Module 32 - Lab A: Virtual Prototyping Using VHDL

Fully Functional VHDL Modeling Tutorial using the i860XP
and VME Bus Models

Copyright 1997-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced
Technology Institute (ATI), and may only be used for non-commercial educational purposes.
Any other use of this information without the express written permission of the ATI is
prohibited. Certain parts of this work belong to other copyright holders and are used with their
permission. All information contained, may be duplicated for non-commercial educational use
only provided this copyright notice and the copyright acknowledgements herein are included.
No warranty of any kind is provided or implied, nor is any liability accepted regardless of use.

The United States Government holds “Unlimited Rights” in all data contained herein under
Contract F33615-94-C-1457. Such data may be liberally reproduced and disseminated by the
Government, in whole or in part, without restriction except as follows: Certain parts of this
work to other copyright holders and are used with their permission; This information
contained herein may be duplicated only for non-commercial educational use. Any vehicle, in
which part or all of this data is incorporated into, shall carry this notice .

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and Limitation of
Liability Information concerning the material, VHDL code and software developed under the
RASSP programs or incorporated in RASSP material.

Module32-Lab A 2

1. Overview

In this lab experiment, you will create a single processor embedded system design with alocal memory,
memory controller, and VME bus master and slave interfaces. VHDL models of the system elements will be
compiled into libraries using the makefile contained in the top directory of your path. Three libraries will be
generated. The first will contain the processor model, local memory, and it’s memory controller, the second, the
VME master and slave interfaces, and the third contains a system level model to tie all the component elements
together. The component models were developed at the fully behavioral (sometimes referred to as fully
functional) level of abstraction. The figure below illustrates the component interconnection.

Figure 1: Laboratory design example.

NVemory

3

la—»! Memory Control

VVE Master with DMA
|

¢

I860XP

\ME Qs

#

VME Save

The system will be used to explore the advantages of developing a virtua prototype at this level of
design abstraction.
2. What you will learn

2.1. How to build libraries for component VHDL elements

2.2. How to build an embedded system design using library component elements

2.3. How to run software on the virtual prototype of the embedded system

2.4. The necessity for model interoperability

2.5. Thetypes of errorsthat can be detected using thislevel of abstraction for avirtual prototype

2.6. The limitations of using a virtual prototype at thislevel of abstraction
3. Create the directory structure and component libraries

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 3

3.1. Create a working directory in your home directory with the name "FBM" and go to that
directory to start working.
UNI X>> nkdir FBM
UNI X>> cd FBM

3.2. Copy the fully behaviora laboratory files to the newly created directory from the CD-ROM.
For UNIX systems, use the cp command to copy the lab files into the directory just created,
i.e. “FBM”. This document assumes the use of Mentor on UNIX systems.

3.3. Setup your VHDL environment correctly so that you have access to the simulator’s
executables on the UNIX system. For Mentor, the environment variable MGC_HOME must
point to the top-level directory of the Mentor tools.

3.4. Using the tar utility in UNIX, copy the zipped file containing the component models,
m32_lab_atar, to your home directory. untar the file, and look at the directory structure. It
should have the form shown in the Figure 2. If thisis not available on your machine, then copy
the files directly from the CD-ROM.

<home _dir>>> tar -xvf m32_lab atar

3.5. The files in the <design_files> directory contain the entity/architecture pairs for the
components of the system. The <pkg_files> directory contains the supporting packages
needed by the design file entities and architectures. To compile the VHDL files for this
example into separate libraries, the following order of compilation is required for each of the
component elements.

