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The Rapid Prototyping Design Process is applicable to all modules in
the E&F program.  This slide indicates where in the process Cost
Modeling for Embedded Digital Systems Design fits.
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● Establish the importance of system engineering
constraints on embedded system design.

● Survey the methods of cost estimation and
modeling for hardware and software design,
implementation, and test.

● Introduce a cost-modeling based design
methodology for embedded systems using cost
estimators and performance modeling.

● Understand the benefits of cost modeling
through application to an embedded system case
study.

Goals

● Prior use of cost models in software engineering was used to estimate
the cost of software development.  It has seldom been used to drive
the design methodology nor generate architectures for candidate
implementations.   This module describes how cost modeling can be
used in the system synthesis process.
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● Introduction to Cost Modeling-Based Embedded
Systems Design

❍ Limitations of Typical Design Process
❍ Effect of HW Resource Constraints HW/SW Prototyping

Costs/Schedule
❍ Effect of System Development Time on Expected

Revenue
❍ Cost Modeling in the Early Stages of Design

● Software Cost Estimation Process
❍ Software Life Cycle Models
❍ Basic Steps in the Software Cost Estimating Process

● Embedded systems are unique in the codesign requirements for
hardware and software.   This unique relationship has an interesting
impact on the cost modeling process.
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Module Outline (Cont.)

● Parametric Software Cost Models
❍ COCOMO
❍ REVIC
❍ COCOMO 2.0

● Parametric Hardware Cost Models
❍ Full Custom
❍ Gate Array
❍ FPGA
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● Applications of Cost Modeling in the RASSP
Design Process

❍ Classifications of System-Level Design & Test
Methodologies

❍ Example Automated Cost-Driven Architecture
Selection/Sizing Model

❍ Case Study: Synthetic Aperture Radar (SAR) Image
Processor

❍ Results: Detailed Cost Analysis for SAR Benchmark

● Summary and Major Issues
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Module Outline

● Introduction to Cost Modeling-Based
Embedded Systems Design

● Software Cost Estimation Process
● Parametric Software Cost Models
● Parametric Hardware Cost Models
● Applications of Cost Modeling to the RASSP

Design Process
● Summary and Major Issues
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in the Design Process

● Design Challenge:
❍ Designers of high-end embedded systems or large

volume commercial consumer products are faced with
the formidable challenge of rapidly prototyping cost-
effective implementations which meet:

❑ Stringent performance specifications
❑ Formidable functional and timing requirements
❑ Tight physical constraints

● System life cycle cost and time-to-market cost
are key factors which determine successful
products in the competitive electronics
marketplace

❍ These key factors should have a dominant influence on
the design of embedded microelectronic systems

● Embedded system design places considerable importance on
timeliness of the product, and its low cost.   Due to the interacting
nature of the hardware design and the software design phases in
embedded system design, cost modeling assumes a greater role, and
often drives the design process.  For example, a low cost strategy may
require the use of off-the-shelf parts for a system with a limited
production run and a short time to market.  On the other hand, for
large production volumes with a sufficient design time available, cost
modeling would, in all likelihood, prescribe a custom solution for the
design of the product.
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● Example embedded systems range from automotive anti-lock brake
systems on the low-end to high performance radar and video
systems on the high-end.

● System complexity has quickly grown from millions of operations per
second to billions of operations per second.

● Systems which could once be implemented in hardwired or
uniprocessor architectures, must now consist of arrays of
programmable multiprocessors to meet performance requirements.

● The design task is further complicated by the requirement that these
systems meet stringent form factor constraints.
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● A combinatorially significant number of alternatives exist in
the implementation of high performance embedded systems

Key Architectural Attributes
● Computational elements
● Communication elements
● Topologies
● Software (Application, Control &

Diagnostics)
● Analog Interfaces
● Mechanical Interfaces

Key Architectural Attributes
● Computational elements
● Communication elements
● Topologies
● Software (Application, Control &

Diagnostics)
● Analog Interfaces
● Mechanical Interfaces

Customer Requirements
● Functionality and Performance
● Deployment Schedule
● Interfaces and Packaging
● Size, Volume, and Weight
● Power
● Environment
● Cost
● Software and Hardware

Modularity
● Security
● Scalability
● Reliability and Maintainability

Customer Requirements
● Functionality and Performance
● Deployment Schedule
● Interfaces and Packaging
● Size, Volume, and Weight
● Power
● Environment
● Cost
● Software and Hardware

Modularity
● Security
● Scalability
● Reliability and Maintainability
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RASSP Typical Prototyping Process
Flow

• Limitations
➪ long prototyping times
➪ high cost of design
➪ in-cycle silicon

fabrication and test
➪ adhoc techniques used

to make architectural
and packaging trade-
offs

➪ lack of systematic
reuse

➪ lack of coupling
between HW and SW
design efforts

System Requirements
Definition

System Architecture
Definition

Hardware
Design

Software
Design

Inter-
face

Design
Hardware

Manufacture
& Test

Software
Code &

Test

Hardware/Software
Integration & Test

Field Test

Deliverables

Documentation

Production &
Deployment

6 - 12 months

25 - 49 months

6 -12 months

[MAD96]
© IEEE 1996

● The above figure illustrates a typical design methodology for high
performance embedded systems.

● Approach is plagued with long prototyping times, high cost of design,
and limited architectural exploration.

● Written requirements are used to specify system functionality and
constraints which, in turn, foster ambiguity in their interpretation.

● Hardware subsystems and application software are not integrated until
late in the design process.

● Significant design flaws go undetected until the integration
step.

● Design errors are very costly because hardware/software
integration does not occur until after hardware has been
fabricated.

● Development costs range from $20 million to $100 million.

● Prototyping times range from 37 to 73 months.
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HW/SW Cost Trends
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● Over the past 40 years, the percentage of total system costs
attributable to software has increased drastically as the use of COTS
hardware is becoming more common. Recent systems are to the right
where a system has less than 20% hardware cost, as opposed to over
80% cost for the software component.

● This software growth creates a tremendous challenge for the software
engineering profession. The challenge is twofold:

● To significantly increase software development productivity

● To increase the efficiency of software maintenance
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● For more information, see [AF95].

● It is noted that the effort (in man months) is proportional to a power of
the number of lines of source code.  The exponent depends on the
size of the project.  There are more than a dozen multiplier
coefficients, F, that modulate the values predicted by the source code.
These factors or coeffcients reflect the particular characteristics of the
target application (real-time or non real-time), or the platform
(embedded or mainframe), the software team (expert, novice), and the
methodology used (object oriented, etc).

● The software development time depends on the software effort, and
the amount of schedule compression required.  Given a certain
schedule for a certain amount of effort, if we are required to compress
that schedule, we may have to assign a different set of resources
(people and tools) to the task.  In some cases, adding resources can
actually delay the task.
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Cost/Time

Software Development Time

where
● C - constant used to capture multiplicative effects

on time with projects of increasing effort
(DEFAULT = 6.2)

● D - scale factor which accounts for the relative
economies or diseconomies of scale encountered
for projects of different required efforts
(DEFAULT = 0.32)

● PSCED - the percent compression/expansion  to
the nominal deployment schedule

● FE,  FM , FSCED -execution time,  main storage,
and schedule constraint effort multipliers

Software Development Time

where
● C - constant used to capture multiplicative effects

on time with projects of increasing effort
(DEFAULT = 6.2)

● D - scale factor which accounts for the relative
economies or diseconomies of scale encountered
for projects of different required efforts
(DEFAULT = 0.32)

● PSCED - the percent compression/expansion  to
the nominal deployment schedule

● FE,  FM , FSCED -execution time,  main storage,
and schedule constraint effort multipliers

Software Development Effort

where
● KSLOC - thousands of source lines of code

● A - constant used to capture the multiplicative
effects on effort with projects of increasing size
(DEFAULT = 4.44)

● B - scale factor which accounts for the relative
economies or diseconomies of scale
encountered for software projects of different
sizes (DEFAULT = 1.2  -> diseconomy)

● Fi’s - cost drivers which model the effect of
personnel, computer, product, and project
attributes on software cost

Software Development Effort

where
● KSLOC - thousands of source lines of code

● A - constant used to capture the multiplicative
effects on effort with projects of increasing size
(DEFAULT = 4.44)

● B - scale factor which accounts for the relative
economies or diseconomies of scale
encountered for software projects of different
sizes (DEFAULT = 1.2  -> diseconomy)

● Fi’s - cost drivers which model the effect of
personnel, computer, product, and project
attributes on software cost
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● This graph shows the relation between the execution time and main
storage constraint effort multipliers and the CPU and memory
utilizations, respectively.

● The effort multipliers significantly increase as the resource utilization
rises above 50%.

● The impact is extreme as the utilization approaches 95%.

● This is because of the extreme difficulty in designing code when
the margins for error are very small.

● The effort multipliers scale the software development effort.

● For more information, see [BOEHM81].

Copyright  1995-1999 SCRA 13

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Execution Time, FE, and Main
Storage Constraint, FM, Effort

Multipliers

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0
0.9

10 20 30 40 50 60 70 80 90 100

E
ff

o
rt

 M
u

lt
ip

lie
r 

V
al

u
e

Hardware Resource Utilization(%)

Execution-Time Constraint
Effort Multiplier

Main Storage Constraint
Effort Multiplier



Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 14

● When faced with the prospect of long development schedules which
will cause a product to be delivered to market late, many managers
attempt to compress the schedule by throwing more people (e.g.
person-hours) at the problem.

● This graph shows that schedule compression has the adverse effect of
greatly increasing the schedule constraint effort multiplier value,
thereby increasing the overall software development cost.

● This increase in cost is probably due to the larger labor force, which in
turn increases communication problems, thereby adding errors and
inefficiencies within the team.

● For more information, see [BOEHM81].
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● Traditional system-level design and test methodologies attempt to
minimize hardware costs for the purpose of minimizing overall system
costs.

● Accomplished by maximizing hardware resource utilization, which leads tight
execution time and memory budgets

● However, the above graph illustrates an often overlooked software
prototyping principle [MAD95].

● Various parametric studies based on historical project data show that
software is difficult to design and test if ‘slack’ margins for HW CPU and
memory resources are overly restrictive.

● Software developers must interact directly with the operating system and/or
hardware in order to optimize code to meet system requirements

● Integration and test phase is particularly increased because resource constraints
usually are not pushed until all software pieces come together

● In systems in which most hardware is simply commercial-off-
the-shelf (COTS) parts, the time and cost of software
prototyping and design can dominate the schedule and budget.

● If physical constraints permit, the hardware platform can be
relaxed to achieve significant reductions in overall development
cost.



Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 16

● In all three cases, use of a commercial off-the-shelf multiprocessor card solution is
assumed, but details of the processor and memory margins differ.

● If the designer focuses entirely on minimizing hardware cost, the software
development cost is nearly four times that of a design which seeks to minimize the
overall development cost and time.

● The curves compare development cost and time for a synthetic aperture radar
processor under three different assumptions regarding computation and storage
requirements.

● The minimum hardware cost implementation uses only six MCV6-4x4m cards with a
88% execution time utilization and 86%  memory utilization.

● Resulting hardware component cost is $100,000 plus the cost of the six cards -
$281,000. Software cost development cost and time are $2,360,000 an 32 months,
respectively. (total cost - $2,640,000)

● The reduced development cost/time implementation uses six MCV6-4x8m cards,
thereby decreasing memory utilization to 43% allowing for the use of advanced
software development tools and methodology.

● Software development cost and time decrease to $1,030,000 and 24 months; while
hardware cost slightly increases to $315,000. (total cost - $1,350,000)

● The minimum development cost/time implementation uses eleven MCV6-4x4m cards
with less than 50% memory and processor utilization.

● This further reduces software development cost and time to $620,00 and 21 months;
while hardware increases to $432,000. (total cost - $1,050,000)

Copyright  1995-1999 SCRA 16

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Design Trade-off Example:
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Multiprocessor Cards

1 MINIMUM HARDWARE COST
-  LOWEST PRODUCTION COST
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2 REDUCED DEVELOPMENT COST
& TIME
-  SAME NUMBER OF CARDS AND LIFE 
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   MARGIN, ALLOW USE OF ADVANCED
   SOFTWARE DEVELOPMENT TOOLS
   AND METHODOLOGY

3 MINIMUM DEVELOPMENT COST
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- Single chip packaging infeasible due to form constraints

- MCM and single chip packaging infeasible due to form constraints

Combined HW/SW System Cost

● Multi-chip module technology allows for increased packaging density
over single-chip packaging

● This increased packaging density can allow for more slack to be
added to the hardware architecture without violating system-level form
factor constraints

● This added slack margin can possibly lead to significant software cost
reductions

● However, the reduction in software cost is traded off against the
increase in production costs due to MCM manufacturing.
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● This graph shows that hardware constrained architectures can also
significantly increase system development time, especially when
COTS hardware components are being used.

● If physical constraints permit, the hardware platform can be relaxed to
achieve significant reductions in overall development cost .

