
Module 30 - Lab A: Executable Requirements &
Specifications – Veribest Version

Executable Requirements Modeling
using VHDL Tutorial

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and Limitation of
Liability Information concerning the material, VHDL code and software developed under the
RASSP programs or incorporated in RASSP material.

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced
Technology Institute (ATI), and may only be used for non-commercial educational purposes.
Any other use of this information without the express written permission of the ATI is
prohibited. Certain parts of this work belong to other copyright holders and are used with their
permission. All information contained, may be duplicated for non-commercial educational use
only provided this copyright notice and the copyright acknowledgements herein are included.
No warranty of any kind is provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under
Contract F33615-94-C-1457. Such data may be liberally reproduced and disseminated by the
Government, in whole or in part, without restriction except as follows: Certain parts of this
work to other copyright holders and are used with their permission; This information
contained herein may be duplicated only for non-commercial educational use. Any vehicle, in
which part or all of this data is incorporated into, shall carry this notice .

Module 30 - Lab A 2

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

1. Overview

In this lab experiment, you will be given a set of written design requirements and you will
be asked to capture these requirements in an executable form. The goal of this exercise is to
highlight a methodology for describing requirements in an executable form and the role it plays in
the topdown design process. We will also differentiate between requirements and specifications
and show how the requirements help drive the design specifications. The laboratory design will
consist of a data source (represents the sensor system), a fast Fourier transform (FFT) signal
processor, and a data sink (represents a display) as shown in Figure 1.

Figure 1 : Requirements for FFT Processor System
2. Design Requirements

The design requirements for this hypothetical signal processing system are listed below and
are also shown in Figure 1 above.

1) Sampled complex data arrive from a sensor system as 16 bit signed integer
values representing the data's real and imaginary parts. A 32-bit data word
is created from the A/D sampled input signal and contains the 2 16-bit I/Q
(real and complex parts) data samples received at the specified rate (in this
case, the rate is 5 MW/s where the word size is 32 bits). The format of the
data word is shown in Figure 1 where the lower 16 bits represent the
complex part and the upper 16 bits represent the real part.

Sensor Display

15:0031:16

16 bit in-phase (I) data samples
from A/D converter

16 bit quadrature-phase (Q)data samples
from A/D converter

File
I/O Buffer

File
I/O Buffer

Buffered I and Qdata arrays
2 at 512 words x 16 bits

FFT Processor
Latency delay of 20 us
and noise specification

Clock
@ 5 MHz

32 bit

@ 5 MW/s
data word

32 bit

@ rising edge

data word

of 20 MHz
2 phase clock Known

Golden
Results

32 bit data word
Integer valued

@ 20 MHz rate

Input Buf. Full

on rising edge
of 2 phase clock

Input Data Word Format

of -35 dB

read_data write_data

Output Buf. Full

20 MHz 2-phase clock

Module 30 - Lab A 3

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

2) The sensor collects data and buffers it until it receives 512 complex
samples. At this point, it must interrupt the processor to transfer data
across the sensor/processor interface. The sensor/processor interface must
send data to the processor in the same 32-bit format at an internal clock
rate of 20 MHz. The data transfer begins when the I/O buffer of the sensor
notifies the processor it is full (512 samples obtained from sensor). There
is a clock available to the system that must be utilized. The clocking
mechanism within the system is two-phase with a frequency of 20 MHz as
shown in Figure 2. The data must be placed on the bus on the rising edge
of the phase 1 clock and the processor will read the data on the rising edge
of the phase 2 clock.

Figure 2 : Internal two-phase clocking system requirements
3) The sensor continuously collects data and when its buffer is full it sends

the buffer full signal to the processor via an interrupt mechanism. The
processor will respond (notify the sensor: read_data signal) when it is
ready to accept data from the sensor. This signal from the processor
should remain active high during the entire transfer of data from sensor to
processor and return low again after the processor has filled its input
buffers.