A. Thefilesand compilation order for the i860XP model used in this example are:
datatype.hdl
BitMath_pkg.hdl
fp_pkg.hdl
memory_fcts.hdl
trap_reset_handler.hdl
instruction_set.hdl
process_handling.hdl
1860.hdl

. clk_reset_gen.hdl

10. memory.hdl

11. memory_control.hdl

© o N g k~wbdPE

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 32 - Lab A 4

< home dir >
< m32 Iab
ssre= < libs > < doc >READ'VIE
: : < data files>
\S/\K/?glliig/l.llb m32_mentor_tutorial.doc MEMB00000

i i MEMO002047
i860XP.lib MEM262143
<design_files > <pkg_files>
/ <vme > / \
<system > arbiter.hdl .
vmey master_slave.hdl bustimer.hdl <1860 > <vme >
860 VME.hdl requester.hdl cBiI'[l\/lath_rﬁ)clj(Ig.hdl VME_datatype.hdl
ConvertBIT32Tolnt.hdl < {860 > fataﬁlpﬁal
umsi:gegé?r}?\%ﬁﬂ?tz i860.hdl n??t?u?:ﬂon set.hdl
and test %lérnrgietﬁg?n.hdl memory_fcts.hdl
Y. process_handling.hdl
memory_control.hdl trap_reset_handling.hdl

Figure 2: Laboratory File Structure

B. Thefilesand compilation order for the VME model used in this example are:
1. VME_datatype.hdl
2. arbiter.hdl
3. bustimer.hdl
4. requester.hdl

C. Thefilesand compilation order for the system level model is the following:

1. ConvertBIT32Tolnt.hdl

2. vme _master_slave.hdl

3. i860_VME.hdl
The file i860_VME.hdl is the top-level configuration and is used to tie al the component
models together. For quick compilation, use the makefile provided to build and compile all
files into three libraries, i860XP.lib, VME.lib, and SYSTEM.lib. From the /m32_lab a
directory, check for the QuickHDL environment variables being set before running the entire
“make’ process.

UNI X>> cd nB2 | ab_a

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 5

82 | ab_a>> make check
If the above command line operation returns "Proceed with compilation”, then make all the
files using the following.
82 | ab_a>> make all
After executing this command, three libraries will exist in the /m32_lab_a/libs directory with
the names, i860XP.lib, VME.lib, and SYSTEM.lib. As these libraries are being generated,
proceed to the next section to acquaint yourself with the format for placing code and data into
the memory model of the processor.
4. Running code on the i860XP processor
41. Two files exist, "VMEtestMEM1" and ‘"interruptMEM", in the directory
/m32_lab_a/src/design_files/system containing code segments in binary and assembly
language formats. Change to this directory and open the two files using your favorite editor
(emacs is used in this writeup) and notice the instruction format. The instruction set word for
the i860XP RISC processor is 32 bits wide.
UNI X>> cd ./src/design_fil es/system
/ syst en>> enacs VMEt est MEML &
/ systenmp> emacs interrupt VEM &
Iconify the file VMEtestMEM1 for later viewing. Two additional files;, MEM002047 and
MEM 262143, located in the /m32_lab_a/data_files directory are used as the memory files for
the design and contain code and data formatted for the processor. These files are automatically
loaded into the VHDL memory model when an address, presented to the memory, falls within
the specified range of the file. The contents of MEMnnnnnn are the integer equivalent of the
binary numbers found in "VMEtessMEM1" and "interruptMEM". The file "interruptMEM" is
used to handle interrupts and reset. This code is inserted at the reset location in memory,
which corresponds to physical address OxFFFFFF00. Opening MEM 262143 and going to line
4035 shows how (integer format) and where (OxFFFFFFOO0) the code is placed in memory.
UNI X>> cd ../../1..1
n832 |l ab_a>> emacs ./data fil es/ MEM62143 &
n82 |l ab_a>> goto |ine 4035 (nmeta-x goto-line 4035)
The first two lines of the "MEMnnnnnn" files contain the beginning and end location
(assuming 32-bit word location) in memory where the contents of thisfile are placed.
editor>> Goto line 1 (nmeta-x goto-line 1)

4.2. "MEM002047" is the memory file containing the application or test code. After reset, the code
at the reset location executes a branch to the start of thisfile. Figure 3 describes the application
that will be used throughout the lab. Thefile"VMEtestMEM 1" contains the application code.

Copyright 01997-1999 SCRA

See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 6

Create start addr. Start addr. = 32 = Double word address 4.
: ADDR_REG has memory mapped address 24 = double word
Store in ADDR_REG address 3. Every address is a 64 bit location.

L» Create and store data | Store 6 values (1 to 6) starting at location 32 and
subsequent increments of 4.