● This increased software development time can be attributed to the
same factors which lead to an increase in software development cost.
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● The time to market is a primary driver in the commercial industry. A
number of models have attempted to predict the impact of late delivery
on the profitability of the product.  We do not endorse any particular
model, but show  that any model can be included within the
methodology.  The quality of results would depend on the validity of
the model.
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Time-to-Market Cost

● Time-to-market costs can often outweigh design,
prototyping, and production costs

● Reasons:
❍ When competitors beat you to market with a

comparable product, they gain considerable market
share and brand name recognition

❍ An earlier market entry has more opportunity to
improve yield, thereby improving profits

❍ Design and prototyping costs are an up front
investment that must produce a return as soon as
possible

❑ The longer investors must wait for a return, the
higher the return must be
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Time-to-Market Cost (Cont.)

● Surveys have shown that being six months late
to market resulted in an average of 33% profit
loss for that product

❍ A 9% production cost overrun resulted in a 21% loss
❍ A 50% design development cost overrun resulted in

only a 3% profit loss

● Engineering managers stated that they would
rather have a 100% overrun in design and
prototyping costs than be  three months late to
market with a product

● For more information, see [DOANE93].
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Time-to-Market Cost Models

● Simple quantitative time-to-market models can
be used to estimate the cost of delivering a
product to market late

● Examples:
❍ Simplified triangular time-to-market model
❍ Growth-Stagnation-Decline (GSD) time-to-market model

● Note that different models apply to commercial and Department of
Defense applications.  While commercial models stress the
importance of time to market, defense application may stress lifetime
costs of the system.

● We do not propose that any specific model is better than others, but
that using a cost model is advantageous if it is accurate.
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Cost Model
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● The above graph illustrates the effect of delivering a product to market
D months late.

● The non-shaded region of the demand window (triangle) signifies the
lost of revenue, RL, due to late entry in the marketplace.

● In order to maximize revenues, the product must be on the market by
the start of the demand window.

● If the product life cycle (length is demand window) is short, being late
to market can spell disaster.

● The revenue loss equation:

● R0 refers to the expected product revenue if it were on time

● D is the delay (months) in delivering a product to market

● 2W is the length of the product life cycle(months)

● For more information, see [LIU95].
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● This model partitions the product lifetime into three stages:

● a market growth window W1

● a period of no growth (stagnation) S

● a market decline W2

● Market growth phase: The product begins to gain market acceptance
and sales tend to grow rapidly as the product reaches mass market.

● Stagnation: As the product matures, sales are largely limited to repeat
customers, since the majority of potential customers have already
made their first choices. During this phase, there is no growth in the
market.

● Market decline: As technology advances and superior products are
launched, product sales will begin  to decline. This downward trend in
sales will continue as the market declines, thereby forcing managers
to phase out the product.

● The non-shaded region of the curve represents the lost revenue RL.

● R0 is the total expected revenue if the product were on time, i.e D = 0.

● To maximize revenues, the product must be on the market by the
product deployment deadline.

● For more information, see [LEVITT92].
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GSD Time-to-Market Model
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● To effectively address these system-level design
challenges, a unified approach that considers the
cost attributes of software options and hardware
options is required.

● Solution: Economic Cost-Driven System-Level
Design

❍ This concept attempts to converge the hardware and software
design efforts into a combined methodology that improves
cost, cycle time, and quality, which enhancing the exploration
of the HW/SW design space.

❍ Parametric cost and development time estimation models are
used to drive the design process

❍ A cost estimation-driven architecture design engine is
seamlessly integrated within a hardware-less, library-based
cosimulation and coverification environment for rapid
prototyping

● With product cycles having durations of  a few  months, cost modeling
can be quickly verified over the developmental cycle, and thus
accurate cost estimates can be derived for future products
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● The above diagram illustrates the design process [MAD95]. The
application specification serves as input to the conceptual prototyping
stage.

● Design and schedule constraints as well as behavioral specifications
drive the conceptual design process.

● The conceptual design stage presents the best opportunity to utilize
cost modeling techniques to develop minimal cost designs.

● 80% of a product’s final cost is determined by decisions made
in the first 10% of the design cycle [SM94].

● At this stage, high-level architectural trade-offs are made which
only require rough cost estimates

❍ Many universal (non-calibrated) parametric cost models
are claimed by their developers to provide cost estimates
within 20% of actuals 70% of the time which is
sufficiently accurate to make high level design trade-offs.

❍ These cost models are used to perform HW/SW
partitioning, architecture selection, and packaging
selection.

● VHDL performance models are used to verify that these
candidate architectures meet performance requirements.

● For more information, see [DEB97] and [MAD95].
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● Cost-effective embedded microsystems could benefit more from
emphasizing cost-related issues during the early stages of design,
than in the later stages.

● The figure depicts the cost committed versus the cost incurred over
the product life cycle.

● The figure shows that a major portion of the projected life cycle cost
for an electronic product stems from the consequences of decisions
made during the early stages of design.

● Cost-effective products can only be produced by applying a high
degree of cost emphasis during the early planning stages of design.

● For more information, see  [Business Week 4-30-90].
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● The above diagram identifies where parametric cost models can be
used in the front-end design process.

● Application requirements, system-level cost parameters, and DSP
software library performance benchmarks serve as input to this design
stage.

● Architectural trade-offs are made based on parametric cost estimates
of software development, time-to-market losses, and maintenance.

● Example design objectives:

● Choose the architectural platform which minimizes life cycle
cost and/or maximizes profits while satisfying system-level
design constraints.

● Efficiently span the HW/SW design space

● The application task graph is then mapped to the architectural platform
and scheduled.

● The performance of the resulting HW/SW architecture(s) is then
verified using VHDL performance models.

● For more information, see [DEB97].
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● We now present some methods that are used to make quantitative
calculations of the software effort, the parameters of a model, and its
dependence on the design methodology.
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● Introduction to Cost Modeling-Based Embedded
Systems Design

● Software Cost Estimation Process
● Parametric Software Cost Models
● Parametric Hardware Cost Models
● Applications of Cost Modeling to the RASSP

Design Process
● Summary and Major Issues
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● Note: Extensions to the waterfall model cover:

● incremental development

● parallel development

● program families

● accommodation of evolutionary changes

● formal software development and verification

● stagewise validation and risk analysis

● Detailed explanation of waterfall model in next slide
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● Software life cycle models identify various
phases and associated activities required to
develop and maintain software

● Some common life cycle models include:
❍ Waterfall model
❍ Spiral development model
❍ Reusable software model

● Models form a baseline from which to begin the
software estimation process
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Detailed Design Verification
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Verification

Implementation System
Test

Operations and
maintenance Revalidation

[BOEHM88]

© IEEE 1988

● Characteristics of the waterfall model
● Emphasis on fully elaborated documents as completion criteria for early

requirements and design phases

● Iterations of earlier phase products are performed in the next succeeding phase

● Each phase is culminated by a verification and validation activity
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[BOEHM88]

Plan next phases
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© IEEE 1988

● Spiral Model of the software process-

●  Each cycle involves a progression that addresses the same
sequence of steps for each portion of  the product and for each
of its levels of elaboration, from an overall concept of operation
document down to the coding of each individual program
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Legacy software
[AHRENS95]

© IEEE 1995

● Requirements - Domain or application software requirements defined
in terms of functionality, capabilities, performance, user interface,
inputs, and outputs

● Component specifications - Domain or application software
requirements specified in terms of capabilities of hardware and
software components and interfaces. This state is exemplified by the
software specifications in DOD Military Standard 498, “Software
Development and Documentation,” December 1994.

● Architecture - The hierarchy of software components , rules for
component selection, and interfaces between components

● Design - Program interfaces, control flow, and logic defined in greater
detail

● Application/reuse software - In application software, a unique software
product; in software reuse, a library of adaptable resuable software
components. The reuse software components are tested, verified, and
validated

● Transformed software - Legacy software restructured and translated, if
needed, into a modern programming language

● Legacy software - Application software created in a previous traversal
of a software life cycle
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● What this slide suggests is a methodology for the cost modeling
activity itself and methods for starting it within an organization.

● These various sub-activities are discussed in the following slides.

Copyright  1995-1999 SCRA 33

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Basic Software Cost
Estimation Process

● The software cost estimation activity is a
miniproject

● Basic Steps
❍ Define project objectives and requirements
❍ Plan the software estimation activities

❑ Develop detailed work breakdown structure (WBS)
❍ Estimate software size
❍ Define and weigh potential software estimation risks
❍ Use several independent cost estimation methodologies
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● Guidelines for establishing the objectives of a
cost estimation activity

1. Key the estimating objectives to the needs for decision
making information

2. Balance the estimating accuracy objectives for the
various system components of the cost estimates

3. Re-examine estimating objectives as the process
proceeds, and modify them where appropriate

● The main factor that helps to establish cost-estimation objectives is
the current software life-cycle phase.

● Corresponds  to the level of knowledge of the software whose
costs is being estimated, and also to the level of commitment
that will be made as a result of the estimate

● Guideline #1 refers to absolute estimates for labor or resource
planning, relative estimates for either/or decisions, generous or
conservative estimates to heighten confidence in the decision.

● Guideline #2 recommends that the absolute magnitude of the
uncertainty range for each component be roughly equal -
assuming that such components have equal weight in the
decision to be made.

● A further implication of guideline #3 is that budget commitments
in the early phases should cover only the next phase. Once a
validated product design is complete, a total development
budget may be established without too much risk.
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● The best way to determine to what extent a
software specification is costable is to determine
to what extent it is testable.

● A specification is testable to the extent that one
can define a clear pass/fail test for determining
whether or not the developed software will
satisfy the specification.

● In order to be testable, specifications must be
specific, unambiguous, and quantitative
wherever possible.

● Examples of testable specifications

● The software shall compute aircraft position within the following
accuracies:

❍ + or - 50 ft in the horizontal plane

❍ + or - 20 ft in the vertical plane

● The system shall respond to:

❍ Type A queries in <= 2 sec

❍ Type B queries in <= 10 sec

❍ Type C queries in <= 2 min

❍ where Type A, B, and C queries are defined in the
specification
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Breakdown Structure (WBS)

● The WBS helps to establish a
hierarchical view and
organization of the project

● The WBS should depict only:
❍ major software functions

❑ computer software
configuration items (CSCI)

❍  major subdivisions
❑ computer software

components (CSC)
❑ computer software units

(CSU)

● The WBS should include all
software associated with the
project regardless of whether it
developed, furnished, or
published

Project

CSCI CSCI CSCI

CSC CSC CSC

CSU  CSU CSU

Software WBS

● In order to facilitate the planning of software cost estimation activities,
a work breakdown structure should be developed.

● Plan should detail the purpose, products, schedules,
responsibilities, procedures, required resources, and
assumptions made.

● The WBS provides a framework for specifying the technical objectives
of the program by first defining the program in terms of hierarchically
related product oriented elements and the work processes required for
their completion.

● Each element of the WBS provides logical summary points for
assessing technical accomplishments, and for measuring the cost and
schedule performance accomplished in attaining the specified
technical objectives.

● The WBS should be worked out in as much detail as feasible.

● The more detail to which estimating activities are carried out,
the more accurate the estimates will be.

● The more the functions that software must perform are
contemplated, the less likely the costs of some of the more
obtrusive components of the software will be missed

● The software size estimate, the major software cost driver, is
computed by making estimates for the software WBS elements.
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● Sizing By Analogy
❍ Involves relating the proposed project to previously

completed projects of similar application, environment
and complexity

❍ Basic Steps
❑ Develop a list of functions and the number of lines

of code to implement each function.
❑ Identify similarities and differences between

previously developed data base items and those
data base items to be developed.

❑ From the data developed in the previous steps,
select those items which are applicable to serve as
a basis for the estimate.

❑ Generate a size estimate

● A manual estimate in thousands of source lines of code (SLOC) or
function points to the lowest level of detail possible (bottom-up) for
each major function within each CSCI based on experience with a
similar application and historical data.

● Software includes application code, operating system, control,
diagnostics, and support  software.

● The accuracy of the derived estimate will obviously depend on the
completeness and the accuracy of the data used from the previous
projects

● Actual data from completed projects are extrapolated to estimate the
proposed project’s software size.

● The strength of this method is that the estimates are based on actual
project data and past experience.

● Limitations

● Difficult to identify differences between completed projects and
the proposed project

● Accuracy of available historical information may be suspect

● Similar projects may not exist

● Some projects have no historical precedents

● For more information, see [SEPO96].
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(Cont.)

● Sizing by Program Evaluation and Review
Technique (PERT)

❍ Based on beta distribution and on separate estimation
of individual software components

❍ Calculation of standard deviation assumes that the
estimates are unbiased toward either underestimation
or overestimation

❍ Experience shows that “most likely” estimates tend to
cluster toward the lower limit, while actual software
product sizes tend to cluster more toward the upper
limit
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● PERT requires a nominal or expected size estimate plus a standard
deviation(I.e., the lowest possible size and a highest possible size to
reflect the uncertainty of the nominal estimate) to be developed.

● The spread between the lowest and the highest estimates may be as
much as 30-50% in the early phases of a project, e.g., the Concept
phase.

