
Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 1

Copyright 1995-1999 SCRA
1

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Virtual Prototyping Using VHDL
 RASSP Education & Facilitation Program

Module 32

Version 3.00

Copyright1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and may
only be used for non-commercial educational purposes. Any other use of this information without the express written permission
of the ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their permission. All
information contained, may be duplicated for non-commercial educational use only provided this copyright notice and the
copyright acknowledgements herein are included. No warranty of any kind is provided or implied, nor is any liability accepted
regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457. Such
data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except as follows:
Certain parts of this work to other copyright holders and are used with their permission; This information contained herein may
be duplicated only for non-commercial educational use. Any vehicle, in which part or all of this data is incorporated into, shall
carry this notice .

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 2

Copyright 1995-1999 SCRA
2

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Rapid Prototyping Design
Process

 Virtual Prototyping Virtual Prototyping

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

REUSE LIBRARIES

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

The RASSP roadmap shows the importance of virtual prototyping in the
design process. The virtual prototype carries through the entire process
from requirements specification (executable) to HW and SW integration
and test. This short course will focus on the entire process with a
detailed example of lower level virtual prototyping presented at the end.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 3

Copyright 1995-1999 SCRA
3

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Goals

● Introduce definitions and terms related to virtual
prototyping

● Establish a baseline for current practice in
embedded systems design

● Describe the RASSP virtual prototyping process
as it applies to the design of large signal
processing systems

● Describe virtual prototyping levels in VHDL to
help achieve seamless design flow from
requirements to manufacturing

● Present methods for the creation of VHDL-based
virtual prototypes

● Present a detailed example of a virtual prototype
in VHDL at the detailed behavioral level

This slide presents the goals to be achieved by this module. We start
with a presentation of traditional design processes and how the Defense
Advanced Research Projects Association (DARPA) Rapid Prototyping of
Application Specific Signal Processors Progpam (RASSP) attempted to
improve upon it by using the virtual prototyping process. This is followed
by a description of the process with emphasis on the use of VHDL to
achieve its goals. Small examples will be presented for each section
with the final section containing a more detailed example of the use of
VHDL to model at the detailed behavioral level.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 4

Copyright 1995-1999 SCRA
4

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction
● Traditional Design Process
● The Virtual Prototyping Process
● Abstraction Levels and Limitations of VP
● Executable Requirement

❍ Executable requirement overview
❍ Executable requirement example

● Executable Specification
❍ Executable specification overview
❍ Executable specification example

● Data and Control Flow Modeling
❍ Data/control flow modeling overview
❍ Data/control flow modeling example

This module will cover the areas listed above. It will start with a review
of traditional design processes based on a survey done by the RASSP
Education and Facilitation (E&F) team.

The Virtual Prototyping (VP) process will then be described, focusing on
the various levels of virtual prototyping. These include the formation of
executable requirements, executable specification, data flow modeling,
performance modeling, and more detailed modeling of components and
systems.

Important documents and standards will be mentioned because of their
applicability to virtual prototyping with respect to VHDL-based methods.

Abstraction levels and limitations of VP will be discussed.

A case study of an example design using an i860XP processor with a
memory, memory controller, DMA, and VME bus will be described in
detail.

A summary will then be provided.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 5

Copyright 1995-1999 SCRA
5

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline (cont.)

● Performance Modeling
❍ Performance modeling overview

❍ Performance modeling in the architecture design process

❍ Components for performance modeling

❍ Laboratory introduction of a VHDL example of a simple
performance model Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design
❍ Overview of detailed-behavioral modeling in VHDL
❍ Design example

❑ Overview of example
❑ Modeling the Intel i860XP processor

➭ Overview of the processor model
➭ The internal model

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 6

Copyright 1995-1999 SCRA
6

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline (cont.)

➭ The interface model
➭ The testbench

✰ Clock/reset generator
✰ Memory controller
✰ Memory

➭ Testing the Intel i860XP
➭ Testing the Mercury Computer Systems MCV9
➭ Testing the Lockheed Martin-Sanders Infra-Red Search and

Track (IRST) system
➭ Results

❑ Creating a DMA to the VME in the memory controller
❑ Simulation results

● Relevant Documents and Standards
● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 7

Copyright 1995-1999 SCRA
7

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction
● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

We now begin the module by introducing the definitions and high-level
concepts of virtual prototyping and how a virtual prototype is defined.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 8

Copyright 1995-1999 SCRA
8

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Definitions

Virtual prototype
A virtual prototype is a computer simulation model of a
component or system. It does not refer to any particular model
characteristic but rather to the role of the model within the
design process; specifically it is applied to the role of:

❑ exploring design alternatives,
❑ testing for requirements satisfaction/correctness
❑ early removal of design errors through simulation,

correction, and regression testing
❑ early verification of software at the block functional level

and at more detailed levels

Virtual prototyping
Virtual prototyping is the activity of configuring (constructing)
and using (simulating) a computer software-based model of a
system or component to explore, test, and/or validate the
design, its concept, and/or design features, alternatives, or
choices.

This slide answers the questions of what is a virtual prototype and what
is the VP process. Virtual prototypes are used to explore design
alternatives at a number of levels in the design process. At the highest
levels, the choice of algorithms can be explored to find the best
algorithm that meets the functional requirements, while minimizing the
amount of computation. As lower levels are developed, possible
implementation architectures are explored to determine the most
effective solution that can implement the proposed algorithms (cost,
size, power, weight, etc.). After a specific architecture is chosen, virtual
prototypes of the hardware and the software can be co-simulated to
verify proper operation long before the actual hardware is created. In the
entire process, verification is done at each level to ensure that the
system requirements are being achieved.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 9

Copyright 1995-1999 SCRA
9

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Typical System Prototype
Development Phases

● Currently, there are “independent” activities with little
design or personnel continuity

● Communication is primarily through paper which results in
❍ High cost
❍ Low design efficiency
❍ Difficult support
❍ Loss of information through traversal between design stages

a, b, c, d, e, and f

Pre-concept
exploration

Concept
definition/

exploration

Demonstration/
validation
DEMVAL

Life cycle
support
upgrade

Production
Deployment

Engineering
Manufacturing

Development (EMD)

(a)(a) (b)(b) (c)(c)

(d)(d)(e)(e)(f)(f)

Phases of system development effort:

● Pre-concept exploration/feasibility

● Concept definition/exploration/design

● Demonstration of design validity

● Development

● Production

● Life cycle maintenance

There is little design continuity in the current practice, where
communication is done mainly through paper which results in higher
cost, lower efficiency, and difficult support mechanisms (i.e. legacy
upgrades).

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 10

Copyright 1995-1999 SCRA
10

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Need for Virtual Prototyping

● At earlier development phases, design
requirements and specifications primarily
captured in paper form

● A modeling methodology is required to capture
the design requirements and specifications in an
executable format

❍ Provides for early design verification through
simulation

❍ Helps remove requirements and specifications errors
earlier in the design process

The Virtual Prototype
provides this representation

Virtual prototyping provides a means for capturing information in an
executable form at the earlier design phases in the previous slide. This
provides a method to verify the design requirements and specifications
prior to commitment to actual hardware prototyping. It also provides a
method to remove errors in the design, prior to the final commitment of
the design to silicon (in the case of device modeling) or oversized
systems, where the number of processors used may be twice the
number actually needed (system sizing error). Through virtual
prototyping at various levels of component or system abstraction, the
most appropriate and error free design can be realized before
committing excessive resources.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 11

Copyright 1995-1999 SCRA
11

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Need for Virtual Prototyping
(cont.)

● SW design loop L2
depends on HW design
loop L1

● L1 can be slow and costly
due to HW fabrication and
test

● Virtual Prototyping
couples the HW and SW
design processes by
eliminating hardware in
the loop

● Reduces the L1 time and
initiates the L2 design
loop earlier in the design
process

Dependence between
HW and SW development

HW / SW
Partitioning

Interface
Design

HW design
and build

SW design
and code

HW/SW
Integration

L2L1

Current practice in HW/SW design/integration requires SW loop L2 to
depend on HW loop L1.

L1 can be slow and costly due to HW fabrication and test.

Virtual prototyping allows this codevelopment to occur concurrently
through the use of:

● VP’s of HW that can run SW or estimate the time-line of events of
SW running on a large system

● SW code generation from data flow graphs

● Rapid architecture selection trade-offs using performance models

● Evolving models that capture requirements with refining detail as
the design progresses

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 12

Copyright 1995-1999 SCRA
12

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Need for Virtual Prototyping
(cont.)

Example
ATR

Edge Detection &
pattern match on 16 bit data

i860’s - mesh based
multiprocessor

Control SW, application SW, Test SW,
Bus protocols, HW boards, HW/SW

integration, real-time operating systems
I/O device drivers, etc.

Design can be optimized at multiple levels of abstraction to meet customer requirements

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

HW/SW Architectural Design/Partitioning/Assign.

The VP process is a top-down design paradigm with optimization done
at multiple levels of abstraction. There are a number of slides in this
module that capture the essential flow of this design process, but in a
different format. In general, the first stage in any design process is the
correct definition of the requirements for the design. Once the
customer’s requirements have been understood, then the system design
team begins working on design specifications that attempt to satisfy all
the customers' requirements. In the above process flow, this represents
the algorithm definition and functional design stage. At this stage, the
algorithms used to implement the functions are refined. The size,
weight, area, and power constraints may also be refined as well. At this
point, initial computational complexity of the algorithms, as well as fixed-
point characteristics, are analyzed. As the process proceeds from the
top level, further refinement is done. At the data flow level, the
algorithms are refined and data flow graphs that implement the
functionality are explored. These data flow graphs are used in the
HW/SW architectural design phase, where the nodes in the flow graph
are either mapped to hardware or software. At this level in the process,
the hardware and/or software are sized to meet the requirements.
Timing critical information is captured such as latency, throughput, and
resource utilization. As more detailed design is done, the architectural
elements are either development as software modules or hardware
components (ASICs, Processors, etc.) At the end of the process, final
hardware and software are realized. At each stage in the process, the
design is verified and optimized to meet the customer’s requirements.

Each level captures critical design information appropriate to that level.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 13

Copyright 1995-1999 SCRA
13

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping Should
Provide the Following

● “Represent” the prototype during various stages
in system development process

● “Represent” the prototype at multiple levels of
abstraction in top-down design

● Allow optimization of design at multiple levels or
different stages

● “Document” the design for efficient upgrades
and support

● Be cost effective (time and dollars)

One must understand the attributes of the system
being designed to be able to “represent” it accurately

“Represent” = Modeling

Five key elements that VP must provide.

Each stage of the design has its own set of important attributes that
must be captured with the proper representation through modeling.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 14

Copyright 1995-1999 SCRA
14

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Embedded-System HW/SW
Design, Integration, and Test

Application
Software

Test
Software

Application SW Integration
& System Test

Applications Programming Interface
(API)

Real-time OS Device
Driver

Device
Driver

CPU
Board

CPU
Board

I/O
Board

I/O
Board

Control/Runtime
Software

Integration

Hardware
Integration

(COTS)

The VP process spans multiple levels and multiple user’s viewpoints.

At the lowest level of HW integration, we have HW design being done
and one would typically see the following being used:

● Full-behavioral/Interface and RTL level models of application
specific and COTS parts being modeled

● Interconnection between devices are tested

The next level integrates the OS SW and application interface to the
HW system. This is where one would see SW running on the HW VPs
to make sure the device drivers work as expected.

At the highest level, application and test code is integrated and tested at
the system level. Performance level models help determine the number
of processing boards required. Detailed-behavioral models help ensure
test SW can perform its functions at the node level. Executable
specification helps determine the application SW.

The VP process covers all these domains.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 15

Copyright 1995-1999 SCRA
15

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Taxonomies

● Resolution of
❍ Temporal detail
❍ Data value detail
❍ Functional detail
❍ Structural detail
❍ Programming detail

Source - Taxonomy Axes of Representation

Gajski and Kuhn:
Y-chart

Ecker: Ecker Cube

RASSP TWG
Taxonomy

Struct.
Rep.

Funct.
Rep.

Geom.
Rep.

Timing View Value

Timing Data
Value

Struct.
Res.

Funct.
Res.

State
Int/Ext

SW
Prog.
SW

Prog.

[Taxonomy98]Copyright © 1998 RASSP Taxonomy Working Group used with permission

This chart shows the various taxonomies used to describe digital
systems. The Gajski and Kuhn chart represented information about a
system along three axes: structural, functional, and geometrical. The
Ecker cube defined a system using three attributes; the timing
information contained within the system model, the view of the model,
structural, dataflow, or behavioral and the value representation of the
data within the system, e.g. bits, abstract data types, etc. This has
steadily been improved with the RASSP Taxonomy to include
programming information, timing, structural, functional, and data value
information.The RASSP taxonomy will be covered in more detail on later
slides.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 16

Copyright 1995-1999 SCRA
16

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Resolution of Common
Modeling Terms

System Level Modeling Terms
Mathematical equation level
Algorithm level
Performance level or network architecture level
Functional
BehavioralHardware Specific Terms

ISA
Full-functional or full-behavioral
Bus-functional or Interface-behavioral
RTL
Logic level
Switch level
Circuit level

Other Terminology
Behavioral model
Functional model
Structural model

Structural Hierarchy
DSP system level
Chassis level
Board level
Module level
Chip level
Cell level

Software Specific Terms
Data flow graph
DSP primitive
Subroutine calls
HLL source code lines
Assemble code
Micro code

[Taxonomy98]Copyright © 1998 RASSP Taxonomy Working Group used with permission

A number of terms has been bandied about for describing digital
systems at various levels of abstraction and a categorization of some of
the terms is shown in this slide. The five broad categories included
hardware specific terms, software specific terms, system-level modeling
terms, structural information descriptions, and other terminology that did
not fit into the other categories. Give the diverse set of terms used to
describe information within a design process, the RASSP taxonomy was
developed. Later slides will cover this in more detail.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 17

Copyright 1995-1999 SCRA
17

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VHDL Modeling Taxonomy

Independently Describe: 1) Resolution of INTERNAL (kernel) details

2) Representation of EXTERNAL (Interface) details

In terms of:

Temporal Resolution

High Res. Low Res.

High Res.

High Res.

High Res.

High Res.

Low Res.

Low Res.

Low Res.

Low Res.

Gate
Propagation (pS)

Clock Cycle
(10’s of nS)

Instr. Cycle
(10’s of uS)

System Event
(10’s of mS)

Bit
(0b01101)

Data Resolution

Value
(13)

Composite
(13,req,(2.33, j89.2))

Token

Functional Resolution

Digital Logic
(Boolean operations)

Algorithmic
(Bubble-sort procedure)

Structural Resolution

Structural
Gate netlist, I/O Pins

(Full implementation info)

Block diagram
Major blocks, composite I/O-ports

(Some implementation info)

Single block box

(No implementation info)

Micro-
code

Assembly
code

(fmul r1,r2)

HLL (Ada,C)
Statements

(i := i+1)

DSP primitive
Block-oriented

(FFT(a,b,c))

Major
modes

(Search,Track)
(Note: Low resolution of details = High level of abstraction

High resolution of details = Low level of abstraction

Programming Level

Enumerated
(Blue)

Mathematical
(W=R-1b)

Object-
code

(1001011)

[Taxonomy98]Copyright © 1998 RASSP Taxonomy Working Group used with permission

To represent what is meant by each level of the top-down design, we
need a method of capturing the information of the models.

Five axes are used to represent:

● Time

● Data

● Function

● Structure

● Programmability

Both internal and external behavior is represented.

For example, time can be represented from low to high resolution. At the
high level, we represent gates and at the low level purely functions (i.e.
no timing). See the taxonomy document (Taxonomy98) on clarification
of terms in the above scheme.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 18

Copyright 1995-1999 SCRA
18

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Model Classes

● Primary Model Classes
❍ Behavior
❍ Function
❍ Structure

● Specialized Model Classes
❍ Performance
❍ Interface
❍ Mixed-level

All models can be described in terms of one or more of the five primary
model classes. The specialized model classes describe models
intended for specific purposes that are not unique to a particular level of
abstraction.

A behavioral model describes function plus timing for a specific
implementation.

Functional models describe the function of a component or system
without describing a specific implementation.

Structural models represent the component or system in terms of the
interconnections of its constituent elements.

Performance models measure the quality of the design related to the
timeliness of the system in reacting to stimuli.

Interface models is a component model that describes the operation of
the component with respect to its surrounding environment.

Mixed-level models are a combination of models of differing abstraction
levels or descriptive paradigms.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 19

Copyright 1995-1999 SCRA
19

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Graphical Representation of
the Model Types using the

VHDL Taxonomy
Symbol Key

Model resolves information at specific level

Model resolves information at any of the levels spanned,
case dependent

Model optionally resolves information at levels spanned

Model resolves partial information at levels spanned, such
as control but not data values or functionality

Model does not contain information on attribute

Algorithm Model

The algorithm level of abstraction
describes a procedure for implementing a
function as a specific sequence of
arithmetic operations, conditions, and
loops

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

[Taxonomy98]Copyright © 1998 RASSP Taxonomy Working Group used with permission

Using the above key code and the previous representations, each
model level is described on the taxonomy chart.

For example, the algorithm level shows that:

● It does not contain information on time internally or externally.

● Data is represented at the functional level.

● The function is captured internally, there is no external interface
modeled.

● The structure is not defined.

● SW programmability is at the DSP primitive level (i.e., FFT, FIR,
etc.) i.e. Matlab.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 20

Copyright 1995-1999 SCRA
20

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Graphical Representation of
the Model Types using the

VHDL Taxonomy (cont.)
Behavioral Model

A behavioral model describes the function
and timing of a component without
describing a specific implementation

Functional Model

A functional model describes the function
of a component without describing a
specific implementation

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

[Taxonomy98]Copyright © 1998 RASSP Taxonomy Working Group used with permission

Behavior can be described as shown above. Note: Structure is not
maintained internally, which we will see in the ISA model presented
later. Timing, function, and data values can be modeled at any level and
is case dependent.

A behavior model can exist at any level of abstraction. Abstraction
depends on the implementation details.

Behavioral : (Behavior = Function with Timing) (Synonym : Interpreted
Model)

Functional models are not concerned with the temporal dimension and
can exist at any level of abstraction.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 21

Copyright 1995-1999 SCRA
21

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Graphical Representation of
the Model Types using the

VHDL Taxonomy (cont.)

Detailed-Behavioral Model
A detailed-behavioral model is a behavioral
model that describes the component’s
interface explicitly at the pin level. It
exhibits all the documented timing and
functionality of the modeled component,
without specifying internal implementation
structure.

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

Token-based Performance Model
Token-based performance models are
performance models of multi-processor
system architectures. It captures the
system performance associated with
response time, throughput, and utilization.

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

[Taxonomy98]Copyright © 1998 RASSP Taxonomy Working Group used with permission

Performance models measure the time effects of the system such as
throughput, latency, and utilization. A performance model can be written
at any level of abstraction.The token-based performance model is a
performance model of a multi-processor system’s architecture.

Detailed-behavioral models are a type of behavioral level model. The
structure at the external interface level is maintained. Internal structure
is typically not specified in detail and SW programmability can optionally
span any resolution but need not.This model type has traditionally been
called a full-functional model, however the newer term is preferred.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 22

Copyright 1995-1999 SCRA
22

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Graphical Representation of
the Model Types using the

VHDL Taxonomy (cont.)
RTL Level

An RTL model describes a system in terms
of registers, combinational circuitry, low-
level buses, and control circuits, usually
implemented as finite state machines

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

Gate Level

A gate-level model describes the function,
timing, and structure of a component in
terms of the structural interconnection of
boolean logic blocks

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

[Taxonomy98]Copyright © 1998 RASSP Taxonomy Working Group used with permission

RTL and gate level models specify more of the details of a design and
hence tend to be at the higher end of the resolution scales in all
categories.

The gate level model includes structure at the higher resolution.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 23

Copyright 1995-1999 SCRA
23

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary

● Virtual prototyping <=> Modeling of the HW/SW
system at one or more levels of abstraction to
facilitate design

● Each level of modeling has an associated goal, a
different level of fidelity, and a different speed of
simulation

● Simulation speed is inversely proportional to the
fidelity (e.g. as the fidelity increases the
simulation speed decreases)

Some important points should be considered before proceeding with the
specific topics. These include:

● VP implies the modeling of the HW/SW at one or more levels of
abstraction to facilitate design, not all stages need to be modeled. It
may be case dependent.

● Each level of model has its associated information it captures, a
different level of fidelity, and a different simulation speed.

● Speed is inversely proportional to fidelity as a general guideline.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 24

Copyright 1995-1999 SCRA
24

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process
● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

In this section, the traditional design process for large digital system
designs is presented. This information was obtained through extensive
interviews with defense contractors who design large digital systems
that typically contain a large amount of both hardware and software.
This section will give an overview of traditional design processes
including the hardware design process, the software design process, the
system architecture design process, and how integration of hardware,
software, and hardware with software is done. It concludes with an
illustration of the virtual prototyping design process and what elements
in the traditional design process are modified to improve hardware,
software, and architectural design.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 25

Copyright 1995-1999 SCRA
25

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Traditional Design Process

System Requirements Def.

Sys. Architecture Analysis.
6-12 months

25-49 months

6-12 months

HW Design SW Design

HW Manufacture &
 Test

SW Code & Test

HW/SW Integration
& Test

Field Test

Optional

Manufacturing
Planning

Documentation

Deliverables

Production &
Deployment

[Madisetti 94]

A traditional design process model is required as a baseline to help
assess the improvements afforded by the RASSP process.

The focus of the RASSP program is on signal processors consisting of a
few to hundreds of processing elements.

This diagram shows the time frames related to current practice, broken
down into various phases of development. These include:

● Architecture Analysis (6 to 12 months)

● HW and SW Design along with integration (25 to 49 months)

● Field prototyping and test (6 to 12 months).

These will be decomposed further in the following slides.

This chart follows a waterfall approach to design methodology which is
typical of traditional design processes.

The underlying concept of the waterfall process is a progression through
various levels of abstraction, or phases, with the intent of fully
characterizing each level before moving to the next.

 The following bad design practices tend to result from this processes:
● Limited use of concurrent engineering

● Solving wrong problems early in design process

● Inflexibility late in design process

● Significant rework and cost resulting from design flaws found late in the process

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 26

Copyright 1995-1999 SCRA
26

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Architectural Analysis

Tradeoff Studies

1-9 months

1-3 months

1-3 months

Systems Req.
Definition

Overall Arch.
Definition

HW Requirements SW Requirements

 TOOLS
Editors
Spreadsheets
RDD-100, RTM
F2D2

 TOOLS

VHDL Simulators
Performance Analysis

Optional Sensors &
Actuators
Choice of DSP
Algorithm

Mission Requirements (functional and form constraints
and goals - power, weight, volume, throughput,...)
Production Requirements (Manufacture/Test)
 -- Cost/Schedule
 -- methodology (HW, SW, test)

-- Operational Scenarios
-- Algorithm
-- Risk mitigation
-- Development Plan

B-5 Specifications
Interface Control Documents (ICD)

B-2 Specifications
Interface Control Documents (ICD)

Performance Model
Architecture
HW/SW Req. documents
Traceability Matrix
Development Plan
Simulation, test/stimulus
response
Sizing

Technology Assessment (Packaging ...)
Alternative approaches
COTS vs. Custom (Bus, Processors, protocols)
Bottlenecks and degradation
Scalability, fault tolerance

Operational Description
 -- environment, user, signal

Requirements
Analysis report
 -- Completeness report
 clarity, testability, compatibility
 meets operational scenarios
 -- Cost
 -- Traceability

[Madisetti 94]

The architectural analysis phase consists of, first, the study of the
requirements to verify the feasibility of the work to be performed and to
realize and estimate the cost of the design.

The next step is to define an architecture based on the requirements as
well as to perform tradeoffs to determine the best architecture for the
application.

Once an architecture is chosen, the application is then partitioned
between its HW and SW requirements.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 27

Copyright 1995-1999 SCRA
27

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
HW Design Process

HW Architecture Analysis

B-2 Specs Interface Control Documents (ICD)
Preliminary Hardware

Design (Make/Buy)

Preliminary Parts List
Preliminary Test Plan
Preliminary Block Diagram

Architecture Tradeoffs
Preliminary Function Partitioning
Make/Buy Decisions

2-3 months

 3 months

2-4 months

10-24 months

0-3 months

8-12 months

TOOLS
McDraw
Schematic editors

TOOLS
Mentor Board Station
Mentor DSP Station
Synopsys, Cadence
ASIC Design Suites
PCAD, LSI Logic Kits
Simulators
(Gate-Level & Behavioral)

TOOLS
Debuggers, emulators
Simulators, Test Simulators

8-12 months
Backplane Module/

Board
ASIC FPGA/PLD MCM

Microcode
Firmware

Procurement

Manufacturing/
Assembly

SW/HW
Integ. & Test

Mfg. Field
Test

Field TestFull Production Physical Conf Audit (PCA)
Functional Conf. Audit (FCA)

Post-layout simulations

Release Packages (drawings, BOM,
drill pkgs, auto-insertion, mill gerber files)
Production Test Vectors

Bonding Diagrams
Netlists

LRIP
(Limited Rate Initial Production)

Redesign

Rework

[Madisetti 94]

Upon completion of architectural analysis, both HW and SW design
begin. The HW design starts with the decision to make or buy parts to
solve the requirements handed down drom the previous stage. This can
take between 2 and 3 months.

Based on the decision to make or buy, HW design at the chip and board
level is initiated. This can include ASIC, FPGA, or COTS based design.
This stage can last from 8 to 12 months.

Certain chips may have to be procured if off-the-shelf, and ASIC
designs may require fabrication. Depending on availability, a time of 3
months is typical.

Upon HW design completion, integration with SW can begin. This is the
first time the HW meets the SW and is a likely location for errors to
occur. Errors at this stage can be costly and require long delays for
design flaws to be fixed.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 28

Copyright 1995-1999 SCRA
28

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SW Design Process

SW Architecture Analysis

B-5 Specs
Interface Control Documents (ICD)

Preliminary SW Design

CSCI

Block Diagram Descriptions
Communication Protocols
Pointers to Reuse Libraries

Preliminary SW Design/Model
Preliminary Test Plan
Preliminary Interface Design Document

Design, source code, and debug (CSU) CSC

CSC

CSC Integration and Test

CSCI Integration and Test

 3 months

HW/SW Integration & Test

Mfg. Field Test Field Test Full Production

Source Code Listing
SW Design Documents
SW Test Descriptions

SW Test Descriptions
Source Code Listing

 6-8 months

10 -24 months

0-3 months 6-12 months

TOOLS
Editors

TOOLS
Editors
Debuggers
Emulators
CASE

Updated Source Code
Software Test Report
Operation and Support Documents
Version Description Documentation
SW Product Specifications
CSCI Functional and Physical Conf. Audits

LRIP

ReworkRedesign

Detailed SW
 Design

[Madisetti 94]

CSCI=>computer software configuration item.

Specified in the B5 Spec. and mentioned in the MIL-STD-490A. The B5
Spec identifies the specifications applicable to the development of
computer software.

Preliminary SW design defines the types of code segments to be
represented by the SW and typically requires 3 months to complete.

The detailed SW design requires the generation of computer software
components (CSCs) and their integration and test.

The final test occurs when the HW is available. This is the point where
misunderstandings between the HW and SW developments appear.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 29

Copyright 1995-1999 SCRA
29

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Integration Plan

Hardware Design Software Design

 1-3 months

1-3 months

 8-18 months

Subsystem Integration
Plan

Subsystem Test Plan

Module-level integration & test
Backplane-level integration & test
Subsystem-level integration & test

Cost and product goals
Equipment delivery schedule
Schedule from HW/SW Design

Subsystem Integration Plan

Test Plan
Multiframe Test Plan
Frame Test Plan
Backplane Test Plan
Module Test Plan

Redesign/Rework

Functional;
Test Benches

B-2, B-5
Specs

To Mfg. Field Test
[Madisetti 94]

Integration occurs when the HW and most of the SW are ready. A plan
for integration must be created to guarantee sufficient coverage of the
HW and SW.

The actual integration and test can take from 8 to 18 months depending
on the number of design flaws and SW work-arounds required.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 30

Copyright 1995-1999 SCRA
30

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Top-down Design Process:
RASSP Approach

Top-down Design Flow - Mature (Fall 1996 - Winter 1997)

Application

Behavior
Test & Stimuli

Performance
Constraints

Virtual prototypes used throughout
process

Architecture
Definition

Automated -
Estimation-based
system exploration

Functional Design/
Area, Power Tradeoffs

Metrics, Software,
workflow analysis

Documentation and
life-cycle support

Preliminary HW/SW
Partitioning Allocation,
Scheduling, Assign

SRR PDR CDR TDR
SW Reuse
Libraries

SW Design
& Verification

Integ. & Simulation
based verification

Virtual HW
Design & Verif.

CoX

Automated

DFX

VIRTUAL PROTOTYPING

VHDL HW Model
Reuse Libraries

Interoperable Tool
Suites/Enterprise Int.

Compare
(partly auto.)

FAB
Manufact.
Assembly

Software

FIELD
PROTOTYPE

Evaluate
(Automated)

HW Modelers
Emulation Tools

Automated Metrics
Collection

Off-cycle updates

Off-cycle updates

[Madisetti 94]

This diagram illustrates the mature RASSP top-down design process
with no silicon in the in-cycle design loops; enterprise integration;
interoperable tool suites; automated metrics collection; and an additional
stage for rapid early algorithm, functional, architectural, and HW/SW
partitioning in an automated manner called conceptual prototyping.

HW and SW verification is done earlier in the design process.

Conceptual Prototyping replaces the current manual HW/SW
partitioning typical today.

The significant differences from the traditional design processes include:
● There is no HW fabrication, assembly, and test in the in-cycle design loop until

after a large amount of hardware and software verification is done using virtual
hardware

● Late binding of HW allows the design product to be state-of-the-shelf

● Extensive use of Conceptual and Virtual Prototyping guarantees first-time
success

● Design reuse and the population of libraries are to support reuse

● Use of enterprise integration between design tools promotes design portability
and standardization.

● This process uses extensive automation.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 31

Copyright 1995-1999 SCRA
31

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process
● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

The next topic discussed is the virtual prototyping process and the steps
used to define the top-down design methodology. In this section, top-
down design is discussed. Virtual prototyping is shown to be a top-down
design process where models are used to refine the implementation
until actual hardware and software are integrated into a final system.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 32

Copyright 1995-1999 SCRA
32

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Stages in the Virtual
Prototyping Design Process

[LMC-Meth]

Model Year
Architecture

System
Design

Architecture
Design

Detailed
Design

Reuse Library

Library Population

Reqmts
Analysis

Functional
Analysis

Functional
Design

HW

SW

HW

SW

HW

SW

Architecture
Selection

Architecture
Verification

Algorithmic
Primitive

Development

OS Services
Primitive

Development

Architecture/
HW Model

Development

To dramatically improve the process by which complex digital systems
are specified, designed, documented, manufactured, and supported
requires a signal processing design methodology that recognizes a
number of application domains. A key element to implement this
methodology is a Model Year Architecture approach that adheres to a
specific set of principles which include:

The architectures must be open to promote HW/SW upgradability and
reusability in other applications:

● The architectures must use emerging, state-of-the-art commercial
technology whenever possible.