L c d 3 is loaded into configuration word 2 (memory
p| Create and store mapped address 16). The 3 implies D32 datatype
Configurationword 2 | or'the VME transfer
i860 Control L c q Write 0xF023DB05 to the configuration
A (= Cre?pe and store 41 | word 1 (memory mapped address 8). This
onfiguration wor configures QBBT, address 32 mode,

address modifier OxOF, write, and block
size equal to 5.

Y [p On reception of word 1] Writing to configuration word 1
DMA Control Start DMA transfer starts the block transfer of size 5

. Data starting at double
L» Exercise the VME word address 4 is sent

protocol across the VME bus to
the slave (file)

Figure 3: Program Flow of i860XP Application Code

For this example, the application code generates a sequence of numbers from 1 to 6 and writes
the values to the processor's local memory. It also configures the memory controller by writing
to memory mapped addresses 0x01, 0x02, and 0x03. These addresses are register locations in
the memory controller for configuring the DMA and VME protocol. They specify the data
transfer from the processor's local memory through the VME bus to the slave device. The
layout of the three memory mapped registers are shown in Figure 4. The next step isto run the
code and observe the results. From /m32_lab_a do the following.

82 | ab_a>> make sinul ate
At this time, the QuickHDL simulator interface window will appear on the screen. Select the
following options to load into the simulator.

Qui ckHDL>> sel ect ‘ps’ for resolution

Qui ckHDL>> sel ect *i860 VME' entity fromwork |ibrary

Qui ckHDL>> sel ect ‘structural’ architecture
Click on the "load" button and the simulator will load the files from the library. To observe the
results of simulation, the correct signals must be selected for viewing.

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 7

Configuration Register 1
Address Address Transfer
ByeEndbles BEN) (M7 I\/I_Igdygéer Type \? Block Length

31 24 23 20 14 98 0

Configuration Register 2

NotUszd Ty
2 0
Address Regjister
Not Used Upyper 29 bits of the address
28 . 0
Vemory Mapped Registers

Figure 4: Layout of the Systems Memory Mapped Configuration Registers

From the view menu,
Qui ckHDL>> sel ect View->Wave
The wave viewer appears. The signals to be viewed must now be loaded. A file in the
src/design_files/system directory called "wave.do" contains the signals. To load it, execute the
following from the QuickHDL file menu,
Qui ckHDL>> sel ect File->Execute command file
Qui ckHDL>> sel ect the file "wavedo" from FILE listing which is
contained in the /src/design files/systemdirectory

Qui ckHDL>> click on the Execute button
The signals will now appear in the Wave window in the left-hand column. Run the simulation
for 3000000 picoseconds. In the QuickHDL command line window do the following.
QHSI M>> run 3000000 ps
Observe the wave plot. From the Wave menu do the following,
Wave>> choose Zoom->Full Size
Zoom in on the segment where an instruction cache line fill takes place.
Wave>> choose Zoom->Range...

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 8

Wave>> Start = 300000 ps

Wave>> St op = 450000 ps
In this output plot, the address lines start at Ox1FFFFFEO (reset address) and begin loading the
instructions (64 bits on data bus => 2 instructions). By clicking on the falling edge of the
"strobe" signal (in the wave window) and also on the location where the instructions are being
placed on the data bus, we can measure the load time of memory. The difference is currently
set to 10 ns. This is a generic parameter passed to the model and its usage will be explored
later. Go back to afull zoom.

Wave>> choose Zoom->Full Size

We now look at the region where the data is being generated and sent to the memory. To
compare what is on the screen with what is in the test file, open "VMEtessMEM 1" if it is not
already open.

Wave>> choose Zoom->Range...

