name of the input file to use for the

comparison is passed to the display unit via generic parameters and can be

found in display_ent.vhd at line 65. The parameter is called

fft_comparison_data and is a string type. At this point, we have successfully

modeled all the key parameters of the system requirements.