● The architectures must support a wide range of applications to
maintain low non-recurring engineering (NRE) and recurring
engineering (for design changes later in the process) costs.

● The architectures must facilitate continuous product improvement
and substantial life-cycle-cost (LCC) savings in fielded system
upgrades.

● The Model Year Architecture(s) (MYA) must be supported by the
necessary library models to facilitate trade-offs and optimizations
for specific applications. Reusable HW and SW libraries facilitate
growth and enhancement in direct support of the model year
concept. The notion of model year upgrades is embodied in the
reuse libraries and the methodology for their use. As technology
advances, new architectural elements may be included in the
library. Rapid insertion of a new element into an existing, RASSP-
generated design is the goal of the Model Year concept.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 33

Copyright 1995-1999 SCRA
33

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Virtual Prototyping Design

Process and Model
Abstractions

System Req.

Arch Indep. Model

HW Perf. Model SW Perf. Model

Abstract Beh.-level
Model

ISA/RTL Model

Arch. Depen. Model

Gate-level Model

Prototype HW

Source Code

HOL
Assembly

Load Module

L
I
B
R
A
R
Y

S
I
M
U
L
A
T
I
O
N

Virtual Prototype
Algorithm Model

Token-Based
Perf-Level

ISA/RTL/
Gate Levels

[LMC-Meth]

S
eam

less flo
w

 o
f d

ata an
d

 d
esig

n
 in

fo
rm

atio
n

Executable
Requirement

Abstract
Behavioral

Level

Detailed
Behavioral

Level

The virtual prototyping (VP) design process is based on true HW/SW
codesign and is no longer partitioned by discipline (e.g. HW and SW),
but rather by levels of abstraction represented in the system,
architecture, and detailed design processes. The above figure shows
VP as a library-based process that transitions from architecture
independence in the systems design process to architecture
dependence in the architecture process.

Various levels of virtual prototypes are generated throughout the design
process. The first is output from the systems process, where an
executable specification is generated, the architecture process
generates two more with increasing detail and verification. The final
prototype is created before HW/SW sign-off and full system verification
is done at the RTL and gate levels with application and test SW running
on the prototype. The design flow is seamless with models being
interoperable at each stage and data flowing down from the top can be
used for verification at each abstraction level.

The design flow is captured by workflows by a design manager.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 34

Copyright 1995-1999 SCRA
34

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Top-down Design

● Where to begin ?
❍ Digital system design

is an under-constrained
problem

❍ Many potential
problems

● What comes first ?
❍ Abstract to concrete
❍ General to specific
❍ Breadth first vs. depth

first
❍ Defer details until

appropriate

Focus of attention
Abstract

Concrete

General

Specific

D
et

ai
l

Design Space

[Hein95B]

Top-down design is the process of moving from the abstract to the more
concrete, looking at the general initially, while moving toward the more
specific as the design progresses, and focuses on attention on a large
design space early in the process and moves to a single implementation
at the end of the design. The goal is to have a final implementation that
meets the original requirements.

Digital system design is an under-constrained problem so the design
space is large.

VP is a top-down design process so the objective is to explore as much
of the design space in the beginning where the details of the design are
abstract. Breadth first vs. depth first.

As the design evolves, the focus is placed on one or a small number of
design candidates until the final design is determined.

The process should also reduce the risk of poor designs, those that do
not meet the customers final requirements, so a breadth first focus
initially should analyze multiple design alternatives, settling on one that
optimizes or nearly optimizes the design constraints.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 35

Copyright 1995-1999 SCRA
35

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping (VP) as a
Top-down Design Paradigm

● Multiple Levels within
the process

● Complete model for the
system at various levels
of abstraction

● Commitment to HW after
design checked with
models

● Refinement process
starting with the
functional description
and proceeding to
detailed HW and SW
design

Algorithm
Development

Hardware
Development

Virtual
Prototyping

Process

High-level
Behavioral

Model

Performance
Model

Fully
Functional

Model

Detailed
Implementation

Model

Software
Code

Development

Dataflow

Schematics

Software

Tasks

Application

Software

Application

Software

[Myers95]

SW at
the function

definition
level

Virtual Prototype
Algorithm Model

Token-Based
Perf-Level

Detailed
Behavioral

Level

ISA/RTL/
Gate Levels © IEEE 1995

The virtual prototyping process can be looked at using the top-down
design paradigm. The modeling begins with a functional description and
proceeds through refinements to produce HW and SW. The refinement
process produces models for functional description, system
performance, system detailed behavior, and detailed system design.

VHDL can be used in all phases of the process and is a single-language
solution capable of capturing the entire flow.

Functional Modeling: Produces a dataflow model as a set of
interconnected sub-functions.

Performance Modeling: Examines candidate architectures for trade-offs
in both HW/SW partitioning by measuring time-related system
parameters such as latency, throughput, and utilization.

Detailed Behavioral Modeling: Provides a model that is both functionally
correct and exhibits the functional and performance characteristics of
the devices being modeled. (Used for COTS components in the system;
i.e., Processor models, bus models, memory devices, etc.)

Detailed Implementation Models: Provide sufficient details of the device
to determine the exact implementation of the components. (Used for in-
house designs but not COTS components.)

Test data using the same interface format can be passed down the
design process for verification.

Software can also follow the top-down design process, where in the
early stages, functional breakdowns are designed and at later stages,
actual code is developed.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 36

Copyright 1995-1999 SCRA
36

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping Levels
in the VP Process

● Algorithm Models
❍ Capture requirements specification in an executable

format
❍ Estimate processing time for the functions
❍ All functions are implementation-independent

● Token-Based Performance Models
❍ Initiate architectural trade-offs
❍ Allocate processing requirements to hardware and/or

software
❍ Verify hardware and software partition via simulation of

performance models

The systems process captures customer requirements and converts
them into processing requirements (functional and performance). The
requirements are captured in the appropriate tool and are translated to a
set of simulatable functions referred to as the executable specification.
This constitutes the algorithm type models developed in the virtual
prototyping process.

Token-based performance models are used in the architecture selection
process. At this stage, trade-offs are initiated between candidate
architectural alternatives, e.g. HW/SW partitioning tradeoffs. The
system-level processing requirements are allocated to hardware and/or
software functions. Simulation is performed on these candidate
architectures using VHDL performance models.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 37

Copyright 1995-1999 SCRA
37

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping Levels
in the VP Process (cont.)

● Detailed Behavioral Models
❍ Verify architecture alternatives with detailed behavioral

descriptions of hardware
❍ Generate code to run on processors
❍ Verify all software running on virtual hardware
❍ Utilize mixed levels of simulation depending on required

efficiency and available resources/models

● RTL/ISA/Gate Models
❍ Verify detailed designs of both the software and

hardware elements
❍ Utilize RTL/gate-level models, hardware modelers,

emulation boards, etc., where necessary
❍ Output of this level is hardware layouts, net lists, test

vectors, software design, etc.

Abstract and detailed behavioral modeling in the virtual prototyping
process involves the verification of a select number of candidate
architectures chosen after completion of the token-based performance
modeling stage in the process. At this stage, mixed-level models at the
performance and behavioral levels are used to verify the performance of
the architectural candidates. Code is generated to run on the processing
elements and the final prototype will verify the code. This is the first
stage where software touches the hardware.

ISA/RTL/Gate model prototypes are generated when a final design is
chosen from the previous stage. This design is verified at the detailed
level using technologies such as hardware modelers, ISA/RTL/Gate-
level models, hardware emulators, etc.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 38

Copyright 1995-1999 SCRA
38

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations mf VP
● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

When we discuss virtual prototyping, there are various levels of
abstraction used to describe the model we use to represent the system.
This section presents some of the possible abstraction levels commonly
found in virtual prototyping.

Virtual prototyping using VHDL has some limitations that will also be
presented.

In this short section, we introduce some common abstraction levels
used when describing models of components or systems using VHDL.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 39

Copyright 1995-1999 SCRA
39

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Abstraction Levels of
VHDL Models

● Functional
❍ Describes the functional characteristics of a component or

system without timing information and without a specific
implementation

● Behavioral
❍ Expresses both function and timing characteristics of a

physical unit without describing a specific implementation
❍ VHDL Processes commonly used in this type of model to

capture the function and timing information

● Dataflow
❍ A dataflow graph describes an application algorithm in terms

of its inherent data dependencies
❍ VHDL Signal assignment statements are commonly used to

compute the output signal values directly from input signal
and can represent dataflow dependencies

The virtual prototyping process incorporates models with varying levels
of abstraction. The generally accepted levels are listed above and on
the next slide. The RASSP working group’s taxonomy [taxonomy98]
maintains an up-to-date listing of the various terms.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 40

Copyright 1995-1999 SCRA
40

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Abstraction Levels of
VHDL Models (cont.)

● RTL (Register Transfer Level)

❍ Describes the design in terms of registers, combinational
circuitry, low level buses, and control circuits

● Structural

❍ Representation of a system in terms of interconnections of a
set of components

● Refer to [Taxonomy98] for definitions of VHDL
related items

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 41

Copyright 1995-1999 SCRA
41

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Models used in the Virtual
Prototyping Process

● Functional and behavioral models useful for
algorithm descriptions and executable specs.

● Performance models (Token-based) use high-
level abstractions (abstract behavior) to perform
architecture selection trade-offs

● Detailed-behavioral models recommended for
use in detailed modeling of large systems

❍ Simulation times improved over RTL/Gate models
❍ Development time faster
❍ Fidelity is sufficient for system-level test

● Mixed-level models are useful when RTL or gate-
level models currently exist

❍ Combination of behavioral, dataflow, RTL, and structural
❍ For custom or semi-custom designs; RTL, dataflow, and/or

structural representations recommended for fidelity

Detailed-behavioral and interface models are the most common type
used in system-level virtual prototyping when COTS parts are being
modeled.

RTL and dataflow models are the preferred level of model when custom
designs are used in a virtual prototype. At this level most synthesis tools
can generate the logic required to perform the function.

Structural models are used to connect all the components of the virtual
prototype.

The case study at the end of this module uses the following types of
models: Behavioral models for COTS parts, RTL/Dataflow-level models
for custom parts, and the structural model to tie the system together.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 42

Copyright 1995-1999 SCRA
42

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Limitations of VP with VHDL

● Cost for more detailed modeling
● Crosstalk
● Noise
● Ground bounce
● Capacitive loading
● Impedance mismatches
● Device failures
● Transmission line effects
● Electro-magnetic Interference
● Parasitics

[Lockheed95]

Not all system behavior can be modeled with VHDL or simulation time
becomes prohibitively expensive. Some of these system behaviors are
listed above.

Lower-level modeling tools such as SPICE can be used to model these
effects. However, at the system level, enough time is consumed in
simulation by the high-level models without the additional expense of
simulating these device characteristics. Good design practices can
reduce the impact of most of these effects.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 43

Copyright 1995-1999 SCRA
43

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement
● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

This section will cover the area of executable requirements. Executable
requirements represent the traditional paper requirements in a form that
can be simulated on existing computer-aided design tools. In this
section, the role of the executable requirement is described and it is
shown how the requirements of a design can be captured for a simple
example using VHDL as the modeling language.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 44

Copyright 1995-1999 SCRA
44

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Executable Requirement

❍ Executable requirement overview

❍ Executable requirement example

First, an overview of executable requirements is presented followed by
an example that uses VHDL as the modeling language.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 45

Copyright 1995-1999 SCRA
45

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Virtual Prototyping

Process:
Executable Requirements

Example
ATR

Edge Detection &
pattern match on 16 bit data

i860’s - mesh based
multiprocessor

Control SW, application SW, Test SW,
Bus protocols, HW boards, HW/SW

integration, real-time operating systems
I/O device drivers, etc.

Design can be optimized at multiple levels of abstraction to meet customer requirements

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

HW/SW Architectural Design/Partitioning/Assign.

The VP process is a top-down design paradigm with optimization done
at multiple levels of abstraction. There are a number of slides in this
module that capture the essential flow of this design process but in a
different format. In general, the first stage in any design process is the
correct definition of the requirements for the design. Once the
customer’s requirements have been understood, then the system design
team begins working on design specifications that attempt to satisfy all
the customers requirements. In the above process flow, this represents
the algorithm definition and functional design stage. At this stage, the
algorithms used to implements the functions are refined. The size,
weight, area, and power constraints may also be refined as well. At this
point, initial computational complexity of the algorithms as well as fixed-
point characteristics are analyzed. As the process proceeds from the top
level, further refinement is done. At the data flow level, the algorithms
are refined and data flow graphs that implement the functionality are
explored. These data flow graphs are used in the HW/SW architectural
design phase, where the nodes in the flow graph are either mapped to
hardware or software. At this level in the process, the hardware and/or
software are sized to meet the requirements. Timing critical information
is captured such as latency, throughput, and resource utilization. As
more detailed design is done, the architectural elements are either
development as software modules or hardware components (ASICs,
Processors, etc.) At the end of the process, final hardware and software
are realized. At each stage in the process, the design is verified and
optimized to meet the customer’s requirements.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 46

Copyright 1995-1999 SCRA
46

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Executable Requirements

● Top-level requirements are generally driven by the
customer and can be captured in an executable form using
VHDL

● Removes ambiguity associated with written specification
for those portions of the requirements that can be made
executable

● Provides information on required
❍ Signal transformations (FFT, etc.)
❍ Data formats (coding, etc.)
❍ Modes of operation (track, search, etc.)
❍ Timing at data and control ports (input rate, etc.)
❍ Test capabilities (% fault coverage)
❍ Implementation constraints (size, weight, etc.)

● Provides human readable source code and test data

The executable requirements are in an executable format to help
remove ambiguity in the associated written specification. It provides
information on the types of signal transformations to perform, the data
formats to be used at important interfaces, modes of operation of the
system, timing of data and control at the interface ports, the types of test
capabilities to be employed by the system, and implementation
constraints contained in the specification.

The source code is provided to clarify any misinterpretations in the
requirements. Test data is provided to help verify performance of the
system as it evolves through the design process.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 47

Copyright 1995-1999 SCRA
47

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Requirements
(cont.)

● Composed of the model
under test and its
corresponding test bench

● Data and control
information passed to and
from the model under test

● Developed code using
fully IEEE Std 1076-1987
compliant VHDL

[Anderson94]

Model under
Test

Test Bench

Data
Control

In general, all executable requirements contain 2 main entities, the test
bench and the model under test.

The focus of the executable requirements is on the test bench which will
be used throughout the refinement process of design. The test bench
captures the requirements of the environment for which the component
or system will function. It applies the stimuli (control and data) that the
model under test shall respond to correctly and captures the responses
of the system to compare its behavior with expected responses.

Goals of both are presented next.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 48

Copyright 1995-1999 SCRA
48

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Goals of Model Under Test in the
Executable Requirements Stage

● Accept data in the format of the external stimuli
to the system

● Create output data in the specified format

● Model timing at the data input and output ports

● Model processing latency

● Model control modes

● Perform any algorithm processing with at least
the accuracy specified in the system requirement

This slide presents the goals of the processor model simulation. It
accepts data in the format of the external stimuli to the system, creates
output data in the required format of the output elements that will be
connected to the device or system, models input and output timing as
required by the specification, simulates the amount of processing
latency expected by the system, models all control modes of operation,
and performs any processing algorithms with at least the accuracy
specified in the system requirement.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 49

Copyright 1995-1999 SCRA
49

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Goals of the Test Bench

● Control the target model under test from disk
files with commands and setup data

● Read input files from disk and transform the
input data format into the target system input
format and send the data to the system

● Measure processor latency

● Do a comparison between model under test
output and comparison data in disk files

● Write output data to disk files

The test bench controls the model under test using commands and
setup data read from disk files. Input data is modeled using disk input
files and the data read from the files is transformed into that required by
the model under test. The test bench also monitors responses of the
system under test. The processor latency and algorithmic
transformations are computed and written to disk files and compared
with expected results based on the specification.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 50

Copyright 1995-1999 SCRA
50

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example of an Executable
Requirement

● Code Excited Linear
Prediction (CELP) speech
coding system

● Compute the linear
prediction model for a
segment of speech
samples

● Frame size is 240 samples
with 12 bit resolution
minimum

● Frame rate is 1 frame every
30ms

● Speech sampled at 8 KHz
● Use hamming weighted

window on input data

Speech
Data

Linear
Prediction

Coefficients• Window Data
• Compute prediction

coefficients

Signal Processor Model

Test Bench Model
• Read speech data

from file
• Send to processor

every 30 mS in
correct format

• Read results from
processor

• Compare results
with expected data

Control

This example will be used to illustrate how an executable requirement
may be specified in executable form. It will also be used in the following
two sections on executable specification and data flow modeling.

This is a simple example for illustrative purposes only. Speech is
sampled at 8 KHz and input to a signal processor in frame sizes of 240
samples representing 30 ms of speech data. The processor windows
the speech data using a hamming window function and calculates the
linear prediction model for each of the speech segments. The equations
for the hamming window and the linear prediction algorithm are
presented in a later slide contained within the executable specifications
section, where algorithm analyses are performed.

The test bench inputs data to the signal processor and monitors its
outputs. The test bench reads its speech data from a file and outputs
the linear prediction coefficients to a file after the processor has
completed its computations.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 51

Copyright 1995-1999 SCRA
51

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Signal Processor Entity

ENTITY SignalProcessor IS
GENERIC (LP_ORDER : INTEGER := 10);
PORT (--

-- SpeechType can be an array of 240 integers
-- or an array of 240-12 bit data values. Integer is
-- more efficient for simulation. lp_coeffType is an array
-- of real numbers.
--
data : IN SpeechType;
lpCoef : OUT lp_coeffType;
--
-- “start_processor” is the control line from the test bench
-- telling the processor when to begin computing
--
start_processor : IN OnOffType;
start_read : OUT OnOffType);

END SignalProcessor;

Control
Information

Data

This is the entity description of the signal processor. Since the
processor is a linear prediction computational engine, the linear
prediction (LP) order is passed as a generic. The ports used for input
and output to the processor include its data and control lines. The data
lines consist of 240 samples of speech data in the format “SpeechType”
and the output data are the LP coefficients. The control input information
indicates when the processor starts computing the coefficients and the
output control line indicates to the test bench when to read the results.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 52

Copyright 1995-1999 SCRA
52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Signal Processor Architecture

ARCHITECTURE signal_proc_behavior OF SignalProcessor IS
TYPE window_array_type IS ARRAY (0 to data’LENGTH -1);
CONSTANT window_size_real : REAL := real (data’LENGTH);

BEGIN
Compute: PROCESS (start_processor)

VARIABLE first_time : BOOLEAN := FALSE;
VARIABLE window_coeff : window_array_type;
VARIABLE windowed_data : window_array_type;
VARIABLE gamma, lp_coeff : lp_coeffType;
VARIABLE autocorr : corr_lags_type;

BEGIN
IF (start _processor= ON) THEN

if (first_time = FALSE) THEN
-- Calculate the window coefficients for hamming window in "double" precision
hamming_wgts (window_size_real, window_coeff);
first_time := TRUE;

END IF;
-- Window the data using the coefficients calculated
window_data (window_coeff, data, windowed_data);
-- Do the autocorrelation of this data set
corr (windowed_data, autocorr);
-- Do L-D Recursion to finds all the prediction coefficients excluding lp_coeff(0) = 1
levinson_durbin (autocorr, gamma, lp_coeff, LP_ORDER-1);
lpCoef <= lp_coeff AFTER 30 ms;
start_read <= ON AFTER 30 ms, OFF AFTER 30 ms + default_delay;
wait for 0 ns;

END IF;
END PROCESS Compute;

END signal_proc_behavior;

Window
Data

Find
Autocorrelations

Levinson-
Durbin

Recursion

Sensitivity
Item

Write Data
to Testbench

The architecture describing the functionality of the signal processor is
shown above. It consists of one process executed in zero time and
sensitive to the “start_processor” signal from its input port. When it
receives this signal, the speech data is assumed to be present and the
processor begins calculating the LP coefficients. It calls a sequence of
procedures to perform the necessary functions (window_data, corr,
levinson-durbin). When it has finished, it puts the results on the lpCoef
lines and sets the trigger to the testbench.

Procedural calls are used to perform functionality.

Results are put on output lines after the maximum specified delay time.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 53

Copyright 1995-1999 SCRA
53

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test Bench Entity

ENTITY TestBench IS
PORT (--

-- SpeechType can be an array of integers
-- or an array of 12 bit data array. Integer is
-- more efficient. lp_coeffType is an array
-- of real numbers.
--
data : OUT SpeechType;
lpCoef : IN lp_coeffType;
--
-- “start_processor” is the control line from the test bench
-- telling the processor when to begin computing
--
start_processor : OUT OnOffType;
start_read : IN OnOffType);

END TestBench;

Control
Information

Data

This is the entity description of the test bench for the signal processor.
The ports used for input and output to the test bench include its data
and control lines. The output data lines consist of 240 samples of
speech data in the format “SpeechType” and the input data are the LP
coefficients. The control input information indicates when the test bench
starts reading the coefficients and the output control line indicates to the
processor when to start processing the data sent by the test bench.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 54

Copyright 1995-1999 SCRA
54

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test Bench Architecture

ARCHITECTURE test_bench_behavior OF TestBench IS
TYPE window_array_type IS ARRAY (0 to data’LENGTH -1);
SIGNAL start_data : OnOffType := OFF;

BEGIN
Start: PROCESS

VARIABLE start : OnOffType := ON;
BEGIN

IF (start = ON) THEN
start_data <= ON, OFF AFTER default_delay;
start := OFF;

END IF;
END PROCESS Start;
Test_bench: PROCESS (start_read, start_data)

VARIABLE data_in : window_array_type;
 VARIABLE in_line : LINE;

 FILE input_data : text is in "DATAFILE.in";
FILE output_data : text is out "DATAFILE.out";

BEGIN
IF (start_data = ON or start_read = ON) THEN

-- Load a block of data of data'HIGH samples
i := 0;
while ((NOT ENDFILE (input_data)) and

(i <= data'HIGH)) loop
readline (input_data, in_line);
read (in_line, data_in(i));
i := i+1;

end loop;
data <= data_in;

start_processor <= ON, OFF AFTER
 default_delay;

IF (start _read = ON) THEN
-- Write the results to a file for
-- later processing
for i in lpCoef'RANGE loop

write (in_line, lpCoef(i));
writeline (output_data, in_line);

end loop;
END IF;
wait for 0 ns;

END IF;
END PROCESS Test_bench;

END test_bench_behavior;

Sensitivity
List

Read data
from file

Send to processor

Write results
to file

This is a possible architecture for the given test bench. It contains two
processes, one to start the reading of data at time zero and the second
to read and store data at the appropriate times in the future. The data is
read from a file in the form of 12 bit speech samples. It is then sent to
the processor by assigning it to the signal “data” and setting the trigger
signal “start_processor”. The results are stored at the end of the routine
when the “start_read” signal is set to ON.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 55

Copyright 1995-1999 SCRA
55

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Executable Requirements
Laboratory (M30_Lab_A)

● This experiment will specify and simulate a simple interface from a sensor
device to a processor and from a processor to a display unit. The sensor
collects data at a specified rate and passes it over a 32-bit bus to the
processor at another specified rate. The processor computes the FFT and
sends output to the display device.

❍ The sensor will be modeled as a file that is read at a specified rate (in this case it
will be at 5 MW/s where a word is 32 bits and the word contains 2 16-bit data
values read from an A/D converter)

❍ The data interface requires data to be sent to the processor in the same 32 bit
format but at a 20 MHz rate

❍ The sensor will begin collecting data when a read_data signal becomes active
and will try to send data to the processor when it’s data buffer becomes full

❍ The role of the processor in this lab will be to buffer the data into two data
arrays.

❍ FFT processing in this laboratory will be modeled by a simple delay
❍ Data will be written to an output port of the processor at the 20 MHz rate. In this

experiment, the data will be converted to 32 bit floating point format and written
to the output port.

❍ We specify the latency delay of the processor to be 20 us and the accuracy to be
such that it produces no more than a -35 dB noise floor

❍ A comparison mechanism will be built into the test bench so that the output
results can be compared with known good data

● The lab write-up can be found on the CD-ROM in the M30 subdirectory
and is part of the “Requirements and Specifications” module

The executable requirements laboratory is a supplementary part of
module 30, “Requirements and Specifications”. Since virtual prototyping
can model a system or component at any level of abstraction, the
executable requirements laboratory was done in VHDL and is
representative of how requirements can be captured in a simulation
language.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 56

Copyright 1995-1999 SCRA
56

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Executable Requirements

Laboratory Exercise
(M30_Lab_A)

Sensor Display

15:0031:16

16 bit in-phase (I) data samples
from A/D converter

16 bit quadrature-phase (Q)data samples
from A/D converter

File
I/O Buffer

File
I/O Buffer

Buffered I and Qdata arrays
2 at 512 words x 16 bits

FFT Processor
Latency delay of 20 us
and noise specification

Clock
@ 5 MHz

32 bit

@ 5 MW/s
data word

32 bit

@ rising edge

data word

of 20 MHz
2 phase clock Known

Golden
Results

32 bit data word
Integer valued

@ 20 MHz rate

Input Buf. Full

on rising edge
of 2 phase clock

Input Data Word Format

of -35 dB

read_data
write_data

Output Buf. Full

20 MHz 2-phase clock

This figure illustrates the requirements for this laboratory. The complete
write-up for the lab can be found in the M30 directory of the CD-ROM. It
is in Word and PDF format and should be allotted approximately three
hours for completion. The laboratory exercise has the student step
through the modeling of system requirements. The same test bench is
used in subsequent laboratory exercises for executable specifications.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 57

Copyright 1995-1999 SCRA
57

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Additional CD-ROM Material on
Executable Requirements

● Module 30 provides a detailed account of
executable requirements and specifications

❍ This module can also be found on the CD-ROM

● Application note on executable requirements and
specifications modeling can also be found on the
CD-ROM

❍ See the section on Application notes to obtain this
information

❍ “RASSP Definition and Role of Executable Requirement
(ER-SPEC) and Design (ED-SPEC) Specifications
Appnote”

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 58

Copyright 1995-1999 SCRA
58

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification
● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

The next section will investigate the role of the executable specification
that is created by the system developer in response to studying the
requirements and executable information sent by the contractor. In this
section, the role of the executable specification is described and it is
shown how the specifications of a design can be captured for a simple
example using VHDL as the modeling language. The executable
specification primarily focuses on the system model and not the test
bench. The executable requirements model focuses more on the test
bench because it’s role is to capture the customer’s requirements while
is concerned less of how the designers meet these requirements. The
executable specification represents the first attempt at an
implementation and serves as a guideline for further design refinements.
It can be used to generate golden data as the design progresses.
Comparisons can be done between later design refinements and the
original executable specification in order to verify that the design is
implementing the designers original intent.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 59

Copyright 1995-1999 SCRA
59

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Executable Specification

❍ Executable specification overview

❍ Executable specification example

The executable specification evolves with the overall design process.
This section will start with an overview of executable specifications and
then focus on a short example that captures some of the details of the
executable specification.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 60

Copyright 1995-1999 SCRA
60

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Virtual Prototyping

Process:
Executable Requirements

Example
ATR

Edge Detection &
pattern match on 16 bit data

i860’s - mesh based
multiprocessor

Control SW, application SW, Test SW,
Bus protocols, HW boards, HW/SW

integration, real-time operating systems
I/O device drivers, etc.

Design can be optimized at multiple levels of abstraction to meet customer requirements

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

HW/SW Architectural Design/Partitioning/Assign.

The VP process is a top-down design paradigm with optimization done
at multiple levels of abstraction. There are a number of slides in this
module that capture the essential flow of this design process but in a
different format. In general, the first stage in any design process is the
correct definition of the requirements for the design. Once the
customer’s requirements have been understood, then the system design
team begins working on design specifications that attempt to satisfy all
the customers requirements. In the above process flow, this represents
the algorithm definition and functional design stage. At this stage, the
algorithms used to implement the functions are refined. The size,
weight, area, and power constraints may also be refined. At this point,
initial computational complexity of the algorithms as well as fixed-point
characteristics are analyzed. As the process proceeds from the top
level, further refinement is done. At the data flow level, the algorithms
are refined and data flow graphs that implement the functionality are
explored. These data flow graphs are used in the HW/SW architectural
design phase, where the nodes in the flow graph are either mapped to
hardware or software. At this level in the process, the hardware and/or
software are sized to meet the requirements. Time critical information is
captured such as latency, throughput, and resource utilization. As more
detailed design is done, the architectural elements are either developed
as software modules or hardware components (ASICs, Processors,
etc.) At the end of the process, final hardware and software are realized.
At each stage in the process, the design is verified and optimized to
meet the customer’s requirements.

This slide illustrates the focus of the current section: Executable
specifications

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 61

Copyright 1995-1999 SCRA
61

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Executable Specification

● Top-level executable specification is the output
of the systems design phase

● Captures three general categories of information
❍ Timing/Performance (e.g. processing latency,

throughput, I/O timing)
❍ Function (e.g. algorithms, control strategies)
❍ Physical constraints optionally captured (e.g. size,

weight, power, cost, reliability, maintainability,
testability, scalability, temperature, vibration)

● VHDL is applicable for conveying behavior
(function+timing), and performance information

❍ Abstract and detailed behavioral model can be used

● Generate VHDL test bench and system model
❍ Test bench provides test procedures, stimuli, and

expected responses to system model

The top-level executable specification is considered the initial virtual
prototype in the design process. It is the output of the systems design
phase and captures three general categories of information, timing/
performance, function, and possibly some physical constraints. VHDL is
a suitable language for conveying this information due to its expressive
nature and ability to model behavior at many levels of abstraction.
Associated with the virtual prototype at this level is its test bench and
system model. The test bench provides test procedures, stimuli, and
expected responses to the system model behavior and is usually written
prior to development of the system model to serve as an executable
requirement for the given design specification. By executing these
requirements with the actual design, the design specification can be
tested for proper behavior.

The test bench developed as part of the requirements phase can be
used in this phase to test the specification.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 62

Copyright 1995-1999 SCRA
62

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Systems Definition Process
Requirement Refinement Phase

[LMC-Meth]

Customer
Requirements

System Req.
Analysis &
Refinement

Functional
Analysis

System
Partitioning

• capture requirements
• derive additional req.
• define signal proc. req.

size, weight, power, etc.
• define additional req.-

interfaces, initialization,
diagnostics, etc.

• develop functional flows
• simulate functions and timing
• perform traceability of

behavioral partitions w/
requirements

• identify primitive developments

• allocate requirements &
functions

• identify interfaces
• develop subsystem

specifications
• perform risk analysis
• perform traceability

Engineering

Manufacturing

Life Cycle Support

Back annotation of key subsystem parameters

Requirements
Refinement

The systems definition process is comprised of three main functions; system
requirements analysis and refinement, functional analysis, and system partitioning.

System requirements analysis captures the requirements in a tool such as RDD-100,
derives additional requirements required for system design, defines signal processing
requirements (size, weight, power, etc.), and non-signal processing requirements
(interfaces required, initialization, diagnostics, etc.).