Wave>> Start = 1100000 ps

Wave>> St op = 1400000 ps
Click on the /address line in the Wave window where the address has the value equal to
00000003. This is the address of the memory mapped ADDR_REG mentioned previoudly. It
corresponds to the first "st.I" instruction in the VMEtesstMEML file. The register R8 contains
the value 4, the start address of the data to be stored. No memory strobe is generated in this
case because the memory-mapped register is the target. Immediately following this write, we
store the value ‘1’ to memory. This is the second "st.I" instruction found in the file and
corresponds to address 4 in the Wave window. Click on this location and observe the value on
the data lines (0x0000000000000001). By continuing in this manner, observe on subsequent
(click on the dlide bar at the bottom of the window to move from screen to screen) Wave
screens all the values being written to memory. The first Wave screen also contains another
instruction cache fill which occurs on the second adds i 1,r2,r2 instruction in the
"VMEtestMEM1" file. This is the ninth instruction in the file and since al cache fills are 8
instructions long, the ninth will result in a cache miss during the initial pass through the code.
After observing all the data being transferred to memory, go back to full zoom.

Wave>> choose Zoom->Full Size
The last item to illustrate in detail is the transfer of data from the memory over the VME bus
using the DMA in the memory controller. Do azoom in the following region,

Wave>> choose Zoom->Range...

Wave>> Start = 2000000 ps

Copyright ©1997-1999 SCRA

See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 9

Wave>> St op = 2400000 ps
Click on the first transaction on the address lines. This corresponds to the fina "st.I"
instruction in the file "VMEtestMEM1". The instruction writes to configuration register 1 and
loads it with the value on the lower 32 bits of the data lines (OxFO23DBO05). This write also
initiates the DMA transfer over the VME bus (at time 2012500 ps).
Before the transfer occurs, the DMA must obtain access to the address bus using the
HOLD/HLDA arbitration of the processor. The controller sets the HOLD signal (at time
2037500 ps) and the processor, if al it's bus transactions are complete, will give the bus to the
controller by asserting HLDA (at time 2050000 ps).
The VME protocol is then initiated by requesting access to the bus (DWB set to ‘1" at
2060000 ps). The bus arbiter and requester determine if the bus is available and issue a bus
grant (DGB set to ‘0" at 2090000 ps) to the controller. When the controller is granted the bus,
it starts driving the address lines to read data from memory (at time 2110000 ps). Data is
placed on the data bus after the memory access time, which is set to 10 nsin this case (at time
2140000 ps). The master notifies the slave that data is on the bus by setting the data strobe
lines (DSO and DS1) active (low)(at time 2150000 ps). The slave acknowledges the reception
of data by asserting the DTACK line active low (at time 2160000 ps).
The cycle repeats itself until all the data specified by the block length is transferred. Observe
the five data values being transferred across the bus on the DATA_32 lines. At the end of the
transfer, the device releases the bus and the HOLD is de-asserted. The processor isthen able to
access the address lines and perform another cache line fill operation.

5. Model interoperability at the full behavioral level of abstraction
5.1. The section will illustrate the need for model interoperability. First, a system level entity is

required to tie all the components together. The file i860_VME.hdl contains the structural-
level system model where al the components are instantiated and connected through port
maps. To induce an interoperability error, edit the file vme_master_slave.hdl in the
[src/design_files/system directory. Change directory to src /design_files/system and do the
following.

UNI X>> cd ./src/design_files/system

/| systenmr> enmacs vre_naster_slave. hdl &

editor>> search for the port signal DGB (ctrl-s DGB)

editor>> change its signal type fromSTD LOG Cto BIT

editor>> save the file and keep it open (ctrl-x, ctrl-s)
From the /m32_lab_a directory, compile the changes by typing the following,

UNI X>> cd ../../..1

Copyright ©1997-1999 SCRA

See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 10

nB82 | ab_a>> nake system

The resulting compilation results in two errors of mismatched types. These errors are a result
of one model assuming STD_LOGIC asitsinput and the other model using aBIT output. This
illustrates the need for interoperable models among library components. The memory
controller entity was expecting the DGB input in STD_LOGIC format while the library entity
vme_master_slave required BIT. For al library components to work together using a common
method of specification, the IEEE standard 1164 was adopted as the method to achieve
interoperability for logic values. The 1164 standard defines the STD_LOGIC nine-value
system with its corresponding resolution functions. All models following this standard will be
interoperable at the pin level.