● Symbol definitions

● ai = The lowest possible size of the software component

● bi = The highest possible size of the software component

● mi = the most likely size of the component

● Ei = the expected size of the software component

●  σi = the standard deviation of the software component estimate

● E = the estimated total software size

● σE = the standard deviation of the total estimate

● For more information, see [BOEHM81].
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● Function Points
❍ Method of estimating size during the requirements

phase based on the functionality to be built into the
system

❍ General Approach
❑ Count the number of inputs, outputs, inquiries,

master files, and interfaces required.
❑ Multiply these counts by the following factors:

➭ Inputs  - 4
➭ Outputs  - 5
➭ Inquires  - 4
➭ Master files - 10
➭ Interfaces  - 7

❑ Adjust the total of these products +25%, 0, or -25%
based on the program’s complexity

● In function point analysis, the number and complexity of inputs,
outputs, user queries, files, and external interfaces of the software to
be developed are determined.

● Initial application requirements statements are examined to determine
the number and complexity of the various inputs, outputs, calculations
and databases required.

● Points based on established values are assigned to each of these
counts and then added to arrive at an overall function point rating for
the product.

● This function point number is directly related to the number of end-
user business functions performed by the system.

● Using data from past projects, it is possible to estimate the size of the
software needed to implement these function points (typically about
100 source language statements are needed for each function point)
and the labor needed to develop the software (typically about 1 to 5
function points per person-month).

● This approach is helpful in estimating size very early in a software
product’s development.

● For more information, see [SEPO96] and [DOD95].
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● Many software products consists of newly
developed software and previously developed
software

❍ The previously developed software is adapted for use in
the new product

● Some effort is required to adapt existing software
❍ Redesigning the adapted software to meet the

objectives of the new product
❍ Reworking portions of the code to accommodate

redesigned features or changes in the new product’s
environment

❍ Integrating the adapted code into the new product
environment and testing the resulting software product

● Software reuse has been proposed many times in the 80s and 90s as
a means to reduce cost of software development, and many ideas are
currently being carried over to the hardware and embedded design
areas.
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● The effects of reuse are estimated by calculating
the Equivalent Number of Source Lines of Code
(ESLOC)

● Basic Reuse Model

where
❑ ASLOC is the size of the adapted COTS software component

expressed in thousands of adapted source lines of code
❑ NSLOC is the size of new software component expressed in

thousands of new source lines of code
❑ DM is the percent design modified
❑ CM is the percent code modified
❑ IM is the percent of integration required for modified software

ESLOC NSLOC ASLOC
DM CM IM

= + •
+ +0 40 0 30 0 30

100

. ( ) . ( ) . ( )

● ASLOC: the number of source lines of code adapted from existing
software to form the new product.

● DM: the percentage of the adapted software’s design which is
modified in order to adapt it to the new  objectives and environment.

● CM: the percentage of the adapted software’s code which is modified
in order to adapt it to the new  objectives and environment.

● IM: the percentage of effort required to integrate the adapted software
into an overall product and to test the resulting product as compared
to the normal amount of integration and test effort for software of
comparable size.

● For more information, see [BOEHM81].
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Relative
Cost

Amount of Reused Software Modified

Copyright 1995, Baltzer Science Publishers. Used with permission.

● The reuse cost function is nonlinear in two ways:

● It does not go through the origin. There is generally a cost of
about 5% for assessing, selecting, and assimilating the
reusable component.

● Small modifications generate disproportionately large costs.
This is primarily due to two factors: the cost of understanding
the software to be modified, and the relative cost of interface
checking.
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Nonlinear Reuse Model

● Nonlinear reuse estimation model

❍ where
❑ SU is the software understanding increment which

is expressed as a percentage (ranges from 10-50%).
❑ AA deals with the degree of assessment and

assimilation needed to determine whether a fully-
reused software module is appropriate to the
application and to integrate its description into the
overall product description (ranges from 0-8%).

❑ The remaining variables in the equation are the
same as those used in the original COCOMO.

( )
ESLOC NSLOC ASLOC

AA SU DM CM IM
= + ×

+ + × + × + ×0 4 0 3 0 3

100

. . .

● The software understanding increment is based on the level of the adapted
software’s structure, application clarity, and self-descriptiveness

● Software structure ratings

● Very Low: very low cohesion, high coupling, spaghetti code

● Low: Moderately low cohesion, high coupling

● Nominal: Reasonably well-structured; some weak areas

● High: high cohesion, low coupling

● Very High: Strong modularity, information hiding in data/control structures

● Application clarity ratings
● Very Low: no match between program and application world views

● Low: Some correlation between program and application

● Nominal: Moderate correlation between program and application

● High: Good correlation between program and application

● Very High: Clear match between program and application worldviews

● Self-Descriptiveness ratings
● Very Low: Obscure code; documentation missing, obscure or obsolete

● Low: Some code commentary and headers; some useful documentation

● Nominal: Moderate level of code commentary, headers, documentations

● High: Good code commentary and headers; useful documentation; some weak areas

● Levels of AA effort include: none; basic module search and documentation; some
module Test and Evaluation (T&E), documentation; considerable module T&E,
documentation, extensive module T&E, documentation

● For more information, see [BOEHM95].
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● Adverse effects due to inaccurate software
estimation stems from an inability to accurately
assess risks associated with various software
development projects

● Four major risk areas
❍ Software project sizing
❍ Specification of development environment
❍ Assessment of staff skills
❍ Definition of objectives, requirements, and

specifications

● All potential risks should be defined and
weighed, and impacts to project cost should be
determined

● The inability to accurately size the software project results in poor
implementations, emergency staffing, and cost overruns caused by
underestimating project needs.

● The inability to accurately specify a development environment which
reflects reality results in defining cost drivers which may be
inappropriate, underestimated or overestimated.

● The improper assessment of staff skills results in misalignment of
skills to tasks and ultimately miscalculations of schedules and level of
effort required.

● The lack of well defined objectives, requirements, and specifications,
or unconstrained requirements growth during the software
development life cycle results in forever changing project goals,
frustration, customer dissatisfaction, and ultimately, cost overruns.
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Software Sizing Accuracy
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[BOEHM95]Copyright 1995, Baltzer Science Publishers. Used with permission.

● This figure indicates the effect of project uncertainties on the accuracy
of software size and cost estimates.

● In the very early stages, one may not know  the specific nature of the
product to be developed to better than a factor of 4 (25% -400%).

● As the life cycle proceeds, and product decisions are made, the nature
of the product decisions are made, the nature of the products and its
consequent size are better known, and the nature of  the process and
its consequent cost drivers are better known.

● Once written requirements have been specified, software costs/size
can be estimated with a factor of 1.5 (67% - 150%) from project
actuals.

● The earlier “completed programs” size and effort data points shown
above are the actual sizes and efforts of seven software products built
to an imprecisely-defined specification.

● The latter “USAF/ESD proposals” data points are from five proposals
submitted to the U.S. Air Force Electronics Systems Division in
response to a fairly thorough specification.

● SLOC - source lines of code
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● More than one software estimation methodology should be used for
comparison and verification purposes.

● One method may overlook system level activities such as
integration, while another method may have included this, but
overlooked some key post-processing components.

● For more information, see [BOEHM81].
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● Techniques available for cost estimation
❍ Expert Judgment
❍ Analogy
❍ Top-Down
❍ Bottom-Up
❍ Parametric or Algorithmic Models

● Important to use a combination of techniques
❍ None of the techniques are better than the others from

all aspects
❍ Their strengths and weaknesses are complementary
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● Wideband Delphi Technique

● Coordinator presents each expert with a specification and an
estimation form.

● Coordinator calls a group meeting in which the experts discuss
estimation issues with the coordinator and each other.

● Experts fill out forms anonymously

● Coordinator prepares and distributes a summary of the
estimates on an iteration form.

● Coordinator calls a group meeting, specifically focusing on
having the experts discuss points where their estimates varied
widely.

● The experts review the summary and submit another
anonymous estimate on the form.

● The last three steps are repeated until a consensus is reached.
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Expert Judgment

● These techniques involve consulting one or more
experts, who use their experience and
understanding of proposed project to arrive at
and estimate

● May utilize group consensus techniques
❍ Compute median or mean of individual expert estimates
❍ Group meeting
❍ Delphi (iterative process)

❑ Anonymous estimation
❑ No group discussion

❍ Wideband Delphi (iterative process)
❑ Combines the free discussion advantages of the

group meeting technique and the advantages of
anonymous estimation
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● While this technique appears ad hoc, it is widely used basis for costing
products, market segments, and proposals.
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(Cont.)

● Strengths
❍ Able to factor in the differences between past project

experiences and the new techniques, architectures, or
applications of the future project

❍ Can also factor in exceptional personnel characteristics
and interactions, or other unique project considerations

● Weaknesses
❍ The estimate is no better than the expertise and

objectivity of the estimator (biases, incomplete recall)
❍ Difficult to strike balance between:

❑ Quick response expert estimate
➭ timely, efficient, but hard to calibrate and rationalize

❑ Group consensus estimate
➭ Soundly based but highly time consuming and not

always exactly repeatable
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Estimation By Analogy

● Reasoning by analogy with one or more
completed projects to relate their actual costs to
an estimate of the cost of a similar new project

● Strengths
❍ Useful when developing a new product when a

systematic historical cost database does not exist
❍ Based on actual experience on a project

● Weaknesses
❍ A high degree of judgment is required when making

adjustments for differences in analogous products
❍ Not clear to what degree the previous project is actually

representative of the constraints, techniques,
personnel, and functions to performed on the new
project

● If an organization has a legacy of similar projects, or has a database
that records historical cost information, it may serve as a good starting
point for the baseline cost of a new similar activity.
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● Detailed explanation of strengths

● The estimate is based on previous experience on entire
completed projects, it will not miss the costs of system level
functions such as integration, users’ manuals, configurations
management, etc.

●  Detailed explanation of weaknesses

● This method often does not idenitify difficult low level technical
problems that are likely to escalate costs.

● It sometimes misses components of the software to be
developed.

● It provides no detailed basis for cost justification and iteration.

● It is less stable than a multicomponent estimate, in which
estimation errors in the components have a chance to balance
out.
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Top-Down Estimating

● Overall cost estimate for the project is derived
from the global properties of the software project

● Cost is then split up among the various
components

● Can be done in conjunction with any of the
before-mentioned methods

● Strengths
❍ System level focus
❍ Efficient, easier to implement, requires minimal detail

● Weaknesses
❍ Can be less accurate due to lack of detail
❍ Tends to overlook lower level components and possible

technical problems
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● Detailed explanation of strengths

● Estimate will be based on a more detailed understanding of the
job to be done

● Each estimate will be backed up by the personal commitment of
the individual responsible for the job

● Estimates are more stable because the estimation errors in the
various components have a chance to balance out.

● Detailed explanation of weaknesses

● Tends to overlook many system level costs (integration,
configuration management, quality assurance, project
management) associated with software development.

● As a result, these results are often underestimated.

Copyright  1995-1999 SCRA 51

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
Bottom-Up Estimating

● The cost of each software component is
estimated by an individual and these costs are
then summed to arrive at an estimated cost for
the overall product

● Strengths
❍ More detailed basis
❍ More stable
❍ Fosters individual commitment

● Weaknesses
❍ May overlook system level costs
❍ Requires more effort
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● Weaknesses

● Calibrated to previous projects

❍ Questionable as to what extent these previous projects
are representative of future projects using new
techniques and technology

❍ Unable to deal with exceptional conditions

❍ exceptional personnel

❍ exceptional project teamwork

❍ exceptional matches (or mismatches) between the
project personnel and the job to be done

● However, any estimating approach can be impacted by these
drawbacks, and care should be exercised when accounting for such
concerns.

Copyright  1995-1999 SCRA 52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
Parametric Models

● Mathematical expressions
❍ Derived from the statistical correlation of historical

system costs with performance and/or physical
attributes of the system

❍ Can produce high quality, consistent estimates if
derived from a sound representative database

● Focus on major cost drivers (not minute details)
❍ Predominant effect on system costs
❍ Independence (cost drivers are uncorrelated)

● Strengths
❍ Objective
❍ Repeatable
❍ Efficient
❍ Facilitates sensitivity analysis
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● These models have the forms shown above where x1, . . . , xn are the
cost driver variables, and a0, . . . , an are a set of coefficients chosen to
provide the best fit to a set observed data points. Development cost is
obtained by multiplying the effort quantity by a constant cost for labor.

● Model coefficients are determined by using curve fitting techniques
such least squares best fit (LSBF) method, multiple regression
techniques, or curvilinear regression techniques.
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Effort a ai
x

i

n
i=

=
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1

● Linear models

● Multiplicative models

● Analytic models

● Tabular models
❍ Contains tables which relate the values of cost driver

variables to multipliers used to adjust the effort
estimate

● Composite models
❍ Incorporate a combination of linear, multiplicative,

analytic, and tabular functions to estimate software
effort as a function of cost driver variables

( )Effort f x xn= 1 , . . . ,

Parametric Models (Cont.)