4) The system’s processor block must buffer the data from the sensor into
two 512 input data fifos, process the data using an FFT (in this case, only
move the data to the output buffers after a specified processing latency),
and finally send the processed data to the display unit.

5) The FFT processing must be completed within a delay latency of 20 us.

phi1

phi2

reset

tpstpw tpstpw
4*(tpw + tps)

clock period = 2 *(tpw + tps) (tpw, tps) = (20, 5) for a 20 MHz phi1 and phi2

Module 30 - Lab A 4

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

6) The data interface from the processor to the display unit operates at a 20
MHz rate. In this system, the output data format is 32-bit integers where
alternating output samples from the processor represent the real and
imaginary parts of the FFT result.

7) The processor must send an output buffer full signal to the display unit
when it has enough samples to send and the display unit must reply with
an active high acknowledge signal. The acknowledge signal must remain
high during the entire data transfer and become inactive when the display
unit’s input buffers are full. The processor will send data while the
acknowledge signal is high or until its output buffer is empty, where in
this case, that implies 512 complex samples. The processor must place the
data on the data output bus on the rising edge of the phase 1 clock signal
and the display must read the data on the rising edge of the phase 2 clock
signal. This must occur on the first rising edge of the phase 1 clock after
the acknowledge signal is received from the display.

8) We require the processing noise specification to be no worse than -35 dB,
which will not be important for this experiment but will be used in the
executable specifications laboratory, M30_Lab_B.

9) A comparison mechanism must be designed into the display unit of the test
bench so that the output results can be compared with known good
results. This requires the use of file I/O to read the known good data from
a file prior to comparison.

10) The behavior of the system must be specified on reset. In this system, the
following output signals should be driven to the following states on reset:

Sensor entity:
buf_full = '0' and data = tri-state 'Z'

Processor entity:
read_data_ack = '0' and buf_full_out = '0' and data_out = tri-state 'Z'

Display entity:
write_data_ack = '0'

This design requirement experiment will be used to explore, (1) how executable
requirements are captured, (2) the advantages of developing a executable requirement at the top
level, and (3) how these flow down to lower levels in the design process.

Module 30 - Lab A 5

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

3. What you will learn

3.1. What distinguishes executable requirements from executable specifications.
3.2. How executable requirements can be used in a top-down design methodology.
3.3. How to transform written design requirements into executable VHDL form.
3.4. How to specify the requirements of an embedded system design (I/O, processing

latency, throughput, etc.).
3.5. Why executable requirements are primarily a system testbench design problem.
3.6. How to develop an effective executable requirement's testbench.

4. Create the directory structure and component libraries

4.1. Create a working directory in your home directory (<home dir> in Figure 3)
with the name “m30_lab_a” and go to that directory to start working. For
Windows systems, create a new file folder as the directory. In this write-up, we
assume you are using the Veribest simulator on the PC.

WINDOWS>> File->New->Folder m30_lab_a

4.2. Copy the executable requirements lab files to that directory from the CD-ROM.
For Windows systems, select the file from the CD-ROM directory and drag it
into the working folder just created, “m30_lab_a”.

4.3. Setup your VHDL environment correctly so that you have access to the
simulator’s executables. For Veribest, ensure the tools have been installed
correctly on your machine and that the license.dat file has been placed in the
c:\flexlm directory if it is required for the restricted version of the simulator.

4.4. Copy the zipped file containing the component models, m30_lab_a.zip, to your
home directory. Using the winzip or pkzip utilities on your PC, unzip the file,
and look at the directory structure. It should have the form shown in the Figure
3. If winzip or pkzip are not available on your machine, then copy the files
directly from the CD-ROM.

<home_dir>>> winzip m30_lab_a.zip or
<home_dir>>> pkzip m30_lab_a.zip

4.5. The files in the <src> directory contain the entity/architecture pairs for the
components of the system. These include the sensor (source), FFT processor
(processor), display (sink), clock (clock), special conversion routines
(conversions), and system files (system). The <libs> directory will contain the
compiled files after you finish with the build process. For the PC platform using

Module 30 - Lab A 6

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Veribest, we will build these libraries in the next section. To compile the VHDL
files for this example into separate libraries, the following order of compilation is
required for each of the component elements.