Functional analysis is designed to identify the functions, decompose the functions into
requirements, and allocate these requirements to lower-level functions. The functional
analysis process describes the requirements as a set of verifiable (simulatable)
statements that can be used as a basis for systems design. Functional block diagrams
are created that are used by subsequent processes to create and evaluate system
configurations.

System partitioning takes the functions from the functional analysis and allocates them
to entities within candidate configurations (at the subsystem level). It also allocates
constraints to the candidate configurations and identifies interfaces required. The
output of system partitioning is a set of functional, performance, and physical
requirements for each subsystem in the baseline configurations. Performance
verification is done by developing metrics and scenarios, developing simulatable
models, and analyzing the results of simulation to determine the best configurations.
For RASSP, an executable specification is used to do these trade-offs and is the
starting point for architecture selection.

As the subsystem designs progress, key subsystem parameters are back annotated,
and system-level simulations are re-run to ensure that performance is maintained. At
the same time, requirements can be refined as the subsystems are developed.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 63

Copyright 1995-1999 SCRA
63

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Elements in Executable
Specification of System Model

[LMC-Meth]

• Signal processing I/O
data

–I/O timing
constraints

–I/O interface
structures

–I/O protocols
–Signal levels
–Message types

• Signal processing
latency

–Data acceptance
rate

• Signal processing
stimuli/response

System Timing and
Performance Data System Functionality Data

• Algorithm descriptions
• Control strategies
• Task execution order
• Synchronization primitives
• Inter-process

communication (IPC)
• BIT and fault diagnosis

Physical Constraint Data

• Size
• Weight
• Power
• Cost
• Reliability
• Maintainability
• Testability (fault coverage),

diagnosis, and BIST goals)
• Repairability
• Scalability
• Environment constraints

–Temperature
–Vibration
–Pressure
–Stress and Strain
–Humidity
–EMI/EMF/EMP

This chart presents the elements contained in the executable
specification. The three main categories of the previous slides are
expanded upon. The data in this simulation is not fixed at the end of the
systems definition design process but can be modified as more
information becomes available from future design stages. For example,
the size and weight can be estimated initially and as more numbers
become available the high level model is updated to track the lower
level details.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 64

Copyright 1995-1999 SCRA
64

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example Executable
Specification

● Code Excited Linear
Prediction (CELP) speech
coding system

● Compute the linear
prediction model for a
segment of speech
samples

● Frame size is 240 samples
with 12 bit resolution
minimum

● Frame rate is 1 frame every
30ms

● Speech sampled at 8 KHz
● Use hamming weighted

window on input data

Speech
Data

Linear
Prediction

Coefficients• Window Data
• Compute prediction

coefficients

Signal Processor Model

Test Bench Model
• Read speech data

from file
• Send to processor

every 30 mS in
correct format

• Read results from
processor

• Compare results
with expected data

Control

This example will be used to illustrate how an executable specification
can be specified. This example was also used in the preceding section
on executable requirements and will be used in the following section on
data flow modeling. The executable requirement focused primarily on
the test bench. The executable specification will focus more on the
system model, in this case the signal processor model. The data flow
section will focus on refinements of the signal processor model.

This is a simple example for illustrative purposes only. Speech is
sampled at 8 KHz and input to a signal processor in frame sizes of 240
samples representing 30 ms of speech data. The processor windows
the speech data using a hamming window function and calculates the
linear prediction model for each of the speech segments. The equations
for the hamming window and the linear prediction algorithm are
presented in a later slide, where algorithm analysis is performed.

The test bench inputs data to the signal processor and monitors its
outputs. The test bench reads it's speech data from a file and outputs
the linear prediction coefficients to a file after the processor has
completed it's computations. The same test bench developed in the
executable requirements section is used here to apply stimuli to the
model under test and monitor its outputs for correct responses.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 65

Copyright 1995-1999 SCRA
65

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Signal Processor Entity

ENTITY SignalProcessor IS
GENERIC (LP_ORDER : INTEGER := 10;

COST : CostType := 1; -- Dollars
WEIGHT : WeightType := 5); -- Kilograms

PORT (--
-- SpeechType can be an array of 240 integers
-- or an array of 240-12 bit data values. Integer is
-- more efficient for simulation. lp_coeffType is an array
-- of real numbers.
--
data : IN SpeechType;
lpCoef : OUT lp_coeffType;
--
-- “start_processor” is the control line from the test bench
-- telling the processor when to begin computing
--
start_processor : IN OnOffType;
start_read : OUT OnOffType);

END SignalProcessor;

Control
Information

Data

Physical
Parameters

This is the entity description of the signal processor. Since the
processor is a linear prediction computational engine, the linear
prediction (LP) order is passed as a generic. The ports used for input
and output to the processor include its data and control lines. The data
lines consist of 240 samples of speech data in the format “SpeechType”
and the output data are the LP coefficients. The control input information
indicates when the processop starts computing the coefficients and the
output control line indicates to the test bench when to read the results.
There has been only one addition to the entity model during the
executable specification stage and that is the introduction of some of the
physical parameters. They are captured by the model in this example as
generic parameters.

Additional information passed to this entity include some of the physical
constraints from the previous slide such as cost, weight, etc. Additional
information could be included such as power, test inputs, etc.

This example shows the case where physical parameters were added to
the model entity description.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 66

Copyright 1995-1999 SCRA
66

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Signal Processor Architecture

ARCHITECTURE signal_proc_behavior OF SignalProcessor IS
TYPE window_array_type IS ARRAY (0 to data’LENGTH -1);
CONSTANT window_size_real : REAL := real (data’LENGTH);

BEGIN
Compute: PROCESS (start_processor)

VARIABLEfirst_time : BOOLEAN := FALSE;
VARIABLEwindow_coeff, windowed_data: window_array_type;
VARIABLEgamma, lp_coeff : lp_coeffType;
VARIABLEautocorr : corr_lags_type;

BEGIN
IF (start _processor= ON) THEN

if (first_time = FALSE) THEN
-- Calculate the window coefficients for hamming window in "double" precision
hamming_wgts (window_size_real, window_coeff);
Add_cost_info (COST, cost_global);
Add_weight_info (WEIGHT, weight_global);
first_time := TRUE;

END IF;
window_data (window_coeff, data, windowed_data); -- Window data
-- Do the autocorrelation of this data set
corr (windowed_data, autocorr);
-- Do L-D Recursion to finds all the prediction coefficients excluding lp_coeff(0) = 1
levinson_durbin (autocorr, gamma, lp_coeff, LP_ORDER-1);
lpCoef <= lp_coeff AFTER 30 ms;
start_read <= ON AFTER 30 ms, OFF AFTER 30 ms + default_delay;
wait for 0 ns;

END IF;
END PROCESS Compute;

END signal_proc_behavior;

Task 1

Task 2

Task 3

Sensitivity
Item

Control flow
information

Define functional
information and
task breakdown

Perform
fixed/floating
point tradeoffs
(16 bit arith)

Add cost and
weight info to
global values

The architecture describing the functionality of the signal processor is
shown above. It consists of one process executed in zero time and
sensitive to the “start_processor” signal from its input port. When it
receives this signal, the speech data is assumed to be present and the
processor begins calculating the LP coefficients. It calls a sequence of
procedures to perform the necessary functions (window_data, corr,
levinson-durbin). When it has finished, it puts the results on the lpCoef
lines and sets the trigger to the testbench.

We include additional information at this stage by defining the process
flow, functionality, and task breakdown. Fixed/floating point decisions
are made at this point by determining the optimal bit widths to do the
computations without loosing the quality of the speech data.

The physical constraint information can be added to global signals to
keep information on cost, weight, etc. when there are other components
in the system contributing to the total.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 67

Copyright 1995-1999 SCRA
67

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Algorithm Descriptions

procedure hamming_wgts (
size_of_window : in REAL;
window_weights : out WINDOW) is

constant pi : REAL := 3.14159265358979323846;
variable arg : REAL;
variable inc : REAL;

begin
arg := 2.0*pi/(size_of_window-1.0);
inc := 0.0;
for i in window_weights'RANGE loop

window_weights(i) := 0.54 - 0.46*cos(arg*inc);
inc := inc+1.0;

end loop;
end hamming_wgts;

procedure window_data (
window_coeff : in WINDOW;
data_in : in WINDOW;
window_data : out WINDOW) is

begin
for i in window_coeff'RANGE loop

window_data(i) := window_coeff(i) * data_in(i);
end loop;

end window_data;

procedure corr (
window_data : in WINDOW;
autocorr : inout CORR_LAGS) is

begin
for i in autocorr'RANGE loop

autocorr(i) := 0.0;
for k in i to window_data'HIGH loop

autocorr(i) := autocorr(i) +
window_data(k)*window_data(k-i);

end loop;
end loop;

end corr;

• Algorithms chosen to
perform necessary functions

• Perform bit width trade-offs

• Implement hamming weights
using look-up tables

Also in this stage, we define how each of the algorithms are to be
implemented. The hamming weights would most likely be implemented
in a lookup table but computed from the equations above and rounded
to the amount of digits required. The procedures for windowing data and
computing the autocorrelation are also defined.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 68

Copyright 1995-1999 SCRA
68

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Algorithms Descriptions
(cont.)

procedure levinson_durbin (
autocorr : in CORR_LAGS;
gamma : inout LP_COEFFS;
lp_coeff : inout LP_COEFFS;
size : in INTEGER) is

variable alpha : REAL;
variable beta : REAL;
variable tmp : LP_COEFFS;

begin
-- Initialization
alpha := autocorr(0);
beta := autocorr(1);
lp_coeff(0) := -beta / alpha;
gamma(0) := lp_coeff(0);
-- Recursion
for i in 1 to size loop

alpha := alpha + beta * gamma(i-1);
beta := autocorr(i+1);
for j in 0 to i-1 loop
 beta := beta + autocorr(j+1)*lp_coeff(i-j-1);
end loop;
gamma(i) := -beta/alpha;
for j in 0 to i-1 loop
 tmp(j) := gamma(i) * lp_coeff(i-j-1);
end loop;
for j in 0 to i-1 loop
 lp_coeff(j) := lp_coeff(j) + tmp(j);
end loop;
lp_coeff(i) := gamma(i);

end loop;
end levinson_durbin;

• Determine from possible
candidate algorithms the
best to compute the
prediction coefficients

• Find the minimum bit widths
causing the least amount of
degradation

There are many algorithms for computing the linear prediction
coefficients. In this design stage, we determine the best algorithm to
use for the application. In this case, the levinson-durbin algorithm was
chosen due to its efficient method for computation.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 69

Copyright 1995-1999 SCRA
69

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Additional CD-ROM Material on
Executable Specifications

● Module 30 provides a detailed account of
executable requirements and specifications

❍ This module can also be found on the CD-ROM

● Application note on executable requirements and
specifications modeling can also be found on the
CD-ROM

❍ See the section on Application notes to obtain this
information

❍ “RASSP Definition and Role of Executable Requirement
(ER-SPEC) and Design (ED-SPEC) Specifications
Appnote”

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 70

Copyright 1995-1999 SCRA
70

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling
● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

This section presents the next type of model found in the design
process. Data and control flow modeling take the executable
specification and develop the behavior of the system functionality in
terms of how data should flow through the system. Control flow
determines how the data flow will be manipulated.

This section first describes what is meant by data and control flow
modeling. It then presents an example which is a refinement of the
preceding examples presented in the last two sections. The example
provides an analysis of how the algorithm is continually refined as the
design process progresses.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 71

Copyright 1995-1999 SCRA
71

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Data and Control Flow Modeling

❍ Data/control flow modeling overview

❍ Data/control flow modeling example

The initial few slides describe what is data and control modeling. The
last few slides give an example of how it can be done in VHDL.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 72

Copyright 1995-1999 SCRA
72

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Virtual Prototyping

Process:
Executable Requirements

Example
ATR

Edge Detection &
pattern match on 16 bit data

i860’s - mesh based
multiprocessor

Control SW, application SW, Test SW,
Bus protocols, HW boards, HW/SW

integration, real-time operating systems
I/O device drivers, etc.

Design can be optimized at multiple levels of abstraction to meet customer requirements

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

HW/SW Architectural Design/Partitioning/Assign.

The VP process is a top-down design paradigm with optimization done
at multiple levels of abstraction. There are a number of slides in this
module that capture the essential flow of this design process but in a
different format. In general, the first stage in any design process is the
correct definition of the requirements for the design. Once the
customer’s requirements have been understood, then the system design
team begins working on design specifications that attempt to satisfy all
the customers requirements. In the above process flow, this represents
the algorithm definition and functional design stage. At this stage, the
algorithms used to implement the functions are refined. The size,
weight, area, and power constraints may also be refined as well. At this
point, initial computational complexity of the algorithms as well as fixed-
point characteristics are analyzed. As the process proceeds from the top
level, further refinement is done. At the data flow level, the algorithms
are refined and data flow graphs that implement the functionality are
explored. These data flow graphs are used in the HW/SW architectural
design phase, where the nodes in the flow graph are either mapped to
hardware or software. At this level in the process, the hardware and/or
software are sized to meet the requirements. Timing critical information
is captured such as latency, throughput, and resource utilization. As
more detailed design is done, the architectural elements are either
developed as software modules or hardware components (ASICs,
Processors, etc.) At the end of the process, final hardware and software
are realized. At each stage in the process, the design is verified and
optimized to meet the customer’s requirements.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 73

Copyright 1995-1999 SCRA
73

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Data/Control Flow Modeling

● Represents refinement of the executable
specification virtual prototype

● Precedes the architecture selection design phase
● Accepts the algorithms processing flows as input

from the system design process
● Generates implementation-independent

representation of the system data flow
● Generates information for data flow graph control
● Verify this level of virtual prototype using the

data passed down from the previous design
phase if the data types are compatible

Data flow modeling represents a refinement of the executable
specification virtual prototype of the previous stage by explicitly
specifying the data and control flow of the algorithms. It is contained in
the architecture selection design process and accepts the processing
flows from the systems design process as input. The data flow model is
an implementation-independent representation of the system data flow.
The control flow determines how the data flow graph will be manipulated
to perform the desired functions. Data from the executable specification
can be used to verify the performance of the data/control flow models.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 74

Copyright 1995-1999 SCRA
74

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Data/Control Flow Modeling in

the Architecture Design
Process

[LMC-Arch]

Functional
Design

Architecture
Selection

Architecture
Verification

Detailed Design

• Refine size, weight, power, reliability,
testability and cost requirements

• Refine algorithms - Functional flows,
all modes

• Develop detailed Data Flow Graphs
(DFGs)

• Architecture tradeoffs
• HW/SW allocation
• Iterative simulation
• Selection of 1 or more candidates
• Non-DFG software design
• Token-based performance model

virtual prototype

• Develop required new fcts and models
• Autocode generation
• Integrated DFG / Non-DFG SW functional

simulation
• Develop verification plan
• Hierarchical simulation
• Token-based performance model virtual

prototype

F
ee

d
b

ac
k

P
at

h

The architecture definition process transforms processing requirements
into a candidate architecture of hardware and software elements.

The architecture definition process is a new HW/SW codesign process
in the VP methodology for high-level virtual prototyping and simulation.
The primary concern in the architectural definition process is to select
and verify an architecture for the digital system that satisfies the
requirements passed down from the systems definition process.

The overall task is to:

● Define and evaluate various architectures

● Select one or more for detailed evaluation that appear to meet the
requirements

● Validate the chosen architecture(s) for both function and
performance before detailed design

Concurrently, each selected architecture is evaluated with respect to
size, power, weight, cost, schedule, testability, reliability, etc.

The process is library based and data flow graph (DFG) driven. The
DFGs are created from the processing flows passed down from the
systems definition process. Reuse of both architecture elements and
software primitives significantly shortens the design cycle. VHDL
performance model simulations are used to verify that system
requirements are met and this will be the focus of the following section.
Software performance is also modeled for its impact on the total
processing time.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 75

Copyright 1995-1999 SCRA
75

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Functional Design

[LMC-Arch]

Architecture
Sizing

Initiate
Primitive

Development
Selection
Criteria

Definition

Flow Graph
Generation

DFG
Simulation

Develop
Command
Program

Functional
Simulation

• Algorithm implementation analysis (ops/s, mem, I/O)
• Algorithm simulation/ optimization
• Develop functional models
• ‘ilitities and cost assessment
• Refine processing flows (all modes)

To architecture selection

• Transform processing
flows to detailed DFGs

• Translate control reqmts.
to control flow graphs

• Validate DFG
functionality for all
modes

• Prioritize requirements
• Define selection criteria

• CASE tools
• Autocode

generation

• Joint CFG/DFG
simulation

• Validate functional
interaction

The functional design step provides a more detailed analysis of the processing
requirements resulting in initial sizing estimates, detailed data and control flow graphs
for all required processing modes to drive the HW/SW codesign, and the criteria for
architecture selection. The control flow graphs provide the overall signal processor
control, such as mode switching (referred to as the command program). Functional
simulators support the execution of both the data and control flow graphs.

Architecture sizing helps to analyze the system requirements and processing flows for
all the required modes of the system in terms of estimated operations per second,
memory requirements, and I/O bandwidths.

Selection criteria definition helps prioritize the overall system requirements and the
derived requirements and establishes a selection criteria. The selection criteria
provides the necessary basis for subsequent architecture trade-off analysis. A trade-off
matrix is used to formalize the selection criteria. It contains top-level requirements
allocated to the signal processor.

Flow graph generation transforms the finalized algorithm processing flows into detailed
DFGs as the first step in HW/SW codesign. The DFGs are made up of reusable library
elements, which may represent either hardware or software. The DFGs are the basis
for both the architecture synthesis, the detailed software generation, and potentially
custom processor synthesis. Each DFG is simulated to provide data for comparison
with the algorithmic flows developed during the systems process (executable spec).
Control flow requirements are transformed into the control flow graphs (CFGs) required
to manipulate the DFGs according to a defined set of rules. This DFG control is
referred to as command processing. Conceptually, the command program manipulates
objects. The objects are the DFGs and their data structures. The command program
must be able to accept messages from outside the signal processor, interpret those
messages, and generate the appropriate control information to stop graphs, start
graphs, initiate I/O, set graph parameters, etc. The command program can be
developed through standard software development CASE tools or through the tools
that provide autocode generation capability.

Functional simulation verifies both the DFGs, the CFGs, and their interrelationships.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 76

Copyright 1995-1999 SCRA
76

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Functional Simulation

● Simulate both data-flow graphs (DFGs) and
control-flow graphs (CFGs)

● Verify DFG simulation matches processing flow
description

● Validate CFGs interaction with DFGs which
includes

❍ Passing parameter information between external world
and graph management software

❍ Initiating or terminating I/O devices
❍ Starting and stopping DFGs

● University and commercial CAD tools exist to do
this type of simulation (Matlab/Simulink, Ptolemy,
PGM, etc.)

When all the code is created for both the DFGs and CFGs, simulations
are performed to verify the code's behavior. This is compared with the
processing flows described by the less refined version of the executable
specification of the previous phase. The CFGs interaction with the
DFGs are validated.

A number of CAD tools exist in both the University and commercial
industry to perform data and control flow simulations. Some of these
include Matlab/Simulink, Ptolemy from UC Berkeley, and PGM from the
Department of the Navy, to name just a few. In this section, it is shown
how VHDL can also be used to model the data and control flow of a
system’s algorithms.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 77

Copyright 1995-1999 SCRA
77

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example Data and Control
Flow Model

● Code Excited Linear
Prediction (CELP) speech
coding system

● Compute the linear
prediction model for a
segment of speech
samples

● Frame size is 240 samples
with 12 bit resolution
minimum

● Frame rate is 1 frame every
30ms

● Speech sampled at 8 KHz
● Use hamming weighted

window on input data

Speech
Data

Linear
Prediction

Coefficients• Window Data
• Compute prediction

coefficients

Signal Processor Model

Test Bench Model
• Read speech data

from file
• Send to processor

every 30 mS in
correct format

• Read results from
processor

• Compare results
with expected data

Control

Refine the Algorithmic
Implementation

This example will be used to illustrate how an executable specification
can be specified. This example was also used in the preceding section
on executable requirements and will be used in the following section on
data flow modeling. The executable requirement focused primarily on
the test bench. The executable specification focused more on the
system model, in this case the signal processor model. In this section,
the focus is on refinements to the signal processor model. In this case,
more details are placed on how selected functions interact, what data
flows between the functions, and the control sequence of the execution
(scheduling) of the functions.

This is a simple example for illustrative purposes only. Speech is
sampled at 8 KHz and input to a signal processor in frame sizes of 240
samples representing 30 ms of speech data. The processor windows
the speech data using a hamming window function and calculates the
linear prediction model for each of the speech segments. The equations
for the hamming window and the linear prediction algorithm are
presented in a later slide, where algorithm analysis is performed.

The test bench inputs data to the signal processor and monitors its
outputs. The test bench reads it's speech data from a file and outputs
the linear prediction coefficients to a file after the processor has
completed its computations. The same test bench developed in the
executable requirements section is used here to apply stimuli to the
model under test and monitor its outputs for correct responses.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 78

Copyright 1995-1999 SCRA
78

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Signal Processor
Control Flow

ARCHITECTURE proc_behavior OF SignalProcessor IS
SIGNAL window_coeff : window_array_type;
SIGNAL windowed_data : window_array_type;
SIGNAL gamma, lp_coeff : lp_coeffType;
SIGNAL autocorr : corr_lags_type;
SIGNAL state : BIT_2 := “11”;
SIGNAL start_window : OnOffType := OFF:
SIGNAL start_levinson : OnOffType := OFF:
SIGNAL start_autocorr : OnOffType := OFF:

BEGIN
Reset : PROCESS (reset)
BEGIN

IF (reset = ON) THEN
state <= “00”;
wait for 0 ns;

END IF;
END PROCESS Reset;
Start_processor : PROCESS (start_processor)
BEGIN

IF (start_processor = ON) THEN
state <= “11” AFTER 0ns;

END IF;
END PROCESS Start_processor;

Control : PROCESS (state)
VARIABLE first_time : BOOLEAN := TRUE;
FILE weights : text is in "hamming_wght";

BEGIN
CASE state IS

when “00” =>
IF (first_time = TRUE) THEN

Add_cost_info (COST, cost_global);
Add_weight_info (WEIGHT, weight_global);
i := 0;
while ((NOT ENDFILE (weights)) and

(i <= data'HIGH)) loop
readline (weights, in_line);
read (in_line, window_coeff (i));
i := i+1;

end loop;
first_time := FALSE;

END IF;
when “01” =>

start_autocorr <= ON, OFF AFTER autocorr_time;
when “10” =>

start_levinson <= ON, OFF AFTER levinson_time;
when “11” =>

start_window <= ON, OFF AFTER window_time;
END CASE;

END PROCESS Control;

Control
Sensitive

to the state

Start from
known state

on reset and total
physical params

Cycle through the
three states to control

the data flow

This slide and the next represent the modifications to the architecture of
the signal processor with the control and data flow included. This slide
shows the control flow. It starts from a known state with the variable
“reset” turned ON. When it is ON, the state gets set to “00” and reset
gets turned OFF. In state “00”, which is only entered once, the
estimates for cost and weight along with any other physical constraints
are included in the system design. Also, the hamming weights, which
are now stored as a lookup table in memory are read from a file and put
into storage. Once this is complete the data flow control begins when
the “start_processor” signal comes from the test bench. It sets the state
to “11” resulting in the “start_window” process to be started. When this
process is complete, it sets the state to “01” which initiates the
autocorrelation process. Next, the autocorrelation process sets the state
to “10” which then triggers the Levinson-Durbin process. Finally, the
Levinson-Durbin process triggers the test bench to read the data and it
also sets the state back to “00” where now nothing is done. We now wait
for another “start_processor” from the test bench.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 79

Copyright 1995-1999 SCRA
79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Signal Processor
Data Flow

Window_data : PROCESS (start_window)
BEGIN

window_data (window_coeff, data, windowed_data);
state <= “01” AFTER window_time;

END PROCESS window_data;

Autocorrelation : PROCESS (start_autocorrelation)
BEGIN

-- Do the autocorrelation of this data set
corr (windowed_data, autocorr);
state <= “10” AFTER autocorr_time;

END PROCESS window_data;

Levinson_durbin: PROCESS (start_levinson_durbin)
BEGIN

-- Do L-D Recursion to finds all the prediction coefficients excluding lp_coeff(0) = 1
levinson_durbin (autocorr, gamma, lp_coeff, LP_ORDER-1);
start_read <= ON AFTER lev_dur_time, OFF AFTER lev_dur_time + default;
state <= “00” AFTER levinson_time;

END PROCESS window_data;
END proc_behavior;

Three separate
processes

represent the
data flow for

the signal
processor

Change
the state

upon
completion

This slide represents the data flow of the signal processor. There are
three separate processes with their own respective trigger signals from
the control flow. When they are triggered, they do their function and then
update the state for the controller.

In this example, each function is modeled using a separate process and
the control flow is modeled through a separate state machine process
that sends commands via signals to each of the data computational
processes when they are required to execute.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 80

Copyright 1995-1999 SCRA
80

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Additional CD-ROM Material on
Data Flow Graph Design

● Application note on data flow graph design can
also be found on the CD-ROM

❍ See the section on Application notes to obtain this
information

❍ “RASSP Data Flow Graph Design” application note
❍ See also “RASSP Autocoding for Deliverable, real-time

Signal Processing System (DSP) Control” application
note

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 81

Copyright 1995-1999 SCRA
81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling
● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

The next type of model used in the design process is the performance
model. It provides a method to rapidly test architecture design
candidates that meet system requirements. A thorough investigation of
performance modeling is contained in the M59 module on the CD-ROM.
It contains over 200 slides on the topic and a couple of laboratory
exercises. In that module, VHDL performance modeling is discussed in
detail as well as other approaches to modeling at the performance level.
This section gives a 30 minute overview of the topic area and defers the
details to module 59.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 82

Copyright 1995-1999 SCRA
82

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Performance Modeling

❍ Performance modeling overview

❍ Performance modeling in the architecture design
process

❍ Components for performance modeling

❍ Laboratory introduction of a VHDL example of a simple
performance model

This section will first introduce performance modeling and the critical
issues in the design process that it tries to address. It will then look at
how it fits into the overall virtual prototyping top-down design process. At
the end, it introduces the laboratory for the performance modeling
module, M59. More details of performance modeling can be found in
that module.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 83

Copyright 1995-1999 SCRA
83

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Virtual Prototyping

Process:
Performance Modeling

Example
ATR

Edge Detection &
pattern match on 16 bit data

i860’s - mesh based
multiprocessor

Control SW, application SW, Test SW,
Bus protocols, HW boards, HW/SW

integration, real-time operating systems
I/O device drivers, etc.

Design can be optimized at multiple levels of abstraction to meet customer requirements

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

HW/SW Architectural Design/Partitioning/Assign.

The VP process is a top-down design paradigm with optimization done
at multiple levels of abstraction. There are a number of slides in this
module that capture the essential flow of this design process but in a
different format. In general, the first stage in any design process is the
correct definition of the requirements for the design. Once the
customer’s requirements have been understood, then the system design
team begins working on design specifications that attempt to satisfy all
the customers requirements. In the above process flow, this represents
the algorithm definition and functional design stage. At this stage, the
algorithms used to implements the functions are refined. The size,
weight, area, and power constraints may also be refined as well. At this
point, initial computational complexity of the algorithms as well as fixed-
point characteristics are analyzed. As the process proceeds from the top
level, further refinement is done. At the data flow level, the algorithms
are refined and data flow graphs that implement the functionality are
explored. These data flow graphs are used in the HW/SW architectural
design phase, where the nodes in the flow graph are either mapped to
hardware or software. At this level in the process, the hardware and/or
software are sized to meet the requirements. Timing critical information
is captured such as latency, throughput, and resource utilization. As
more detailed design is done, the architectural elements are either
development as software modules or hardware components (ASICs,
Processors, etc.) At the end of the process, final hardware and software
are realized. At each stage in the process, the design is verified and
optimized to meet the customer’s requirements.

This slide illustrates the focus of the current section: Performance
Modeling.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 84

Copyright 1995-1999 SCRA
84

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Highlights of Performance
Models in VHDL

● Contained in the architecture
selection design phase

● Use token-based performance
model virtual prototypes to
represent the system

● Describes the time-related
aspects of the system
associated with latency,
throughput, and utilization

● Provides verification of full
system concept prior to
investing in the construction
of an entire system

● The models are typically
implemented at the abstract
behavioral level

Producer

Data

Consumer

Time

Time

TimeLatency

Throughput

Utilization100%

The next three slides list some of the highlights of performance models.
It serves as the main simulatable entity in the architecture selection
process and is represented as a token-based performance model virtual
prototype. It is used to describe the time-related aspects of the system
and provides verification of the full system concept at a high efficiency.
It is implemented at a higher level of abstraction.

Latency represents the time it takes for a data item to get through the
system after it has been introduced to the system.

The throughput indicates the amount of data the system can process in
a given amount of time. Throughput and latency are inversely related
because by increasing the latency (I.e. taking longer time to get each
data item out of the system after it has been inserted into the system),
one can have more data being processed internally during a given time
frame and therefore potentially increase the overall throughput of the
system.

The utilization indicates how much of the time a resource is being used.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 85

Copyright 1995-1999 SCRA
85

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Highlights of Performance
Models in VHDL (cont.)

● Reduces the number of events in full system simulation
❍ Major system events as shown above
❍ On the order of 1,000’s of clock cycles

● Maintains accuracy and model validity
● Helps determine:

❍ System size
❑ Number and type of processing elements
❑ Memory and buffer requirements for each network and

processing element (Knowledge of SW elements required)
❑ Permits heterogeneous vs homogeneous trade-offs

10 ms 50 ms 100 ms

Begin
Transfer

End
Transfer

Begin
Filter

End
Filter

The number of simulation events is reduced because it models major
events of the system (data passing) and not clock cycles events while
maintaining sufficient accuracy at the system level. Its main functions
are to determine the system size (number of processors, etc..), the
network architecture (topology, etc.), and the software to hardware
mappings.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 86

Copyright 1995-1999 SCRA
86

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Highlights of Performance
Models in VHDL (cont.)

❍ Architecture selection
❑ Network topology (bus, ring, mesh, cube, tree, etc.)
❑ Bandwidth and protocol requirements for network links

❍ SW-to-HW mappings
❑ Partitions application algorithm into tasks allocated to

individual processing elements
❑ Tasks scheduled according to relative data dependencies

and processing latency constraints

● Interoperability guideline developed by Honeywell
Technology Center to ensure models from multiple sources
will integrate smoothly

● Honeywell performance library consists of high-level
building blocks such as I/O devices, memory,
communication elements, and processors

The SW-to-HW mappings represent the partitions of the application
algorithm into tasks allocated to the processing elements.

Interoperability guidelines were developed by Honeywell Technology
Center to ensure that all models developed on the RASSP program and
subsequent programs can integrate smoothly. These guidelines can be
found at http://rassp.aticorp.org. The equivalent at the lower levels of
design is the IEEE Std 1164-1993 which specifies interoperability at the
component interface level.