Effort a a xi i
i

n

= +
=
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Parametric Model

● Well documented
parameters identifying:

❍ source of data used to
derive the parametric
model

❍ size of database
❍ time frame of database
❍ range of database
❍ how parameters were

derived
❍ limitations spelled out
❍ how well the parametric

model estimates its own
database

❍ consistent and well
defined WBS dictionary

● Well documented
parameters identifying:

❍ source of data used to
derive the parametric
model

❍ size of database
❍ time frame of database
❍ range of database
❍ how parameters were

derived
❍ limitations spelled out
❍ how well the parametric

model estimates its own
database

❍ consistent and well
defined WBS dictionary

● Realistic estimates of
most-likely range for
independent variable
values

● Top functional experts
knowledgeable about the
project being estimated

❍ to identify most-likely
range for cost drivers

❍ to confirm applicability of
parametric from technical
perspective

● Realistic estimates of
most-likely range for
independent variable
values

● Top functional experts
knowledgeable about the
project being estimated

❍ to identify most-likely
range for cost drivers

❍ to confirm applicability of
parametric from technical
perspective

● These prescriptions provide an insight into how accurate the proposed
parametric model is, and also provide some directions on its effective
use and limitations.   One should not use cost models without
information on their underlying assumptions.

● For more information, see [DOD95].
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● We examine a number of commercial cost models from the software
arena, and see how they are applicable to embedded system design.
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Module Outline

● Introduction to Cost Modeling-Based Embedded
Systems Design

● Software Cost Estimation Process

● Parametric Software Cost Models
● Parametric Hardware Cost Models
● Applications of Cost Modeling to the RASSP

Design Process
● Summary and Major Issues
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Cost Estimators

● A number of automated software estimation tools
are available which allow for quick effort and
schedule estimates based on size estimates and
cost driver attributes

● 15 to 20 cost driver attributes that reflect the development
environment depending on the model used

● Examples
❍ COCOMO
❍ COCOMO 2.0
❍ REVIC ( REVised Intermediate COCOMO)
❍ PRICE S Model
❍ SEER-SEM
❍ SASET

● SEER-SEM: System Evaluation and Estimation of Resources -
Software Estimation Model (SEER-SEM) provides software estimates
with knowledge bases developed from many years of completed
projects.The knowledge base allows estimates with only minimal high
level inputs. User only needs to select the platform (I.e. ground,
unmanned space, etc.), application (I.e. command and control,
diagnostic), development methods (I.e. prototype, incremental), and
development standards (I.e. 2167A/498).

● SASET: The Software Architecture, Sizing and Estimating Tool
(SASET) is a forward-chaining, rule-based expert system utilizing a
hierarchically structured knowledge database. SASET uses a five-
tiered approach for estimating including class of software, source lines
of code, software complexity, maintenance staff loading, and risk
assessment.

● COCOMO, COCOMO 2.0, and REVIC are public domain software
cost estimation tools. Therefore, the parametric software
cost/schedule equations are made available for these tools, thereby
facilitating their use in automated design tools.

● PRICE S is a commercial tool. Its exact parametric equations are not
made available. Therefore, for the purposes of this module, PRICE S
can only be used for making manual design trade-offs.

● Others include SLIM, SOFTCOST-R, SoftEst and SYSTEM-4



Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 57

• The development period covered by COCOMO cost estimates begins
at the beginning of the product design phase and ends at the end of
the integration and test phase.

• The three models, Basic, Intermediate, and Detailed COCOMO,
represent greater accuracy based on an increasing amount of input
information provided to each class of models.

• In the early stages of the design, Basic COCOMO may be sufficient
for an initial estimate, but as the project advances, advanced models
may be required for increased accuracy of prediction.

• For more information, see slide 59.

[COCOMO]
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Constructive Cost Model

(COCOMO)

● Hierarchy of software cost estimation models
❍ Basic COCOMO

❑ Estimates software development effort and cost
solely as a function of the size of the software
product in source instructions

❍ Intermediate COCOMO
❑ Estimates software development effort as a function

of the most significant software cost drivers as well
as size

❍ Detailed COCOMO
❑ Represents the effects of the cost drivers on each

individual development cycle phase
❑ Used during detailed phases of design to refine cost

estimates
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● The embedded mode of development is most applicable for the
software costing for embedded digital systems.

● The focus will be on this mode of development for making embedded
systems design trade-offs.

● The reader may wish to determine the applicability of these models to
the class of products being developed.
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COCOMO (Cont.)

● Models three modes of software development
❍ Organic

❑ Small-to-medium size product developed in a
familiar, in-house environment

❍ Embedded
❑ Product must operate within tight constraints
❑ Product is embedded in a strongly coupled complex

of hardware, software, regulations, and operational
procedures

❍ Semidetached
❑ Intermediate stage between organic and embedded

mode
❑ Team members have varied experience with related

systems
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● Basic COCOMO:
● Good for quick, early, rough order of magnitude estimates of software costs.

● Accuracy is very limited, because the model lacks factors to account for differences
in hardware constraints, personnel quality and experience, use of modern tool and
techniques, and other project attributes known to have significant influence on
software costs.

● Basic COCOMO estimates its own database within a factor of 1.3 of the actuals only
29% of the time and a factor of 2 of the actuals only 60% of the time.

● Accuracy is not good enough for making design trade-offs.

● Detailed COCOMO:
● Used during detailed design to refine cost estimates

● Employs a three level hierarchical decomposition of the software product (module
level, subsystem level, system level).

● Uses phase sensitive effort multipliers which accurately reflect the effect of the cost
drivers on the phase distribution of effort

● Cost models are used to make design trade-offs during the early stages of design.
The level of information required by this model will not be available during
conceptual design.

● Intermediate COCOMO:
● Incorporates an additional 15 cost drivers to account for much of the software project

cost variation.

● Estimates are within 20% of the project actuals 68% of the time with respect to the
COCOMO database.

● There is enough information available about the development environment and
software size (KDSI)  to effectively use this model during the early stages of product
design.

● This model will be explored in more detail.
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Hierarchy of Models

COCOMO Level

Estimate Basic Intermediate Detailed

Development Effort,
MMDEV

f(mode, KDSI) f(mode, KDSI,
  15 cost drivers)

f(mode, KDSI,
15 cost drivers)

Development schedule f(mode, MMDEV) Same as for Basic
level

Same as for Basic
level

Maintenance effort f(MMDEV, ACT) f(MMDEV, ACT,
15 cost drivers)

Same as for
Intermediate level

Product hierarchy Entire System System/components System/subsystem/
module

Phase distribution of
effort

f(mode, KDSI) Same as for Basic
level

f(mode, KDSI,
 15 cost drivers)

Phase distribution of
schedule

f(mode, KDSI) Same as for Basic
level

f(Basic schedule
distr., Detailed
schedule distr.)
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● The embedded model intermediate COCOMO includes integration and
test costs, and is more involved than the basic model.

● The general form of equations is still similar across the COCOMO
models.
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Software Development Time

where
● C - constant used to capture multiplicative effects

on time with projects of increasing effort
(DEFAULT = 2.5)

● D - scale factor which accounts for the relative
economies or diseconomies of scale encountered
for projects of different required efforts
(DEFAULT = 0.32)

● PSCED - the percent compression/expansion  to
the nominal deployment schedule

Software Development Time

where
● C - constant used to capture multiplicative effects

on time with projects of increasing effort
(DEFAULT = 2.5)

● D - scale factor which accounts for the relative
economies or diseconomies of scale encountered
for projects of different required efforts
(DEFAULT = 0.32)

● PSCED - the percent compression/expansion  to
the nominal deployment schedule

Software Development Effort

where
● KSLOC - software size in thousands of source

lines of code

● A - constant used to capture the multiplicative
effects on effort with projects of increasing
size (DEFAULT = 2.8)

● B - scale factor which accounts for the relative
economies or diseconomies of scale
encountered for software projects of different
sizes (DEFAULT = 1.2  -> diseconomy)

● Fi’s - cost drivers which model the effect of
personnel, computer, product, and project
attributes on software cost

Software Development Effort

where
● KSLOC - software size in thousands of source

lines of code

● A - constant used to capture the multiplicative
effects on effort with projects of increasing
size (DEFAULT = 2.8)

● B - scale factor which accounts for the relative
economies or diseconomies of scale
encountered for software projects of different
sizes (DEFAULT = 1.2  -> diseconomy)

● Fi’s - cost drivers which model the effect of
personnel, computer, product, and project
attributes on software cost
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Embedded Mode Intermediate COCOMO Model
l Costs including product design through the completion of the integration and test phase
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● These attributes allow customization of the cost model to company-
specific, product-specific, organization skill-specific, and project
specific attributes, usually through a multiplicative factor that varies
around the value 1.0.
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● Computer Attributes
❍ TIME - Execution Time Constraint
❍ STOR - Main Storage Constraint
❍ VIRT - Virtual Machine Volatility
❍ TURN - Computer Turnaround

Time

● Product Attributes
❍ RELY - Required Software

Reliability
❍ DATA - Database Size
❍ CPLX - Product Complexity

● Computer Attributes
❍ TIME - Execution Time Constraint
❍ STOR - Main Storage Constraint
❍ VIRT - Virtual Machine Volatility
❍ TURN - Computer Turnaround

Time

● Product Attributes
❍ RELY - Required Software

Reliability
❍ DATA - Database Size
❍ CPLX - Product Complexity

● Project Attributes
❍ MODP - Modern Programming

Practices
❍ TOOL - Use of Software Tools
❍ SCED - Required Development

Schedule

● Personnel Attributes
❍ ACAP - Analyst Capability
❍ AEXP - Applications Experience
❍ PCAP - Programmer Capability
❍ VEXP - Virtual Machine Experience
❍ LEXP - Programming Language

Experience

● Project Attributes
❍ MODP - Modern Programming

Practices
❍ TOOL - Use of Software Tools
❍ SCED - Required Development

Schedule

● Personnel Attributes
❍ ACAP - Analyst Capability
❍ AEXP - Applications Experience
❍ PCAP - Programmer Capability
❍ VEXP - Virtual Machine Experience
❍ LEXP - Programming Language

Experience
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● TIME- the cost driver rating is a function of the degree of execution time constraint imposed
upon a software subsystem. The rating is expressed in terms of the percentage of available
execution time expected to be used by the subsystem and any other subsystems consuming
the execution time resource.

● STOR - the rating is a function of the degree of main storage constraint imposed on a
software subsystem. Main storage refers to main memory or DRAM storage. The rating is
expressed in terms of the percentage of main storage expected to be used by the subsystem
and any other subsystems consuming the main storage resources.

● VIRT - the rating is a function of the level of volatility of the virtual machine underlying the
subsystem to be developed. For a given software subsystem, the underlying virtual machine
is the complex of hardware and software (OS, DBMS, etc.)  that the subsystem calls upon to
accomplish its tasks.

● TURN - rating is a function of the turnaround time for computers in which software is being
developed on after a failure.

● RELY - refers to the level of software reliability required. For example, RELY will receive a low
rating if the effect of a software failure is simply the inconvenience incumbent upon the
developers to fix the fault. However, for a very high rating, the effect of a software failure can
be the loss of human life.

● DATA - refers to the amount of data to be assembled and stored in nonmain storage (that is,
tapes, disks, etc.) by the time of software acceptance. The ratings are defined in terms of the
ratio between the data base size in bytes and the software size.

● CPLX - increasingly complex operations correspond to the module complexity ratings of very
low, low, nominal, high, very high, and extra high. The ratings are a function of the types of
operations performed by the module: control, computation, device-dependent, or data
management operations.

[Boehm81]

[COCOMO]
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FACTOR SELECTION
•  Selected Candidate Factors (Wolverton, Doty, etc.)
•  Surveyed Experts to Determine Which Factors Had:

• General Significance (Not Restricted To Special Cases)
• Independence (Not Correlated With Size, Other Factors)

(EQUATION:  MM = MM (Nom) X P     where P = Product of 15  Attribute  Numerical Ratings)

FACTORS INCLUDED               (and Ranges)                          RATINGS 
Product Attributes (Higher Ratings Increase Effort)   VL        LO NM HI VH
   - Required Reliability (RELY)                     (1.87)      .75      .88  1.00 1.15 1.40   
   - Data Base Size , DB/KDSI (DATA)          (1.23)              .94  1.00 1.08 1.16    
   - Product Complexity (CPLX)                     (2.36)      .70      .85  1.00 1.15 1.30

Computer Attributes (Higher Ratings Increase Effort)
   - Memory Constraints (STOR)                    (1.56)         1.00 1.11 1.30
   - Timing Constraints (TIME)                        (1.66)                1.00 1.06 1.21
   - Virtual Machine Volatility (VIRT)               (1.49)      .87  1.00 1.15 1.30
   - Turnaround Time (TURN)                         (1.47)      .87  1.00 1.07 1.15

[FERENS]
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        VL        LO NM HI VH
Personnel Attributes (Higher Ratings Decrease  Effort)
   - Analyst Capability (ACAP)                        (2.06)       1.46    1.19  1.00   .86   .71
   - Programmer Capability (PCAP)                (2.03)       1.42    1.17  1.00   .86   .70
   - Applications Experience (AEXP)               (1.57)       1.29    1.13  1.00   .91   .82
   - Virtual Machine Experience (VEXP)          (1.34)       1.21    1.10  1.00   .90
   - Language Experience (LEXP)                   (1.20)       1.14    1.07  1.00   .95

Project Attributes (Higher Ratings Decrease Effort
  Except SCED, Where All But “NOM”” Increase Effort)
   - Modern Development Practices (MODP)  (1.92)       1.24   1.10  1.00  .91  .82
   - Use of Modern Tools (TOOL)                    (1.65)       1.24   1.10  1.00  .91  .83
   - Schedule Effects (SCED)                          (1.23)       1.23    1.08  1.00 1.04 1.10

FACTORS INCLUDED              (and Ranges)                          RATINGS 

[FERENS]

●MODP- the rating is a function of the degree to which modern programming practices (e.g. top-
down requirements analysis and design, reuse, object-oriented methodologies, etc.) are used in
developing software.