Figure 3 : Experiment File Hierarchy

A. The files and compilation order for the clock (clock directory) model are the
following:
1. clockgen_ent.vhd
2. clockgen-dataflow_arc.vhd

B. The files and compilation order for the conversion (conversions directory)
models are the following:
1. Convert_pkg.vhd
2. Convert2IntTo2Bit_ent_arc.vhd
3. Convert2IntToBit_ent_arc.vhd
4. ConvertIntToBit_ent_arc.vhd
5. ConvertBitToInt_ent_arc.vhd

< home dir >

< m30_lab_a >

< src > < libs >
README
Makefile

< system >

< clock >

< clock_lib >

< doc >< data_files >

wave.do
input_int
input_bits
output_bit
fft_compar
eexp.txt

m30_veribest_tutorial.doc

< conv_lib >
< source_lib >

< sink_lib >
< proc_lib >< system_lib >

< conversions >

< processor > < sink >< source >
sensor_ent.vhd
sensor_arc.vhd

fft_proc_ent.vh
dfft_proc_arc.vh
d

display_ent.vhd
display_arc.vhd

clockgen_ent.vhd
clockgen-
dataflow_arc.vhd

Convert2IntTo2Bit_ent_arc.vh
dConvert2IntToBit_ent_arc.vh
dConvertBitToInt_ent_arc.vh
dConvertIntToBit_ent_arc.vh
dConvert_pkg.vhd

system_ent.vhd
system_arc.vhd
system-
config.vhdcomponents.vhd

Module 30 - Lab A 7

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

C. The files and compilation order for the sensor (source directory) model used in
this example are:
1. sensor_ent.vhd
2. sensor_arc.vhd

D. The files and compilation order for the processor (processor directory) model
used in this example are:
1. fft_proc_ent.vhd
2. fft_proc_arc.vhd

E. The files and compilation order for the display (sink directory) model are the
following:
1. display_ent.vhd
2. display_arc.vhd

F. The files and compilation order for the system (system directory) models are the
following:
1. components.vhd
2. system_ent.vhd
3. system_arc.vhd
4. system-config.vhd

The makefile provided with the distribution is designed for use with Mentor
Graphics QuickHDL tool set and uses the make utility on UNIX systems. If you
want to use the Mentor tool suite on a UNIX platform, look at the m30_lab_a
Mentor documentation for this laboratory. There is no equivalent makefile for
the Veribest simulator provided with the CD-ROM.
On the PC platform using Veribest, do the following to build the necessary
libraries. First start the Veribest simulator.

WINDOWS>> Start->Programs->Veribest
Open a new workspace to build the clock library. Build the clock library in the
M30_Lab_A\libs\clock_lib directory. In the Veribest simulator, select the
following.

VERIBEST>> File->New Select Workspace and click ok
Create the workspace with the name clock and the workspace path to be the
M30_lab_a\libs\clock_lib directory.

VERIBEST>> Create Workspace Name Path and click create
A window appears as shown in Figure 4. This also creates the appropriate work
library within the directory. We next must add the clock specific entity and
architecture files to the clock workspace. To add the files, click on the plus (+)

Module 30 - Lab A 8

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

button in the workspace window and a new window will appear asking you to
add the appropriate files to the workspace. Go to the m30_lab_a\src\clock
directory and select the clock entity and architecture files.

Figure 4: Clock Workspace

Figure 5: Clock Workspace with Entity and Architecture Files
After loading the files into the workspace, the screen should now appear as in
Figure 5. The compilation order is from top to bottom within the workspace
window, so the clockgen_ent.vhd file should be listed before the architecture file
as shown in Figure 5. If the files are not in the correct order, then move them
appropriately using the up and down arrows within the workspace window so
that the compilation order is correct.
Next, we would like to compile the design files into our working library. First,
set the compilation settings by doing the following from the pull-down menu or
by clicking on the quick-select buttons below the pull-down menu options.