All developed models will be placed in the RASSP reuse library for rapid
selection and reconfiguration of candidate system designs.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 87

Copyright 1995-1999 SCRA
87

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Benefits

Performance modeling:
● aids in the evaluation of

design alternatives,
● determines bottlenecks,

overdesign, etc.,
● captures design

decisions and
assumptions,

● examines system
behavior at boundary
conditions,

● provides a focal point for
early interaction of
system, hardware, and
software designers

[Hein95A]

Cost of Design Errors

Requirements Design Implementation Test Manufacture

Design Error Manifestation & Elimination

Requirements Design Implementation Test Manufacture

Modeling No Modeling

Cumulative Costs

Requirements Design Implementation Test Manufacture

Modeling

No Modeling

This slide shows some of the benefits of performance modeling as seen
by some industrial users of the technique. Note that using performance
modeling results in design errors being manifested and eliminated
earlier in the design process where they are less costly. Also note that
initially, the cost of a design process with performance modeling is
higher, but the overall cost (area under the curve) is lower.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 88

Copyright 1995-1999 SCRA
88

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Advantages for Using VHDL in
Performance Modeling

● Adopted as a standard language and supported
by many tools, vendors, and platforms

● Captures function and structure as well as
performance

● Permits models to be easily transported for multi-
company projects and projects that span long
time periods (documents the design)

● Provides an expressive language with full
hierarchy and configurations which allows
development of highly flexible models

● Provides consistency checks
● Provides tight coupling to the lower levels of

design through mixed-level modeling
[Rose94]

The above slide lists some of the advantages of using VHDL at the
performance level.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 89

Copyright 1995-1999 SCRA
89

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling in the
Architecture Design Process

[LMC-Arch]

Functional
Design

Architecture
Selection

Architecture
Verification

Detailed Design

• Refine size, weight, power, reliability,
testability and cost requirements

• Refine algorithms - Functional flows, all
modes

• Develop detailed DFGs

• Architecture tradeoffs
• HW/SW allocation
• Iterative simulation
• Selection of one or more candidates
• Non-DFG software design
• Token-based performance model

virtual prototype

• Develop required new fcts and models
• Autocode generation
• Integrated DFG / Non-DFG SW functional

simulation
• Develop verification plan
• Hierarchical simulation
• Token-based performance model virtual

prototype

F
ee

d
b

ac
k

P
at

h

The architecture definition process transforms processing requirements
into a candidate architecture of hardware and software elements.

The architecture definition process is a new HW/SW codesign process
in the RASSP methodology for high-level virtual prototyping and
simulation. The primary concern in the architectural definition process is
to select and verify an architecture for the signal processor that satisfies
the requirements passed down from the systems definition process.

The overall task is to:

● Define and evaluate various architectures

● Select one or more for detailed evaluation that appear to meet the
requirements

● Validate the chosen architecture(s) for both function and
performance before detailed design

Concurrently, each selected architecture is evaluated with respect to
size, power, weight, cost, schedule, testability, reliability etc.

The process is library based and data flow graph (DFG) driven. The
DFGs are created from the processing flows passed down from the
systems definition process. Reuse of both architecture elements and
software primitives significantly shortens the design cycle. Performance
models are used to verify the timing aspects systems such as resource
utilization, system sizing, latency modeling, and system data throughput.
Software performance is also modeled for its impact on the total
processing time.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 90

Copyright 1995-1999 SCRA
90

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Guidelines for Selecting

Performance Model
Abstraction Level

● Chose resolved events on the order of thousands
of clock cycles (e.g. FFT as compared to
multiply)

● Resolve contention of memory, communication,
and computational resources to account for
competing interactions

● Model major system events for visibility into the
processing (e.g. transition between major
sections of an algorithm)

The above list defines some guidelines for selecting performance
models at the appropriate abstraction level. When using or developing
performance models, the goal is to create an executable model that
simulates much longer timelines than more detailed models so that it
can analyze system sizing issues in detail, such as how many
processors are required, what type of interconnect fabric must be used
to meet the data throughput requirements, etc. All the functional details
should not be present so that simulation speed can be improved. For
example, a fast fourier transform algorithm performance model may only
specify the time that it requires to compute the FFT and not the specific
details of the algorithm. Major events are modeled in performance
models rather than specific details. For example, when data is being
transferred across a high speed network, a performance model would
only capture the amount of time that it requires whereas a more detailed
model will actually perform all the handshaking details of the signals
defined for the network protocol.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 91

Copyright 1995-1999 SCRA
91

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Guidelines for Selecting

Performance Model
Abstraction Level (cont.)

● Form groups of events for which accurate time
delays can be predicted (e.g. uni-processor tasks
between inter-processor element communication
events)

● Resolve inter-device communication events to
account for network traffic (e.g. resolve to packet
level and not word level)

In performance models, it is good practice to combine groups of
functions into a single group to reduce the total amount of events that
occur during simulation. For example, if a number of tasks are being
performed by the same processor, each taking a predetermined amount
of time, then the combination of the events will also execute in a
predictable amount of time. In this case, the events can be combined
into a larger group of functionality that has a new time specified for the
entire group.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 92

Copyright 1995-1999 SCRA
92

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Model
Environment Requirements

● Provide modeling environment with means to
conveniently explore HW/SW interaction

❍ Hardware must be described independently from the
software

● Specify network topology independently from the
models of the network hardware components

● Provide component models that are modular so
that network elements can be interchanged
without network redesign

● Support model extensibility to greater levels of
detail for subsequent design stages

● Support fast simulation with efficient models and
rapid exploration of the design alternatives

This slide presents requirements that should be imposed on
performance models during their development. A performance model
should model both hardware and software as well as the interaction
between the two. It should be capable of modeling both the
computational elements in the design as well as the network
communications elements. Storage devices should also be modeled at
very high levels so that total memory usage can be estimated. The
developed models should be very flexible so that input parameters can
be easily modified to create entirely different network architectures. The
models should simulate very fast so that large systems can be modeled.
This implies that a high level behavioral model is recommended. VHDL
can be used to do this. The performance modeling module has
examples of how to do performance modeling at the high level in VHDL.

Performance models should also permit the designer to do HW/SW
codesign.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 93

Copyright 1995-1999 SCRA
93

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example System Network-
Architecture

P
M S

P
S S

P

P
M

P
M S

P
S S

P

P
M

P
M S

P
S S

P

P
M

P
M S

P
S S

P

P
M

S S

Network Hardware:
 Processor, Memory, and Switch Nodes Connected by Network Links

Gen
FIR

FIR

FIR

FIR

FFT

FFT

FFT

FFT

VMUL

VMUL

VMUL

VMUL

DOT

DOT

DOT

DOT

Thresh

Thresh

Thresh

Thresh

Sink

Application Software:
 Primitive Tasks and their data dependencies as Data Flow Graph (DFG)

[Hein95B]

This is a typical network architecture along with application SW that
must run on the HW.

Processor-Memory-Switch type architecture is very general and can
model many designs.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 94

Copyright 1995-1999 SCRA
94

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP View of HW/SW Codesign
using Performance Modeling

[Hein95A]

Network
Architecture

Data Flow
Graph

FIR
FFT

FFT

VMUL
Mapping/Scheduling

Simulation

Analysis

Results Display

Modifications
to the hardware

architecture

Modifications
to the software

design

This figure shows the interactive development and optimization of a
hardware and software design within an iterative mapping/scheduling
process. The hardware/software codesign process begins with a model
of the hardware onto which the software application tasks are mapped
and scheduled. The joint HW/SW system is simulated, and
modifications are made to either the hardware, software, or both in
response to the analysis of the simulation results.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 95

Copyright 1995-1999 SCRA
95

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Performance
Model Output

● The VHDL performance model should be designed to
automatically capture three types of statistics

❍ Utilization
❑ Percent of time busy/total simulation time
❑ Tracked for each entity

❍ Latency
❑ Time to move a token from point A to point B
❑ Post processed from output

❍ Throughput
❑ Data processed/time period
❑ Tracked for each entity

● Trade studies are interpretations of these statistics
● Raw data displayed in intuitive form

VHDL performance models should be developed so that they
automatically capture timing-related parameters of the system. These
include resource utilization, throughput, and latency information for the
system model. Trade studies can be done using these statistics to
determine the optimal architecture for the system application. The raw
data from the simulations can be displayed in an intuitive form as shown
on the next slide using graphical software.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 96

Copyright 1995-1999 SCRA
96

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Model Output
Results

[Hein95A]

0 100 200 300 400 500 0 100 200 300 400 500

Proc-1

Proc-2

Proc-3

Proc-4

Proc-5

Proc-6

6-MB

5-MB

4-MB

3-MB

2-MB

1-MB

P
ro

ce
ss

o
r

E
le

m
en

t

M
em

o
ry

 A
llo

ca
ti

o
n

Time (uS) Time (uS)

Example processing time line Example memory allocation time history

Lockheed Martin - ATL

These are some example plots of the output of performance model
simulations. The left side plot shows processor utilization vs. time and
processing element. The right plot shows how the memory is utilized
during the same time line.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 97

The processor element for a MIMD system is conceptually divided into
two concurrent processes, the computational agent and the
communications agent. The computational agent reads and interprets
abstract instruction types from a file. The communications agent sends
and receives tokens to other elements in the system through the use of
tokens. The processor also contains local memory to store software
programs and working data. The performance model does not store
actual data but keeps track of the amount of data that would have been
stored.

The computation agent represents the hardware side of the interface
between the hardware and software because it interprets the SW
application program instructions into specific HW actions. The
computation agent executes a partitioned flow graph. A simple example
could use abstract instruction types such as compute, send, receive,
and loop, as its four main instruction types.

The communications agent handles the reliable transfer of data between
the other PEs and the local PEs memory queues. It implements
whatever link layer protocols, packetization, and retry or blocked
message resumption that are needed to transfer and receive arbitrary
length data messages over the network. Upon reception of data, the
agent increments the data amount of the destination queue by the
received amount. If the agent was blocked waiting for the received data,
the agent would allow the communications agent to resume. On sending
data, the agent decrements the data amount of the local source queue
by the transmitted amount.

Copyright 1995-1999 SCRA
97

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Example of a Processor
Element Performance Model

● Conceptually divided into
two concurrent processes

❍ Computation agent
❑ Interprets instructions

at abstract level
❍ Communications agent

❑ Passes data to other
processors or shared
memory

● Contains local memory for
storage of software
program and working data

● Keeps track of amount of
data stored but not actual
data

PE

SW
Program

Data

Computation Agent

Communications
 Agent

Network

[Hein95B]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 98

The compute instruction represents the execution of a portion of the
application algorithm within the PEs local memory. It is modeled as a
simple time delay. The compute instruction contains one operand
specifying an algorithm step or corresponding computation time. The
length of the time delay is equal to the time required for the target PE to
perform the respective algorithm step (e.g. FFT, FIR, etc.). Upon
completion of a computation delay interval, the computation agent
interprets the next sequential instruction.

The send instruction represents an inter-PE data transfer. It contains
three operands: the local and destination queue numbers, and the data
amount to send. Other operands, such as priority, may be modeled.
When the agent encounters a send instruction, it directs the local
communication agent to transfer data from a local memory queue to a
queue in another PE. If the communication agent can accept the
command immediately, the computation agent continues sequencing
through instructions. If not, the computation agent is blocked until
communication completes. No data is actually transferred, but the
effects of the transfer are recorded.

The receive instruction represents the consumption of transferred data.
It has two operands: queue number and data amount. If the sufficient
amount of data had arrived in the specified queue prior to encountering
a receive command, then the computation agent decrements the
specified queue by the specified receive amount and then continues
sequencing instructions.

The loop instruction causes the computation agent to continue
sequencing form a non-sequential instruction of the application program.

Copyright 1995-1999 SCRA
98

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Simple Instructions

● Compute
❍ Represents execution of portion of application algorithm
❍ Modeled as a simple time delay
❍ Length of delay is equal to time for target processor to

perform the respective algorithm step (e.g. FFT)

● Send
❍ Represents an inter-PE data transfer
❍ Three operands: source queue, dest. queue, data amt.

● Receive
❍ Represents the consumption of data transferred
❍ Two operands: queue number, data amount

● Loop
❍ Causes continuous sequencing of instruction segment

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 99

The example program is analogous to the ISA level instructions found in
more detailed behavioral models (presented later).

Instead of 100-200 instructions, we now only have 4.

Instead of clock cycle resolution, we have resolution at the major event
level.

Copyright 1995-1999 SCRA
99

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Application Program for
Processor Performance Model

recv 10 16384 -- Get input data for one range-pulse
compute 2160.0 Polarization1_range1 -- Perform range-processing on data
send 1 2 2048 2 -- Distribute corner-turn data to neighboring
PEs
send 1 3 2048 2 --
.....
send 1 8 2048 2
recv 10 16384 -- Get input data for new range-pulse

Four instruction types:

RECV(message_ID, message_length)

SEND(message_ID, destination_PE, message_length, priority)

COMPUTE(time_delay, task_name)

LOOP

Example Program

[Hein95B]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 100

The application algorithm is first represented as a data flow graph
(DFG). The DFG is a directed graph where the graph nodes represent
mathematical operations, and the arcs represent data dependencies
and form the logical data queues. The DFG nodes usually correspond to
DSP primitives, such as FFT, vector multiply, convolve, etc.

For a given network architecture, the flow graph is partitioned for
allocation to PEs in the network. The flow graph nodes may be allocated
statically at design-time or dynamically at run-time. Dynamic
mapping/scheduling requires modeling the dynamic mapper/scheduler.
Static scheduling requires this to be done prior to simulation.

The result of a static partitioning/mapping/scheduling process is a set of
pseudo-code software application programs for each of the PEs. The
scheduling determines the order the tasks should be executed. The
actual time the task is executed is determined by the task sequence and
the inherent data flow control of the send/receive paradigm.

Once the simulations show a suitable software mapping and HW
architecture combination to satisfy the system requirements, the
pseudo-code (compute instructions) software routines are expanded
into high-level language subroutine calls which are compiled for down-
loading to the target HW.

Using these techniques for simulating large systems, a 24-PE system
executing 5 seconds of SAR application code executed at an effective
rate of 2.8 million instructions/sec.

Copyright 1995-1999 SCRA
100

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Software Modeling

● Represent application algorithm as a data flow
graph

❍ Nodes represent mathematical operations
❍ Arcs represent data dependencies

● Partition flow graph for allocation to PEs
● Static vs. dynamic scheduling of tasks
● Simulate mappings of pseudo-SW tasks to the

PEs to satisfy the performance requirements
● Generate high-level language from the pseudo-

code description (compute instructions) using
optimized math libraries for DSP functions

● Can equivalently execute two to three million
instructions/sec for large system models

[Hein95]

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 101

Copyright 1995-1999 SCRA
101

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Modeling

Laboratory: 2D FFT Example
M59 ATL Lab

Basic Algorithm

2D-FFT of 128X128 Image

• 128 point Row FFT
• Transpose
• 128 point Row FFT
• Transpose

Basic Algorithm

2D-FFT of 128X128 Image

• 128 point Row FFT
• Transpose
• 128 point Row FFT
• Transpose

FFT in Multiprocessor Environment

• Concurrency
• Data Partitioning and Communication

FFT in Multiprocessor Environment

• Concurrency
• Data Partitioning and Communication

Chosen Architecture:

• 4 Processor connected with a CROSSBAR
m RACEway is used to operate as a 2X2 Crossbar

Chosen Architecture:

• 4 Processor connected with a CROSSBAR
m RACEway is used to operate as a 2X2 Crossbar

Chosen Algorithm for the Multiprocessor Environment

• Lock Step FFT algorithm

Chosen Algorithm for the Multiprocessor Environment

• Lock Step FFT algorithm

This laboratory uses the processor model (with both computational and
communications agents) explained in the previous slides to construct a
4 processor network linked with a Mercury RACEway interconnect. The
lab is contained on the CD-ROM in the M59 module, “Token-based
Performance Modeling using VHDL.” The lab write-up is also entitled
“Token-based Performance Modeling using VHDL” and illustrates the
usage of this level of model in describing an application running on a
high-level model of a system.The basic algorithm to be executed is a 2D
FFT of a 128x128 pixel image. The basic algorithm first takes row FFTs,
then does a transpose of the result, then takes another set of row FFTs
(equivalent to column FFT without transpose), then transposes the data
again to get it back to its original ordering. A lock step algorithm is used
and is described in a later slide.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 102

Copyright 1995-1999 SCRA
102

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Token-based Performance

Modeling Laboratory:
Hardware Configuration

Experimental Setup:
Four Processor Connected by One RACEway Crossbar
Experimental Setup:
Four Processor Connected by One RACEway Crossbar

Application: 2D FFT of an Image (128 X 128)

PROCESSOR

PROCESSOR PROCESSOR

PROCESSOR

ONE

TWO THREE

FOUR

RACEWAY SWITCH

This is a diagram of the 4 processor network interconnected by the
RACEway switch. This is the hardware configuration of the M59 ATL
Lab VHDL performance modeling lab associated with module 59 and is
also contained on the CD-ROM.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 103

Copyright 1995-1999 SCRA
103

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Token-based Performance

Modeling Laboratory:
Lock Step FFT

Image Distributed in
all the processors

Each processor has
N/4 Complete Rows

After Row FFT Each processor
exchanges blocks

Each processor has
N/4 columns of output of

Row FFT

Each Processors exchanges
data after Column FFT

PROCESSOR 1

PROCESSOR2

PROCESSOR3

PROCESSOR4

COMMUNICATION

ALGORITHM OVERVIEW
N COLUMNS

N
 R

O
W

S

This diagram illustrates the lock-step algorithm that will be executed on
the 4 processor hardware performance model used in the M59
laboratory exercise. More details about the algorithm are presented in
the lab write-up. The 2-D algorithm is done by performing FFTs on
specific segments of the image data and then passing the transformed
data to its neighbor processors to do additional FFTs. The image data is
first distributed in the memory of all four processors. Each processor
then performs row FFTs on their respective image data prior to sending
the transformed data to their neighbor processor. After sending the data
to the neighbor processor, a final column FFT is performed by each
processor on the new data. Data is again exchanged after the final FFT
to put it in the correct locations for the image to be viewed.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 104

Copyright 1995-1999 SCRA
104

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Additional CD-ROM Material on
Performance Modeling

● Module 59 provides a detailed account of
performance modeling

❍ This module can also be found on the CD-ROM

● Application note on performance modeling can
also be found on the CD-ROM

❍ See the section on Application notes to obtain this
information

❍ “RASSP Token-based Performance Modeling”
application note

❍ “RASSP Virtual Prototyping” application note
❍ “Hardware/Software Codesign” application note

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 105

Copyright 1995-1999 SCRA
105

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling
● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

Hybrid modeling attempts to bridge the gap between performance
modeling and abstract behavioral modeling. This section will give some
of the preliminary results from the RASSP effort in this area.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 106

Copyright 1995-1999 SCRA
106

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Virtual Prototyping

Process:
Mixed-Level Modeling

Example

Design can be optimized at multiple levels of abstraction to meet customer requirements

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

HW/SW Architectural Design/Partitioning/Assign.

ATR

Edge Detection &
pattern match on 16 bit data

i860’s - mesh based
multiprocessor

Control SW, application SW, Test SW,
Bus protocols, HW boards, HW/SW

integration, real-time operating systems
I/O device drivers, etc.

Mixed-Level Modeling: Combination of
Performance and more Detailed Behavior
Mixed-Level Modeling: Combination of

Performance and more Detailed Behavior

The VP process is a top-down design paradigm with optimization done
at multiple levels of abstraction. There are a number of slides in this
module that capture the essential flow of this design process but in a
different format. In general, the first stage in any design process is the
correct definition of the requirements for the design. Once the
customer’s requirements have been understood, then the system design
team begins working on design specifications that attempt to satisfy all
the customers requirements. In the above process flow, this represents
the algorithm definition and functional design stage. At this stage, the
algorithms used to implements the functions are refined. The size,
weight, area, and power constraints may also be refined as well. At this
point, initial computational complexity of the algorithms, as well as fixed-
point characteristic, are analyzed. As the process proceeds from the top
level, further refinement is done. At the data flow level, the algorithms
are refined and data flow graphs that implement the functionality are
explored. These data flow graphs are used in the HW/SW architectural
design phase, where the nodes in the flow graph are either mapped to
hardware or software. At this level in the process, the hardware and/or
software are sized to meet the requirements. Timing critical information
is captured such as latency, throughput, and resource utilization. As
more detailed design is done, the architectural elements are either
developed as software modules or hardware components (ASICs,
Processors, etc.) At the end of the process, final hardware and software
are realized. At each stage in the process, the design is verified and
optimized to meet the customer’s requirements.

This slide illustrates the focus of the current section: Mixed-level
Modeling

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 107

Copyright 1995-1999 SCRA
107

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed-level Models: Where Do
They Fit in the Process ?

Architectural
Design

Detailed
Design

● Architectural design typically uses performance models prior
to, or to aid, creation of specifications for HW and SW
designers

● HW designers use behavioral models, usually in a different
design environment

● A break is created in the design process which introduces
greater chance for error

● VHDL mixed-level modeling allows for the creation of a single
design environment

[PI95]

The primary problem VHDL hybrid modeling addresses is the break in
the design cycle from architectural design tools to hardware design
tools. These two arenas are typically done with different tools, which
then means the hardware design must be re-entered. With the advent of
VHDL performance modeling, a step was made in the direction of
solving this problem. However, a robust hybrid library and methodology
is required to successfully complete this solution.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 108

Copyright 1995-1999 SCRA
108

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed-level Models as Part of
the Design Process

System Req.

Arch Indep. Model

HW Perf. Model SW Perf. Model

Beh.-level model

ISA Model

Arch. Depen. Model

RTL Model

Gate-level Model

Prototype HW

Source Code

HOL
Assembly

Load Module

L
I
B
R
A
R
Y

S
I
M
U
L
A
T
I
O
N

[LMC-Meth]

S
eam

less flo
w

 o
f d

ata an
d

 d
esig

n
 in

fo
rm

atio
n

Virtual Prototype
Executable

Requirement

Mixed-level Model Region

Virtual Prototype
Algorithm Model

Token-Based
Perf-Level

ISA/RTL/
Gate Levels

Abstract
Behavioral

Level

Detailed
Behavioral

Level

Hybrid models attempt to bridge the gap between performance
modeling and more abstract behavioral modeling. The region falls
between the virtual prototype using token-based performance models
and abstract behavioral models. Hybrid modeling supports a smooth
integration of the performance and functional models.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 109

Copyright 1995-1999 SCRA
109

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed-level
Modeling Rationale

● Provides for a smooth transition from
performance modeling to more detailed
behavioral modeling

● Provides the capability to mix multiple levels of
abstraction which can provide useful detailed
information for part of the design

● Offers a standard environment that eliminates
the difficulties encountered with integrating
various levels of design

The rationale for developing a hybrid modeling methodology on the
RASSP program is described in the above bullets. One of the main
reasons for mixed-level modeling is that it provides a smooth transition
from token-based performance modeling to abstract behavioral
modeling. Token-based performance models are typically used for
architectural trade-offs while models with function and timing (behavioral
level) are typically used in the first step of the HW design. To
seamlessly interconnect the design process, hybrid models fill the gap
between the performance and abstract behavioral models. The
combination can be simulated in a standard environment using VHDL
where the models are represented at various abstraction levels.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 110

Copyright 1995-1999 SCRA
110

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed-level
Modeling Example

[PI95]

ALU

Fixed Delay

25 ns

Pre-Processing

Queue Fixed Delay

Post-Processing

Sink

Mixed-level Model

0.0 2.0 4.0 6.0 8.0

0.0200

0.0190

0.0180

0.0170

0.0160

0.0150

0.0140T
h

ro
u

g
h

p
u

t
(t

o
ke

n
s/

n
S

)

Computer Queue Depth

This slide illustrates the impact of hybrid modeling on a performance
model. In this example, a fixed delay node was replaced with an
abstract behavioral model of the ALU. The statistically significant inputs
of the ALU in terms of delay were identified. Next, a search of this set of
inputs was made to find the input pattern that generated maximum
propagation time through the circuit. The shift in the throughput curve
shows that the more accurate delay model from the behavior element
changed the absolute value of the results but not the trends.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 111

Copyright 1995-1999 SCRA
111

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design
● Relevant Documents and Standards

● Summary

We will now discuss the final stage in the virtual prototyping process
where the detailed behavioral modeling and detailed design is done.
Candidate approaches for verifying the design are presented as well as
an example of a case study done on RASSP for an Infrared Search and
Track (IRST) signal processing system. The detailed behavioral model
of the IRST will be discussed and the limitations and benefits of the use
of such a modeling paradigm will be discussed.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 112

Copyright 1995-1999 SCRA
112

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Detailed-Behavioral Modeling and Detailed Design

❍Overview of detailed-behavioral modeling in VHDL
❍ Detailed-behavioral modeling in VHDL design example

❑ Overview of example

❑ Modeling the i860XP processor

➭ Overview of the processor model

➭ The internal model

➭ The interface model

This section starts with an overview of what detailed behavioral
modeling addresses in the VP process. After this introduction, alternate
approaches to solving this problem are presented along with their
advantages and disadvantages. At the end, design examples are
presented that illustrate some guidelines in capturing the necessary
information at this stage in the process.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 113

Copyright 1995-1999 SCRA
113

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline (cont.)

➭ The testbench

✰ Clock/reset generator

✰ Memory controller

✰ Memory

➭ Testing the i860XP

➭ Results

❑ Testing the MCV9

❑ Testing the IRST

❑ Creating a DMA to the VME in the memory controller

❑ Simulation results

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 114

Copyright 1995-1999 SCRA
114

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Virtual Prototyping

Process:
Detailed-Behavioral Modeling

Example
ATR

Edge Detection &
pattern match on 16 bit data

i860’s - mesh based
multiprocessor

Control SW, application SW, Test SW,
Bus protocols, HW boards, HW/SW

integration, real-time operating systems
I/O device drivers, etc.

Design can be optimized at multiple levels of abstraction to meet customer requirements

Algorithm &
Functional Design

Requirements
Capture

Virtual Prototyping
facilitates multi-level

optimization and
design Data/Control

Flow Design

HW Virtual Prototyping/
SW Design

Detailed
HW/SW Design

Final Prototype

Optimize

Optimize

Optimize

Optimize

Optimize

Optimize

Cost Performance

HW/SW Architectural Design/Partitioning/Assign.

The VP process is a top-down design paradigm with optimization done
at multiple levels of abstraction. A number of slides in this module
capture the essential flow of this design process in a different format. In
general, the first stage in any design process is the correct definition of
the requirements for the design. Once the customer’s requirements
have been understood, then the system design team begins working on
design specifications that attempt to satisfy all the customer's
requirements. The above process flow represents the algorithm
definition and functional design stage. At this stage, the algorithms used
to implement the functions are refined. The size, weight, area, and
power constraints may also be refined as well. At this point, initial
computational complexity of the algorithms, as well as fixed-point
characteristics are analyzed. As the process proceeds from the top
level, further refinement is done. At the data flow level, the algorithms
are refined and data flow graphs that implement the functionality are
explored. These data flow graphs are used in the HW/SW architectural
design phase, where the nodes in the flow graph are either mapped to
hardware or software. At this level in the process, the hardware and/or
software are sized to meet the requirements. Timing critical information
is captured, such as latency, throughput, and resource utilization. As
more detailed design is done, the architectural elements are either
developed as software modules or hardware components (ASICs,
Processors, etc.) At the end of the process, final hardware and software
are realized. At each stage in the process, the design is verified and
optimized to meet the customer’s requirements.

This slide illustrates the focus of the current section: Detailed-behavioral
Modeling

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 115

Copyright 1995-1999 SCRA
115

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Virtual Prototyping at the
Detailed-Behavioral Levels

● What?
❍ Software “simulatable” model of a hardware

component, board, or system at a particular level of
abstraction, which contains sufficient accuracy to
guarantee its successful realization in hardware

● Why?
❍ Allow for concurrent design, test, and integration of HW

and SW
❍ Provide rapid HW/SW integration earlier in the design

process
❍ Document the system characteristics for future

supportability

This presentation will cover the areas of virtual prototyping dealing with
lower levels of the process where the simulatable models are used to
help validate a design to the level where a high degree of confidence is
assured before prototyping the actual HW. This detailed behavioral
model can serve as an executable specification for more detailed
models at the RTL and gate levels.

There are two main reasons this level of model is used: first, the ability
to codesign HW/SW prior to the creation of actual HW to remove some
functional and timing errors prior to commitment of actual hardware and
second, it serves as a model that approximates the actual system so
that initial verification and system simulations (interactions with other
hardware and software) can be done earlier in the process. It also
serves as a form of documentation for the system.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 116

Copyright 1995-1999 SCRA
116

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Advantages of a VP

● Documents the detailed system design for future
model year upgrades

● Permits application of HW/SW codesign
methodologies to verify task partitioning and
performance requirements

● Allows for verification of data distribution rates
through hardware prior to actual HW
development

● Initiates SW code development and test on the
VP concurrently with HW design

Given a documented model of the system with associated testbenches,
modifications to the system can be made by simply replacing the
changed portion of the model with its upgrade.

The model is then executed with the previous high-level testbenches for
validation of system correctness.

HW/SW codevelopment can take place on the detailed behavioral virtual
prototype. There is still a need for an environment where SW designers
are able to work effectively on the virtual prototype. This will require an
environment that contains the symbolic debugging information typically
found in a SW engineering environment.

Early validation can help remove design flaws that would typically only
be found in the HW/SW integration stage of current practice.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 117

Copyright 1995-1999 SCRA
117

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Advantages of a VP (cont.)

● Tests portions of SW that interface to HW to
discover possible design flaws prior to HW
commitment

❍ More observability into the system
❍ Unlimited set of test probes (Virtual Pins)

● Facilitates HW/SW integration and test

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 118

Copyright 1995-1999 SCRA
118

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Elements of a Virtual Prototype
and COTS Simulation Library

● Computation and control elements
❍ DSP, control processor, special purpose processor, and

vector processor models, etc.

● Communications elements
❍ Control, data, test and maintenance bus models,

crossbar network switch models, etc.

● Storage elements
❍ DRAM, SRAM, and register models, etc.

● I/O
❍ Sensor input distribution networks, video output drivers

● Glue logic
● Commercial libraries exist as well as a number of

public domain model elements

The types of components found in a detailed behavioral virtual
prototyping environment include the above commercial-off-the-shelf
(COTS) elements.

● Ideally, these would be found in a library and not require in-loop
creation.

● Glue logic may always need to be designed for communication
between elements such as processors and buses. This can take the
form of PLDs, PLAs etc.

● Libraries have been developed on tech base contracts to support
processors for DSP (GT), bus models (GT), FPGAs (MSU),
memory elements (MSU), and lower-level models (Multipliers,
adders, etc.) for building special purpose processors (OSU).