Undo the error that was created by editing the file and replace STD_LOGIC with BIT and
compile the system again.

editor>> change the signal type on D& from BIT to
STD LCG3 C
editor>> save the file (ctrl-x, ctrl-s)
nB82 | ab_a>> nake system
6. Effects of memory speed and controller design on the performance of the code execution

6.1. In this section, we will vary the access time of the local memory to show the memory speed
effects on the execution time of the code. This requires a flexible controller with adjustable
wait states to account for slower memories. The memory is currently set for a 10 ns access
time and the memory controller is configured with O wait states. From the current Wave
window, note that the time when the bus grant becomes inactive is 2370000 ps. This is the
baseline for which the next two measurements will be compared. Open the i860_VME.hdl file
to modify the correct generic parameters.

/ syst enp> enacs ./Isrc/design _files/system
i 860_VME. hdl &
edi tor>> search for 'CHANGE HERE', the section of code where
t he conmponents are instantiated (ctrl-s CHANGE HERE)
The first code segment to modify is in the memory instantiation. Change the memory load
timeto 30 ns.
edi tor>> change 10 to 30 for the generic MEM LOAD TI ME
editor>> search for the next occurrence of ' CHANGE_HERE'
This is the memory controller instantiation. Change the memory load time to 30 ns and the
number of wait statesto 1.
Copyright 01997-1999 SCRA

See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 11

edi tor>> change 10 to 30 for the generic MEM LOAD TI ME

editor>> change 0 to 1 for the generic MEM WAI T_STATES

editor>> search for the next occurrence of ' CHANGE_HERE'
Thisisthe VME master instantiation. Change the memory load time to 30 ns.

edi tor>> change 10 to 30 for the generic MEM LOAD TI ME

editor>> search for the next occurrence of ' CHANGE_HERE'
Thisisthe VME save instantiation. Change the memory load time to 30 ns

edi tor>> change 10 to 30 for the generic MEM LOAD TI ME

editor>> save the file (ctrl-x, ctrl-s)
Run the simulation and observe the effects of these changes on the completion time of the
code. First, compile the system file because of the changes to the i860_VME.hdI file. In the
/m32_lab_a directory do,

82 | ab_a>> make system
In the ssimulator, restart the simulation.

Qui ckHDL>> choose FILE->Restart Designfrom t he nenu

Qui ckHDL>> push the button Restartand keep all settings
From the command line in the simulator, run the simulation by typing the following,

QHSI M>> run 4000000 ps
Observe the time the DGB line goes high after transferring the data. It occurs at 3245000 ps as
compared to the previous 2370000 ps, an increase of 875000 ps or 37%. The total transfer
time increases because of the slower memory resulting in an increased time for which the
VME bus resource is locked.
Repeat the above steps again for memory that has a 60 ns load time and set the memory
controller to 2 wait states. Run the simulation for 4500000 ps.

editor>> change the file as above with 60 ns nenory access

time and 2 wait states in the controller

82 | ab_a>> make system

Qui ckHDL>> choose FILE->Restart Designfrom t he nenu

QHSI M>> run 4500000 ps
Observe the time the DGB line goes high after transferring the data. It occurs at 3995000 ps as
compared to the original 2370000 ps, an increase of 1625000 ps or 69%.
Return to the original settings of 10 ns for the memory access time and 0 wait states for the
controller and compile the system file.

editor>> change the file to its original state

nB82 | ab_a>> nake system

Copyright ©1997-1999 SCRA

See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 12

7. Types of errors found by modeling at the full behavioral level of abstraction

In this section, we will explore the types of errors that can be detected in a design using fully
behavioral models of the components.

We will address four common types of errors found in systems design and how this level of
abstraction can detect them. These include bus protocol, bus operation, chip-to-chip interface,
and software touching hardware errors. Additional errors can be found but will not be
described in this section. These include, but are not limited to, functional errors where an
ASIC performs an arithmetic function and produces incorrect results, control logic errors
where signal polarities are reversed or inputs are not driven, and data handling errors which
include corrupted bits or dropped bits.

7.1. Bus protocol errors

In this example, we introduce an error in the VME protocol by having the slave not return the
data transfer acknowledge (DTACK) signal. Open the file vme_master_slave.hdl and search
for DTACK_ERROR.