VERIBEST>> Workspace->Settings

Module 30 - Lab A 9

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

At this point, a new window appears allowing the user to set the proper settings
for compilation. Select the compilation library to be WORKLIB and the
debugging switch to be turned on. Now we can proceed with the compilation of
the files within the workspace. Use the menu or the quick-select buttons to do
the compilation of both files in the workspace.

VERIBEST>> Workspace->Compile All
After successful compilation of the clock library files, we can now proceed to
building the remaining libraries for the overall system design. Start by saving and
closing the current clock workspace and selecting a new workspace. Develop
the workspaces in the order mentioned above, i.e. clock_lib, conv_lib,
source_lib, proc_lib, sink_lib, and finally system_lib. Build these in their
associated directories and name the workspaces clock, conv, source, proc, sink,
and system respectively. When you reach the development of source_lib, there is
another setting that must be applied. This requires the addition of a library
mapping to conv_lib. The mapping is required because conv_lib is included
within the source design files (USE VHDL statement). To create a library
mapping for the current workspace, select the pull-down menu Library and
select the Add Lib Mapping option.

VERIBEST>> Library->Add Lib Mapping
A window appears for the user to enter the appropriate information. The
physical and logical names of the library must be entered. To add the library
mapping, traverse through the file pathnames until you reach the
M30_lab_a\libs\conv_lib directory. When you select this directory, the library
name WORKLIB appears under the physical names section. Select this physical
name and then type in the appropriate logical name. In this case, we need the
logical name conv_lib to be mapped to the physical library WORKLIB in this
section. Click OK when you are finished. Once this is done, compile the files
into the source working library. Proceed in building all the remaining libraries,
i.e. proc_lib, sink_lib, and system_lib. For proc_lib and sink_lib the library
mapping to conv_lib is required as done in source_lib. For system_lib, the
library mappings to clock_lib, conv_lib, source_lib, proc_lib, and sink_lib are all
required so these must be added prior to correct compilation.

5. Capturing the written requirements in an executable form

In the following sections, we will show how to capture the written requirements
of this system in an executable VHDL form.

Module 30 - Lab A 10

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

5.1. Requirement 1: The system clock will operate with 2 phases and at a 20 MHz
frequency and reset will be active for 2 clock periods on system initialization.

Using the clock entity and architecture files in the m30_lab_a\src\clock
directory, create a clock that will meet this system requirement. Edit the file
clockgen_ent.vhd and modify the generic parameters found within the entity
description to create the clock waveforms shown in Figure 6. This requires
changes to the tps and tpw parameters. Reset must also be set to match that
shown in the figure. For all references to editors within this document, use the
editor within the Veribest tool to make the changes to the files. You can choose
your own editor as a replacement in each case. First, open the clock workspace
to begin the editing.

VERIBEST>> File->Open Workspace \libs\clock_lib\clock
Double click on the file that you need to edit in the workspace window.

VERIBEST>> Double click on clockgen_ent.vhd
After the file opens in the working area, edit using the Note Pad-style editor
provided with the Veribest tool.

Figure 6: Workspace Settings to Select the Entity and Architecture

Module 30 - Lab A 11

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

editor>> search for tpw and tps and modify to create
the correct waveforms in Figure 6
editor>> save the file (ctrl-s while it is selected)

Now that the file has been modified, recompile both the entity and architecture
files for the clock circuit and simulate the design.

VERIBEST>> Workspace->Compile All
You should now have an update of the clock and reset functionality. Next,
simulate the design and check the timing for correctness. To simulate the design,
first configure the simulator settings.

VERIBEST>> Workspace->Settings
In the Workspace Settings window, select the simulator option. Expand the
work library to show the items contained within it. At this point, you should
only have the clock entity and the dataflow architecture. Select these as shown
in Figure 6 and click on the OK button. You are now ready to simulate.
To simulate the design, click on the simulate hot button or choose from the pull-
down menu.