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 119

Copyright 1995-1999 SCRA
119

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Commercial-Off-The-Shelf
(COTS) Requirements

● Be in stock at multiple distributors
❍ Correct package type, speed option, density

● Have suitable models
❍ VHDL, Gate, Physical

● Have support SW and tools
❍ Compilers, Programmers

● Must apply to tools as well as parts
❍ Bug list for commercial tools

[Lockheed95]

Because COTS is a significant theme in the RASSP process, a
definition of what it means to be a COTS element and which types of
elements this term encompasses is needed. Traditionally, it has been
applied to the components themselves, but there is also a need to
recognize the importance of some other related factors, including:

The product, as specified, to be available from multiple distributors

● Models of the components to exist so that none has to be created
in-loop;

● Adequate compilers and trained software programmers to be
available for the processor;

● Tools to have a listing of their problems so that no time is wasted
tracking tool-related errors.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 120

Copyright 1995-1999 SCRA
120

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Complex Component/
System Modeling

● Processors/multiple processors
❍ RISC, CISC, special purpose, etc.

● MSI, LSI, and VLSI components and ASICs/MCMs
❍ Multiple datapath elements, complex control

mechanisms, glue logic etc.

● Buses and data networks
❍ SCI, VME, RACEway, etc.

● Important issues
❍ Gate-level HDL description too slow for simulation in

large systems
❍ Run code in system environment on virtual prototype

(HW/SW codevelopment and cosimulation)
❍ Sufficient fidelity of models to guarantee successful

integration

When looking at approaches to system modeling, we must consider the
types of components found in a virtual prototype.

These include processors, ASICs, buses and other data networks, as
well as any glue logic required to connect the component models.

Important issues with respect to this area include the use of high-level
models and avoiding gate-level models at all cost because of simulation
time considerations. We would also like to run code on the prototype. To
do this, we need compilers for the processor and a method to translate
the assembly/binary code to the model to run.

We also should require sufficient fidelity in the models to guarantee first-
time HW design success.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 121

Copyright 1995-1999 SCRA
121

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL-based
Virtual Prototyping

● VHDL description at the detailed-behavioral level
of abstraction

❍ Fast alternative when compared with RTL and Gate
models

❍ Some vendors beginning to support this type of model
❍ Need available libraries because development time can

be long
❍ Methods for automated assistance in development must

be found
❑ Bus Functional Model Generators, OO

Methodologies for Reuse
❍ Fidelity as specified in data manuals for processor

elements unless additional information made available
by vendors

The HDL description at the detailed behavioral level is the main focus of
the design example presented later. This approach requires that models
be made available by the vendors or third party model developers. The
behavioral level helps keep simulation speeds within a reasonable
scope. Work is currently being done on improving high-level modeling
as well as system-level bus functional modeling. Object Oriented
techniques are being developed by Vista Technologies as part of a
MMC contract, and Logic Modeling Inc. has been working on a BFM
generator. Georgia Tech has been developing processors and bus
models as part of the techbase effort.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 122

Copyright 1995-1999 SCRA
122

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Properties of Good
Simulation Libraries

● Consistency
❍ Follow standard set of guidelines

● Maintainability
❍ Lower support costs, lengthen life cycles, are easily

reused

● Interoperability
❍ Provide more flexibility
❍ Provide structural and behavioral together in mixed-

level simulation

● Portability
❍ Support different tools

When evaluating or developing a library of models for system
simulation, the following two slides cover a list of properties that should
be evaluated or used during the process.

Existing commercial libraries attempt to satisfy all these requirements.
The SmartModelTM library from Synopsys follows these properties
closely. The SmartModel process is mostly automated to produce
accurate, reliable, and reusable elements.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 123

Copyright 1995-1999 SCRA
123

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Properties of Good
Simulation Libraries (cont.)

● Accuracy
❍ Provides fidelity levels, fully functional behavioral, RTL,

Gate

● Performance
❍ Higher-level models can run faster than gate-level with

loss in resolution

● Memory efficiency
❍ Smaller models use less of limited computer memory

resources, especially for large system modeling

● Confidentiality
❍ Protected models let the developers obtain proprietary

information more easily

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 124

Copyright 1995-1999 SCRA
124

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Detailed-Behavioral Modeling and Detailed Design

❍ Overview of detailed-behavioral modeling in VHDL

❍Detailed-behavioral modeling in VHDL
design example

❑ Overview of example
❑ Modeling the i860XP processor

➭ Overview of the processor model

➭ The internal model

➭ The interface model

In this section, the detailed design examples are introduced. The IRST
example is an example of a large scale detailed-behavioral model that
was used to verify the full system with both hardware and software. The
second example is also used as the laboratory example for this module.
The lab exercise is M32_Lab_A on the CD-ROM.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 125

Copyright 1995-1999 SCRA
125

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Control
Computer

Lockheed Martin-Sanders
Case Study: Design

IRST System Prototype

● Hardware Elements
❍ Data Input Distribution card
❍ RS-170 Daughter card
❍ Sensor Interface card
❍ Video output card
❍ MCV9 processing boards
❍ VME interface
❍ RACEway XBAR network
❍ 190 processors in total

system and only a fraction
of them were modeled at
this level (1-16 processor
tests)

RACEway Crossbar

D
at

a
In

p
u

t
D

is
tr

ib
u

ti
o

n

D
at

a
In

p
u

t
D

is
tr

ib
u

ti
o

n

M
C

V
9

P
ro

ce
ss

in
g

 b
o

ar
d

M
C

V
9

P
ro

ce
ss

in
g

 b
o

ar
d

V
id

eo
 O

u
tp

u
t

C
ar

d

S
p

ar
c2

 C
ar

d

In
p

u
t/

O
u

tp
u

t

Tape

VME bus

Disk Sensor
Gimbel

Sensor
Data
135
Mb/s

Elements of Hardware VP
created and simulated

This figure shows the IRST design case study that was done by the
Lockheed Martin Sanders team on the RASSP program. Only those
boxes that are shaded were modeled at the detailed behavioral level,
mainly due to the size and simulation constraints of the system at this
level of model abstraction. The system consisted of a total of 190
processors and only 1 to 16 processors were simulated at any one time.
For most cases, only one was required to run the representative
software that configured the external boards within the system. This
configuration information was sent via the VME bus. Each block in the
diagram was a board level model with a number of component elements
on it. Because of the large number of components, faster simulation
performance can only be achieved if the models are at a much higher
level of abstraction. In this case, the models were developed at the
detailed-behavioral level rather than the RTL or gate levels. As this
module proceeds, examples of the code that was used to simulate
portions of the system will be presented.

Focusing in on the MCV9 models that were developed, we see on the
next slide the internal details of one of the boards. There were a total of
16 MCV9 boards in the overall system. The boards were interconnected
using a RACEway network and control information was sent from the
MCV9 board through the VME bus interface model.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 126

Copyright 1995-1999 SCRA
126

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

XBAR

XBAR

XBAR

XBAR

XBAR

XBAR

XBAR

Memory

CE-ASIC

Buffers

i860

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

VME I/F Logic

VME Driver

Interlink
Model

Master
Process

Slave
Process

XBAR

MCV9 Subsystem
Architecture

 Total Modeled
16 PE 1 PE

 6 XBARs 3 XBARs

 Total Modeled
16 PE 1 PE

 6 XBARs 3 XBARs

This figure shows more detail of what is contained on an MCV9 board.
The shaded regions represent the items that were modeled in VHDL.
The XBAR models were generated from lower level gate models of the
components. The processing element was developed at the detailed
behavioral level. In order to run code on the system, only one
processing element was required. The control code resided on the
processor and configured external hardware via the VME bus. Interrupt
information from external hardware was also sent to the processor via
the VME bus. When the input sensor buffers were full of data, the
processor was notified to configure a transfer to the internal memory the
processing elements.

i860 was developed from the data manual description

● Clock Cycle accurate

● Behavioral Description

CE-ASIC and XBAR models developed by converting existing schematics

● Translation tools from Mentor Graphics and Viewlogic

● Not straight-forward and not what was expected in all cases

A configuration file was generated for entire subsystem

This slide describes how and at what level the VHDL models for the
various component elements of the system were created.The i860XP
model was created at the detailed behavioral level while the XBAR
models were created from translation tools which used gate-level
models. The entire model was configured and tied together using a
configuration file at the top-level.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 127

Copyright 1995-1999 SCRA
127

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP The Laboratory Design
Example (M32_Lab_A)

VME Bus

i860XP
RISC

Processor

Memory Control
Unit

VME Interface/
DMA Control

Memory

VME Master

VME Slave

This is a block diagram of the proposed system design. The i860XP
processor will be connected with the VME bus through the memory
controller unit and a VME interface. When the DMA is configured to do
burst writes across the VME bus, it obtains control of the memory from
the processor using bus arbitration before doing the transfer.

The i860XP gets control of the VME bus and acts as the master while
the slave is configured to write to a file. So any transfers from master to
slave involve generating the data in the i860XP and sending it to
memory. Following the loading of memory, the i860XP configures the
DMA registers to transfer a specific amount of data from memory using
the VME handshaking protocol. The data is then written across the bus
to the slave address, and the slave places it into a file for later
verification.

This laboratory will cover modeling of the dataflow, timing, and control of
the major components of a system under design.

The system will consist of an i860XP processor, a memory unit, and a
memory controller that interfaces to a VME bus and also contains a
DMA controller.

Each of the individual components will be described, and their
integration and test will be covered for a specific operating mode of the
VME.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 128

Copyright 1995-1999 SCRA
128

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Additional CD-ROM Material on
Detailed Behavioral Modeling

● One lab exercise is provided on the CD-ROM
❍ Previous slide shows example in M32_Lab_A

● Application note on detailed behavioral modeling
can also be found on the CD-ROM

❍ See the section on Application notes to obtain this
information

❍ “RASSP Virtual Prototyping” application note
❍ “VHDL Modeling Terminology and Taxonomy”

application note

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 129

Copyright 1995-1999 SCRA
129

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Detailed-Behavioral Modeling and Detailed Design

❍ Overview of detailed-behavioral modeling in VHDL

❍ Alternate approaches to early prototyping

❍ Detailed-behavioral modeling in VHDL design example

❑ Overview of example

❑ Modeling the i860XP processor

➭ Overview of the processor model
➭ The internal model

➭ The interface model

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 130

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 131

Copyright 1995-1999 SCRA
131

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
i860XP Component Entity

component i860
 generic (CLK_PERIOD : TIME:= 25 ns;--40 MHz
 MEMORY_SIZE: INTEGER:= 4096;
 START_INST_FILE: MEM_FILENAME:=
 "MEM002047";
 START_DATA_FILE: MEM_FILENAME:=
 "MEM000000");
 port (-- Clock and reset lines
 CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 -- Cycle control
 ADS_N : out STD_LOGIC;
 BRDY_N : in STD_LOGIC;
 CACHE_N : out STD_LOGIC;
 LEN : out STD_LOGIC;
 LOCK_N : out STD_LOGIC;
 NA_N : in STD_LOGIC;
 NENE_N : out STD_LOGIC;

 -- Address, data and byte enable lines
 ADDRESS : inout EX_ADDR_TYPE;
 BE_N : out EXT_BYTE_ENA_TYPE;
 DATA : inout EXT_DATA_TYPE;
 -- Cache control
 KEN_N : in STD_LOGIC;
 -- Cycle definition
 MIO_N : out STD_LOGIC;
 DC_N : out STD_LOGIC;
 WR_N : out STD_LOGIC;
 PCYC : out STD_LOGIC;
 CTYP : out STD_LOGIC;
 -- Interrupt signals
 BERR : in STD_LOGIC;
 INT_CS8 : in STD_LOGIC;
 -- Bus Arbitration
 HOLD : in STD_LOGIC;
 HLDA : out STD_LOGIC);
 end component;
 for all: i860 use entity RASSP.i860(BEHAVIOR);

This code represents the i860XP entity pins required for this application.
All the interface pins were not required to test this application; only
those that had a direct impact were used. All interface pins are of
standard logic or standard logic vector. The EX_ADDR_TYPE,
EXT_BYTE_ENA_TYPE, and EXT_DATA_TYPE are standard logic
vectors. This allows the model to be interoperable with all models that
use the standard logic package (IEEE Std Logic 1164) for interface
lines. The IEEE standard defines the 9-value logic levels that can be
carried on signals of this type.

The same is done with the memory controller, memory, clock/reset, and
VME models.

Generic parameters are used to configure the model using late binding
(binding at the time of system configuration using the VHDL
configuration statement). Alternatively, early binding can be done as
shown in the code above. The “for all” clause at the end of this example
binds the i860XP entity to the behavioral architectural description.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 132

Copyright 1995-1999 SCRA
132

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study i860:
Functionality Breakdown

● Seven Processes
❍ Needed to simulate concurrency of units
❍ Approx. 200 instructions/sec

● Initially single process (ISS)
❍ Interface behavior not needed
❍ Approx. 2000 instructions/sec

Instruction Fetch

Decode/Execute

MMU

Data Load/Store

Single Cycle

Two Cycle

Cache Read/Write

Given the various processor elements, the first step was to break down
its functionality into specific processes. The initial attempt was to place
all the functionality into a single process similar to instruction set
simulator type models. This permitted faster running models, but could
not capture all the concurrency issues of the processor. For example, if
a cache miss occurred, the processor would need to go to external
memory for data. In this case we do not want to stop the main process
from executing what was already in, for example, one of the floating
point pipelines, to wait for the data to arrive. Because multiple
processes were required, the above 7 were chosen to represent the
behavior of the device. The next slide lists the type of functionality in
each process.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 133

Copyright 1995-1999 SCRA
133

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Process Functionality

● Minimize use of internal
signals

● Bit vectors bundled into
integers or arrays of
integers when passed
between processes

● Decode/execute process
has majority of
functionality

❍ Artifact of single-
process model

● The table on the right
represents the breakdown
of functionality among the
processes

Process Name Functionality

Instruction Fetch
Instruction Cache, Instruction Buffers
Reset Functionality

MMU
Translation Caches, Address Translation
Algorithm, Reset Functionality

Data Load/Store
Data Cache, Write Buffers, Pipelined Float
Load Buffers, Reset Functionality

Single Cycle
Interface handling for single-cycle reads
and writes, Reset Functionality

Two Cycle
Interface handling for burst reads and
writes of 2 cycles, Reset Functionality

Cache Fill/Write
Interface handling for cache fills and write
backs, Reset Functionality

Decode/Execute

Core Execution Unit, Floating Point
Execution Unit, Graphics Unit, FP Pipeline,
Register Files, Pipelined Float load buffers,
Special Purpose Registers, Instruction
Interaction checks, Dependency checking,
Trigger mechanism for Data load/stores,
Reset Functionality

[Egolf95]Copyright 1995 VHDL International Users Forum. Used with permission.

Since multiple processes were required, the attempt was to minimize
the number of internal signals needed to pass information between the
processes. By minimizing the number of signals used for communication
between processes or entities, the number of simulation events can also
be minimized. As the number of events is decreased, the simulation
times improve. Vectors of bits were always bundled into integers and
arrays of integers to help minimize the signal count because each bit
was equivalent to an integer in VHDL. The decode/execute process
contains most of the functionality because it is an artifact of the single-
process model. The major storage elements such as register files,
instruction cache, data cache, and translation caches were modeled as
variables using record types. The instruction cache is contained in the
instruction fetch process, the data cache in the data load/store process,
and the translation caches in the MMU process. This helped permit the
use of the variable type for each.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 134

Copyright 1995-1999 SCRA
134

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Detailed-Behavioral Modeling and Detailed Design

❍ Overview of detailed-behavioral modeling in VHDL

❍ Alternate approaches to early prototyping

❍ Detailed-behavioral modeling in VHDL design example

❑ Overview of example

❑ Modeling the i860XP processor

➭ Overview of the processor model

➭ The internal model
➭ The interface model

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 135

Copyright 1995-1999 SCRA
135

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Internal Model

● Fetch/decode/execute/write back functionality
● Internal storage

❍ Caches
❍ Registers
❍ Pipeline stages

● Mostly contained inside decode/execute process except
❍ Instruction cache contained in fetch process
❍ Data cache contained in load/store process
❍ Address translation caches in MMU process

● Instruction execution implemented with procedural calls
● Trap/reset/exception/interrupt handling
● Reuse through package encapsulation of common

functionality
❍ IEEE Standard 754 for floating point math

The internal model is typical of the RISC processors pipeline stages, in
such as fetch, decode, execute, and write back.

The internal storage elements such as caches, registers, and pipeline
stages are modeled as variables.

Most of the functionality is contained in the decode/execute process, but
the cache elements are contained in other processes related to their
functionality.

All instructions are executed using procedural calls. These procedures
are encapsulated in packages and can be made reusable across similar
RISC processors.

The processor must also be able to detect trap conditions, interrupts,
and exceptions.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 136

Copyright 1995-1999 SCRA
136

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Instruction Set
Decoding/Execution

● “Case” statements used to
decode opcode

❍ REG-Format => 1 case
statement

❍ Core Escape and CTRL-
Format => 2 case statements

❍ FP => 3 case statements

● Additional decoding done
after opcode determined

❍ Operand locations
❍ Branch Offset
❍ etc.

● Execution performed by
use of procedural calls

REG-Format
Opcodes

(First Level
Decode
Output)

Core Escape
Opcodes

Dual-Operation
Opcodes

Instruction Input

Preliminary
Decode

Core Escape
Decode

Floating
Point Decode

Control Format
 Decode

Control Format
Opcodes

DPC
Decoding

Non-Dual-Operation
Opcodes

Graphics
Opcodes

[Egolf95]Copyright 1995 VHDL International Users Forum. Used with permission.

The decoding is modeled using a nested series of “CASE” statements.
The instruction is input to the decode section and fields are stripped off
based on the instruction type. The largest depth of decoding is three
levels and occurs for floating point instruction types. The register format
instruction type is decoded in the first stage, so it only requires one
compare operation to determine its processing action.

Execution is performed at the leaf of each tree. At this point the
operands are determined and loaded. The execution functionality in
most cases is contained in procedures in a special package of
instruction implementations.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 137

Copyright 1995-1999 SCRA
137

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Floating Point Decoding

 when OP_FLOAT =>
 OP_FE := CURRENT_INSTR(6 downto 0);
 OP_FE_DPC1:= OP_FE(6 downto 5);
 OP_FE_DPC2:= OP_FE(4);
 DPC := OP_FE(3 downto 0);
 D := CURRENT_INSTR(9);
 S := CURRENT_INSTR(8);
 R := CURRENT_INSTR(7);
 FSRC1 := BITS_TO_NATURAL(CURRENT_INSTR(15 downto 11));
 FSRC2 := BITS_TO_NATURAL(CURRENT_INSTR(25 downto 21));

 case OP_FE_DPC1 is
 when OP_FE_1 =>

if (P = '1') then

 case DPC is
 when OP_FE_R2P1 =>
 PFMY_OP1(0):= KR(0);
 PFMY_OP1(1):= KR(1);
 PFMY_OP2(0):= FL_REG(FSRC2);
 PFMY_OP2(1):= FL_REG(FSRC2+1);
 PFAD_OP1(0):= FL_REG(FSRC1);
 PFAD_OP1(1):= FL_REG(FSRC1+1);
 PFAD_OP2(0):= PFMY_REAL_DOUBLE_RES(0);
 PFAD_OP2(1):= PFMY_REAL_DOUBLE_RES(1);

● There are three levels of
decoding for floating
point instructions

● Preliminary decode uses
OP_FLOAT

● Secondary decode uses
the 2 bits from 6 down to
5 of the instruction

● Ternary decoding uses
the lower 4 bits (DPC) to
determine where to fetch
the operands

● Operands from KR,
floating point register
file and previous
multiply result

This slide lists a portion of the code used to decode the floating
instructions. The upper 6 bits compare to OP_FLOAT and, if they
match, then this segment is entered.

At this point, some of the fields are decoded to determine the next level
of decoding required. Bits 5 and 6 of the instruction help determine the
second level of decoding. In this case, they are compared to the
constant OP_FE_1 and, if there is a match, the DPC values are
decoded.

The DPC values represent the final stages of decoding, and at this point
the operand locations are finalized. In the above case, the operands are
fetched from the KR register, two from the floating point register file, and
one from the previous result of the multiplier.

The operands are stored in integer array variable of length 2. This
permits 64 bit operands to be processed.

PFMY_OP1, PFMY_OP2, PFAD_OP1 and PFAD_OP2 are the floating
point multiply and add operands, respectively.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 138

Copyright 1995-1999 SCRA
138

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Unsigned Add
Decoding and Execution

- Decoding and execution for ADD unsigned
when OP_ADDU =>
 ISRC1:=
 BITS_TO_NATURAL(CURRENT_INSTR(15
 downto 11));
 ISRC2:=
 BITS_TO_NATURAL(CURRENT_INSTR(25
 downto 21));
 IDEST:=
 BITS_TO_NATURAL(CURRENT_INSTR(20
 downto 16));
 OP1:= IN_REG(ISRC1);
 OP2:= IN_REG(ISRC2);
 OP3:= IN_REG(IDEST);
 ADDU(OP3, OP1, OP2, OVERFLOW, CC);
 IN_REG(IDEST):= OP3;
 ADD_EXTRA:= TRUE;
 ADD_EXTRA_COUNT:= 0;

procedure ADDU(RESULT : inout INTEGER;
 OP1, OP2 : in INTEGER;
 OVERFLOW, CC : out BIT) is
begin
 if OP2 > 0 and OP1 > (INTEGER'HIGH - OP2) then
 RESULT := ((INTEGER'LOW + OP1) + OP2) -
 INTEGER'HIGH - 1;
 OVERFLOW:= '1'; -- positive overflow
 CC:= '1';
 elsif OP2 < 0 and OP1 < (INTEGER'LOW - OP2) then
 RESULT := ((INTEGER'HIGH + OP1) + OP2) -
 INTEGER'LOW + 1;
 OVERFLOW:= '1'; -- negative overflow
 CC:= '1';
 else
 RESULT := OP1 + OP2;
 OVERFLOW:= '0';
 CC:= '0';
 end if;
end ADDU;

This is the code for decoding and executing the unsigned add operation
using VHDL. The left hand side does the decoding by having a match
with OP_ADDU and then decodes the source and destination registers.
It then loads the operands from the integer register file and calls the
procedure ADDU, which performs the actual operation of an unsigned
add.

The unsigned add procedure is on the right hand side of the slide.

The ADDU instruction is a member of the REG-Format type instructions
and hence only needs one level of decoding.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 139

Copyright 1995-1999 SCRA
139

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Register Model

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Break Read
Break Write
Condition Code
Loop Condition Code
Interrupt Mode
Previous Interrupt Mode
User Mode
Previous User Mode
Instruction Trap
Interrupt
Instruction Access Trap
Data Access Trap
Floating Point Trap
Delayed Switch
Dual Instruction Mode

Pixel Mask
Pixel Size
Shift Count
(Reserved)
Kill Next FP Instruction

PM

alias PM: BIT_VECTOR(7 downto 0) is

 PSR(31 downto 24);

PS SC

[Egolf95]Copyright 1995 VHDL International Users Forum. Used with permission.

Special Purpose Registers with multiple fields are represented as bit
vectors

● Permits “aliasing” of sub-fields for readability and ease of use

● alias PM: BIT_VECTOR(7 downto 0) is PSR(31 downto 24)

Register Files represented as arrays of integers because simulation
Kernel size is reduced by using integers as compared to bit vectors

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 140

Copyright 1995-1999 SCRA
140

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Processor Status
Register (PSR) Breakdown

● The alias construct
allows the processor
status register to be
accessed by its bit
field names

● More readable and
understandable

● Assignment to the
aliased value implies
assignment to the
register field

-- Breakdown for the processor status register PSR
alias BR : BIT is PSR(0);
alias BW : BIT is PSR(1);
alias CC : BIT is PSR(2);
alias LCC : BIT is PSR(3);
alias IM : BIT is PSR(4);
alias PIM : BIT is PSR(5);
alias UPSR : BIT is PSR(6);
alias PU : BIT is PSR(7);
alias IT : BIT is PSR(8);
alias IN_PSR : BIT is PSR(9);
alias IAT : BIT is PSR(10);
alias DAT : BIT is PSR(11);
alias FT : BIT is PSR(12);
alias DS : BIT is PSR(13);
alias DIM : BIT is PSR(14);
alias KNF : BIT is PSR(15);
alias SC : BIT_VECTOR(4 downto 0) is
 PSR(21 downto 17);
alias PS : BIT_VECTOR(1 downto 0) is
 PSR(23 downto 22);
alias PM : BIT_VECTOR(7 downto 0) is
 PSR(31 downto 24);

This shows the complete example code for the aliasing of the processor
status register (PSR) using the VHDL alias construct.

Aliasing allows the model developer to assign values to the aliased
variables, which automatically results in the exact assignment being
made to that portion of the aliased variable. For example, assignment to
PM above would also be written in PSR(31 downto 24).

This creates more readable and understandable code because, when
assigning or using the bits from the register, accesses such as: PSR(31
downto 24) can be avoided. Instead, we can use the name PM, and its
intended purpose is known.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 141

Copyright 1995-1999 SCRA
141

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Pipeline Modeling

● Variables contain pipeline states
● Computation is done in first stage when operands are

available
● Result is passed through all stages so output occurs on

correct clock cycle
● Only pipeline add instruction advances pipeline above

Instruction

Variable Name PFAD_STAGE1_RES PFAD_STAGE2_RES PFAD_STAGE3_RES PFAD_REAL_DOUBLE_RES

ADDER PIPELINE VARIABLES OUTPUT VARIABLE

pfadd.ss f2, f7, f0

pfadd.ss f3, f8, f0

pfadd.ss f4, f9, f0

pfadd.ss f5, f10, f12

shl r0,r0,r0

Res1 = f2 + f7

Res3 = f4+ f9

Res2 = f3 + f8

Res3

Res4 = f5+ f10

Res1

Res2

Res2

Res3

Res1

Res1

Res2

? ?

?

Undefined

Undefined

Undefined

This instruction does not
advance the pipeline

Res1 => f12

[Egolf95]Copyright 1995 VHDL International Users Forum. Used with permission.

The floating point and graphics pipelines were implemented using
variable data types. To simulate the pipeline performance, the results
was calculated on the first stage of the pipeline when the operands were
available, and the result was propagated through the various stages by
passing the data from variable to variable on each clock cycle. This
helped assure the data would arrive at the output of the pipeline on the
correct cycle.

The example above is of the floating point adder pipeline. We see the
variable PFAD_STAGE1_RES contains the result (Res1) after the first
execution of the pfadd.ss f2,f7,f0 instruction. Each row represents a
clock cycle of execution. On the second cycle we see Res1 being
passed to PFAD_STAGE2_RES. This continues until the result is output
to the variable PFAD_REAL_DOUBLE_RES on the fifth cycle. The
pipeline was stalled one cycle because a non-pipelined instruction “shl”
was executed in the middle.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 142

Copyright 1995-1999 SCRA
142

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Pipelined Adder
Code Segment

if (PFAD_FLAG = TRUE) then
 if(SE = '0') then -- No pipeline advance on source except.
 PFAD_SR_STAGE3 := PFAD_SR_STAGE2;
 PFAD_STAGE3_RES := PFAD_STAGE2_RES;
 PFAD_SR_STAGE2 := PFAD_SR_STAGE1;
 PFAD_STAGE2_RES := PFAD_STAGE1_RES;
 PFAD_SR_STAGE1 := PFAD_SR;

 if (PFAD_SR(1) = '0') then -- Single precision source
 PFAD_REAL_SINGLE_OP1:= INT_TO_REAL_SINGLE(PFAD_OP1(0));
 PFAD_REAL_SINGLE_OP2:= INT_TO_REAL_SINGLE(PFAD_OP2(0));

 if (PFAD_SR(0) = '0') then -- Single precision result
 --
 -- CASE 1:
 -- Single Precision sources and Single Precision result
 --
 PFAD_REAL_SINGLE_RES :=PFAD_REAL_SINGLE_OP1 + PFAD_REAL_SINGLE_OP2;
 PFAD_STAGE1_RES(0) := REAL_SINGLE_TO_INT(PFAD_REAL_SINGLE_RES);
 else

Second/Third

Stages Data Passage

This slide shows the code used for modeling the adder pipeline.

The result is calculated in the first stage, and the results are passed to
subsequent stages using the variables PFAD_STAGEx_RES, as can be
seen above.

This code segment calculates the single-precision result of adding
single-precision floating point operands. The highlighted regions show
what needs to occur to enter this stage. First, the pipeline flag must be
set. This is set in the decoding stage. Second, no source exception
should have occurred. This also gets checked in the decoding stage
when the operands are loaded into the variables PFAD_OP1 and
PFAD_OP2 (not shown but can be observed if the code in the lab is
analyzed). The precision bits are also passed through the pipeline in the
form of the variable PFAD_SR, which is two bits wide and represents
the precision of the source and result. If the source and result are both
single precision as shown above, then we enter a section which
performs the overloaded add operation of these types. The result is
stored in stage 1. Since the adder is three stages, data is loaded into
the first stage on the current clock cycle. On the second clock cycle,
data is passed to the second stage of the pipeline and on the third clock
cycle, data is passed to the third stage of the pipeline, where the result
is finally stored back in the register file.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 143

Copyright 1995-1999 SCRA
143

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Cache Modeling

32 byte lines

128 Sets

Four Way

Virtual Tag
Virtual Tag

Virtual Tag
Virtual Tag

V

V
V
V

0x18 0x10 0x08 0x00

0x18 0x10 0x08 0x00

0x18 0x10 0x08 0x00
0x18 0x10 0x08 0x00

Physical Tag

Physical Tag
Physical Tag
Physical Tag

ME SI

ME SI
ME SI
ME SI

● Record data types used
● Three caches contained in three separate

processes
❍ Instruction Cache => Instr. Fetch process
❍ Data Cache => Load/Store process
❍ Address Translation Caches => MMU process

[Egolf95]Copyright 1995 VHDL International Users Forum. Used with permission.

The caches were modeled using record types and stored in variable
declarations. There were three caches in this model (instruction, data,
and address translation caches) and the above diagram represents the
model for the data cache. The instruction and translation caches were of
less complexity. Procedures were written to encapsulate the
functionality associated with each cache.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 144

Copyright 1995-1999 SCRA
144

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Data Cache VHDL
Representation

● VHDL representation
of the the data cache

● Record type
● Elements of data

cache
❍ Virtual tags
❍ Validity bits
❍ Lines of data
❍ Physical tags
❍ State information

❑ MESI

subtype BIT_20 is BIT_VECTOR(19 downto 0);
type CACHE_VTAG_BLOCK is array(0 to 3) of BIT_20;
type CACHE_VTAG_SET is array(0 to 127) of
CACHE_VTAG_BLOCK;
type CACHE_BIT_BLOCK is array(0 to 3) of BIT;
type CACHE_V_SET is array(0 to 127) of
CACHE_BIT_BLOCK;
type INT_8D is array(0 to 7) of INTEGER;
type CACHE_LINE_BLOCK is array(0 to 7) of INT_8D;
type CACHE_LINE_SET is array(0 to 127) of
CACHE_LINE_BLOCK;
type CACHE_PTAG_BLOCK is array(0 to 3) of BIT_20;
type CACHE_PTAG_SET is array(0 to 127) of
CACHE_PTAG_BLOCK;
subtype BIT_2 is BIT_VECTOR(1 downto 0);
type CACHE_MESI_BLOCK is array(0 to 3) of BIT_2;
type CACHE_MESI_SET is array(0 to 127) of
CACHE_MESI_BLOCK;

type DATA_CACHE_TYPE is record
 VIRTUAL_TAG : CACHE_VTAG_SET;
 V : CACHE_V_SET;
 INSTR_LINE : CACHE_LINE_SET;
 PHYSICAL_TAG : CACHE_PTAG_SET;
 MESI : CACHE_MESI_SET;

end record;

This slide shows the representation of the data cache in the i860XP
model using the VHDL record construct. The other caches have a
similar record structure. The next slide shows how the instruction cache
is accessed using a similar structure.