●TOOL - the rating is a function of the degree to which software tools are used in developing the
software subsystem. Tool usage can range from basic microprocessor tools (assemblers,
linkers, etc.) to advanced maxicomputer tools (instruction set simulators, cross compilers,
integrated development environments, etc.)

●SCED - the rating is a function of the level of schedule constraint imposed on the project team
developing a software subsystem. The ratings are defined in terms of the percentage of
schedule stretchout or acceleration with respect to a nominal schedule for a project requiring a
given amount of effort. A schedule acceleration below 75% (very low rating) of nominal is
considered impossible by COCOMO.

●ACAP - the rating is a function of the level of capability of the software analysts. For a very low
rating, a software analyst would problem rate in 15th percentile. In turn, an analyst with a very
high rating would rate in the 90 percentile with respect to other software analysts.

●AEXP - the rating is a function of the level of experience the project team has with the
applicaton. Less than 4 months would receive a very low rating. Greater than 12 yrs would
receive a very high rating.

●PCAP - the rating is a function of the level of capability of the programming team.

●VEXP - the rating is a function of the level of experience the project team has with the virtual
machine.  A very low rating corresponds to no experience. A very high rating corresponds to
greater than 2 years experience.

●LEXP - the rating is a function of the level of experience the programming team has the
programming language.

[Boehm81]

[COCOMO]
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● The constant-term calibration process is much more stable than the
development mode recalibration process.

● Cautions which should be observed when recalibrating COCOMO,
particularly recalibrating the development mode

● Make sure the project data are as consistent as possible.

● If the project data represent different modes, perform a
separate recalibration for each mode.

● If the sample size of project data is less than 10 projects, pick a
standard COCOMO development mode and recalibrate its
constant term, rather than recalibrating an overall development
mode.

● Make sure that the projects used for calibration are
representative of the projects whose costs will be estimated
with the recalibrated model.
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RASSP Calibrating Nominal Effort
Equations (Cont.)

● Calibrating the Software Development Mode
❍ Use a similar least squares technique to calibrate the

coefficient term c and the scale factor b in the effort
equation

❍ Given completed projects p1, . . . , pn , solve for c and b
which satisfy the following equations

❑ where
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● Software maintenance includes:

● Redesign and redevelopment of smaller portions (less than
50% new code) of an existing software product

● Design and development of smaller interfacing software
packages which require some redesign (of less than 20%) of
the existing software product

● Modification of the software product’s code, documentation, or
data base structure

● Software maintenance excludes:

● Major redesign and redevelopment (more than 50% new code)
of a new software product performing substantially the same
functions

● Design and development of a sizable (more than 20% of the
source instructions comprising the existing product) interfacing
software package which requires relatively little redesign of the
existing product

● Data processing system operations, data entry, and
modification of values in the data base
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RASSP Intermediate COCOMO -
Maintenance Estimate

● Basic model assumption
❍ Software maintenance costs are determined by

substantially the same cost driver attributes  that
determine  software development costs.

❍Annual maintenance effort equation

where
❍ ACT is the annual change traffic
❍ (MM)NOM is the nominal software development effort

which is only a function of the software size
❍ Fi is the maintenance effort adjustment factor for cost

driver attribute i

( ) ( . )( )( )MM ACT MM FAM NOM i
i

=
=

∏1 0
1

15
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RASSP SOFTWARE SUPPORT COSTS -
COCOMO

REVIC

COCOMO II

COCOMO-M

• Equation:  MMA = MMNOM   x ACT x PM

• MMA is Annual Person-Months
• MMNOM is Nominal Person-Months (From COCOMO)
• ACT is Annual Change Traffic (% Code Changed per Year)
• PM is Product of Maintenance Multipliers (SCED Not Used; RELY and MODP

Values Change)

• Like COCOMO-M, Except (ONLY) 15-Year Support Costs
• Highest In Years 1 and 2, Then Steady-State

• Equation is MMM = A x SizeM x PM 
• MMM is “Maintenance Man Months”
• SizeM  = (Base Code Size) x MCF x MAF
• MCF = (Size Added + Size Modified) / Base Code Size
• MAF = 1 + ((SU/100)(UNFM))

[FERENS]

[COCOMO]
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● The same calibration technique can be used for calibration to a
specific application.
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RASSP Calibrating a Cost Model to a
Particular Organization

● Example: COCOMO calibration
❍ Calibrating the COCOMO nominal effort equations to an

organization’s design experience
❑ Calibrating the constant term
❑ Calibrating the software development mode

❍ Other calibration methods
❑ Consolidating or eliminating redundant cost driver

attributes within the model
❑ Adding further cost driver attributes which may be

significant at this organization, but not in general
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Reasons for calibrating the nominal effort equations

● An organization may consistently judge the COCOMO cost
driver attribute ratings by different standards than were used in
calibrating COCOMO.

● An organization may employ consistently different definitions of
“delivered”, “source instructions,” “development,” or “man-
months”  than those used in COCOMO.

● An organization’s usual development mode may be somewhere
in between the standard COCOMO development modes, in
which case a special nominal effort equation can be calibrated
to the organization’s experience.
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RASSP Calibrating Nominal Effort
Equations

● Calibrating the constant term "c"
❍  Ex. Embedded mode

❍ To calibrate to an organization’s completed projects
p1, . . . , pn  with

❑ sizes: KSLOC1, KSLOC2, . . . , KSLOCn

❑ overall effort adjustment factors: F1,  F2, . . . ,  Fn

❑ actual development efforts: MM1, MM2, . . . , MMn

❍ Solve for the value of "c" which minimizes the sum of
squares of residual errors
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● As with intermediate COCOMO, the embedded mode of software
development is most applicable to embedded systems design.

● REVIC is suitable for military systems because it also includes lifetime
costs of the product.
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RASSP
REVIC

● REVIC (REVised Intermediate COCOMO) predicts software
development life-cycle costs

❍ Costs including requirements analysis through completion of
software acceptance testing

❍ Maintenance life-cycle costs for fifteen years

● REVIC Software Development Modes

Mode Description
Organic Stand alone program with few interfaces, a stable development

environment, no new algorithms, and few constraints- Usually
very small programs

Embedded Programs with considerable interfaces, new algorithms, or
extremely tight constraints. Usually very large or complicated
programs.

Semidetached A combination of organic and embedded features.
ADA Programs developed using an object-oriented analysis

methodology or use of the Ada language, with emphasis on the
separately compilable specs and body parts of the code
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● These phases are consistent with the development phases of software
in current practice as described in the RASSP Methodology module
(Module 29).
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RASSP REVIC Development Phase
Descriptions

Phase Start Milestone End Milestone
SW Requirements
Engineering

General Contract Award Completion of Software
Specification Review (SRR)

Preliminary Design Completion of SSR Completion of Preliminary
Design Review (PDR) or
equivalent

Critical Design Completion of PDR or
equivalent

Completion of Critical Design
Review (CDR) or equivalent

Code & Unit Test Completion of CDR or
equivalent

Completion of CSC Testing by
the programmers (CUT)

Integration & Test Completion of CUT Completion of Formal
Qualification Test (FQT) at the
CSCI level

Development Test &
Evaluation

Completion of FQT at the
CSCI level

Completion of SW-to-SW and
SW-to-HW integration and
Functional & Physical
Configuration Audits
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RASSP REVIC Development Phase
Descriptions (Cont.)

● REVIC development equations predict effort and
schedule from Preliminary Design through
Integration & Test

● REVIC predicts the effort and schedule in the
Software Requirements Engineering and
Development Test & Evaluation phases by taking
a percentage of the development phases

❍ Software Requirements Engineering (default values)
❑ 12% of development effort
❑ 30% of development schedule

❍ Development Test & Evaluation (default values)
❑ 22% of development effort
❑ 26% of development schedule

● Default values of REVIC rely on past historical information derived
from several Air Force projects in the 1980s.  An organization can
refine these models by over-riding the default values.
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RASSP REVIC Software Development
Cost/Schedule Models

Software Development Time

where
● C - constant used to capture multiplicative effects

on time with projects of increasing effort
(DEFAULT = 6.2)

● D - scale factor which accounts for the relative
economies or diseconomies of scale encountered
for projects of different required efforts
(DEFAULT = 0.32)

● PSCED - the percent compression/expansion  to
the nominal deployment schedule

Software Development Effort

where
● KSLOC - thousands of source lines of code

● A - constant used to capture the multiplicative
effects on effort with projects of increasing
size (DEFAULT = 4.44)

● B - scale factor which accounts for the relative
economies or diseconomies of scale
encountered for software projects of different
sizes (DEFAULT = 1.2  -> diseconomy)

● Fi’s - cost drivers which model the effect of
personnel, computer, product, and project
attributes on software cost

S A KSLOC FE
B

i
i

= • •
=

∏
1
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T E
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= • •
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100

Embedded Mode REVIC (REVised Intermediate COCOMO) Model
l Predicts software development costs

l Costs including requirements analysis through completion of software acceptance testing

l Maintenance life-cycle costs for fifteen years

● The REVIC Embedded Mode model is an extension of the underlying
COCOMO (Intermediate model) with extensions to include lifecycle
costs and also includes some addition parameters, such as reuse.
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● Cost Attributes not included in COCOMO:

● REQV - the rating refers to the level of requirements volatility in
a project.

● REUSE - the rating refers to level of required reusability  of the
software being developed. (Developing reusable software)

● SECU - the rating refers to whether the software is being
developed for a classified security application or not.

● PLAT - the rating refers to the level of specification in the
application platform. A very low rating refers to ground systems,
where a extra high rating refers to manned space systems.

● For more information, see [AF95].
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RASSP Additional Project Attributes
for REVIC

Ratings

Cost Drivers Very
Low

Low Nominal High Very
High

Extra
High

Project Attributes

MODP 1.24 1.10 1.00 .91 .82

TOOL 1.24 1.10 1.00 .91 .83 0.73
0.62 -XXH

REQV 0.91 1.00 1.19 1.38 1.62

REUSE 1.00 1.10 1.30 1.50

SECU UNCL-
1.00

CLASS-
1.10

PLAT 1.00 1.20 1.4 1.6 1.8 2.0
XXH
2.5

SCED 1.23 1.08 1.00 1.04 1.10
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● The annual change traffic describes the changes in the product each
year attributed to maintenance.
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RASSP REVIC Maintenance Phase
Description

● REVIC estimates the maintenance of a software
product over a fifteen year period

● REVIC assumes the presence of a transition
period after the delivery of the software

❍ Residual errors are found before reaching a steady
state condition providing a declining, positive delta to
the ACT during the first three years

❍Maintenance Equation

where
❍ MMnom is the nominal development effort
❍ ACT is the annual change traffic (default value = 15%)
❍ MFi is the set of maintenance adjustment factors

( ) ( )MM MM MF ACTam nom i= Π
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● DT & E refers to development test & evaluation.

● REVIC’s coefficients have been calibrated using recently completed
DOD projects.

● Least squares minimization techniques were used to determine
the coefficients as in COCOMO.

● REVIC provides estimates within +/- 5% of the projects in its
database.
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RASSP Differences Between REVIC
and the Original COCOMO

● REVIC utilizes an updated set of coefficients
used in the basic effort and schedule equations

❍ Calibrated using recently completed DOD projects

● REVIC provides a single weighted average
distribution for effort and schedule over the
development phases

❍ COCOMO provides a table for distributing the effort and
schedule over the development phases

● REVIC allows the user to vary the percentages in
the system requirements engineering and DT&E
phases

● REVIC automatically calculates the standard
deviation for each Computer Software
Component (CSC) for risk assessment
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●  The limitations of COCOMO are described in this slide, primarily due
to adoptions of newer development methodology, such as object
oriented design or autocoding and code generation.  For more
information, see [BOEHM95].
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RASSP
COCOMO 2.0 Model

● The original COCOMO and its successor, ADA
COCOMO were well-matched to their target
software projects

❍ Largely custom, build-to-specification software

● COCOMO has been experiencing increasing
difficulty in estimating costs and schedules  for
software developed using new approaches, e.g.

● Object-oriented software
❍ Spiral or evolutionary development approaches
❍ COTS and reuse-driven approaches

● COCOMO 2.0 is was developed to address these
limitations
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● The earliest phases or spiral cycles uses Application Composition capabilities for
prototyping.

● The next phases or spiral cycles will generally involve exploration of software
architectural alternatives or incremental development strategies which is support by
the Early Design model.

● Once a software lifecycle architecture has been developed, more accurate
information will be available on cost driver inputs, thereby enabling more accurate
estimates. The Post-Architecture model is used to support this stage.

● Object points are a count of the screens, reports and third-generation-language
modules developed in the application, each weighted by a three-level (simple,
medium, difficult) complexity factor.