VERIBEST>> Workspace->Execute Simulator
To view waveforms for the clock signal, once the simulator has started, select
the waveform viewer from the tools menu.

VERIBEST>> Tools->New Waveform Window

Figure 7: Clock Waveform with tpw = 20 ns and tps = 5 ns

Module 30 - Lab A 12

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Once the waveform viewer appears, add signals to the waveform viewer using
the left-most button from the buttons options.

WAVEFORM_VIEWER>> click on the left-most button
WAVEFORM_VIEWER>> Select the ‘Add All’ option to view
all signals in the design and ‘close’ the selection
tool

You are now ready to run the simulation. The length of the simulation runtime is
set in the upper left hand corner (default is 100 units). Run for 200 ns and view
the waveform. You should see the results shown in Figure 7.
Verify that your clock waveform has a period of 50 ns for both phases of the
clock and that the reset is active high for 2 clock periods as shown in Figure 7.

5.2. Requirement 2: On reset the following output signals shall be set to the values
listed below

Sensor entity:
buf_full = '0' and data = tri-state 'Z'

Processor entity:
read_data_ack = '0' and buf_full_out = '0' and data_out = tri-
state 'Z'

Display entity:
write_data_ack = ‘0'

To model this requirement, each functional architecture of the three main
components (sensor, processor, and display) must have a section of code
sensitive to reset = '1'. Open the following files and go to the lines listed below
to observe where this is modeled in the code. For sensor_arc.vhd

VERIBEST>> File->Open \src\source\sensor_arc.vhd
Observe line numbers 116-124 in this section where buf_full is assigned '0' and
data is assigned 'Z'.

VERIBEST>> File->Open \src\processor\fft_proc_arc.vhd
Observe line numbers 112-132, 216-219, and 249-251 in this code where the
signals listed above are set appropriately. Also in these sections, various internal
signals are set to inactive values.

VERIBEST>> File->Open \src\sink\display_arc.vhd
Observe line numbers 119-123 in this code where the signal write_data_ack is
set to '0'.

Module 30 - Lab A 13

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Next, we will run the full system for two clock periods to observe the output
waveform resulting from a system reset. Since we have modified the code for
the clock, recompile the system configuration files.

VERIBEST>> File->Open Workspace \libs\system_lib\system
VERIBEST>> Workspace->Compile All

You should now be ready to run the simulator.
VERIBEST>> Workspace->Settings

In the Workspace Settings window, select the simulator section. Expand the
work library to show the items contained within it. At this point, you should
select the system configuration file (SYSTEM-CONFIG) rather the entity-
architecture pairs. Select these as shown in Figure 8 and click on the OK button.
You are now ready to simulate. Execute the simulator.

Figure 8: Workspace Settings to Select the System Configuration
VERIBEST>> Workspace->Execute Simulator
VERIBEST>> Tools->New Waveform Window

Once the waveform viewer appears, add signals to the waveform viewer using
the left-most button from the buttons options.

WAVEFORM_VIEWER>> click on the left-most button
WAVEFORM_VIEWER>> Add the appropriate signals as
mentioned early to verify the values.

You are now ready to run the simulation. Run for 110 ns and view the
waveform resulting from a system reset.

Module 30 - Lab A 14

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Verify that the output signals of each of the three main components have been
properly set. Placing a cursor at 105 ns and observe the signal values in the left-
hand window of the waveform viewer. Also see Figure 9 for waveform viewer
results.

5.3. Requirement 3: Complex sensor data is continuously sampled at a 5MHz
frequency and is stored in an input buffer. The buffer shall be large enough to
store 512 samples plus any input samples that arrive during the send operation
to the processor.
Since this is a sensor requirement, open the sensor_arc.vhd file if it is not
already open. First, there is a requirement for data to be sampled at a 5 MHz
rate. This implies the need for a 5 MHz clock signal. Since the system clock is
20 MHz, we can divide the system clock by 4 and obtain the 5 MHz sampling
clock. This can be achieved by using a special process running inside the sensor
architecture that is sensitive to phase one of the system clock. Observe lines
189-215 of this file to see how this can be accomplished. The generic
parameters divide_count and half_clock_period can be set inside the entity file
sensor_ent.vhd and can be overridden by setting them in the system
configuration file, system-config.vhd.