Five elements are contained in the data cache: virtual tags, validity bits,
data, physical tags, and state information. These are modeled as fields
in the data type for the cache.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 145

Copyright 1995-1999 SCRA
145

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Instruction Cache Search

● Segment of code to
search the set and
index of the
instruction cache for
the next instruction

● First check the
validity bits

● Second check the
virtual tags

● If search is not
successful, then
start the memory
management
process

while SEARCH = FALSE loop
 -- Search the validity bits and virtual tag if necessary

 if (INST_CACHE.V(SET)(INDEX) = '1') then
 -- Check the virtual tag

 if (INST_CACHE.VIRTUAL_TAG(SET)(INDEX) =
 PC_BIT32(31 downto 12)) then
 SEARCH:= TRUE;
 DATA_VALID:= '1'; -- Instruction in cache
 CACHE_LINE:= INST_CACHE.INSTR_LINE(SET)(INDEX);
 FETCH_BUFF(0) <=
 CACHE_LINE(BITS_TO_NATURAL(PC_BIT32(4 downto 2)));
 end if;
 end if;
 INDEX:= INDEX + 1;

 if (INDEX = 4 and SEARCH = FALSE) then
 SEARCH:= TRUE;
 DATA_VALID:= '0'; -- No instruction in cache
 ADDRESS_INT_SIG <= BITS_TO_INT(PC_BIT32);

 MMU_START <= '1', '0' after DEFAULT_TIME;
 FETCH_INSTR_EXT <= '1', '0' after CLK_PERIOD;
 end if;
end loop;

This segment of code searches the instruction cache for the next
instruction to place in the fetch buffer (FETCH_BUFF).

Prior to this code segment the search variable is set to false, the cache
set is determined, and the index is initialized to zero. It loops through the
current set looking for valid data bits set for each line. If it finds one, it
then compares the virtual tag for that index with the current PC values
upper bits. If it finds a match, then the search is set to true, and the data
is loaded into the fetch buffer.

If no match is found, then this would imply the index being equal to four
(4-way set associative), and the search variable is still false. At this point
the memory management is started to do the translation to a physical
address.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 146

Copyright 1995-1999 SCRA
146

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Instruction/Data
Reading/Writing

Instruction read:
Decode/Execute => Instr_fetch => Read From Cache

 => MMU Translation => Ext_Code_Read
Data Read/Write:

Decode/Execute => MMU Translation => Load/Store => Read from Data Cache

=> Ext_Burst_read or Ext_Single_Read

i860XP

Decode/Execute Process

Instr_fetch Process

MMU Process

Load/Store Process

PC:= PC +1;
Read_Instruction(PC);

Load_Data();

Instruction Cache Record

MMU Translation Caches

Data Cache Record Type

To
External
Memory

1 Cycle

2 Cycle

4 Cycle

Typical loads and stores of data and instructions follow the above
process-initiation sequence. The decode/execute process triggers the
instruction fetch process when it takes an instruction from the instruction
buffer. This allows the instruction fetch process to begin its next fetch
while the decoder breaks down the instruction it pulled from the fetch
buffer. The fetch buffer was created to feed one or two instructions to
the decode/execute process based on the mode of execution (single or
dual mode). If address translation was required, the MMU process was
triggered next. On data loads and stores, the MMU process was always
entered because translation is always done on this type of operation. It
then triggered the data load/store process. Once the type of transaction
was determined, the handshaking protocol was done by either a single-
cycle, two-cycle, or four-cycle process. This was based on whether the
transaction type was a 64 bit or less operation, 128 bit operation, or
cache fill operation, respectively.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 147

Copyright 1995-1999 SCRA
147

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Code Segment for
External Instruction Fetch

EXT_CODE_READ:
 process
 variable DONE : BOOLEAN;
 variable BURST_FILL : BOOLEAN:= FALSE;
 variable BRDY_COUNTER: INTEGER:= 0;
 variable i : INTEGER:= 0;
 begin
 EXTERNAL_CODE_READ <= '0';

 wait until EXTERNAL_CODE_READ'EVENT
and EXTERNAL_CODE_READ = '1';

 wait until FALLING_EDGE(CLK);
 EXTERNAL_CODE_READ <= '1';
 DONE := FALSE;
 BRDY_COUNTER:= 0;
 BURST_FILL := FALSE;
 i:= 0;

 while (DONE = FALSE) loop
 wait on CLK;
 if (RISING_EDGE(CLK)) then

 if (BRDY_N = '0') then
 INSTR_BUFF(i) <= BITS_TO_INT(
 std2bit_vector(DATA(31 downto 0),'0'));
 INSTR_BUFF(i+1) <= BITS_TO_INT(
 std2bit_vector(DATA(63 downto 32),'0'));

 i:= i+2;

 if (KEN_N = '0' or (BURST_FILL=TRUE and
 BRDY_COUNTER /= 3)) then
 BURST_FILL := TRUE;
 if (BRDY_COUNTER = 0) then
 SAVE <= TRUE;
 else
 SAVE <= FALSE;
 end if;
 BRDY_COUNTER:= BRDY_COUNTER + 1;
 CACHE_FILL <= '1';
 INST_LOAD_IN_PROGRESS <= '1';
 else
 DONE:= TRUE;
 EXTERNAL_CODE_READ <= '0';
 CACHE_FILL <= '0' after CLK_PERIOD;
 INST_LOAD_IN_PROGRESS <=
 '0' after (CLK_PERIOD + 3 ns);
 end if;
 wait for 0 ns;
 end if;
 end if;
 end loop;
 end process EXT_CODE_READ;

This code segment describes what occurs on a cache miss, and the
instruction needs to go to external memory for data. The first thing that
occurs is some external process sets the signal
EXTERNAL_CODE_READ to “1”. This triggers the process. The role of
this code segment is to sample the BRDY_N input signal on each rising
edge of the clock and, if it is active, it proceeds loading the data from
the bus into the instruction buffer and later into cache if a cache fill is in
progress.

The while loop continues until variable DONE is set to TRUE. This
samples the BRDY_N line for a “0” on the rising edge of the clock. If the
KEN_N input which is set by external hardware is detected to be a “0”
also, then the cycle is converted to a cache fill, given that the processor
is set up for a cache fill. At this point, the processor is switched to a
burst mode line fill (BURST_FILL is set to TRUE and the
BRDY_COUNTER is incremented to “1”).

The second time through this segment KEN_N may not be “0” anymore
but BURST_FILL is TRUE and the counter is “1”. It gets updated to “2”.
On the third load it gets updated to “3” and on the 4th load, because it is
“3”, the variable DONE gets set to TRUE.

If KEN_N never goes low, then the normal 64 bit read is performed, and
no cache fill is done.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 148

Copyright 1995-1999 SCRA
148

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Instruction Cache-Fill Cycle

Instructions
Loaded into buffer

KEN_N active
low initiates
cache fill

Memory
Strobes

This diagram shows the timing of an instruction cache-fill cycle from an
access to external memory going through the memory controller. The
cycle begins when the address is not found in the instruction cache. At
this point, the “FETCH_INSTR_EXT” signal is set as well as the
instruction load in progress signal (INST_LOAD_IN_PROGRESS). The
ADS_N signal is set to low to activate the code read, and the external
memory controller sets the KEN_N signal from the memory controller
unit to tell the processor it plans to do a cache-fill type cycle. At this
point the processor stops driving the address lines and the memory
controller begins. The STROBE signal indicates the times when the
memory is being asked for data. There are no wait states, and in this
case data is returned on every clock cycle. The length of memory wait
states is programmable by the use of VHDL generic inputs. Data is
returned into the INSTR_BUFF array in locations 0 to 7 and is sent to
the cache at the same time.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 149

Copyright 1995-1999 SCRA
149

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Trap/Reset/Exception/Interrupt
Handling

● Trap handling is responsibility of programmer
● All trap types are checked on each clock cycle

and during execution of FP operations
● All processing contained in a procedural call

(TRAP_HANDLER_INIT)

Trap Types
Processor Action

1) Instruction Faults
2) Floating Point Faults
3) Instruction Access Faults
4) Data Access Faults
5) Parity Error Fault
6) Bus Error Fault
7) Interrupt
8) Reset

The occurrence of any one of these initiates the Processor Action

1) Copy U of PSR into PU bit
2) Copy IM bit into PIM bit
3) Set U to zero
4) Set IM to zero
5) Set DIM if in Dual-mode else DIM is cleared
6) Set DS bit under certain conditions
7) Set Appropriate Trap bits in PSR and EPSR
8) FIR register loaded with return address
9) PC point s to the virtual address 0xFFFFFF00

A separate package was created for encapsulating the functionality of
exceptions, reset, traps, and interrupts.

The actual code for handling the traps is the responsibility of the
operating system or the user.

These types of conditions were checked on each clock cycle and, if a
condition occurred, the processor action was taken above. This action
was contained in a procedural call.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 150

Copyright 1995-1999 SCRA
150

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Trap Handler Initiation

begin
 -- If a trap occurs after a lock instruction
 -- and before a load or store that unlocks the
 -- instruction then set the IL bit in the EPSR register.
 -- This can be determined by checking the BL bit of
 -- the DIRBASE register which is bit 4.
 if(DIRBASE(4) = '1') then

 -- Set the IL bit of the EPSR to '1'
 EPSR(13):= '1';
 end if;

 -- Copy U of the PSR to PU of the PSR
 -- and set U to '0'. U is bit 6 and PU is bit 7

 PSR(7):= PSR(6);
 PSR(6):= '0'; -- Supervisor mode

 -- Copy IM into PIM of PSR and set IM to '0'
 -- IM is bit 4 and PIM is bit 5
 PSR(5):= PSR(4);
 PSR(4):= '0'; -- Interrupts disabled
 if(DUAL_MODE = TRUE) then

 -- Set DIM of PSR (bit 14)
 PSR(14):= '1';
 else -- Clear it
 PSR(14):= '0';

 end if;
 if((FIRST_TIME = TRUE) or
 (LAST_TIME = TRUE)) then

 -- Set DS bit of PSR (bit 13)
 PSR(13):= '1';
 else

 -- Clear DS bit of PSR
 PSR(13):= '0';
 end if;

 -- If PEF (BIT 15 of EPSR) or
 -- BEF (BIT 16 of EPSR) is set then
 -- Place the bus address in the BEAR register
 if(EPSR(15) = '1' or EPSR(16) = '1') then
 BEAR(31 downto 3):= std2bit_vector(ADDRESS,'0');
 end if;

 -- Load the address of the trapped instruction
 -- into the FIR register
 INT_TO_BITS(TRAP_ADDR, FIR);
 FIR(31 downto 0):= FIR(29 downto 0) & "00";

 DUAL_MODE:= FALSE;
 PC <= VIRTUAL_ADDR;
 end TRAP_HANDLER_INIT;

This segment of code shows the processor action taken initially when a
trap occurs. The trap types were shown on the previous slide.

This routine is implemented as a procedural call.

The appropriate bits in the special purpose registers are set accordingly.

The only thing not set in this routine are the appropriate trap bits in the
processor status register and extended processor status register that
indicate the type of trap. This is done outside the procedural call in the
routine testing for trap conditions.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 151

Copyright 1995-1999 SCRA
151

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Dual Instruction Sequencing

● Variable set to TRUE when FP instruction has Dual-Mode
bit set

● DUAL-MODE variable is set after the next execution
● When in dual-mode, instruction interactions are first

checked before executing the FP and core instructions
● Terminating Dual-Mode uses two variables and is similar to

initiating

Terminate Dual-Mode

op

op

Core-op

Core-op

Core-op

d.fp-op

Core-op or d.fp.op

031
3263

Initiate Dual-Mode

d.fp-op

fp-op

fp-op

FP instruction in lower 32 bits
Core Instruction in upper 32 bits
op => FP or Core Instruction
fp-op =>
 FP operation
Core-op =>
 Core operation

Dual instruction sequencing is done in the decode/execute process and
uses boolean variables to determine how many instructions to execute.
Dual mode is initiated on the second cycle following a floating point
instruction with the dual bit set. When in dual-mode, the decode/execute
section of code is executed twice on the given clock cycle. Prior to doing
the dual execution, any instruction interaction is first checked.

Dual mode is exited using boolean variables to determine the time of
shut-down. When in dual mode and the dual bit is no longer set in the
FP instruction, a flag is set to TRUE and if TRUE on the next cycle, the
dual mode variable is set to FALSE on the following clock cycle. This
allows for the two-cycle shutoff to occur.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 152

Copyright 1995-1999 SCRA
152

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Memory Management

● Contains 2 translation
caches (4k and 4M)

● Resolves data and
instruction fetch conflicts

● Data accesses always
translated, instruction
accesses only on cache
miss

● Separate process for
MMU

● Three types of
transactions

❍ Code Read/Write
❍ Data Read/Write
❍ Page Directory Read

Request for translation
MMU Event occurs

ATE bit
enabled ?

YES

NO

A
d

d
re

ss

Check for contention
for translation resources

Check Translation
Caches for Information

Cache
Hit ?

NO YES

Do Bus interface
read of page data

Initiate Bus Transactions
Initiate Bus Transactions

Do Translation

Address Cache
miss?

Set-up interface
signals

YES

NO Load
Data

The memory management unit is a separate process and it contains two
translation caches (4k and 4M). A request for translations comes from
either the decode/execute process on data load/stores or the instruction
fetch process on instruction cache misses.

 If the translation enable bit (ATE) is not set then no translation is done.
The physical address is then checked with the caches for a hit of the
physical tags. If none occurs then a bus transaction is initiated with that
physical address.

If the translation bit is set and an instruction cache miss occurred, then
translation is done to form a physical address. A bus transaction is done
using this physical address, and the physical address is then compared
to the physical tags of the instruction cache for a hit. If there is a hit of
the physical tag, then the entire line is overwritten with the new data
returned.

If the translation bit is set and a data cache transaction occurs, then we
always do translation. In this case, if the virtual tag was found in the
cache, the only thing that could happen would be to update the physical
tag associated with it. If the virtual tag was not found, then the
translation is done and the physical tag is computed. The physical tag is
then searched in the cache at the same time a transaction is done on
the bus. If the physical tag is found in the cache, then the data returned
on the bus is ignored. If not then the both tag fields are updated.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 153

Copyright 1995-1999 SCRA
153

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

● Detailed-Behavioral Modeling and Detailed Design

❍ Overview of detailed-behavioral modeling in VHDL

❍ Alternate approaches to early prototyping

❍ Detailed-behavioral modeling in VHDL design example

❑ Overview of example

❑ Modeling the i860XP processor

➭ Overview of the processor model

➭ The internal model

➭ The interface model

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 154

Copyright 1995-1999 SCRA
154

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Bus Interface
Modeling Scope

● Components interface to external world
● Perform handshaking protocols to external

components
● Tasks of the interface model

❍ Timing accuracy with respect to data manual
❍ Set-up and hold checks
❍ Pulse-width checks
❍ Assertions on unknown values for control inputs

❑ Clock, Reset

❍ Timing performance values (min, typ, max) defined in
separate package

❍ Rise/fall times and capacitive effects can be included

● Clearly specified in DOD Deliverable Data Item
Requirements (DI-EGDS-80811) or EIA-567A

Without the bus interface model, the i860XP would be similar to an ISS
model. The interface provides connection to external components and
performs the necessary handshaking required to do memory operations,
bus arbitration, etc.

The tasks of the interface model are listed above and include most of
the timing and waveform checks common to the timing diagrams found
in a processor’s users manual. The requirements of the interface model
are specified in the DID and EIA-567A.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 155

Copyright 1995-1999 SCRA
155

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Bus Control

● Monitors signals from MMU and externally driven
address and control lines

● Performs cache snooping checks
● Interfaces closely with bus interface model
● Checks for parity errors

Memory Management

Bus Control
1) Determines driver of bus
2) Address lines can be driven externally or
 internally
3) Cache snooping

Instruction Cache

Data Cache

The bus control functionality is dispersed among most of the processes
determining who gets control of the buses as well as doing parity
checking errors. Input signals related to the snooping function are
monitored and, when external access is required, the appropriate
processes are triggered. The bus control units within the model perform
the handshaking protocol through the interface pins of the device to
interact with the external memory controller and memory components.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 156

Copyright 1995-1999 SCRA
156

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Interface Types

● Address strobe initiated

● Bus arbitration activities

● Cache snooping protocol

● Miscellaneous
❍ Clock, reset, lock, interrupt, etc.

For the i860XP, there are four main categories of interface types listed
above.

The address-strobe-initiated type include all activities associated with
accessing data and instructions from external memory. This includes
cache fills and write backs, 64 bit data loads, etc.

The bus arbitration activities deal with the ability of external devices to
gain control of specific lines (i.e., address lines) of the i860XP to
perform a defined task. Signals such as HOLD and HLDA are of this
type.

Cache snooping interface types allow for external devices to look at the
information contained in the i860XPs caches. To achieve this, they need
to gain control of the address lines using a specific handshaking
protocol.

There are miscellaneous signals that perform such things as reset,
clocking, and interrupts.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 157

Copyright 1995-1999 SCRA
157

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Data Load/Store
Initiated Activities

● Address-strobe-
initiated interface
protocol

● Decode/execute
and load/store
processes interact

● Load/store
triggers one of 3
processes based
on burst transfer
mode

● Total of nine
transaction types

● Load/store
process contains
data cache

Decode/Execute Process

Load/Store Process

1) Set address, size of operation
 and transaction type
2) Trigger the load/store process

1) First determine if information is in data cache and
 perform address translation
2) If there is need to go to the external world then check
 for an instruction fetch in progress. The following instr.
 categorized into nine transaction types
 -- LDIO, STIO, LDINT, SCYC, LD_8, LD_16_32,
 -- FLD_32_64, PFLD_32_64, ST_8, ST_16_32,
 -- FST_32_64, FLD_128, PFLD_128, FST_128, PST_D
3) Based on transaction type, set following signals
 -- ADS_N, LEN, CACHE_N, MIO_N, DC_N, WR_N, PCYC, CTYP
4) Transaction type determines method of handshaking
 and initiates the behavior

The data load/store process contains most of the address-strobe-
initiated interface protocol. The remaining address-strobe-initiated
protocol is contained in the instruction fetch and the MMU processes
where code and paging information are read.

The data load/store process is triggered by the decode/execute process,
and the load/store process triggers the transfer mode type process
(single-cycle, two-cycle, or cache-related cycles).

There are a total of nine transaction types defined in this process based
on the types of signals to be setup. A list of instructions covered by
these nine types is shown in the lower box.

The data cache is also contained in this process.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 158

Copyright 1995-1999 SCRA
158

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Setup of External Signals
for Data Transfer

case TRANSACTION_TYPE is
 when 0 => -- LDIO instruction
 LEN <= '0';
 CACHE_N <= '1';
 -- The next three signals identify this

instruction
 MIO_N <= '0';
 DC_N <= '1';
 WR_N <= '0';
 when 1 => -- STIO instruction
 LEN <= '0';
 CACHE_N <= '1';
 -- The next three signals identify this

instruction
 MIO_N <= '0';
 DC_N <= '1';
 WR_N <= '1';

case TRANSACTION_TYPE is
-- Store instruction
when 1| 5 =>
 case BYTE_NUM_SIG is
 when 0 =>
 case OP_SIZE_SIG is
 when 8 =>
 BE_N <= "11111110";
 when 16 =>
 BE_N <= "11111100";
 when 32 =>
 BE_N <= "11110000";
 when 64 =>
 BE_N <= "00000000";
 when others =>
 assert FALSE
 report "Illegal Op size in store instruction 1 or 5"
 severity warning;
 end case;

The execution of a load or store instruction sets the transaction type,
BYTE_NUM_SIG, OP_SIZE, and passes the address to the load/store
process.

This set of code is contained in the load/store process and is based on
the transaction type set up by the execution of a load or store
instruction; the appropriate signals to the external world are set to
describe the type of transaction. The key signals are LEN, CACHE_N,
MIO_N, DC_N, WR_N, and the byte enable signals BE_N.

The next slide shows some of the code to initiate the handshake with
the memory controller.

For example, if we had a STIO instruction, which is a store to an IO
address, then the transaction type would be 1. If the operand size is 32
bits and the byte number is “0” then the code in the boxes is executed.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 159

Copyright 1995-1999 SCRA
159

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADS_N Strobe-
Initiated Memory Write

INT_TO_BITS(DATA_ADDR_SIG,TEMP_32);
ADDRESS <= To_StdLogicVector(TEMP_32(31 downto 3));
-- PCYC and CTYP are only defined for memory reads/writes
ADS_N <= '0','1' after CLK_PERIOD;
-- Trigger the external read process
EXTERNAL_BUS_OP <= '1';
-- Now load the data onto the data bus
INT_TO_BITS(BUS_DATA_SIG_2INT(0),BUS_DATA_64(31 downto 0));
INT_TO_BITS(BUS_DATA_SIG_2INT(1),BUS_DATA_64(63 downto 32));
DATA <= To_StdLogicVector(BUS_DATA_64);
wait until RISING_EDGE(CLK);
wait until BRDY_N'EVENT and BRDY_N = '0';
EXTERNAL_BUS_OP <= '0';
DATA_STORE_IN_PROGRESS <= '0';
DATA <= (others => 'Z') after CLK_PERIOD/2;

This is the code executed in the case of a floating point store instruction,
when the transaction type is 5.

This set of code follows that of the previous page and takes the address
supplied by the execution of the store instruction and drives the address
bus (ADDRESS <=).

At the same time, it asserts the ADS_N line which initiates an address
strobe transaction. It puts the data on the bus and waits for the next
rising edge of the clock. It then waits for assertion on the BRDY_N line.
When this occurs, control is handed over to the single write transaction
process (setting EXTERNAL_BUS_OP <= ...). That process continues
to drive the data lines until acknowledgment of memory storage is
returned.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 160

Copyright 1995-1999 SCRA
160

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Timing Diagram
for Load Operation

● Three clock cycles to perform the data store because of
memory controller wait states

● Clock prior to ADS_N active initiates the store operation
● BRDY_N active low from the memory controller signifies

data is ready
● ADDRESS and BE_N lines determine location in memory

Load Instruction
Executed

Address strobe goes low

Address and
byte enables set

Memory strobed

Data loaded

This diagram shows an example of the timing associated with a
load/store transaction.

ADS_N initiates the transaction by going low on the falling edge of the
clock. Data is put on the bus by the memory after the strobe signal is
activated.

The transaction type is determined by MIO_N, DC_N, WR_N, PCYC,
and CTYP. 32 bits of data are being driven on the bus during the load
operation. The address is set to “0”. When BRDY_N is returned by the
memory controller, this means the processor should read the data from
the bus on the next rising edge of the clock.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 161

Copyright 1995-1999 SCRA
161

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Bus Arbitration Timing

● Cache miss
occurred at same
time as controller-
initiated write to
VME. Conflict for
address lines

● HOLD to processor
prevented two
drivers of bus

● Process
acknowledges
HOLD and waits for
HOLD to go inactive
again

● Controller performs
its block of writes
and de-asserts
HOLD

● Processor
continues with
cache fill

Memory controller asks processor

Processor gives up bus

This diagram shows an example of the timing associated with a bus
arbitration cycle.

The HOLD and HLDA indicate the handshaking occurring. The
controller initiates a HOLD to the processor to indicate it wants control.
Because at that time the processor was not doing any address-related
operations, it issued a HLDA (Hold acknowledge). At this point the DMA
could start driving the address lines and do the DMA transfer across the
VME bus. In this case it is doing a quad byte block transfer set up by the
configuration words sent to it prior to this diagram. When the DMA is
complete, the controller deasserts its HOLD signal and, on the next
rising edge of the clock, the HLDA signal is deasserted by the
processor.

Not shown is the occurrence of a cache miss when the external DMA
controller had access to the memory. The cache miss had to wait until
the HLDA was invalidated before performing its code read.

At this point the cache fill can continue.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 162

Copyright 1995-1999 SCRA
162

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Interrupts/Bus Errors/Parity
Errors/Reset

● Miscellaneous input
signals

● Bus control unit checks for
parity errors if PEN_N is
active on bus read
operation

● Interrupt signal sampled
high with IM bit set in PSR
causes trap invocation

● The trap handler
initialization routine is a
procedure

● All signals sampled on
rising edge of clock

● Reset must be sampled
high for 10 clock cycles.

Interrupts, Bus and Parity errors and Reset

 INT_CS8 RESET BERR PEN_N

1) These signals sampled on each clock cycle
2) INT_CS8 active with interrupts enabled sets
 the IN bit in PSR
3) BERR active sets the BEF bit in EPSR
4) PEN_N active and bus control unit detects
 a parity error sets PEF bit of EPSR
5) Reset initiates reset_handler procedure

Initiate the trap handler routine

There are a number of miscellaneous signals that serve a specific
purpose. These include the ones mentioned above.

The bus control unit checks for parity errors if PEN_N is active on a bus
read operation. This functionality is contained in the decode/execute
process when the data arrives from the bus and is placed in the register
file. It is sampled on the rising edge of each clock.

The interrupt signal is sampled on each rising edge of the clock and is
also a part of the decode/execute process. If the IM bit is set in the
processor status register, then a trap invocation is started.

The BERR bit is also sampled on each clock cycle and, if set, the trap
invocation is entered.

RESET must be sampled high for at least 10 clock cycles before it
activates the reset handling procedure.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 163

Copyright 1995-1999 SCRA
163

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

➭ The testbench
✰ Clock/reset generator

✰ Memory controller

✰ Memory

➭ Testing the i860XP

➭ Results

❑ Testing the MCV9

❑ Testing the IRST

❑ Creating a DMA to the VME in the memory controller

❑ Simulation results

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 164

Copyright 1995-1999 SCRA
164

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Package 2:
Instruction Set

Clock/ResetClock/Reset

i860 Detailed-behavioral Model

Encapsulation of Common Functionality in Packages
Package N:

i860 Internal Model
1) Instruction Decoding
2) Pipeline Processing
3) Register/Cache Storage
4) Procedural calls for implementation
 of instruction functionality

Handlers
Trap/Reset Package 1:

Datatypes
Package 2:

Memory Functions

i860 Interface Wrapper

1) Interface Timing as specified in users manual

i860 testbench

Memory

Memory
Controller

Package 1:
Datatypes

Case Study: i860XP
Test bench

This diagram outlines the i860XP component model. It is composed of
the i860XP design unit and a testbench. The i860XP is represented as a
fully functional model.

● The internal model is at the behavioral level.

● The interface model, which accurately models the timing
information at the interface, has hooks to the internal model.

● Packages used for functionality encapsulation:

– Datatype/Conversion

– Instruction Set Implementation

– Trap/Reset/Interrupt/Exception Handling

– IEEE Standard 754 Floating Point Math.

The test bench consists of a memory, a memory controller, a clock and
reset generator for synchronization, and assorted packages to
encapsulate specific functionality related to each element. The test
bench also contains the test program which is stored in files and read
into memory as needed.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 165

Copyright 1995-1999 SCRA
165

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Testbench Modeling

● Why ?
❍ Necessary for verification of the component model

● What ?
❍ Provides synchronization inputs for clock circuits
❍ Initializes the component to a known state with reset
❍ Stimulates the component to verify

❑ Internal functionality
❑ External timing

❍ Observes responses resulting from stimuli
❑ Use of files for internal state dumps
❑ Storage elements to hold results of interface

information
❑ Results database for timing checks
❑ Compares response values to expected values

contained in a test bench entity-architecture
❍ Provides for automated regression testing

The component models testbench is necessary for the verification of the
model. The memory controller and memory are part of this testbench.

It consists of segments to provide synchronization inputs in the form of a
clock, and it initializes the component to a known state with the reset
input.

It also stimulates the component to verify the internal functionality of the
model under test as well as its external timing behavior.

It serves as a monitor of the device under test to compare outputs with
expected results. The user of the model should be notified of any
deviations from expected responses.

For the i860XP model, files are used to store test programs and are also
used to store results for later comparison.

Some form of regression testing should be included to automatically test
the component when changes have been made to its functionality.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 166

Copyright 1995-1999 SCRA
166

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Elements of the Testbench

● Clock/reset
❍ Provides the initialization and synchronization

● Memory controller
❍ Provides handshaking and special signals to the

processor

● Memory
❍ Stores results and provides test program

● Test program
❍ Test code compiled from high-level language
❍ Special instructions can also be used as input to the

memory and memory controller for monitoring and
dumping of specific ranges to a file for viewing

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 167

Copyright 1995-1999 SCRA
167

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Clock/Reset Generator

● Initialize with a reset
❍ Held high for 10 clock

periods using counter
variable

● Clock period set using
generic parameter,
HALF_CLK_PERIOD

● Reset held high based
on generic input

begin
 CLK_GENERATOR: process
 variable RESET_TOGGLE: BOOLEAN:= FALSE;
 variable COUNTER : INTEGER:- 0;
 begin
 if RESET_TOGGLE = FALSE then
 RESET <= ACTIVE_VALUE;
 end if;
 CLK <= ‘1’;
 wait for HALF_CLK_PERIOD;
 CLK <= ‘0’;
 wait for HALF_CLK_PERIOD;
 COUNTER:= COUNTER + 1;
 if (COUNTER = INTEGER’HIGH) then
 COUNTER:= RESET_CYCLES;
 end if;
 if (COUNTER > RESET_CYCLES and
 RESET_TOGGLE = FALSE) then
 RESET <= not ACTIVE_VALUE;
 RESET_TOGGLE:= TRUE;
 end if;
 end process;
end BEHAVIOR;

entity CLK_RESET_GEN is

 generic (HALF_CLK_PERIOD: TIME:= 12.5 ns;

 RESET_CYCLES : INTEGER:= 10;
 ACTIVE_VALUE : STD_LOGIC:= ‘1’);
 port (CLK : out STD_LOGIC:= ‘0’;
 RESET: out STD_LOGIC);
end CLK_RESET_GEN;
architecture BEHAVIOR of CLK_RESET_GEN is

entity CLK_RESET_GEN is

 generic (HALF_CLK_PERIOD: TIME:= 12.5 ns;

 RESET_CYCLES : INTEGER:= 10;
 ACTIVE_VALUE : STD_LOGIC:= ‘1’);
 port (CLK : out STD_LOGIC:= ‘0’;
 RESET: out STD_LOGIC);
end CLK_RESET_GEN;
architecture BEHAVIOR of CLK_RESET_GEN is

The clock/reset generator consists of the code above and is reusable
across all processor testbenches. The generic clock period time, length
of reset (in clock cycles), and its active value are required for simplicity
of reuse.