● Early Design Model Cost Drivers:
● Personnel Capability (PERS)

● Product Reliability and Complexity (RCPX)

● Required Reuse (RUSE)

● Platform Difficulty (PDIF) - a combined effort multiplier for the hardware architectural
attributes. (execution time and main storage constraints and platform volatility)

● Personnel Experience (PREX)

● Facilities (FCIL) - combination of software tool usage and multisite development
cost driver attributes

● Schedule constraint (SCED)

● The Post-Architecture model is most useful making design trade-offs because it
allows for differentiation of execution time constraints and memory constraints, unlike
the early design model, thereby allowing the designer to trade-off the number of
processors and amount of memory.
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RASSP COCOMO 2.0 Three-Stage
Model Series

● Application Composition Model
❍ Supports prototyping efforts to resolve potential high-risk

issues such as user interfaces, software/system interaction,
performance, or technology maturity

❍ Uses the number of object points as the sizing input

● Early Design Model
❍ Supports exploration of alternative software system

architectures and concepts of operation
❍ Not enough information is generally available for fine-grain

cost estimation during the early stages of the software project
❍ Uses the number of function points as the sizing input
❍ Utilizes 7 cost driver attributes

● Post-Architecture Model
❍ Same granularity as previous COCOMO and ADA COCOMO
❍ Utilizes 17 effort multipliers
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● The software size is expressed in thousands of source lines of code.
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RASSP COCOMO 2.0
Development Effort Estimates

● Nominal Person Months

● COCOMO 2.0 Scaling Approach

❍ Scale factors Wi represent the rating for the following
scale drivers:

❑ Precedentedness
❑ Development Flexibility
❑ Architecture/Risk Resolution
❑ Team Cohesion
❑ Process Maturity

( )PM Sizeno al
B

min .= ×3 0

( )B Wi= + ∑1 01 0 01. .
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● COCOMO 2.0 assumes that project requirements can change over the
lifetime of the product, and this is factored into the lifetime costs.

Copyright  1995-1999 SCRA 79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
Breakage Percentage

● COCOMO 2.0 uses a breakage percentage to
adjust the effective size of the product based on
the requirements volatility in a project.

● Breakage Percentage
❍ The percentage of  code thrown away due to

requirements volatility

● COCOMO 2.0 adjustment (not used in Application
Composition)

❍ where
❑ BRAK is the breakage percentage

PM
BRAK

Sizeno al

B

min .=
+
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● The major difference between reuse and re-engineering and
conversion is the efficiency of automated tools for software
restructuring.

● Automatic translation can lead to very high values for the percentage
of code modified, but very little corresponding effort, thereby requiring
a separate approach to deal with this type of reuse.
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RASSP COCOMO 2.0 Re-engineering
and Conversion Estimation

● Additional refinement is needed to estimate the
costs of software re-engineering or conversion

● COCOMO 2.0 re-engineering and conversion
approach

❍ where
❑ AT is the percentage of the code that is re-

engineered by automatic translation.
❑ ATPROD is the productivity for automatic

translation in source statements/person month.

( )PM Size
ASLOC

AT

ATPROD
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● Post-Architecture Model Effort Multipliers
● Required Software Reliability (RELY)

● Data Base Size (DATA)

● Product Complexity (CPLX)

● Required Reusability (RUSE)

● Documentation match to life cycle needs (DOCU)

● Execution Time Constraint (TIME)

● Main Storage Constraint (STOR)

● Platform Volatility (PVOL)

● Analyst Capability (ACAP)

● Programmer Capability (PCAP)

● Applications Experience (AEXP)

● Platform Experience (PEXP)

● Language and Tool Experience (LTEX)

● Personnel Continuity (PCON)

● Use of Software Tools (TOOL)

● Multisite Development (SITE)

● Required Development Schedule (SCED)

Copyright  1995-1999 SCRA 81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Post-Architecture Model Effort
and Schedule Estimates

● Adjusting Development Effort (Person-Months)

● Development Schedule Estimates

● Output Ranges
❍ Optimistic Estimate: 0.80(PMadjusted)
❍ Pessimistic Estimate: 1.25(PMadjusted)

PM PM EMadjusted no al i
i

= × 



=

∏min
1

17

( )( )( )[ ]TDEV PM
SCEDB= × ×+ × −3 0
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RASSP Comparison of COCOMO and
COCOMO 2.0

COCOMO COCOMO 2.0
A. C. Model

COCOMO 2.0
E. D. Model

COCOMO 2.0
P. A. Model

Size Delivered Source
Instructions (DSI) or
Source lines of code
(SLOC)

Object Points Function Points (FP) and
Language

FP and Language or SLOC

Reuse Equivalent SLOC = Linear
f(DM, CM, IM)

Implicit in model % unmodified reuse: SR %
modified reuse: nonlinear
f(AA, SU, DM, CM, IM)

Equivalent SLOC =
nonlinear f(AA, SU, DM,
CM, IM)

Breakage Requirements Volatility
rating: (RVOL)

Implicit in model Breakage %: BRAK BRAK

Maintenance Annual Change Traffic
(ACT) = %added +
%modified

Object Point Reuse Model Reuse Model Reuse Model

Scale (b) in
MMNOM = a(Size)b

Organic: 1.05
Semidetached: 1.12
Embedded: 1.20

1.0 1.01 - 1.26 depending on
the degree of:
• precedentedness
• conformity
• early architecture, risk
resolution
• team cohesion
• process maturity

1.01 - 1.26 depending on
the degree of:
• precedentedness
• conformity
• early architecture,
risk resolution
• team cohesion
• process maturity

Product Cost
Drivers

RELY, DATA, CPLX None RCPX, RUSE RELY, DATA, DOCU,
CPLX, RUSE

Platform Cost
Drivers

TIME, STOR, VIRT,
TURN

None Platform difficulty:
PDIF

TIME, STOR,
PVOL (=VIRT)

Personnel Cost
Drivers

ACAP, AEXP, PCAP,
VEXP, LEXP

None Personnel capability and
experience: PERS, PREX

ACAP, AEXP, PCAP,
PEXP, LTEX, PCON

Project Cost Drivers MODP, TOOL, SCED None SCED, FCIL TOOL, SCED, SITE

● All the models described so far are compared in this table.  For more
detailed information, see [BOEHM95] and [COCOMO].
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RASSP Summary of SW Cost
Estimators

Intermediate COCOMO COCOMO 2.0
P.A. Model

REVIC

Size Delivered Source
Instructions (DSI) or
Source lines of code
(SLOC)

FP and Language
or SLOC

Delivered Source
Instructions (DSI) or
Source lines of code
(SLOC)

Reuse Equivalent SLOC =
Linear f(DM, CM, IM)

Equivalent SLOC
= nonlinear f(AA,
SU, DM, CM, IM)

Equivalent SLOC =
Linear f(DM, CM, IM)

SW Dev. Effort
(MMDEV)

f(mode, SLOC, 15 cost
drivers)

f(SLOC, 18 cost
drivers)

f(mode, SLOC, 19 cost
drivers)

Maintenance f(MMDEV, ACT) f (MMDEV, ACT) f (MMDEV, ACT)
SW Dev. Schedule f(mode, MMDEV, SCED%) f(MMDEV, SCED%) f(mode, MMDEV, SCED%)

● Continuation of  the comparison of cost models.
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● Work has been done in the area of hardware cost estimation as well,
but is not as comprehensive or general as the research work done in
the area of software cost modeling.  We survey some well-known
hardware cost models.
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RASSP

Module Outline

● Introduction to Cost Modeling-Based Embedded
Systems Design

● Software Cost Estimation Process
● Parametric Software Cost Models

● Parametric Hardware Cost Models
● Applications of Cost Modeling to the RASSP

Design Process
● Summary and Major Issues
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● The design effort and schedule include the following phases
● logic design and verification, including chip architecture;

● circuit design and verification, including timing and simulation;

● layout and verification; and

● test design, testing, and debugging

● VLSI classifications:
● Full custom: the device is designed at the transistor level. Transistor

performance and area are optimized

● Cell based: the circuit is partially built of predefined blocks of cells. Most are
newly created for the current design.

● Standard cells: ideally, the device is designed from predefined libraries of
cells. Only cell interconnect is optimized.

● Gate arrays: the device is designed from gates and predefined cells. Only
interconnect is optimized.

● For more information, see [PF87].
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RASSP ASIC Cost/Schedule
Estimation

● Paraskevopoulos and Fey showed that VLSI
design schedules are a function of only one
parameter:

❍ ASIC development effort (person-months)

● Development effort is a function of organizational
productivity and design complexity (gates per IC)

● VLSI schedule models are similar to the software
schedule models developed by Boehm

● VLSI design classifications
❍ full custom
❍ cell based
❍ standard cells
❍ gate arrays
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● Both productivity and requirements changes over time

● the productivity will increase due to new  tools, experience,
reuse, etc.

● the productivity may decrease due to higher performance,
higher reliability

● The model adjusts productivity from year to year with parameters
described above.

● For more information, see [FEY85].
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RASSP Full Custom ASIC Cost
Equation

● Basic ASIC effort equation

❍ where
❑ M is the ASIC development effort in person-months
❑ D is the average annual improvement factor
❑ A is the startup manpower
❑ B is a measure of productivity
❑ YR is (1984 - current year)
❑ H is the economy or diseconomy of scale
❑ Size is the equivalent number of transistors

( ) ( )[ ]M D A B SizeYR H= + +1
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● An equivalent transistor is a measure of the time required to design a
transistor.

● The measure is based on the fact that various types of transistors
require different amounts of design time.
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RASSP Full Custom Design
Complexity Calculation

● Computation of equivalent number of transistors

● Size equation

Type of Transistor # of Equivalent Transistors
Unique Random Logic
(UNQ)

1*UNQ Transistors

Repeated Random Logic
(RPT)

C*RPT Transistors

Programmed Logic Array
(PLA)

E*PLA Transistors

RAM F*(RAM Transistors)**0.5
ROM G*(ROM Transistors)**0.5

Size UNQ C RPT E PLA F RAM G ROM= + • + • + • + •0 5 0 5. .
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● The parameter values above are estimates from data collected from
both merchant market suppliers and in-house captives for N-MOS and
C-MOS logic and memory design efforts between 1976 and 1983.

● The size of the designs ranged from 1000 to 300,000 transistors

● The relatively small number of parameters requires changes of
parameter values where design requirements, designer experience,
technology, or other circumstances differ from the sample average.

● Therefore, estimates of low and high values are also given.
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RASSP Full Custom Design
Parameter Values

● Design effort model parameter values

Parameters Low Value Estimate High Value
A, Constant 0 0 3
B, Productivity 6 12 20
C,  Repeated Logic 0.05 0.13 0.25
D, Improvement -0.05 0.02 0.10
E, PLA 0.1 0.37 0.7
F, RAM 0.1 0.65 1.3
G, ROM 0.05 0.08 0.15
H, Complexity 1.05 1.13 1.40
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● Productivity is measured in gates per person-week in the models.

● These models were derived from data collected on 70 designs from
five major corporations during the period 1983-1988.

● The basic model indicates that productivity increases with the number
of gates.

● This is fundamentally different from full-custom designs, where
productivity decreases with the number of gates

● This increase in productivity with size is due to improvements in
CAD tools and libraries to support gate array designs

● The basic model poorly correlates with actuals.

● The detailed more provides a much better fit to actual values. The
correlation coefficient is 0.85.
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RASSP Gate Array ASIC Design
Productivity

● Basic gate array productivity model

❍ where
❑ G is the number of gates used in thousands

● More detailed gate array productivity model

❍ where
❑ I is the adjusted number of I/Os [ (I/O)0.5/K gates
❑ U is  the maximum of percentage of gates used minus

90% and 0
❑ R is the complexity rating on a scale of 1 to 5
❑ D is the number of previous designs completed by

the designer

P GB = •17 1 0 61. . 0 5 25. ≤ ≤G

( )( )( )( )P GI U R D= 16 2 0 61 0 86 0 64 117 0 6. . . . . . 0 5 25. ≤ ≤G

[FP89]© IEEE 1989



Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 90

Copyright  1995-1999 SCRA 90

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
Gate Array Design Cost

● Gate array development effort (person-weeks)

❍ where
❑ M is the development effort in person-months
❑ P can be the detailed or basic productivity values

● Example:
❍ Using basic productivity model

❑ Development effort is proportional to an exponent
of the number of gates

M
G

P
= •200

0 5 25. ≤ ≤G

M G= •117 0 39. .

● This model was derived empirically from observation.
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● These equations show that VLSI and software schedules have the
same relationship to development effort.

● The model coefficients were chosen by using the least square method
to fit the model to the data obtained from 81 designs

● The model assumes that VLSI designs with effort M less 6.7 person-
months are produced by single person team

● These parametric equations have median error of 13 percent from
project actuals

● 75 percent of the errors were less than 29 percent

● VLSI refers to gate arrays, standard cells, and full-custom devices
combined.