Figure 9: Waveform after System Reset
There is also the requirement for buffering the input data. This can be modeled
using array types that represent buffers. Observe the declaration lines 104-108 in
the sensor_arc.vhd file. Here a buffer type is define that has a length specified
by the generic parameter buffer_size and two buffers, one each for the real and
imaginary parts of the sampled data (i_buffer_array and q_buffer_array). Also,

Module 30 - Lab A 15

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

the buffer length is defined to be 1024 samples so that when 512 samples have
been collected, the sensor can send data to the processor from half the buffer
while continuously collecting more data samples in the second half of the buffer.
Sensor hardware is modeled using file I/O where data is taken from the file
specified by the generic parameter input_sensor_data. Those samples coming
from an actual sensor are, in our model, coming from a file. Observe lines 126-
142 where on each rising edge of the 5 MHz clock, data is read from a file,
placed into the I and Q buffers, and buffer pointers are incremented.
We will next run the model and observe the behavior of this requirement.
Restart the simulation by selecting ‘restore’ from the Simulate pull-down menu.

VERIBEST>> Choose Simulate->Restore and select 0 ns
Close the old waveform viewer and open a new one.

VERIBEST>> Tools->New Waveform Window
Once the waveform viewer appears, add signals to the waveform viewer using
the left-most button from the buttons options.

WAVEFORM_VIEWER>> click on the left-most button
WAVEFORM_VIEWER>> Add all the signals contained in the
system interface.

You are now ready to run the simulation. Run for 50000 ns.
VERIBEST>> Run for 50000 ns

Next, set a breakpoint in the sensor architecture at line number 129 so that we
can observe the internal buffer arrays. First, open the file sensor_arc.vhd in the
working area. The file should open with line numbers on the left-hand side. If it
does not, then you may not have set the debugging switch on initial compilation.
If this is the case, go back to the ‘source’ workspace and recompile the sensor
with the debug switch turned on. Once the file is open and line numbers exist
within it, go to line 129 with the cursor. Click on the red button or use the pull-
down menu to set a breakpoint at this location in the code.

VERIBEST>> Debug->Insert/Remove Breakpoint (line 129)
Continue running the simulation from this point and wait until it reaches the
breakpoint.

VERIBEST>> Run for 150 ns
View the I internal buffer variable (i_buffer_array) within the simulation’s sensor
architecture by selecting (highlighting) the variable within the code and clicking
on the examine hot button (eye glasses).

VERIBEST>> Click on eye glasses hot button

Module 30 - Lab A 16

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Expand the array within the examine window as shown in Figure 10.

Figure 10: I Internal Buffer Array Contents
At this point you should see 250 nonzero values within the I and Q internal
buffers of the sensor as shown in Figure 10. Data continues to fill the buffer
until it has reached a point where it is ready to send data to the processor. This
occurs when 512 samples are read into the buffer (the number of samples is
specified by the generic parameter 'send_amount' within the sensor entity).
Remove this breakpoint and run the simulator for another 52400 ns and observe
the waveform results when the sensor buffer becomes full. This occurs at time
102400 ns.
Click on the red button with the X through it or use the pull-down menu to
remove the breakpoint at this location in the code.

VERIBEST>> Debug->Insert/Remove Breakpoint (line 129)
VERIBEST>> Run for 52400 ns
VERIBEST>> Select the ‘GOTO’ location in the waveform
viewer to be 102320 ns and the ‘scale’ to be 5 ns and
view the waveform

Module 30 - Lab A 17

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

The buf_full_sig signal becomes active and waits for a response from the
processor unit acknowledging the beginning of data transfer (Figure 11).