It may be a good move to drive the reset to “Z” because there may be
other circuitry that will drive the reset lines. Even better, a special reset
process may need to be written that wired-ors a number of lines with the
resulting output being the reset state.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 168

Copyright 1995-1999 SCRA
168

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Memory Controller

● Interfaces directly to the Proc.
❍ Interprets processor output

signals to determine transaction
method

❍ Drives processor input signals
to define specific transfer types
(KEN_N for cacheable
addresses)

● Hierarchy of case statements
used to decode address-strobe-
initiated types

● Drives address lines on cache
snooping and burst mode data
and instruction transfers

● Interrupts processor
● Performs bus arbitration

protocol

Cycle Control
Signals
ADS_N

BRDY_N
LEN

CACHE_N
LOCK_N

Cache
Control and

bus arbitration
Signals
KEN_N
HOLD

Cycle
Definition
Signals
MIO_N
DC_N
WR_N
PCYC
CTYP

Memory Controller
(ASIC)

The memory controller interfaces directly to the processor and is
required to interpret the processor outputs as well as drive its input
lines.

For address-strobe-initiated transactions, there is a hierarchy of case
statements used to interpret the important lines from the processor and
determine the type of transaction to perform.

In some cases, it needs to drive the address lines; for example, in the
case of cache fill cycles and cache snooping.

It must also send special signals such as interrupt to the processor to
verify its correction response.

It must also perform the handshaking on bus arbitration cycles.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 169

Copyright 1995-1999 SCRA
169

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Address-Strobe-Initiated Bus
Cycle Decoding

● Use of case
statements for
decoding the
type of
handshaking

● Use of memory,
I/O transfer type
cycle definition

● Allows for
Transfers of 1, 2
or 4 words
based on the
type

if (ADS_N = ‘0’’) then
 CYCLE_DEFINITION:= std2bit_vector(MIO_N & DC_N & WR_N, ‘0’);
 case CYCLE_DEFINITION is
 when “000” => -- Interrupt acknowledge
 when “001” => -- Special cycle
 when “010” => -- I/O Read

when “110” => -- Memory Read
 MEMORY_TRANSFER_TYPE:=
 std2bit_vector(PCYC & CTYP & WR_N, ‘‘0’);
 case MEMORY_TRANSFER TYPE is
 when “000:” => -- Normal read

when “111” => -- Page Table update

end case;

end case;
end if;

The address-strobe-initiated bus cycle transactions depend on ADS_N
going low. This segment of code shows the decoding of the type of
transaction based on the signals MIO_N, DC_N, WR_N, PCYC, and
CTYP. A case statement is used to structure the decoding section. At
the leaf of each decoding tree, the handshaking protocol is performed.

There are 3 transfer lengths, 1 2, and 4 cycles.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 170

Copyright 1995-1999 SCRA
170

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Memory Controller Operation to
Read Code from Memory

when "100" => -- Code Read
 if ((WR_N = '0') and (LEN = '0')) then
 wait until ADS_N'EVENT and ADS_N = '1';
 -- Initiate the memory read
 STROBE <= '0','1' after MEM_LOAD_TIME;
 -- Implement a simulated amount of wait states for
 -- the system
 for i in 1 to MEM_WAIT_STATES loop
 wait until RISING_EDGE(CLK);
 wait until FALLING_EDGE(CLK);
 end loop;
 BRDY_N <= '0','1' after CLK_PERIOD;
 if (CACHE_N = '0') then
 KEN_N <= '0','1' after CLK_PERIOD;
 LATCHED_ADDR:= std2bit_vector(ADDRESS,'0');
 -- Do the burst fill now using the address passed.
 -- Do this 3 more times in the following loop.
 COUNT:= 0;
 wait until FALLING_EDGE(CLK);
 for j in 0 to 2 loop
 COUNT:= COUNT + 1;
 -- Update the address and send the byte enables
 -- for 64 bit load
 LATCHED_ADDR(0):= not LATCHED_ADDR(0);

 if (COUNT = 2) then
 LATCHED_ADDR(1):= not LATCHED_ADDR(1);
 end if;
 ADDRESS <= To_StdLogicVector(LATCHED_ADDR);
 BE_N <= "00000000";
 WR_N <= '0'; -- Do the next read
 wait until RISING_EDGE(CLK);
 wait until FALLING_EDGE(CLK);
 STROBE <= '0','1' after MEM_LOAD_TIME;
 for i in 1 to MEM_WAIT_STATES loop
 wait until RISING_EDGE(CLK);
 wait until FALLING_EDGE(CLK);
 end loop;
 BRDY_N <= '0','1' after CLK_PERIOD;
 wait for 0 ns;
 end loop;
 -- Return to normal tri-state
 WR_N <= 'Z' after CLK_PERIOD;
 BE_N <= (others => 'Z') after CLK_PERIOD;
 ADDRESS <= (others => 'Z') after CLK_PERIOD;
 end if;
 end if;

Memory

Wait States

Cache Fill

Loop Start

Cache Fill

Loop End

This represents a code read operation. When CYCLE_DEFINITION on
the previous slide is “100”, we enter this segment of code.

It starts as a non-cacheable 64 bit operation with burst length
determined by CACHE_N and KEN_N. If CACHE_N is set, then
memory controller will set KEN_N. This will cause a BURST fill of the
cache based on whether the processor wants the data to be cacheable
or not.

If CACHE_N is not set the KEN_N will also not be set.

The following is done by this section of code:

● Wait for the address strobe to be “0”

● Strobe the memory for data.

● Wait any specified number of clock cycle delays based on memory
access time.

● After waiting a specified number of cycles, the data should be
ready. At this point send BRDY_N back to the processor.

● If the CACHE_N line is active, then the memory controller will turn
the transaction into a cache fill. In this case KEN_N is set, and the
same procedure as mentioned in the previous lines is repeated until
three additional data items are loaded by the processor.

● The address is now driven by the controller, not the processor.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 171

Copyright 1995-1999 SCRA
171

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Memory Model

● Each memory segment is
dynamically allocated based
on address need

● Consists of a doubly linked
list of records

● Provide access time generic
parameter

● Procedures are created to:
❍ Create the initial memory

segment after reset
❍ Add memory segments
❍ Search segments for data

● Record consists of:
❍ Low and high address for

segment
❍ Data array
❍ Next and Previous pointers to

memory segments

Memory
Segment

I

Memory
Segment

II

Memory
Segment

N

Pointer to Previous

Pointer to Next

type MEM_TYPE is array(0 to 4095) of integer;
type MEM_SEGMENT;
type MEM_SEG_PTR is access MEM_SEGMENT;
type MEM_SEGMENT is
 record
 low_addr : INTEGER;
 high_addr : INTEGER;
 memory : MEM_TYPE;
 prev_ptr : MEM_SEG_PTR;
 next_ptr : MEM_SEG_PTR;
 end record;

Memory is created using access types in VHDL. A doubly linked list is
created to tie groups of memory segments together, and addressing of
memory is based on the need to search the segments for the correct
address if it exists. If it does not exist, a new segment is added.

Each memory segment was implemented using a record type with:
integer fields for low and high address of the segment, an array field for
storing the data or instructions for that segment, and two pointer fields
to point to the next and previous segments of memory.

The segments are dynamically allocated based on the addresses
presented to the input of the memory entity. The code describing the
memory data type is shown on the right hand side.

Access time to the memory entity was set by a generic parameter.

Procedures were created for performing various memory functions
including: creating the initial memory segment, adding a new memory
segment, and searching segments for data.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 172

Copyright 1995-1999 SCRA
172

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Creating and Deleting
Memory Segments

● Functions are used to
create and delete
memory segments

❍ On reset, the delete
procedure is called to put
all memory into its reset
state.

● MEM_SEG_PTR is an
access record type

 procedure DELETE_MEM(
 MEM_ARRAY : inout MEM_SEG_PTR) is
 variable PREV_SEG: MEM_SEG_PTR;
 variable NEXT_SEG: MEM_SEG_PTR;
 begin
 -- Move to the end of memory
 while MEM_ARRAY.NEXT_SEG_PTR /= null loop
 NEXT_SEG:= MEM_ARRAY.NEXT_SEG_PTR;
 MEM_ARRAY:= NEXT_SEG;
 end loop;
 -- Deallocate all segments starting at the end
 while MEM_ARRAY.PREV_SEG_PTR /= null loop
 PREV_SEG:= MEM_ARRAY.PREV_SEG_PTR;
 deallocate(MEM_ARRAY);
 MEM_ARRAY:= PREV_SEG;
 end loop;
 end DELETE_MEM;

 function CREATE_MEM_SEG
 return MEM_SEG_PTR is
 begin
 return new
 MEM_SEGMENT'(0,0,(others =>0),null,null);
 end CREATE_MEM_SEG;

This slide shows two routines for handling memory segments. The first
creates a memory segment, and the second deletes memory (used after
reset). On reset, if the memory already exists, then the previous
memory is deleted before creating an initial memory segment using
CREATE_MEM_SEG.

The record type MEM_SEG_PTR is an access type. When deleting
memory, each of the segments previously allocated must be deleted
starting at the end of the linked list.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 173

Copyright 1995-1999 SCRA
173

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Adding a New Memory
Segment to Existing Memory

● This procedures adds
a new memory
segment to existing
memory

● Pass filename and
current memory array

● Return new memory
array

● Attach the new
segment to the end of
the current memory
array

● Allocate using the
new operator

procedure ADD_NEW_MEM_SEG(
 FILENAME : MEM_FILENAME;
 MEM_ARRAY : inout MEM_SEG_PTR) is
 variable PREV_SEG : MEM_SEG_PTR;
 variable NEXT_SEG : MEM_SEG_PTR;
 begin
 while (MEM_ARRAY.NEXT_SEG_PTR /= null) loop
 NEXT_SEG:= MEM_ARRAY.NEXT_SEG_PTR;
 MEM_ARRAY:= NEXT_SEG;
 end loop;
 PREV_SEG:= MEM_ARRAY;
 NEXT_SEG:= new
 MEM_SEGMENT'(0,0,(others =>0),null,null);
 -- Replace the null value pointer with the new
 -- allocated value
 MEM_ARRAY.NEXT_SEG_PTR:= NEXT_SEG;
 MEM_ARRAY:= NEXT_SEG;
 MEM_ARRAY.PREV_SEG_PTR:= PREV_SEG;
 MEM_ARRAY.NEXT_SEG_PTR:= null;
 LOAD_MEM(FILENAME,MEM_ARRAY);
 end ADD_NEW_MEM_SEG;

This slide shows how a new memory segment is added to an existing
memory array. The filename to load the new information is passed to
the procedure along with the current memory array. The updated
memory array is returned.

The new segment is attached to the end of the current memory array by
first searching for the first null pointer for the next memory segment. At
this point, the pointers for the new segment are assigned and the new
segment is allocated.

Following allocation of the new segment, the memory array is loaded
with the file pointed to by the variable filename. The procedure
LOAD_MEM is called to load the new segment.

The next slide shows the LOAD_MEM routine.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 174

Copyright 1995-1999 SCRA
174

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Loading a Memory Segment

● This procedure loads
the new memory
segment with
instructions or data

● The Filename variable
contains the file to
use for loading

● The file has the format
❍ Low address of

segment
❍ High address of

segment
❍ Data to be read if any

procedure LOAD_MEM(
 FILENAME : in MEM_FILENAME;
 MEM_ARRAY : inout MEM_SEG_PTR) is
 file DATA_FILE : TEXT is in FILENAME;
 variable IN_LINE : LINE;
 variable NO_DATA : INTEGER;
begin
 NO_DATA:= 0;
 -- First, read the address range of this data file
 readline(DATA_FILE,IN_LINE);
 read(IN_LINE,MEM_ARRAY.LOW_ADDR);
 readline(DATA_FILE,IN_LINE);
 read(IN_LINE,MEM_ARRAY.HIGH_ADDR);
 while not(endfile(DATA_FILE)) loop
 -- read the data from a file into memory
 readline(DATA_FILE,IN_LINE);
 read(IN_LINE,MEM_ARRAY.MEMORY(NO_DATA));
 NO_DATA:= NO_DATA + 1;
 end loop;
end LOAD_MEM;

This procedure performs the loading of memory using a specified file
containing the data or instructions. The file contains the information to
be loaded into the record type. This includes the low and high
addresses for the segment along with the data values to be loaded.

The TEXT_IO package in VHDL is used to do the read.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 175

Copyright 1995-1999 SCRA
175

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

➭ The testbench

✰ Clock/reset generator

✰ Memory controller

✰ Memory

➭ Testing the i860XP
➭ Results

❑ Testing the MCV9

❑ Testing the IRST

❑ Creating a DMA to the VME in the memory controller

❑ Simulation results

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 176

Copyright 1995-1999 SCRA
176

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Test Strategies

● Build test matrix to obtain acceptable coverage
of functionality

● Provide at least one test for each instruction type
and interface behavior

● Generate test applications from compiled C code
● Use script files to automate testing
● Perform regression tests for model changes

❍ Should be script based to run quickly

● Store results for later comparisons
❍ Internal state dumped to files for later observation
❍ Results database of timing information

The test strategy should encompass a set of tests to verify the correct
functionality of each of the processors' instructions and interface types.

We developed one test for each instruction type and application code to
test multiple instructions at a time. The test applications were coded in C
or Ada and compiled to the i860 assembly language.

Script files were used to automate the testing and perform regression
tests when changes were made to the model. Script files allow the quick
verification of previously run tests to ensure that changes did not affect
any other parts of the model

Results are stored in files. The internal state is stored in a file when a
special instruction is implemented. The timing information is captured by
running the simulator with all the signals archived. The timing
information is stored in a results database and compared to known good
results at the end of the run.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 177

Copyright 1995-1999 SCRA
177

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Testing the i860

● Verify performance and interface operability
❍ Does it meet specification in the manual?
❍ Does everything talk to each other correctly?

● Build a test matrix
❍ Is internal functionality correct?
❍ Does external interface timing match data sheets?

● Test matrix design
❍ Use files of short programs to test each instruction
❍ Use compiled code to test applications with a large

number of instruction interactions

The reason for testing the processor model is to verify the performance
compared to the expected information contained in the users manual.
The components of the testbench must interface correctly to the i860
model in order to do this verification.

A test matrix was generated to cover the complete instruction set’s
internal functional behavior. The test matrix also tests all the interface
protocols specified in the user's manual.

The test matrix consists of a set of short files for testing each instruction
and some larger application test programs to test the use of a large
number of instructions created by a compiler.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 178

Copyright 1995-1999 SCRA
178

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Test Matrix and Regression
Test Strategy

● Use suite of test files
● Run tests from a script and

store results
● Compare results with

known good data
● If passed initial tests, run

application code examples
and compare with known
results

● Code rework has two
sources

❍ External bug reports
❍ Regression test failures

● Inner loop testing done
before outer loop

Increase
Level of
Confidence

Code

Set of test files
 1) Load/Store Instr.
 2) Core add/sub instr.
 etc.

Run Test
Save State

Save I/O Transaction

Test Compiled
Applications

Compare with
Known good results

Correct
Results?

Focus on
Failures

External
Bug Reports

Model Under
Test

No
(Make corrections)

Yes

No

Correct
Results?

This is the general method used for testing the i860XP processor. The
procedure is mostly automated, using script files.

The set of tests is run under two conditions: first, when changes are
made to the model and second, when an external bug report is entered.

The tests are begun by running the suite of small test files of each
instruction. The results are saved in files and results databases. They
are then compared to stored good results and, if there is an error, the
loop is continued. Errors can occur based on the internal state of the
device or on the timing characteristics of its interface. If they pass this
test, the large application programs are run and the results are
compared with known good results. Again, if there is an error, the model
is modified and the tests start again at the smaller tests.

The test is finished when both loop tests complete without error.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 179

Copyright 1995-1999 SCRA
179

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Building Test Application Code

● See flow chart of
procedure used to build
test application code

❍ High-level language
compiled and run on host
machine

❍ Compiled on host for the
target

❍ Code converted to
memory files for the i860
using target tools and
parsing routine for the
common object file format
file (.coff)

● Run code on model and
compare results to host
data

High-level Language Code (Ada, C, etc.)

Compile for host
machine, run, and

store results

Compare Results

Compile on host
using target compiler

test.c

test.860test.list

Convert compiled
code to .coff file

test.coff

Parse file using
.coff to binary

MEMnnnnnn

Use memory files
to load memory

Run code for
application

 and dump memory Dump
range

of memory

Signal to

The application code was built using a high-level language such as C or
Ada. It was compiled on the host for the host and the target. The host
was used to compare results based on the precision of the data (single,
double, etc.).

The target code was run on the model by first converting the compiled
code to a common object file format (.coff) file. This file was parsed
using a program developed in C. This program was used to search for
the hex memory dump and convert it to the format of the memory files
for the processor. Once in the memory file format, the code and data
could then be run on the model.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 180

Copyright 1995-1999 SCRA
180

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Loading Memory with
Instructions and Data

● Use high-level source code (C, Ada, etc.)
● Compile with target compiler
● Parse output to place information in memory files

for the memory model (binary format goes into
memory)

● Read by memory and store in dynamically
allocated list of arrays. Set by address lines.

C or Ada
Source Code

Compiler
Linker
Loader

Parse
Output

MEM000000

MEM002047

MEMnnnnnn

Data/
Instruction

Memory

This shows the method used to place the data into the format for each
memory file. The high-level language was compiled for the target
i860XP and parsed by program to extract the correct information from
the .coff file and place them into the correct memory files.

The naming convention for the memory files used the following format:

● The files were named MEMnnnnnn where the nnnnnn was a
number from 000000 to 262143. Each file contained 4096 integers,
which represented 16364 bytes of data. If an address was 3046,
then it was contained in memory file MEM000000. If it was byte
address 33497108 in integer, then, because the files are word
addresses, we need to divide by 4 to get 8374277, which is the
word address. To get the filename, we then divide by 4096 to get
2047. The memory file where the data will be stored is then
MEM002047. All addresses were assumed to be word addresses
and, if specific bytes were required, then this was made possible by
converting the integer to bits and obtaining the correct byte.

● When data or instructions were read into memory, these were done
so by creating the memory segments dynamically.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 181

Copyright 1995-1999 SCRA
181

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

➭ The testbench

✰ Clock/reset generator

✰ Memory controller

✰ Memory

➭ Testing the i860XP

➭ Results
❑ Testing the MCV9

❑ Testing the IRST

❑ Creating a DMA to the VME in the memory controller

❑ Simulation results

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 182

Copyright 1995-1999 SCRA
182

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Simulation Results

● Three applications
tested

● Avg. instructions/sec
executed => 220

● Hardware was Sun
Sparc10 with 128
Mbytes memory

● Core instructions
faster to simulate than
load/stores

Appl
.

Wall
Clock

Run Time

Internal
Simulatio

n
Time

Instr/sec.

Fahr2Cel

FIR

Sobe
l

5.1 sec.

35 sec.

70 min.

35 us

280 us

31.8 ms

216

211

234

Three test applications were used to measure the performance of the
i860XP model. These included a small C program to convert Fahrenheit
to Celsius and back again, an FIR filter, and a program to do the Sobel
edge detection algorithm on an 128x128 pixel image.

It was found that the code ran approximately 220 instructions/sec on a
Sun Sparc 10 workstation with 128 Mbytes of memory. The Sobel
algorithm took 70 minutes to run because of the amount of data it
needed to process.

From these results, the core instructions, on the average, ran slightly
faster than the floating point instructions. This is probably caused by the
lower complexity in computation required to process these types of
instructions.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 183

Copyright 1995-1999 SCRA
183

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

➭ The testbench

✰ Clock/reset generator

✰ Memory controller

✰ Memory

➭ Testing the i860XP

➭ Results

❑ Testing the MCV9
❑ Testing the IRST

❑ Creating a DMA to the VME in the memory controller

❑ Simulation results

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 184

Copyright 1995-1999 SCRA
184

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Subsystem-level Test

● Objectives of Subsystem Testing

❍ Does each component model behave correctly stand-
alone?

❍ Is the handshaking protocol between components or
buses functioning?

❍ Are the data rates between components within the
specified limits?

❍ Does the prototype provide a high level of confidence
for HW prototyping?

When doing subsystem integration, a plan was required to determine
the objectives expected from doing this simulation and when to end. The
objectives are listed above. At this level of abstraction the main
information to be gathered included whether the components interface
correctly and if the data rates between components are at the rate
required to meet performance objectives. Lastly, to end simulation runs,
one needs to determine how much simulation is enough, and this is
based on the degree of confidence the designers have as to whether
the actual HW will work based on the simulations. Because the MCV9 is
a COTS part, there was a high degree of confidence from the beginning,
and detailed simulations were not required. It was sufficient to have the
units talk together correctly and have the data was sent across the
crossbar network in the correct time.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 185

Copyright 1995-1999 SCRA
185

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Test Process

● Phase I: Initial Integration (Processing Element)
❍ i860 <=> CE-ASIC <=> Memory

● Phase II:
❍ PE <=> XBAR

● Phase III:
❍ Multiple XBARs
❍ Communications with boundaries

❑ VME
❑ RACEway

❍ Added VME Driver and Interlink at this point
❍ Multiple Processing Elements

Various tests were used to verify the integration of the components.
These were done in phases and were part of a test and integration plan.
The first phase tested the processing element alone, which included the
memory, the i860, and the CE-ASIC, along with some buffer registers.
Phase II attached the processing element to a single XBAR and phase
III connected multiple XBARs. Phase III also included tests to write to
the interface of the MCV9 (VME and RACEway Interlink).

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 186

Copyright 1995-1999 SCRA
186

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Phase I Integration Objectives

● Tests at this stage
❍ Reset

❑ Did anything reset to an
unexpected state?

❍ CE-ASIC registers
❑ Can the i860 set key

registers in the CE-
ASIC?

❍ Reading/Writing to CE-ASIC
❑ Is the handshaking

logic working between
the i860 and the CE-
ASIC?

❍ Memory
❑ Can we read and write

data to the memory?

Processing Element

Memory

CE-ASIC i860

Buffers

To
XBAR

The Phase I tests that were run are listed above. Their intent was to test
the integration in the processing element of the MCV9. The first test
performed was a reset test to verify that all the elements came up in
expected states after reset. Once this was verified, various register tests
were implemented to test the ability of the processor to set registers in
the CE-ASIC. At the same time, the handshaking protocol was verified
between the i860 and the CE-ASIC. Finally, reads and writes to memory
were tested to verify the interface connection was correct.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 187

Copyright 1995-1999 SCRA
187

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9: Phase II/III
Integration Objectives

● Interface a single XBAR to the PE, then multiple
XBARs

● Check Communications at boundaries
● Two major interfaces

❍ VME
❑ VME bus model added to test bench

❍ RACEway
❑ Interlink model added to test bench

● Full MCV9 16 processor instantiation
❍ Data written between processors

Once it was guaranteed that the processing element was functioning
properly, a XBAR, and then multiple XBARs, were added to the model.
The handshaking protocol was again verified, and communications were
checked to the subsystem boundaries. These included the two major
interfaces: the VME and the RACEway interlink. When it was verified
that this communication was working properly, a full instantiation of 16
processors was tested on the MCV9. In this case data was written
between processors to make sure the routing was working correctly.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 188

Copyright 1995-1999 SCRA
188

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Phase II/III Integration Tests

● Tests at this stage

❍ i860 <=> XBARs <=> RACEway <=> Interlink

❑ Verify writing data to RACEway from the i860

❍ i860 <=> XBARs <=> VME <=> VME Driver

❑ Verify writing data to the VME interface

❍ i860 <=> XBARs <=> i860

❑ Verify multiprocessor communication

● VME used for passing control information

● RACEway used for passing video data

The actual tests run at this phase included those listed above.

Control information is passed over the VME bus in the actual system
architecture, and video data was passed over the RACEway interlink.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 189

Copyright 1995-1999 SCRA
189

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study MCV9:
Simulation Results

● Application code requires significant simulation
time

● Diagnostic and test code may be less compute
intensive

● Test and Diagnostic can represent the majority of
code

Internal
Simulation

Time
Instr/sec.

1200 ns 7.5

Test Case

MCV9 to Interlink

MCV9 to VME Driver 3000 ns 5.5

Simulation results were collected for two of the tests. The two tests
included the i860-to-interlink data writes and the i860-to-VME writes.

The number of instructions/sec executed with all the additional models
added to the subsystem prototype has decreased significantly. This
prohibited the running of application code on the virtual prototype.

Application code was not run on the prototype because it required too
many computing resources, but test and diagnostic code is a viable
candidate for code running on a virtual prototype. In some systems, the
test and diagnostic code can represent the majority of the code.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 190

Copyright 1995-1999 SCRA
190

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

➭ The testbench

✰ Clock/reset generator

✰ Memory controller

✰ Memory

➭ Testing the i860XP

➭ Results

❑ Testing the MCV9

❑ Testing the IRST
❑ Creating a DMA to the VME in the memory controller

❑ Simulation results

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 191

Copyright 1995-1999 SCRA
191

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
System Tests

● Software Reset

❍ Verify all boards could be reset via software

❍ Specific registers should be configured with correct
default values

● VME Register Test

❍ SW written to read and write all registers on data
distribution and video output cards via VME

❍ Known pattern placed in memory if tests are passed

This and the following slides describe the types of tests run at the
system level to help verify that the system was implemented correctly.

Again, the reset test was the first to be done to verify that everything
initializes correctly.

The VME register test was used to verify that registers in the data input
and distribution card and video cards could be configured correctly. If
the test was passed successfully, then a known pattern was written to
memory.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 192

Copyright 1995-1999 SCRA
192

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
System Tests (cont.)

● Floating Point RAM Test

❍ Same as the previous RAM test, but different portion of
RAM dedicated for FP

● Interrupt Tests (to check correct behavior of HW
and SW responses)

❍ FIFO Overflow

❍ Data Overflow

❍ Beginning of Frame

❍ End of Frame

The floating point RAM test was similar to the previous RAM test, but a
different memory was verified.

Interrupt tests were important to test both the HW and SW. The HW of
the four designed boards could interrupt the processor based on
whether their data and FIFO buffers were full. In this case the processor
can take the appropriate measures to alleviate the problem. The HW
also can send the processor information as to when the frame starts and
stops. These tests usually took a long amount of time because some of
these events happen much later in the timeline, as the next chart will
show.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 193

Copyright 1995-1999 SCRA
193

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
System Tests (cont.)

● RAM test

❍ Read/Write portions of RAM on the video card via VME

❍ 128 locations written, then read back

❍ Test disclosed major design error in VME logic of video
and data distribution card

❍ Misinterpretation of VME specification with respect to
address lines A1 and A2; i.e., they were not used for
decoding and therefore limited addressing to 32-bit
locations

The RAM test was used to read and write portions of memory on the
video and the data and input distribution cards via the VME bus. A total
of 128 locations were written and read back, and when this was tested
an error was found on both cards. The designer misinterpreted the VME
specification and did not use address lines A1 and A2 for decoding. This
prohibited the use of addressing less than 32-bit locations, and the error
was found during this test. This was a significant error that would have
required a difficult fix later in the design cycle, but because no HW had
been created at the time, the fix was done to the VHDL code. The new
code was synthesized again with the fix.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 194

Copyright 1995-1999 SCRA
194

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
Simulation Results

● Events happening far into
simulation timeline not able to
be seen

● Large amount of disk space
required for results database
storage

● Test plan must be established
early in the prototyping effort
to account for long
simulations

● Methods must be devised to
stop long simulations if bad
results occur early in the
simulation

Class of Machine: Sparc10 /128 Meg. RAM / 1.2G Disk
Signals archived: 1,048
Components: 13,257Simulation Time

(msec)

CPU
Time

(hours)

Disk
Space
(MB)

1.0

2.0

3.0

4.0

5.0

3 - 4

5 - 6

7 - 9

10 - 11

11 - 13

10 - 20

60 - 80

90 - 110

130 150

170 - 190

As can be seen from the chart on the right hand side, there is a near-
linear relationship between simulation time and amount of CPU time to
run the test code. The same applies to the amount of memory required
to save the results database.

From this information, it is obviously critical that a test plan be devised
at the beginning of the modeling effort to account for these long
simulations and to institute methods to stop long runs when an error
occurs early in the simulation. The test plan must also address the issue
of how much simulation is satisfactory before acceptance of the HW
design and HW prototyping can begin.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 195

Copyright 1995-1999 SCRA
195

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Case Study IRST:
HW/SW Integration

Approx. 23 days
for Initial integration

Simulation Week Number

Errors
Found

Simulation
Man Hours

Bus Operation
Functional
Control Logic
Data Handling
Chip-to-Chip I/F

3
3
7
2
1

1 2 3 4 5 6 7 8 9 10 11 12

6
5
4
3
2
1
0

60
50
40
30
20
10
0

Timing Fix Induced 6

FrequencyType of Error
Data Input and
Distribution Card

Simulation of Hardware Virtual Prototype and Errors Found

● Board Fabrication Avg. = 5 days
● Board Assembly Avg. = 3 days
● HW Checkout Avg. = 3 days
● HW/SW Driver Integ. Avg. = 12 days

This slide illustrates the types of errors found during early integration
and testing using the detailed behavioral virtual prototype in the design
process. The errors were found on the data input and distribution card
when software was being executed on the processing elements of the
MCV9 board. From the figure, it is seen that the errors were tracked
over the 12 week period of testing, and as the errors start to decrease, it
was determined that the board could go to fabrication with a high degree
of confidence in correctness. After fabrication, the final hardware was
integrated in 23 days and there were no bugs in the digital hardware
that was tested using the virtual prototyping approach.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 196

Copyright 1995-1999 SCRA
196

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

➭ The testbench

✰ Clock/reset generator

✰ Memory controller

✰ Memory

➭ Testing the i860XP

➭ Results

❑ Testing the MCV9

❑ Testing the IRST

❑ Creating a DMA to the VME in the memory
controller

❑ Simulation results

In this section, the VME bus model for the laboratory example is
discussed in more detail. The next slide shows where this model fits into
the i860XP/memory/memory controller/DMA/VME board level model.
For more details of the actual code, see the lab exercise and the code
associated with it.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 197

Copyright 1995-1999 SCRA
197

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP The Laboratory Design
Example (M32_Lab_A)

VME Bus

i860XP
RISC

Processor

Memory Control
Unit

VME Interface/
DMA Control

Memory

VME Master

VME Slave

This is a block diagram of the proposed system design. The i860XP
processor will be connected with the VME bus through the memory
controller unit and a VME interface. When the DMA is configured to do
burst writes across the VME bus, it obtains control of the memory from
the processor using bus arbitration before doing the transfer.

The i860XP gets control of the VME bus and acts as the master while
the slave is configured to write to a file. So any transfers from master to
slave involve generating the data in the i860XP and sending it to
memory. Following the loading of memory, the i860XP configures the
DMA registers to transfer a specific amount of data from memory using
the VME handshaking protocol. The data is then written across the bus
to the slave address, and the slave places it into a file for later
verification.

This laboratory will cover modeling of the dataflow, timing, and control of
the major components of a system under design.

The system will consist of an i860XP processor, a memory unit, and a
memory controller that interfaces to a VME bus and also contains a
DMA controller.