● If the VLSI system is partitioned into multiple independent
subsystems, the schedule is a function of the largest subsystem’s
development effort.
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RASSP

Model Name Functional Form
VLSI T = M M < 6.7

T = 3.5*M0.34 M     6.7
Full Custom T = 3.3*M0.35 M     6.7

ASIC Schedule Equations

● Basic ASIC schedule equation

❍  where
❑ M is the development effort in person-months
❑ h is the model coefficient
❑ g is the economy/diseconomy of scale

● ASIC schedule models

T h M g= •

≥
≥
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● These number a based on “typical numbers” obtained from a world
wide research conducted by Dataquest and Integrated Circuits
Engineering.

● This model assumes a PQFP package type, volume of 18,000 units,
and a product life of 36 months.

● Another ASIC cost factor is re-spin costs.

● The potential for a re-spin expressed as a percentage of
probability is typically 30%

● The associated re-spin time is 17 weeks at $3000 per person
per week

● For more information, see [LIU95].
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RASSP
FPGA vs. ASIC Design Costs

● Typical cost values for a 10,000 gate ASIC (gate
array) or FPGA design

Cost Attributes ASIC FPGA
Engineering Costs $79,000 $25,000
NRE $25,000 0
Tools $10,000 $10,000
Average Price $13 $39
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● This schedule was derived from Ben Romdhane, Madisetti, and Hines,
“Quick Turnaround ASIC Design in VHDL”, Kluwer Academic
Publishers, 1996 and represents values from 1995.

Copyright  1995-1999 SCRA 93

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP FPGA vs. ASIC
Development Time

● Typical schedule for a 10,000 gate design

Time Attributes ASIC (weeks) FPGA (weeks)
Engineering Labor - 4
Training 2 1
Design Capture 3 2
Simulation 2 2
Test-vector Development 6 0
Place & Route 1 1
Back Annotation 1 0
Final Annotation 1 0
Prototype Cycle 2 0
Qualification 5 3
Production Lead time 9 2
Total Time 32 11
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RASSP Commercial ASIC Hardware
Models

● PRICE-M
❍ Produces estimates of development and production

costs/schedule for ASICs and electronic modules
(MCMs)

❍ Uses parametric cost estimates based:
❑ number of transistors/gates
❑ percentage of new circuit cells and design repeat
❑ specification level
❑ degree of computer-aided design
❑ product familiarity and engineering experience

● SEER-IC
❍ Estimates integrated circuit & multi-chip module

development and manufacturing costs
❍ Utilizes industry wide knowledge bases

● These models are commercially available.
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RASSP
Module Outline

● Introduction to Cost Modeling-Based Embedded
Systems Design

● Software Cost Estimation Process
● Parametric Software Cost Models
● Parametric Hardware Cost Models

● Applications of Cost Modeling in the
RASSP Design Process

● Summary and Major Issues
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● Various system-level design and test methodologies can be classified
into the following broad categories:

● Methodology I: The most common approach within the industry tries to
minimize hardware costs, and software is designed after hardware is
fabricated. The latter task is complicated by errors in hardware and tight
constraints on the hardware platform.

● Methodology II: This approach is tries to minimize the sum of hardware and
software costs.

● Methodology III: Another common practice within the industry, especially for
designs with severe form factor or application -specific constraints, is to
develop custom hardware and software. This approach is usually schedule
and cost intensive.

● Methodology IV: Methodology II is improved upon using the new technology
of virtual prototyping where hardware and software models are used to
facilitate integration and test.

● Methodology V: This methodology Is most advanced and has been proposed
as part of DARPA’s RASSP program and is expected to result in the best
cost objective.

● Methodologies I and III represent traditional COTS and custom
design approaches.

● Methodology II is identical to the traditonal COTS approach except
that it uses cost models to make HW/SW architectural trade-offs
during conceptual design.

● Methodologies IV and V augment Methodology II with RASSP design
practices.
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RASSP Classifications of Design and
Test Methodologies

● Methodology I:
❍ Standard COTS - Minimum Hardware Cost

● Methodology II:
❍ COTS with Cost Modeling - Minimum System Cost

● Methodology III:
❍ Full Custom - Custom Hardware plus Software

● Methodology IV:
❍ COTS with Cost Modeling and Virtual Prototyping

● Methodology V:
❍ COTS with Cost Modeling, Virtual Prototyping, and Use

of Advanced Top-Down Programming Methodologies
and Reuse
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● The above cost modeling-based conceptual design approach is the core of
Methodologies II, IV, and V (except Methodology II does not include the use of
executable requirements).

● The process starts by translating written requirements into executable requirements,
which are used to validate the original customer requirements and to remove
ambiguities, thereby reducing requirements volatility.

● The level of detail required to develop the executable requirement facilitates the development
of the software size estimate.

● Inputs to the cost-driven architecture selection process step include system-level
cost parameters, application requirements, and performance statistics (benchmarked
execution times of common DSP algorithms (FFT, FIR, etc.) on the various available
programmable processors).

● The target architecture is composed of multiple programmable processors, DRAM, and I/O
devices connected over a high performance interconnect network.

● During the cost-driven architecture selection phase, parametric cost models are used
to make HW/SW architectural trade-offs in order to minimize total system costs.

● During this stage, the number and type of COTS programmable processor (i860, SHARC,
etc.) boards, the memory capacity, and the packaging technology are chosen in a manner
which minimizes total costs while satisfying form factor constraints.

● Task Assignment and Task Scheduling involve the mapping of the functional
algorithm tasks to the processor architecture and the scheduling of each task on its
assigned processor, respectively.

● The resulting architectural candidate is then simulated using performance models to
verify that the architectural candidate meets performance requirements.

● The cost-driven architecture selection model is updated with the communication overhead
estimates generated from performance modeling.
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RASSP Cost Modeling-Based
Front-End Design Approach

Form Factor
Constraints

Performance
Requirements

Memory/
Communication
Requirements

APPLICATION REQUIREMENTS

Functional 
Requirements

Software 
Reuse Library 
Performance
Benchmarks

Schedule Constraints

Manpower Constraints

COTS Processor-Memory Board Prices

COTS Processor-Memory Board
Form Factor Ratings

Labor Rates

Software Size

SW Development Cost Driver Attribute Ratings

Expected Product Revenue

Production Volume

Expected Product Lifetime

SYSTEM-LEVEL COST PARAMETERS

Estimated 
Communication

Overhead

Cost-Driven
Architecture Selection

Task Assignment

Task Scheduling

Performance Modeling

HW/SW Architectural Candidates

Executable Requirement
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RASSP Case Study: SAR
Multiprocessor

● SAR Processor is required to form images in
real-time on board an F-22 or an unmanned air
vehicle (UAV)

● Pulse Repetition Frequency - 556 Hz
❍ Delivers 512 pulses in 0.92 seconds
❍ Each pulse contains 4064 data samples for each of four

polarizations

● Processor must be able to form a 512-pulse
image for each of three polarizations in real-time

❍ Maximum latency is 3 seconds

● Computational Requirement - 1.1 Gflop/sec
● Memory Requirement - 77 MB

● Synthetic Aperture Radar (SAR) is an important tool for the collection
of high-resolution, all-weather image data and has application to
tactical military systems as well as civilian systems for remote sensing.

● In addition, SAR can be used to identify man-made objects on the
ground or in the air.

● The SAR image processing application will serve as a benchmark for
comparing implementations produced by the various design
methodologies (Methodologies I-V)

● For more detailed information, see [ZUERN94].
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RASSP SAR Algorithm:
Single Polarization

Input Data

Barker Detect

Header Decode

Form Aux

Form Signal

Video-to-Baseband

Equalization Weight

Range DFT

Form Frame

Load
I/Q

Coeffs

Load
Equalization

Weights

Load 
RCS

Weights

Form Processing Array Azimuth DFT

Kernel Multiplication

Azimuth IDFT

Output Data

Load 
Convolutional

Kernels

Setup Function

DATA
PREP

● The above algorithm can be partitioned into six functional blocks:

● Preamble detection and extraction of radar and auxiliary data
from the input data stream

● Video to baseband I/Q conversion

● Range processing

● Corner turn

● Azimuth processing

● Output data processing

● In order to implement the SAR algorithm in real-time by exploiting
parallelism, we decomposed the data flow graph into three parallel
data flow graphs.

● Each concurrent DFG performs the computation for a specific
polarization of data.
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RASSP
Functional Decomposition

Video-to-BasebandVideo-to-Baseband I/Q Even
(8-tap FIR)

I/Q Odd
(8-tap FIR)

Range DFT

1024 pt FFT 1024 pt FFT

1024 Butterflies

Azimuth DFT/iDFT

256 pt FFT 256 pt FFT

512 Butterflies

256 pt FFT 256 pt FFT

512 Butterflies

● In order to meet real-time constraints, the computationally intensive
tasks shown above are further decomposed to allow for the
exploitation of parallelism inherent in the tasks.
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RASSP SAR System-Level Cost
Parameters

Parameter Value
SHARC 2-Processor Board Price $8K
SHARC 4-Processor Board Price $15K
SHARC 6-Processor Board Price $25K
SHARC 8-Processor Board Price $40K
SHARC 2-Processor Board Power 12W
SHARC 4-Processor Board Power 20W
SHARC 6-Processor Board Power 25W
SHARC 8-Processor Board Power 28W
DRAM Price per 4 MB $1400
Estimated KSLOC 8.75
Maintenance Period 15 years
Software Labor Cost per Person-Month $15K
Software Maintenance Cost/person-month $15K
Max. Number of Full-Time SW Personnel 3
Annual Change Traffic (ACT) 15%
Product Deployment Deadlines 24 months (tight) / 32 months (loose)
Product Life Cycle 36 months
SAR Processor Unit Price $1M
Expected Product Revenue $1M * Production Volume

( )C P
1 1

( )C P
1 2

( )C P
1 3

( )C P
1 4

( )P P
1 1

( )P P
1 2

( )P P
1 3

( )P P
1 4

( )C S
( )T M A I N T

( )C M

( )C M A I N T

( )FSP

( )TSCHED

( )R0

( )2W

● The standard system-level cost parameters which are used to perform
cost/performance trade-offs for the SAR benchmark. These
parameters are inputs to the cost-driven architecture selection model.

● These standard model parameters remain constant throughout all
models representing the various methodologies unless explicitly stated
otherwise.

● The cost of the 2-processor card is derived from the cost of two COTS
processors, crossbar switches, printed circuit board area, etc. The 4-
processor card consists of four COTS processors and all of the above.

● The 2-processor and 4-processor boards contain single chip
packaging technology only. The 6-processor card is comprised of
three COTS MCM-L modules, with each module consisting of two
COTS processor chips.  The 8-processor card consists of two COTS
MCM-D multichip modules, with each module consisting of three
COTS processor chips. Each board can contain up to 64 MB of
DRAM.

● The DRAM price considers the the cost of the DRAM chip, the
required printed circuit board area, associated interconnect, etc.

● The software size estimate has been adjusted for reuse of DSP
software library elements.
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● Effort multiplier values used to perform the cost analysis for the
various design methodologies (I-V).
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RASSP SAR Software Cost Driver
Ratings

Cost
Driver

Situation Rating Effort
Multiplier

RELY Local use of system. No serious recovery problems Nominal 1.00
DATA 256 KBytes Nominal 1.00
CPLX real-time signal processing routines Very high 1.30
VIRT Based on COTS microprocessor hardware/software

(one change every 3 months)
Nominal 1.00

TURN Two-hour average turnaround time Nominal 1.00
ACAP Average senior analysts Nominal 1.00
AEXP Three years Nominal 1.00
PCAP Average senior programmers Nominal 1.00
VEXP Ten months Nominal 1.00
LEXP Eighteen months Nominal 1.00
MODP Some techniques in use over one year Nominal 1.00
TOOL At basic minicomputer tool level Nominal 1.00
REQV requirements have a very small amount of ambiguity Nominal 1.00
REUSE No reuse is required Nominal 1.00
SECU commercial product (unclassified) Nominal 1.00
PLAT Unmanned airborne Nominal 1.40

Effort adjustment factor (product of effort multipliers) 1.82

STEP 1 STEP 2

Fi
i=
∏



1

16
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RASSP Automated Cost-Driven
Architecture Design

(RACEWAY)
Schedule

Constraints

Schedule
Constraints

Power/Size
Constraints

Power/Size
Constraints

Real-time
Constraints

Real-time
Constraints

Functional
Requirements

(Function blocks)

Functional
Requirements

(Function blocks)

Communication
Requirements

(Data volumes of communications)

Communication
Requirements

(Data volumes of communications)

Cost-driven Architecture
Design Engine

(CADE)

Cost-driven Architecture
Design Engine

(CADE)

17             HH-FORM_FRAME HH-PROC_ARRAY HH-256_FFT3
18             HH-256_FFT1   HH-512_BUTT1  HH-512_BUTT2
19             VH-256_FFT2
20             VH-I256_FFT4  VH-I512_BUTT1 VH-I512_BUTT2
21             VH-KERN_MULT  VH-I256_FFT2
22             VH-256_FFT4   VH-512_BUTT1  VH-512_BUTT2
23             VH-I256_FFT1
24             VH-PROC_ARRAY VH-256_FFT1
25             VH-I256_FFT3
26             VH-256_FFT3
27             VH-FORM_FRAME VV-I256_FFT2
28             VV-256_FFT3   VV-512_BUTT1  VV-I512_BUTT2
29             VV-256_FFT4
30             VV-I256_FFT3  VV-I512_BUTT1
31             VV-FORM_FRAME VV-PROC_ARRAY VV-256_FFT2
32             VV-512_BUTT2  VV-I256_FFT1
33             VV-256_FFT1
34             VV-KERN_MULT  VV-I256_FFT4