Figure 11: Data Transfer Begins from Sensor to Processor Entity
5.4. Requirement 4: The data word format shall be 32 bits containing both the real

and imaginary parts of the complex data (16 bits signed integer for each)
where the upper 16 bits shall contain the I samples and the lower 16 bits shall
contain the Q samples.
For this requirement, set the range of viewing the waveform data as follows.

VERIBEST>> Select the ‘GOTO’ location in the waveform
viewer to be 102440 ns and the ‘scale’ to be 1 ns and
view the waveform

Observe the values on the sensor data output signals and compare them with
those values contained within the I and Q sensor buffers. Since this is the first
value sent to the processor the upper 16 bits should match the first element in
the I buffer and the lower 16 bits should match the first element in the Q buffer.
This requirement can also be observed in the code of the sensor architecture
model by observing lines 160-162 of sensor_arc.vhd. In this code segment we
see that data values are assigned to their outputs by concatenating the I and Q
buffer values. Figure 12 shows the results captured on the waveform viewer.

Module 30 - Lab A 18

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Figure 12: First Sensor Data Output to the Processor
5.5. Requirement 5: Sensor data must be placed on the bus on the rising edge of the

phase one clock and read by the processor on the rising edge of the phase 2
clock. The transfer rate shall be 20 MW/s (32 bits/word).
This requirement can be viewed on the waveform plot by zooming into the
following range and observing that data is placed on the bus 5 ns after the rising
edge of the clock and driven until 5 ns after the rising edge of the phase 2 clock.
as shown in Figure 13.

VERIBEST>> Select the ‘GOTO’ location in the waveform
viewer to be 102380 ns and the ‘scale’ to be 3 ns and
view the waveform

5.6. Requirement 6: The processor shall respond with a acknowledge signal when it
is ready to accept data from the sensor after the sensor sends it a notification
that its buffer is full. It shall hold this signal active high until it has received
enough data to process.
This can be observed in Figure 13 by noticing that when the buf_full_sig signal
from the sensor goes active high, the FFT processor signal, read_data_ack,
goes high 5 ns later. Next, data is sent to the processor until its input buffer is
full, at which point the processor deactivates the acknowledge signal. The return
of the acknowledge can be observed in the file fft_proc_arc.vhd at lines 223-
226. The process is sensitive to the buffer full signal from the sensor. Data is

Module 30 - Lab A 19

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

placed into the internal buffer of the processor by observing the code lines 134-
149 of the same file. In this section of code, the read_data signal from the
processor and phase two of the clock both must be active in order for data to be
taken off the bus. When the input buffer becomes full (lines 151-164 of
fft_proc_arc.vhd), processing can begin and the data acknowledge signal to the
sensor is disabled.

Figure 13: Waveform capturing requirements 5 and 6
5.7. Requirement 7: The processor shall buffer the input data into 2-512 element

buffers and process the data with a maximum latency of 20 us at which point it
shall send the processed data to the display unit.
To observe and model this behavior, restart the simulation and run it for 302 us.
Remove all breakpoints if this has not already been done.

VERIBEST>> Choose Simulate->Restore and select 0 ns
Close the old waveform viewer and open a new one.

VERIBEST>> Tools->New Waveform Window
Once the waveform viewer appears, add signals to the waveform viewer using
the left-most button from the buttons options.

WAVEFORM_VIEWER>> click on the left-most button
WAVEFORM_VIEWER>> Add all the signals contained in the
system interface.

You are now ready to run the simulation. Run for 302 us.

Module 30 - Lab A 20

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

VERIBEST>> Run for 302 us
Zoom into the region that represents the processing. The processing begins
when the read_data_ack signal from the processor returns inactive.