/ syst enp> enacs ./src/design _files/systenlvne_mnaster
_slave. hdl &

editor>> search for the string 'DTACK ERROR' (ctrl-s
DTACK _ERROR)

editor>> comment out the line following it, i.e. change

the line to -- DTACK <= "'0' after TPD;
editor>> save the file (ctrl-x, ctrl-s)
Compile thefile by typing the following in the /m32_lab_a directory.
82 | ab_a>> make system
L oad the design changes into the simulator environment, change the observable Wave window
signals, and run the simulation again to obtain the results of the change.
Qui ckHDL>> choose FILE->Restart Designfrom t he nenu
In the Wave window, select edit and delete all the signals on the screen.
Wave>> choose Edit->Delete All
In the QuickHDL window |load the wave3.do file.
Qui ckHDL>> sel ect File->Execute command file
Qui ckHDL>> choose wave3.do and execute (wave3.do can be found in
the /src/design files/systemdirectory)
On the command line of the QuickVHDL window run the simulation for 4200000 ps.
QHSI M>> run 4200000 ps
Look at the range from 2000000 ps to 3300000 ps in the Wave window.

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 13

Wave>> choose Zoom->Range...

Wave>> Start = 2000000 ps

Wave>> St op = 3300000 ps
Notice the data strobe lines (DSO and DS1) were set (active low) at time 2150000 ps. The
slave should respond with a data acknowledge (DTACK low) but it never occurred in this
case. The end result was a time-out error as indicated by the BERR line (3160000 ps) going
low 1010000 ps later. The bus timer logic in the file bus_timer.hdl set the BERR line when it
was observed that the acknowledge signal had not occurred after 1 microsecond. This resulted
in abus protocol error and the data transfer was not compl eted.
This value is set using a generic in the file 1860_VME.hdl. This VHDL file is at the highest
level of the VHDL hierarchy (i.e. in the configuration). Open the file i860_VME.hdl and
change this parameter using the steps below.

/ systenp> enacs ./src/design _files/systenli 80 VME . hdl &

edi tor>> search for BT_CHANGE (ctrl-s BT_CHANGE)
This is the instantiation of the bus timer entity. Change the BTO value from 1 to 2. The units
are in microseconds and represent the delay time before atime-out can occur.

edi tor>> change BTO=>1toBTO=>2

editor>> save the file (ctrl-x, ctrl-s)
Compile the files that were changed and simulate again by following the steps below,

82 | ab_a>> make system

Qui ckHDL>> choose FILE->Restart Designfrom t he nenu

Qui ckHDL>> push the button Restartand keep all settings
On the command line of the QuickHDL window run the simulation for 4200000 ps.

QHSI M>> run 4200000 ps
Look at the range from 2000000 ps to 4200000 ps in the Wave window.

Wave>> choose Zoom->Range...

Wave>> Start = 2000000 ps

Wave>> St op = 4200000 ps
Observe the new location of the BERR signal going low. The difference between the time
when the data strobe lines are active and when a bus time-out occurs is now 2 microseconds as
expected. Undo all the previous changesto the filesvme_master_slave.hdl and i860_VME.hdl.

editor>> search for 'DTACK ERROR' in the first file and

uncomment the |ine DTACK <='0"after TPD;

editor>> search for 'BT_CHANGE' in 11860 _VME hdl and

change the 2 back to 1 on the BTO generic

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 14

Compile the system to verify the changes were done correctly before moving on to the next
example.
nB82 | ab_a>> nake system
7.2. Bus contention errors
In this section, an example of bus contention will be discussed where multiple components
require the address bus. In the system model, both the DMA and the i860XP processor can
drive the address lines at any given time, therefore, the need for arbitration is required. In this
example, an error is inserted into the arbitration section of the code and the results are
observed. Edit the files vme_master_slave.hdl and memory_control.hdl. The first file isin the
src/design_files/system directory and the second in the src/design_files/i860 directory. Starting
with memory_control.hdl do the following,
edi t or >> enacs .Isrc/design_files/i860/ menory_
control . hdl &
editor>> search for ' HOLD_ARBITRATION', it is located in
two places. Comment out the line imediately follow ng
this search marker
Now do the same for the file vme_master_slave.hdl.
editor>> emacs ./src/design files/system vne _master sl ave. hdl