Each of the individual components will be described and their integration
and test will be covered for a specific operating mode of the VME.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 198

Copyright 1995-1999 SCRA
198

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
VME Functional Partition

VME Bus

entity:
ARBITER:
 TPD:=10ns

entity:
IACKDCD:
 TPD:=10ns

entity:
BUSTIMER:
 TPD:=10ns

VME controller I/O Board

SLAVE
entity:
INTERRUPTER:
 TPD:= 10ns

entity:
REQUESTER:
 TPD:= 10ns

entity:
REQUESTER:
 TPD:= 10ns

MASTER
entity:
IHANDLER:
 TPD:= 10ns

entity:
INTERRUPTER:
 TPD:= 10ns

Data Processing Device

CPU Board

Memory
Board

SLAVE

The VME bus functional structure can be divided into four main
categories. Each consists of a bus and its functional modules, which
work together to perform specific duties. The four main categories are
the VME controller, CPU board, memory board, and the I/O board.

Data transfer: Devices transfer data over the Data Transfer Bus (DTB),
which contains data and address pathways and associated control
signals. Functional modules called masters, slaves, interrupters, and
interrupt handlers use the DTB to transfer data between each other.
Two other modules, called Bus Timer and IACK Daisy-Chain Driver,
also assist them in the process.

DTB arbitration: Because a VME bus system can be configured with
more than one Master or Interrupt Handler, a means is provided to
transfer control of the DTB between them in an orderly manner and to
guarantee that only one master controls the DTB at a given time. The
Arbitration Bus modules (Requesters and Arbiter) coordinate the control
transfer.

Priority Interrupt: The priority interrupt capability of the VME bus
provides a means by which devices can request services from an
interrupt handler. These interrupt requests can be prioritized into a
maximum of seven levels. Interrupters and interrupt handlers use the
Priority Interrupt Bus signal lines.
Utilities: Periodic clocks, initialization, and failure detection are provided
by the Utility Bus. It includes a general purpose system clock line, a
system reset line, a system fail line, an AC fail line, and two serial lines.
Utilities also include power and ground pins.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 199

Copyright 1995-1999 SCRA
199

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VME Master and Slave
Configuration

entity VME_MASTER_SLAVE:
 generic:

TPD:= 10ns;
MODE:= SLAVE;
ADDR_TYPE:= A32;
DATA_TYPE:= D32;
START_ADDR:=X”0”;
SIZE:=256;

SLAVE:

slave_out.txt:

00000000 FF
00000001 FF
...

entity VME_MASTER_SLAVE:
 generic:

TPD:= 10ns;
MODE:= MASTER;
ADDR_TYPE:= A32;
DATA_TYPE:= D32;

MASTER:

A32 -- Address mode
0F -- Address Modifier
QBBT -- Data Transfer Type
WRITE -- Read/Write mode
5 -- Block Length
00000020 -- Starting address
... -- Data
... -- Data

The model takes the above general form.

The master sets up the address mode, modifier type, data transfer type,
read/write mode, block length, and starting address. The slave accepts
data in the address range and passes it to a file for storage.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 200

Copyright 1995-1999 SCRA
200

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VME Master &
Slave Controller

● Master supports
❍ All VME64 addressing capabilities
❍ D08_O, D08_EO, D16, and D32 data transfer capabilities

● Slave supports
❍ All VME64 addressing capabilities
❍ D32 data transfer capability only

❑ (D32 data transfer protocol includes the capabilities
of D08_EO and D16)

MBLT, MD32, are D64 are modes not supported by the model used in
this study.

The mode used for the simulation is the D32 data transfer type.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 201

Copyright 1995-1999 SCRA
201

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VME Master/Slave
Component Entities

component VME_MASTER_SLAVE
 generic (TPD : TIME;
 MODE : VME_TYPE;
 ADDR_TYPE : VME_ADDR_TYPE;
 DATA_TYPE : VME_DATA_TYPE;
 SLAVE_ADDR : BIT_VECTOR(63 downto 0);
 SLAVE_LENGTH: INTEGER);
 port (ADDR_31: inout STD_LOGIC_VECTOR(
 31 downto 1);
 DATA_32 : inout STD_LOGIC_VECTOR(
 31 downto 0);
 LWORD : inout STD_LOGIC;
 AM_6 : inout STD_LOGIC_VECTOR(
 5 downto 0);
 DS0, DS1 : inout STD_LOGIC;
 AS, WRITE_N : inout STD_LOGIC;
 BERR : inout STD_LOGIC;
 BCLR : inout STD_LOGIC;
 DTACK : inout STD_LOGIC;
 IACK : inout STD_LOGIC;
 SYSRESET : in STD_LOGIC;
 DGB : in STD_LOGIC;

 ----------------- VME/DMA interface --------------
 CONFIG_WORD : in STD_LOGIC_VECTOR(31 downto 0);
 CONFIG_WORD_2: in STD_LOGIC_VECTOR(31 downto 0);
 ADDR_WORD : in STD_LOGIC_VECTOR(28 downto 0);
 MEM_ADDR : out EX_ADDR_TYPE;
 BE_N : inout EXT_BYTE_ENA_TYPE;
 WR_N : out STD_LOGIC;
 STROBE : out STD_LOGIC;
 MEM_DATA : in EXT_DATA_TYPE;
 HOLD : inout STD_LOGIC);
 end component;
 for VME_MASTER: VME_MASTER_SLAVE
 use entity work.VME_MASTER_SLAVE(BEHAV)
 generic map(TPD => 10 NS,
 MODE => MASTER,
 ADDR_TYPE=> A32,
 DATA_TYPE=> D32);
 for VME_SLAVE: VME_MASTER_SLAVE
 use entity work.VME_MASTER_SLAVE(BEHAV)
 generic map(TPD => 10 NS,
 MODE => SLAVE,
 ADDR_TYPE => A32,
 DATA_TYPE => D32,
 SLAVE_ADDR => X"0000_0000_0000_0000",
 SLAVE_LENGTH => 512);

This slide shows the component entities for the VME master and slave.
Special to this interface are signals passing configuration word, address
word, and DMA handling information. This is shown below the
VME/DMA interface comment. This information will be important in
interfacing to the i860XP processor through the memory controller. The
memory controller has a similar set of lines.

The VME master and slave use the same entity description. The
method for differentiating the two is through the use of the generic
passed (MODE = MASTER or SLAVE).

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 202

Copyright 1995-1999 SCRA
202

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Configuration of VME

● Configuration registers 1 and 2 are used for VME
setup

● The configuration register 1 fields will be
determined as follows

❍ bits 7 downto 0 => block length
❍ bit 8 => write/read
❍ bits 13 downto 9 => transfer type
❍ bits 19 downto 14 => address modifier code
❍ bits 22 downto 20 => address mode
❍ bit 23 => VME master => '1'; Slave => '0'
❍ bits 31 downto 24 => the byte enable bits to start the

memory transfer
● The configuration register 2 only used bits 2

downto 0 to represent the data type (D32 etc.)
● The start address register is used to determine

the DMA start of transfer

The configuration information is passed to a register contained inside
the memory controller in a VME process. The setup information is
shown above. All the VME protocol types are setup at this point. The
maximum block length is 255 and is placed in bits 7 downto 0 of the
configuration word 1. Configuration word two only uses 3 bits and sets
the data type (D32 etc.)

The start address for the data transfer is contained in the address
register ADDR_REG.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 203

Copyright 1995-1999 SCRA
203

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Variable Declaration for
VME Configuration

VME2:
process
 variable VME_CONFIG : BIT_32;
 -- Configuration register 1 used for VME setup
 alias BLOCK_LENGTH : BIT_8 is VME_CONFIG(7 downto 0);
 alias WR : BIT is VME_CONFIG(8);
 alias TRANSFER_TYPE : BIT_5 is VME_CONFIG(13 downto 9);
 alias ADDR_MODIFIER : BIT_6 is VME_CONFIG(19 downto 14);
 alias ADDR_MODE : BIT_3 is VME_CONFIG(22 downto 20);
 alias BE : BIT_8 is VME_CONFIG(31 downto 24);
 -- Configuration register 2 used for VME setup
 variable VME_CONFIG_2 : BIT_32;
 alias DATA_TYPE : BIT_3 is VME_CONFIG_2(2 downto 0);
 -- The address register contains the start address in memory to
 -- transfer to the slave.
 variable ADDR_REG : BIT_29;
 variable TEMP_ADDR : BIT_32;

This code shows part of the VME main process where the configuration
word information is placed into variable declarations and aliased for
ease of reading.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 204

Copyright 1995-1999 SCRA
204

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Memory Controller to
VME Setup

begin
if (ADS_N'EVENT and ADS_N = '0') then
 TEMP_ADDR:= std2bit_vector("000" & ADDRESS,'0');
 if (TEMP_ADDR = X"00000001" or -- Configuration register 1
 TEMP_ADDR = X"00000002" or -- Configuration register 2
 TEMP_ADDR = X"00000003") then -- Address register
 wait until ADS_N'EVENT and ADS_N = '1';
 if (TEMP_ADDR = X"00000001") then
 -- Load the configuration register 1 with the data on the bus
 VME_CONFIG:= std2bit_vector(DATA(31 downto 0),'0');
 HOLD <= '1';
 wait until HLDA = '1';
 DWB <= '1' after TPD; -- Ask for the bus to requester
 -- Send the configuration word to the VME decoder
 CONFIG_WORD <=
 To_StdLogicVector(VME_CONFIG) after TPD;
 CONFIG_WORD_2 <=
 To_StdLogicVector(VME_CONFIG_2) after TPD;
 ADDR_WORD <=
 To_StdLogicVector(ADDR_REG) after TPD;

 wait until DGB_N = '0'; -- wait for bus to be granted
 DWB <= 'Z' after TPD;
 -- When the DMA is done with the bus, give control
 -- back to the processor.
 HOLD <= 'Z' after CLK_PERIOD;
 elsif (TEMP_ADDR = X"00000002") then
 -- Load the configuration register 2
 VME_CONFIG_2:=
 std2bit_vector(DATA(31 downto 0),'0');
 else
 -- Load the start address of the memory transfer
 ADDR_REG:=
 std2bit_vector(DATA(28 downto 0),'0');
 end if;
 BRDY_N <= '0','Z' after CLK_PERIOD;
 end if;
end if;
wait on ADS_N, RESET;
end process VME2;

Get bus from processor

This code segment is in the memory controller and helps set up the
DMA and VME for the specific transfer type. The first thing that the
controller has to do is to get the start address from the processor and
drive the address lines itself for the data transfer. The configuration
words and address registers are first set up. When the configuration
word 1 is written, the initiation of transfer begins.

The objective of this segment is to check the incoming address for that
defined by the configuration register 1. The configuration register 1 will
be at the special address defined to be 0x0008 (0x00000001 when
addressing 64 bit-wise). This value is on a 64 bit boundary and can be
addressed using BE_N and ADDRESS. When it is written to, the
transfer begins.

The DMA controller will then take control of the data bus and write the
block to the slave.

The setup procedure is implemented as follows:

● Write the data that you wish to transfer beginning at an address.

● Write the start address to the ADDR_REG.

● Write the configuration data to the VME_CONFIG register 2.

● Write the configuration data to the VME_CONFIG register 1.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 205

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 206

Copyright 1995-1999 SCRA
206

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Addressing the Slave

case tmp1 is -- Address type
 when 2 => -- A32 maps to 2
 -- Address Modifier Code: 08_to_0F, 05
 if tmp1<3 and (tmp2=5 or tmp2>7 or tmp2<16
 or tmp2=50 or tmp2>55 or tmp2<64
 or tmp2=41 or tmp2=44 or tmp2=45) then
 ADDR_31 <= D_ADDR(31 downto 1) after TPD;
 AM_6 <= CONFIG_WORD(19 downto 14) after TPD;
 IACK <= '1' after TPD;
 AS <= '0' after TPD;
 else
 DT_FAIL:= TRUE;
 end if;

● The master first addresses the slave
● A32 mode is used
● If requirements are not met then issue a DT_FAIL

The first thing after latching all important information is to address the
slave. In this case we are using address type A32 and, if the address
modifier codes meet the requirements for this mode, then we can drive
the specific signals above. If not, then the DT_FAIL flag is issued and
no data will be sent.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 207

Copyright 1995-1999 SCRA
207

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP D32 Write Mode
Initial Handshake

if not DT_FAIL then
 case tmp4 is -- Data type
 when 3 => -- D32 maps to 3
 if tmp3=0 or tmp3=2 or (tmp3>3 and tmp3<14) then
 -- BCLR
 -- Setting BLOCK_LENGTH to 1 for the single data transfer
 if tmp3=12 or tmp3=0 or tmp3=2 or tmp3=8 or tmp3=9 then
 BLOCK_LENGTH:= 1;
 end if;
 temp:= '0' & std2bit(CONFIG_WORD(8));
 case temp is
 when "01" => -- Write to slave
 if not (To_bit(DTACK)='1' and To_bit(BERR)='1') then
 wait until (To_bit(DTACK)='1' and To_bit(BERR)='1');
 end if;
 if tmp3>11 then
 LWORD <= '0' after TPD;
 else
 LWORD <= '1' after TPD;
 end if;
 WRITE_N <= '0' after TPD;
 wait for 1 PS;

 if BLOCK_LENGTH/=1 then
 if tmp3<8 then
 if (tmp3 rem 2)=0 then
 DS0 <= '1' after TPD;
 DS1 <= '0' after TPD;
 else
 DS0 <= '0' after TPD;
 DS1 <= '1' after TPD;
 end if;
 else
 DS0 <= '0' after TPD;
 DS1 <= '0' after TPD;
 end if;
 -- Waiting for the acknowledge from slave.
 wait until (DTACK='0' or BERR='0');
 if BERR='0' then
 DT_FAIL:= TRUE;
 ADDR_31 <= (others => ‘Z’) after TPD;
 DATA_32 <= (others => ‘Z’) after TPD;
 BLOCK_LENGTH:= 0;
 end if;
 DS0 <= '1' after TPD;
 DS1 <= '1' after TPD;
 end if;

It there was no DT_FAIL, then, based on the data type (D32 in this
case), we either do a read or a write. The variable “temp” is used to
determine if read, write, or read-modify-write mode is used. In this case
we are doing a write (“01” for temp).

Next wait for the previous slave to no longer drive data bus.

Then, set the signal level of LWORD used to select which byte locations
are accessed during a data transfer.

Next terminate the address broadcast phase for a block data transfer
write cycle.

Finally, set the signal levels of DS0 and DS1 used to select which byte
locations are accessed during a data transfer.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 208

Copyright 1995-1999 SCRA
208

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Block Data Transfer Loop

 if tmp3<8 then
 if (tmp3+i1 rem 2)=1 then
 DATA_32(15 downto 8) <=
 MEM_DATA(7 downto 0) after TPD;
 else
 DATA_32(7 downto 0) <=
 MEM_DATA(7 downto 0) after TPD;
 end if;
 else
 if tmp3<12 then
 DATA_32(15 downto 0) <=
 MEM_DATA(15 downto 0) after TPD;
 else
 if UPPER = TRUE then
 DATA_32 <= MEM_DATA(31 downto 0) after TPD;
 else
 DATA_32 <= MEM_DATA(63 downto 32) after TPD;
 end if;
 end if;
 end if;

MEM_ADDR <= ADDR_WORD;
BE_N <= CONFIG_WORD(31 downto 24);
NEW_ADDR_WORD:=
 BITS_TO_NATURAL(std2bit_vector(ADDR_WORD,'0'));
WR_N <= '0';
for i1 in 1 to BLOCK_LENGTH loop
 if not (To_bit(DTACK)='1' and To_bit(BERR)='1') then
 wait until To_bit(DTACK)='1' and To_bit(BERR)='1';
 end if;
 wait for 1 ns; -- Stable address needed before strobe
 -- Strobe memory for the data needed to transfer
 STROBE <= '0','1' after TPD;
 wait for MEM_LOAD_TIME; -- Data should be loaded
 -- Update the new address for the next transfer
 if (BE_N = "11110000") then
 BE_N <= "00001111" after TPD; -- Upper half next time
 UPPER:= TRUE;
 else
 BE_N <= "11110000" after TPD;
 NEW_ADDR_WORD:= NEW_ADDR_WORD + 1;
 INT_TO_BITS(NEW_ADDR_WORD,TEMP_29);
 MEM_ADDR <= To_StdLogicVector(TEMP_29);
 UPPER:= FALSE;
 end if; end loop

Start of Block Transfer

Put data on bus

This segment of code does the data block transfer. The “for” loop
continues for the entire block length. The addresses are updated in this
segment and the memory is accessed for the data to be transferred.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 209

Copyright 1995-1999 SCRA
209

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Section Outline

➭ The testbench

✰ Clock/reset generator

✰ Memory controller

✰ Memory

➭ Testing the i860XP

➭ Results

❑ Testing the MCV9

❑ Testing the IRST

❑ Creating a DMA to the VME in the memory controller

❑ Simulation results

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 210

Copyright 1995-1999 SCRA
210

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Integrating Components

● i860XP processor
● Memory control
● Memory
● Clock/reset generator
● VME bus

❍ Master
❍ Slave
❍ Arbiter
❍ etc.

The components that needed to be integrated are listed above. These
were all declared as component models in the top-level VHDL
description and instantiated as shown on the next slide.

The VME bus had multiple components needed to handle its
handshaking protocol. These will not be discussed. Included are such
things as the arbiter, bus timer, etc.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 211

Copyright 1995-1999 SCRA
211

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Instantiation of i860XP
Component

i860_0: i860
 generic map (25 ns, 32768,
 "MEM002047", "MEM000000")
 port map (-- Clock and reset lines
 CLK => CLK,
 RESET => RESET,
 -- Cycle control
 ADS_N => ADS_N,
 BRDY_N => BRDY_N,
 CACHE_N => CACHE_N,
 LEN => LEN,
 LOCK_N => LOCK_N,
 NA_N => NA_N,
 NENE_N => NENE_N,
 -- Address, data and byte enable
 -- lines
 ADDRESS => ADDRESS,
 BE_N => BE_N,
 DATA => DATA,

 -- Cache control
 KEN_N => KEN_N,
 -- Cycle definition
 MIO_N => MIO_N,
 DC_N => DC_N,
 WR_N => WR_N,
 PCYC => PCYC,
 CTYP => CTYP,
 -- Interrupt signals
 BERR => BERR1,
 INT_CS8 => INT_CS8,
 -- Bus Arbitration
 HOLD => HOLD,
 HLDA => HLDA);

This slide represents one instantiation of the i860XP component model
in the system design. If multiple processors are required then additional
instantiations can be done. In that case, we would have i860_1, i860_2,
etc. all of type i860.

The same is done with the memory controller, memory, clock/reset, and
VME models.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 212

Copyright 1995-1999 SCRA
212

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Data Transfer Example

Create start addr.
Store in ADDR_REG

Create and Store
data

Create and store
Config. word 2

Create and store
Config. word 1

On reception of word 2
Start data transfer

Exercise the VME
Protocol

i860XP Control

DMA Control

Start addr. is 32
Addr_reg has address 24
Every address is a 64 bit location

Store 6 values (1 to 6) starting at location
32 and subsequent increments of 4

3 is loaded into config. word 2 (Address 16)
3 => D32 datatype for VME transfer

Write 0xF023DB05 to location 8
This configures QBBT mode,
Address 32 mode, Address
Modifier 0x0F, write, block size = 5

Writing to Config. word 1
starts the block transfer

Data starting at address 32 is
sent across the bus to the slave

This slide represents the flow of a test case that was run to do a simple
verification of the handshaking protocol and register setup of the
memory controller and DMA.

ADDR_REG contains the address to start the DMA transfer.

After the ADDR_REG is configured, the data is created by the i860XP
and placed in memory starting at location 32. Six words were generated
(in this case the numbers 1 through 6).

Configuration word 2 was then generated. This was used to set up the
VME data transfer type. In this case D32 mode was selected.

Configuration word 1 was then set up. This has most of the information
for configuring the VME mode. It set the VME protocol for a quad byte
block transfer, address 32 mode, address modifier 0x0F, write, and with
a block size of 5. This is accomplished by writing 0xF023DB05 to
address 8.

A write to this register first stores the information, sets up the
configuration, and then initiates the transfer.

After the DMA gains control of the address bus from the processor, it
begins its transfer of data to the slave file.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 213

Copyright 1995-1999 SCRA
213

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Input Test File

11100100000000100000000000000001 -- or 1, r0 => r2 r2 contains 1
11100100000001000000000000100000 -- or 32, r0 => r4 r4 contains 32 start addr.
11100100000010000000000000000100 -- or 4, r0 => r8 r8 contains 4 start addr.
11100100000001100000000000011000 -- or 24, r0 => r6 r6 contains 24 ADDR_REG
00011100110000000100000000000001 -- st.l mem(@R6 + 0) <- @R8
00011100100000000001000000000001 -- st.l mem(@R4 + 0) <- @R2
10010100010000100000000000000001 -- adds_i 1,r2,r2
00011100100000000001000000000101 -- st.l mem(@R4 + 4) <- @R2
10010100010000100000000000000001 -- adds_i 1,r2,r2
00011100100000000001000000001001 -- st.l mem(@R4 + 8) <- @R2
10010100010000100000000000000001 -- adds_i 1,r2,r2
00011100100000000001000000001101 -- st.l mem(@R4 + 12) <- @R2
10010100010000100000000000000001 -- adds_i 1,r2,r2
00011100100000000001000000010001 -- st.l mem(@R4 + 16) <- @R2
10010100010000100000000000000001 -- adds_i 1,r2,r2
00011100100000000001000000010101 -- st.l mem(@R4 + 20) <- @R2
11100100000000100000000000000011 -- or 3, r0 => r2 r2 contains 3 D32 datatype
11100100000010000000000000010000 -- or 16, r0 => r8 r8 contains address
00011101000000000001000000000001 -- st.l mem(@R8 + 0) <- @R2
11100100000010000000000000001000 -- or 8, r0 => r8 r8 contains address
11101100000000101111000000100011 -- orh r2 <- 11110000_00100011
11100100010000101101101100000101 -- or 1101101100000101,r2=>r2 r2 config reg 1
00011101000000000001000000000001 -- st.l mem(@R8 + 0) <- @R2
10100000000000000000000000000000 -- nop

This slide shows the code used to generate the six data values and the
configuration information. The input file is loaded into memory when the
PC is at the proper address of the file. The 32 bit binary data represents
the instruction shown on the right hand side of the slide.

The first part of the code computes the start address of data, and the
address register in the memory controller is loaded with this value.
Following this the data 1 through 6 is generated and sent to memory.
Configuration word 2 (D32 data type) is then set up and sent to the
correct address in the memory controller. Lastly, configuration word 1 is
set up and sent to the controller’s correct address.

This final st.l will cause the data transfer to take place. The next slide
shows the timing diagram of this code running on the i860XP model.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 214

Copyright 1995-1999 SCRA
214

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Timing Diagram for Code

Store Data

VME related
Lines

Memory
Control Setup

Block Length
of 5 values

Bus Arbitration

This diagram shows the storing of data into memory by the processor.
The arrow pointing to store data shows the total of 9 writes (st.l
instruction).

On the last write (to configuration word 1), the VME transfer is initiated.
At this point we see the bus arbitration taking effect. The memory
controller issues a HOLD to the processor and on the next cycle the
processor can release the address bus by issuing a hold acknowledge
(HLDA). The memory control setup is shown at the bottom where we
see configuration word 1 containing 0xF023DB05. The block length is
specified as 5 items and Quad Byte Block Transfer mode was selected.
We see the 5 words passed by observing the DTACK signal.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 215

Copyright 1995-1999 SCRA
215

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards
● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 216

Copyright 1995-1999 SCRA
216

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Relevant Standards

● VITAL
❍ ASIC Libraries

● EIA-567A
❍ Component Modeling and Interface Standard
❍ COTS parts covered under this Standard

● DID (DI-EGDS-80811)
❍ DOD Deliverable Data Item Requirements

● VHDL IEEE-Std 1076-1993/1987
❍ Language Reference Manual (LRM) for VHSIC Hardware

Description Language

Standards exist or are being created for the development of libraries of
components for interoperability and portability. VITAL and EIA-567A are
two such standards. VITAL is targeted for ASIC libraries and EIA-567A
for component models such as processors, memories, etc.

The LRM contains the complete description for the VHDL language. Any
model conforming to this standard should be able to run on a compliant
simulator.

The DID describes the requirements for delivery of a component model
on a defense-related contract.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 217

Copyright 1995-1999 SCRA
217

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Relevant Standards (cont.)

● IEEE-Std 1164-1993
❍ Multi-valued Logic System Standard
❍ Standard Logic Package for Model Interoperability

● IEEE-Std 1029.1-1991
❍ Waveform and Vector Exchange Standard (WAVES)
❍ Standard for testbench development

● MIL-Std-454M
❍ Requirement for DID compliance on Digital Electronics

● MIL-M-28787
❍ General Specification for Standard Electronic Modules

The 1164-1993 standard addresses the issues for model interoperability
by defining the standard logic package to be used on all models.

Test benches are important in VHDL, and the 1029.1-1991 standard
addresses issues dealing with testbench development and the use of
WAVES for this purpose.

MIL-Std-454M defines the requirements for DID compliance on
delivered military components.

MIL-M-28787 describes the general specification of electronic modules
on military systems.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 218

Copyright 1995-1999 SCRA
218

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Relevant Documents

● “A VHDL Modeling Guide,” TP-804
❍ Technology Independent Representation of Electronic

Products (TIREP) project
❍ NRL, NSWC, NAWC-AD
❍ DID compliance outline
❍ Adopts WAVES for testbenches, 1164 for logic levels
❍ EIA-567A incorporated into TIREP modeling approach

● Army Handbook, “The Documentation of Digital
Electronic Systems with VHDL”

❍ Preliminary Final Draft dated 18 Nov. 1993
❍ Contains Guidelines for Modeling in VHDL for DID

compliance

Two documents relating to VHDL development efforts have been
developed by the government. “A VHDL Modeling Guide” was
developed as part of the TIREP project by the Navy and describes how
users of VHDL can write models to be DID compliant and conform to the
EIA-567A standard. It also outlines the use of WAVES as the standard
test bench development method and stresses the use of the 1164
standard logic package for signal resolution.

The Army Handbook, to be published in November of 1995 (preliminary
versions already available), also contains guidelines for the
development of VHDL models for DID compliance.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 219

Copyright 1995-1999 SCRA
219

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Relevant Documents (cont.)

● “VHDL Performance Modeling Interoperability
Guidelines”

❍ Developed by Honeywell Technology Center
❍ Describes guidelines for developing interoperable

models in VHDL at the performance level
❍ Defines token fields for signals
❍ Possible precursor to standardization

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 220

Copyright 1995-1999 SCRA
220

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

● Introduction

● Traditional Design Process

● The Virtual Prototyping Process

● Abstraction Levels and Limitations of VP

● Executable Requirement

● Executable Specification

● Data and Control Flow Modeling

● Performance Modeling

● Mixed-level Modeling

● Detailed-Behavioral Modeling and Detailed Design

● Relevant Documents and Standards

● Summary

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 221

Copyright 1995-1999 SCRA
221

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Summary

● Presented a picture of current practice and how
virtual prototyping can help improve the digital
design process

● Presented the virtual prototyping process and its
application to the design of complex embedded
digital systems

● Presented the levels of virtual prototyping in the
top down design process and their importance to
the capture of system requirements

● Presented VHDL examples at each stage to
illustrate the methods used for coding the
system requirements important to that stage of
development

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 222

Copyright 1995-1999 SCRA
222

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

[Anderson94] Anderson A., Shaw G., Sung C., "VHDL Executable Requirements”, 1st Annual RASSP Conference
Proceedings, August 15-18, 1994, pg 87-90.

[Arch.Guide94] Lockheed Sanders, Inc. , Hughes Aircraft, Motorola, ISX Corporation, RASSP Architecture Guide ,
Rev. A, November 23, 1994. See [Lockheed95] for addition information.

[Egolf95] Egolf, T., et. al., “Experiences with VHDL Models of COTS RISC Processors in Virtual Prototyping of
Complex System Synthesis”, VHDL International Users Forum , Spring 1995, pp.7.11-7.27.

[Handbook93] Army Handbook, The Documentation of Digital Electronic Systems with VHDL, Preliminary Final
Draft dated 18 Nov. 1993.

[Hein95A] Hein C., Nasoff D., "VHDL-Based Performance Modeling and Virtual Prototyping”, 2nd Annual RASSP
Conference Proceedings, July 24-27, 1995.

[Hein95B] Hein C., et al., "Tutorial: VHDL--Based Top-Down Virtual Prototyping for Large DSP Systems”, 2nd
Annual RASSP Conference Tutorial Program, July 24-27, 1995.

Honeywell Carpenter T., Rose F., Steeves T., “Performance Modeling with VHDL”, Honeywell Systems & Research
Center, Slide presentation

[IEEE] All referenced IEEE material is used with permission.

[i86091] i860 Microprocessor Family Programmer’s Reference Manual, Intel Corporation, 1991.

[LMC-Meth] RASSP Methodology Version 1.0 , Martin Marietta Laboratories, December, 1994.

[LMC-Arch] Lockheed Sanders, RASSP Architecture Guide 1994. See [Lockheed95] for addition information.

[Lockheed95] Lockheed Sanders 18 Month Review, February 15-16, 1995. This work was performed by Sanders, a
Lockheed Martin Company, as a part of the Sanders RASSP program under contract N00014-93-C-2172 to the
Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375-5326. The Sponsoring Agency
is: Defense Advanced Research Projects Agency, Electronic System Technology Office, 3701 North Fairfax
Drive, Arlington, VA 22203-1714. The Sanders RASSP team consists of Sanders, Motorola, Hughes, and ISX.

Copyright 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 223

Copyright 1995-1999 SCRA
223

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References (cont.)

[Madisetti94] Madisetti V.K., “Vive La Difference”, RASSP Digest, 4th Quarter, pp. 17-21.

[Madisetti95] Madisetti V.K., “Rapid Prototyping of Application-Specific Signal Processors: Current
Practice, Challenges, and Roadmap”, IEEE ICPP’95 Workshop on Challenges in Parallel
Processing”, August 1995.

[Myers95] Myers C., Dreiling R., “VHDL Modeling for Signal Processor Development” , Proceedings
IEEE International Conference Acoustics, Speech, and Signal Processing, 1995; © IEEE 1995

[PGM90] Prepared by Naval Research Laboratory, Processing Graph Method: Tutorial, January 1990.

[PI95] Proceedings from the Principal Investigators Meeting, January 9-13, 1995

[Richards97] Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal
Processors, Kluwer Academic Publishers, Norwell, MA, 1997

[Rose94] Rose F., Steeves T., Carpenter T.,“VHDL Performance Modeling”, 1st Annual RASSP
Conference Proceedings, August 15-18, 1994, pg 60-70.

[Shaw95A] Shaw, G.A., et al, “Assessing and Improving Current Practice in the Design of Application-
Specific Signal Processors” , RASSP Digest, 1st Quarter 1995, pp. 20-24.

[Shaw95B] Shaw, G.A. , et al, “Assessing and Improving Current Practice in the Design of Application-
Specific Signal Processors, Proceedings IEEE International Conference Acoustics, Speech, and
Signal Processing, 1995.

[Taxonomy98] Hein C., et al., “VHDL Modeling Terminology and Taxonomy - Revision 2.4.4”, RASSP
Taxonomy Working Group (RTWG), March 6, 1998

[Yu 93] Yu T., “Create optimal simulation libraries using VHDL”, Electronic Design News, May 13,
1993, pp. 133-140.