Results from SAR Benchmark Conceptual Design
------------------------------------------------------------------
Processor Type   Board Type      Number of Processor Boards
---------------------   ----------------      ---------------------------------------
SHARC                2_PROC                   1
SHARC                4_PROC                   8

Total Number of Processors:       34.00
Total Memory Capacity:      132.00 Mbytes

Processor Utilization:     0.71
Memory Utilization:        0.58
Time-to-market:       23.93 months
Total Life Cycle Cost($M):        4.31
Architecture Sizing Model Solution Time:       7.81 sec

Assignment of Tasks to Processor Architecture
---------------------------------------------
Processor Index        Tasks Assigned
----------------------         ---------------------
1              HH-DATA_PREP  HH-IQ_ODD
2              HH-1024_FFT1  HH-1024_FFT2  HH-1024_BUTT  HH-RCS
3              HH-IQ_EVEN    HH-EQUALIZE
4              VH-1024_FFT1  VH-1024_FFT2  VH-1024_BUTT  VH-RCS
5              VH-IQ_ODD     VH-EQUALIZE
6              VH-DATA_PREP  VH-IQ_EVEN
7              VV-1024_FFT1  VV-1024_BUTT  VV-RCS
8              VV-DATA_PREP  VV-1024_FFT2
9              VV-IQ_EVEN    VV-EQUALIZE
10             VV-IQ_ODD
11             HH-I256_FFT4  HH-I512_BUTT1 HH-I512_BUTT2
12             HH-KERN_MULT  HH-I256_FFT2
13             HH-256_FFT4
14             HH-I256_FFT3
15             HH-256_FFT2
16             HH-I256_FFT1

EE Issues
System Engineering

Issues
System Engineering

Issues

System-level
Cost Parameters

● Example output file generated by Cost-Driven Architecture Design
Engine (CADE) , being commercialized by VP Technologies
(www.vptinc.com), which uses example architecture selection
mathematical programming model, presented in the previous slides, to
automatically generate optimum architectural implementations for the
SAR application. The output includes:

● The number and type of processors

● The amount of DRAM required

● The time-to-market

● Life cycle cost

● HW Resource Utilization

● Mapping of SAR algorithm tasks to processor elements
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● SAR architectural profiles produced by the various system-level
design and test methodologies over a range of production volumes.

● Due to the low cost of DRAM with respect to COTS processor cost,
memory margins are extended more than execution time margins
when attempting to reduce software development time and cost.

● However, as production volume increases, both processor and
memory resources will be somewhat restricted to balance the
hardware production costs against the time-to-market costs.

Copyright  1995-1999 SCRA 104

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP
SAR Architectural Profiles

Design
Processor Architecture

(number of boards per config.) Number Mem.
Utilization

(%)
Methodology Volume Proc.

Type
2-Proc. 4-Proc. 6-Proc. 8-Proc. of Proc. Alloc. Proc. Mem.

I (Min HW) * SHARC 1 6 0 0 26 84 95 91

II (CM) 10 SHARC 0 9 0 0 36 144 69 53
Tight Schedule 50 SHARC 1 8 0 0 34 124 73 62

Constraint 100 SHARC 1 8 0 0 34 124 73 62

II (CM) 10 SHARC 0 9 0 0 36 144 69 53
Relaxed Schedule 50 SHARC 1 7 0 0 30 108 83 71

Constraint 100 SHARC 0 7 0 0 28 108 89 71

II (CM) 10 SHARC 0 0 0 4 32 152 78 50
Relaxed Schedule 50 SHARC 0 0 0 4 32 152 78 50

and Power Constraints 100 SHARC 0 0 0 4 32 152 78 50

IV(CM +VP) 10 SHARC 0 9 0 0 36 112 69 68
Tight Schedule 50 SHARC 0 7 0 0 28 100 89 77

Constraint 100 SHARC 0 7 0 0 28 92 89 83

V(IV +RASSP Meth.) 10 SHARC 1 7 0 0 30 108 83 71
Tight Schedule 50 SHARC 0 7 0 0 28 92 89 83

Constraint 100 SHARC 0 7 0 0 28 88 89 87
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● The cost and schedule of SAR implementations generated by the
proposed design and test methodologies.

● Methodology I: Under tight schedule constraints, software costs
account for a large portion of the overall system costs for low
production volumes. However, as production volume increases, time-
to-market costs dominate the system costs due to the increased
revenue losses resulting from being six months late to market. When
the schedule is relaxed, the approach still suffers from high software
costs at low production volumes. But as the volume increases, the
minimum hardware cost approach approaches that of the minimum
system cost.

● Methodologies II, IV, V: Under tight schedule constraints, the cost
modeling-based approaches relax the hardware architecture to ensure
that the time-to-market deadline is met as a first priority. As volume
increase, the hardware resources are restricted to reduce hardware
production costs while continuing to meet the time-to-market deadline.

● Methodology III: For low volume production runs and tight schedule
constraints, software development costs and time-to-market costs
dominate the system costs due to tight execution time and memory
margins. However, due to the enormously long schedule delays, time-
to-market costs will be dominant as the production volume increases.

● The following cost improvement graphs illustrates this analysis.
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SAR Benchmark Cost Analysis

Design Cost Breakdown (% total cost) Total Cost Schedule
Methodology Volume TTM SW Dev. SW Maint. HW Prod. ($ millions) (months)

I (Min HW) 10 36.3 16.6 37.4 9.7 13.1 30.5
Tight Schedule 50 63.9 5.9 13.2 17.1 37.2 30.5

Constraint 100 70.6 3.2 7.3 18.9 67.3 30.5

II (CM) 10 0 19.6 44.2 36.2 5.1 23.8
Tight Schedule 50 0 9.0 20.0 71.0 12.1 24.0

Constraint 100 0 5.2 11.7 83.1 20.6 24.0

I (Min HW) 10 0 26.1 58.7 15.3 8.3 30.5
Relaxed Schedule 50 0 16.2 36.4 47.4 13.4 30.5

Constraint 100 0 11.0 24.7 64.3 19.8 30.5

II (CM) 10 0 19.6 44.2 36.2 5.1 23.8
Relaxed  Schedule 50 0 10.8 23.9 65.3 11.5 27.6

Constraint 100 0 7.6 16.6 75.8 18.8 31.7

II (CM) 10 4.0 18.5 41.5 36.1 5.9 24.3
Tight  Schedule and 50 7.7 7.1 15.9 69.3 15.4 24.3
Power Constraints 100 8.7 4.0 9.0 78.3 27.2 24.3

III (Cust.) 10 44.1 14.7 33.1 8.2 21.6 40.4
Tight Schedule 50 75.9 5.1 11.4 7.7 62.8 40.4

Constraint 100 83.4 2.8 6.3 7.6 114.2 40.4

IV (CM +VP) 10 0 15.2 34.3 50.5 3.5 19.3
Tight Schedule 50 0 7.8 17.6 74.6 9.4 21.5

Constraint 100 0 4.8 10.7 84.5 16.2 21.9

V (IV + RASSP Meth.) 10 0 12.4 27.8 59.8 2.5 16.4
Tight Schedule 50 0 4.8 10.9 84.3 8.1 17.6

Constraint 100 0 2.8 6.4 90.8 15.0 18.1
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Methodology II over I

Stringent Deployment Deadline of 24 months
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● Methodology I: Under tight schedule constraints, software costs
account for a large portion of the overall system costs for low
production volumes. However, as production volume increases, time-
to-market costs dominate the system costs due to the increased
revenue losses resulting from being six months late to market. When
the schedule is relaxed, the approach still suffers from high software
costs at low production volumes. But as the volume increases, the
minimum hardware cost approach approaches that of the minimum
system cost.

● Methodologies II: Under tight schedule constraints, the cost modeling-
based approaches relax the hardware architecture to ensure that the
time-to-market deadline is met as a first priority. As volume increase,
the hardware resources are restricted to reduce hardware production
costs while continuing to meet the time-to-market deadline.

● For more detailed information on the following slides, see [DEB97].



Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 107

Copyright  1995-1999 SCRA 107

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Cost Improvement:
Methodology II over I (Cont.)

Relaxed Deployment Deadline of 32 months
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● Methodology I: Under tight schedule constraints, software costs
account for a large portion of the overall system costs for low
production volumes. However, as production volume increases, time-
to-market costs dominate the system costs due to the increased
revenue losses resulting from being six months late to market. When
the schedule is relaxed, the approach still suffers from high software
costs at low production volumes. But as the volume increases, the
minimum hardware cost approach approaches that of the minimum
system cost.

● Methodologies II: Under tight schedule constraints, the cost modeling-
based approaches relax the hardware architecture to ensure that the
time-to-market deadline is met as a first priority. As volume increase,
the hardware resources are restricted to reduce hardware production
costs while continuing to meet the time-to-market deadline.
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Severe Power Constraints and Stringent Deployment 
Deadline of 24 months
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● The severe power constraint is 150 Watts.

● This case shows that denser MCM technologies can be effectively
utilized to minimize schedule delays due to form factor constraints on
the system implementation.
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RASSP Cost Improvement:
Methodology II over III

Stringent Deployment Deadline of 24 months
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● An increased cost size of 12K SLOC is assumed for customization of
software routines, as well as, an increase of 6 months in overall
development time due to hardware custom board design time is
assumed.

● There is a 40% reduction in overall board level cost due to this
approach.



Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 110

Copyright  1995-1999 SCRA 110

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA    Tri-Service

RASSP Cost Improvement:
Methodology IV over I

Stringent Deployment Deadline of 24 months
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● The figure illustrates the large reduction in provided by Methodology
IV over Methodology I. It is assume that virtual prototyping provides a
2X improvement in development productivity.
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RASSP Cost Improvement:
Methodology IV over III

Stringent Deployment Deadline of 24 months
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● Methodology IV: Under tight schedule constraints, the cost modeling-
based approaches relax the hardware architecture to ensure that the
time-to-market deadline is met as a first priority. As volume increase,
the hardware resources are restricted to reduce hardware production
costs while continuing to meet the time-to-market deadline.

● Methodology III: For low volume production runs and tight schedule
constraints, software development costs and time-to-market costs
dominate the system costs due to tight execution time and memory
margins. However, due to the enormously long schedule delays, time-
to-market costs will be dominant as the production volume increases.
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Methodology V over I

Stringent Deployment Deadline of 24 months
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● This graph shows the effect of the use of the RASSP methodology on
life cycle cost.

● We assume there is an additional 1.96X improvement in development
productivity due to the routine use of top-down design and
programming methodologies and fully integrated software
development tool environments.
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Methodology V over III

Stringent Deployment Deadline of 24 months
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● Methodology V: Under tight schedule constraints, the cost modeling-
based approaches relax the hardware architecture to ensure that the
time-to-market deadline is met as a first priority. As volume increase,
the hardware resources are restricted to reduce hardware production
costs while continuing to meet the time-to-market deadline.

● Methodology III: For low volume production runs and tight schedule
constraints, software development costs and time-to-market costs
dominate the system costs due to tight execution time and memory
margins. However, due to the enormously long schedule delays, time-
to-market costs will be dominant as the production volume increases.
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Module Outline

● Introduction to Cost Modeling-Based Embedded
Systems Design

● Software Cost Estimation Process
● Parametric Software Cost Models
● Parametric Hardware Cost Models
● Applications of Cost Modeling to the RASSP

Design Process

● Summary and Major Issues
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Summary

● This module demonstrated the cost-effectiveness system-
level design methodologies that incorporate cost modeling

● In practice, system engineering (SE) drives EE design
❍ Front-end SE typically involves less than 4% of the total

prototyping time and cost, but accounts for over 70% of a
project’s life cycle cost

● Cost models, often organization-specific for maximum
accuracy, are most effective if used to drive early system
design

❍ No specific cost model or objective function is recommended
for use by all sectors of the electronics industry

❍ These cost models can only be developed and refined through
historical information collected within the specific industry
sectors

❍ Cost models can be integrated into the EE aspects of the
design process in a seamless manner

● We wish to emphasize that it is not necessary to use a certain cost
model, or prefer one over other.  Organizations should choose their
own cost models after careful study and use the methodology
proposed in this module to develop design processes and options that
are relevant to their organizational objectives.
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● New  tools corresponding to system-level design automation are
expected to rely on cost modeling to synthesize hardware and
software architectures (www.vptinc.com).
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Summary (Cont.)

● The focus of this module was on requirements of the SE/EE
interface as opposed to the specification

● The SAR case study demonstrated:
❍ how modern design and test methodologies can benefit

from the automated use of cost models early on in the
design process

❍ the relationship between time-to-market/cost with the
system architecture

❍ an order of magnitude improvement in cost-related
objective functions

● Parametric cost estimators have recently been used in
industry with a great deal of success

❍ SEER was used on Motorola’s Iridium project, one largest and
most complex software projects ever

❍ The tool appears to have estimated software development
cost within 3% of project actuals
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