&
editor>> search for 'HOLD ARBITRATION', it is located in
one place. Comment out the line immediately follow ng

this search marker
editor>> save both files
Exit the ssimulator and recompile the system.
Qui ckHDL>> sel ect File->Quit command file
82 | ab_a>> make all
82 | ab_a>> make sinul ate
Qui ckHDL>> sel ect 'ps' for resol ution
Qui ckHDL>> sel ect 'i860 VME' entity fromwork |ibrary
Qui ckHDL>> sel ect 'structural' architecture
In the Wave window, from the edit menu, delete all the signals on the screen so we can load
the original wave file, wave.do.
Qui ckHDL>> sel ect File->Execute command file
Qui ckHDL>> choose /src/design_files/system/wave.do and execute

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 15

L oad the changed system into the simulator environment.

QHSI M>> run 3000000 ps
Look at the range from 2000000 ps to 2400000 ps in the Wave window.

Wave>> choose Zoom->Range...

Wave>> Start = 2000000 ps

Wave>> St op = 2400000 ps
Notice HOLD was not asserted when the write to address 0x01 was completed. This causes
the DMA to attempt to access memory at the same time as the cache fill is occurring. This
condition can be seen by observing the ‘X’ values on the address lines, implying multiple
drivers are not resolved to a known vaue. Data is being read from memory and being sent
across the VME to the slave, but it is incorrect. This error is corrected using the proper hold
arbitration for access to the address lines to memory. Go back to the two files and remove the
errors (comment lines) that were inserted. Compile the corrected version to verify the changes
were correctly inserted before moving to the next exercise.

edi t or >> enacs .Isrc/design_files/i860/ menory_

control . hdl &

editor>> search for 'HOLD ARBITRATION', it is located in

two places. Uncomment the line imediately followng this

search marker
Now do the same for the file vme_master_slave.hdl.

editor>> emacs ./src/design files/system vne _master sl ave. hdl

&

editor>> search for 'HOLD ARBITRATION', it is located in

one place. Uncomment out the line immediately foll ow ng

this search marker

Qui ckHDL>> sel ect File->Quit command file

82 | ab_a>> make all

82 | ab_a>> make sinul ate

Qui ckHDL>> sel ect 'ps' for resolution

Qui ckHDL>> sel ect 'i860 VME' entity fromwork |ibrary

Qui ckHDL>> sel ect 'structural' architecture
In the Wave window, from the edit menu, delete all the signals on the screen so we can load
the original wave file, wave.do.

Qui ckHDL>> sel ect File->Execute command file

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 16

Qui ckHDL>> choose /src/design_files/system/wave.do and execute
L oad the changed system into the simulator environment.
QHSI M>> run 3000000 ps
Look at the range from 2000000 ps to 2400000 ps in the Wave window.
Wave>> choose Zoom->Range...
Wave>> Start = 2000000 ps
Wave>> St op = 2400000 ps
7.3. Chip-to-chip interface errors
In this test, we are going to observe the effects of a chip-to-chip interface problem where the
memory controller is assuming a fast memory access time (10 ns) while the actual memory is
slower (30 ns).
For this example, open the file i860_VME.hdl and search for CHANGE_HERE.
[/ systent> emacs ./src/design files/systemi860 VM hdl &
[syst enp> search for t he first occurrence of
' CHANGE_HERE' (ctrl-s CHANGE_HERE)
This will be the instantiation of the memory component. Change the memory load time
generic from 10 nsto 30 ns.
editor>> Search for the next two occurrences of
'CHANGE_HERE', change the value of the MEMLOAD _TIME
generic from 10 ns to 30 ns and save the file (ctrl-x,
ctrl-s)
Compile the system.
82 | ab_a>> make system
L oad the changed system into the ssmulator environment.
Qui ckHDL>> choose FILE->Restart Designfrom t he nenu
Qui ckHDL>> push the button Restartand keep all settings
On the command line of the QuickHDL window, run the simulation for 450000 ps.
QHSI M>> run 450000 ps
Notice the warnings of the form ‘illegal bit detected” -- not ‘1’ or ‘O’ in the QuickHDL
window. This implies that data is being read from the data bus when the values are in an
unknown state. Look at the simulation results using the full range.
Wave>> choose Zoom->Full Size from t he Wave w ndow nenu
Looking at the data lines at time 350000 ps, we see they al contain the value *Z’, implying no
data on the bus at the time when the controller expected it. This is what caused the warning
messages to appear in the QuickHDL command line window. The BRDY _N signal is sampled