VERIBEST>> Select the ‘GOTO’ location in the waveform
viewer to be 124000 ns and the ‘scale’ to be 800 ns and
view the waveform

Observe the point where the processor receives the last data item and when the
first data item is sent to the display. This can be measured by looking at the time
difference between when the processor sets read_data_ack inactive low
(128030 ns)and when it sends a output buffer full signal to the display (148050
ns). It is shown in Figure 14. The latency is modeled in the code at lines 151-
164 of fft_proc_arc.vhd. This code segment is entered when the receive data
counter value has reached the input buffer size and it responds with a signal to
stop reading data. The signal to write data to the display is not assigned its value
until after a delay of 'latency' time units. When the process sets this signal, the
data is transferred from the input buffer to the output buffer (lines 166-175), it
sets the buf_full_out signal (lines 255-258), and then monitors the transfer
acknowledge signal from the display (line 181).

5.8. Requirement 8: The processor to display interface shall operate at a 20 MHz
rate passing 32 bit real and imaginary integer data values where the real and
imaginary values are alternately sent on the bus (real is sent first). Data is sent
when the acknowledge signal from the display is active high. This signal
remains high during the entire transfer. As in the sensor to processor interface,
data is placed on the bus on the rising edge of the phase 1 clock and read by
the display on the rising edge of the phase 2 clock.
Since both real and imaginary data must be sent totaling 1024 data values, the
time required to send all samples will be double that of the sensor to processor
interface. Observe the values being placed on the data output bus of the FFT

Module 30 - Lab A 21

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

Figure 14: Model of Processor Latency
processor and compare them with the values in its output buffer as well as the
original values in its input buffer. All values should match, however the values in
the output buffer should be sign extended 32 bit versions of the original values
in the input buffer. Restart the design and run it for 150 us to observe this
behavior.

VERIBEST>> Choose Simulate->Restore and select 0 ns
Close the old waveform viewer and open a new one.

VERIBEST>> Tools->New Waveform Window
Once the waveform viewer appears, add signals to the waveform viewer using
the left-most button from the buttons options.

WAVEFORM_VIEWER>> click on the left-most button
WAVEFORM_VIEWER>> Add all the signals contained in the
system interface.

You are now ready to run the simulation. Run for 150 us.
VERIBEST>> Run for 150 us

Open the file \src\processor\fft_proc_arc.vhd so that the debugging information
is contained within it. Set a breakpoint at line 166 of this file.

VERIBEST>> Debug->Insert/Remove Breakpoint (line 166)
Continue running the simulation from this point and wait until it reaches the
breakpoint.

Module 30 - Lab A 22

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

VERIBEST>> Run for 150 ns
Examine the contents of the i_buffer_array, q_buffer_array, and output_buffer
and compare them with the values being placed on the data_out bus of the
processor. Use the call stack functionality of the simulator to obtain this data as
shown in Figure 15.

VERIBEST>> Debug->Call Stack

Figure 15: Call Stack Variables in the FFT Architecture
Observe the code segments that are modeling these operations. The data is
being placed on the bus in the fft_proc_arc.vhd file (lines 181-193) only when
the acknowledge signal is high from the display and on the rising edge of the
phase 1 clock. The display unit file (display_arc.vhd) receives data from the bus
on the rising edge of the phase 2 clock (lines 170-187) and places it into two
input buffers named fft_i_result_buffer and fft_q_result_buffer. You can
observe the contents of buffers using the call stack function from the pull-down
menu.

5.9. Requirement 9: A comparison mechanism must be designed into the display
unit of the test bench so that the output results can be compared with known
good results.
This mechanism should read known good results from a file and compare them
with the data received in the input buffers of the display unit. The comparison
only should take place when the input buffers are full and data is not in the

Module 30 - Lab A 23

Copyright © 1995-1999 SCRA
See first page of copyright notice,
Distribution restrictions and disclaimer

process of being sent from the processor. This mechanism can be seen in the file
display_arc.vhd at lines 192-224. Assertion statements are used if the
comparison results in an error. The name of the input file to use for the
comparison is passed to the display unit via generic parameters and can be found
in display_ent.vhd at line 65. The parameter is called fft_comparison_data and
is a string type. At this point, we have successfully modeled all the key
parameters of the system requirements.