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 17

on the rising edge of the clock and if it is low, the data is ready to be input to the processor.
The controller set the BRDY_N signal low with the assumption that the data is on the bus,
however, it did not arrive until 17.5 ns later, at time 367500 ps. The data was also corrupted
with some ‘X’ and ‘Z’ values because the memory does not know whether to react to the first
or second strobe.
Undo the change made at the beginning of this section by doing the following.
editor>> Search for 'CHANGE HERE' in 1860 VM hdl and
change the three |ocations where the MEM LOAD TI ME generic
was changed. Change it from 30 ns to 10 ns again and save
the file
nB82 | ab_a>> nake system
7.4. Errors where software is addressing hardware
In this section, we will examine the common type of error found when there is a
misinterpretation between hardware and software engineers. This occurs when code is written
with the assumption that the address that is being written is the one the hardware engineers
designed it to be. To illustrate, we use another set of code contained in the file
"VMEtestMEM2". The difference between the files can be observed by typing the following
in the /src/design_files/system directory.
[systenpt> di ff VMEtest MEML VMEL est MNEMR
The address being set for the ADDR_REG is byte address 32 instead of the correct value of
24.
We need to make the new memory file. Open the file ConverBIT32Tolnt.hdl contained in the
/src/design_files/system directory and search for the string "VMEtestMEM 1".
/ syst enp> enacs .Isrc/design _files/system
Convert Bl T32Tol nt. hdl &
editor>> search for the string 'VEMtestMEML1', change the
string to ' VMEtestMEM2' and save the file
To generate the new memory file we must compile the changed file and run the simulator to
create the data. This can be done by typing the following in the /m32_lab_a directory.
82 | ab_a>> make nemfile
A prompt of the form QHSIM> will appear which is the command line access for simulating
adesign. To generate the data, type the following at the command line prompt.
QHSIM>run 0 ns
QHSIM> quit

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module32-Lab A 18

A new memory file, "MEMO002047" is created in the /data_files directory. We can run the
system simulation again using the new file as input and observe the results.
L oad the changed system into the simulator environment.

Qui ckHDL>> choose FILE->Restart Designfrom t he nenu

Qui ckHDL>> push the button Restartand keep all settings
On the command line of the QuickHDL window, run the simulation for 3000000 ps.

QHSI M>> run 3000000 ps
Look at the range from 2000000 ps to 2400000 ps in the Wave window.

Wave>> choose Zoom->Range...

Wave>> Start = 2000000 ps

Wave>> St op = 2400000 ps
In this case, the desired data is no longer crossing the VME data lines. Looking at
"addr_word", the signal at the bottom of the display, which is passed the contents of the
ADDR_REG, it contains its reset value of al zeros. This implies we never wrote our intended
value of double word 4 to that address.
Undo the previous changes by typing the following,

/ syst enp> enacs .Isrc/design _files/system

Convert Bl T32Tol nt. hdl &

editor>> search for the string 'VEMtestMEM2', change the

string to '"VMEtestMEM1' and save the file

B2 | ab_a>> make nemfile

QHSIM>run 0 ns

QHSIM> quit
Reload the design and simul ate to verify the correct performance.

Qui ckHDL>> choose FILE->Restart Designfrom t he nenu

Qui ckHDL>> push the button Restartand keep all settings
On the command line of the QuickHDL window run the simulation for 3000000 ps.

QHSI M>> run 3000000 ps
We have now completed the section on the types of errors commonly found in connecting
components together in the prototyping stage of design. This completes the virtual prototyping
lab at the fully behavioral level in the design process. It emphasizes the types of information
that can be gleaned from using models of processors running code in a system cosimulation
environment in order to help achieve first-time design success.

Copyright ©1997-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

