Module 57 - Lab A: Cost Modeling for System Design

Applications of Cost Modeling to Embedded Digital
Systems Design
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1. Overview

The objective of thislab isto demonstrate applications of cost modeling to the embedded-
system design. The lab discussion starts by describing the use of cost models for estimating
software life cycle costs. Then, the impact of time-to-market on architecture design is described.
The effect of these cost elements on system design is demonstrated in the design of a simple
compute-intensive application.

2. Cost Modeling

A parametric cost model is a mathematical representation of parametric cost estimating
relationships (CERS) that provides a logical and predictable correlation between the physical or
functional characteristics of a system and the resultant cost of the system. Such parametric cost
estimating relationships are derived from the statistical correlation of historical system costs with
performance and/or physical attributes of the system. When performing cost analysis, the primary
purpose is not necessarily to use these models to produce precisely accurate point estimates, but
rather to provide estimates of the comparative and relative costs of competing systems. Hence,
the consistency of the model is perhaps more important than the absolute accuracy of its
estimates. Parametric cost models are particularly useful because they are objective, repeatable,
efficient, and they facilitate sensitivity analysis. If derived from a sound representative database,
these parametric models can be relied upon to produce high quality, consistent estimates.

Parametric techniques focus on maor cost drivers, and not minute details. The cost
drivers are the controllable system design or planning characteristics that have a predominant
effect on the system's costs. This allows parametric techniques to be used with limited system
information, thereby making them a viable option in the conceptual stages of design. The two
dominant costs elements which are traditionally neglected in COTS-based embedded systems
design are hardware/software life cycle costs and time-to-market costs. For this reason, we will
focus on the estimation of these two cost factors.

2.1. Software Cost Modeling

Many parametric software cost estimators have been developed since the late 1970's.
Current commercial software cost estimation tools include COCOMO 2.0, PRICE-S, SEER-
SEM, and REVIC. Most of these tools use agorithms, and some of the more advanced tools such
as SEER are rule-based or knowledge-based as well as interactive. We refer to these tools
interchangeably in this paper to emphasize the flexibility of our methodology.

Software cost estimators primarily consist of a core or nominal effort equation which
relates the labor effort for developing software to the size of the software system. This nominal
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effort equation represents the cost of developing a software system 'in a perfect world'. Effort
adjustment factors are applied to the nomina estimate to adjust for organization and project
specific economic factors. For example, the PRICE-S Model can be viewed as an onion, with a
core surrounded by several layers. At the core of PRICE-S is a central equation that relates the
labor effort for developing software to the volume of the software system, metered by the
productivity of the organization performing the task. The core labor estimate represents a
'normalized' cost. When moving from the model's inner core to the reality of the outside world,
CERs may be applied that adjust the normalized labor estimate based on the economics and
complicating factors of the specific project.

Although many of these tools use very different parametric CERs, they all make similar
claims about how the design can affect the software development cost. In all cases, historical data
has shown that increased development cost and time can occur as a result of squeezing more and
more functionality in smaller and smaller space and time intervals. REVIC, COCOMO 2.0, and
PRICE-S assume that resource requirements of less than 50 percent capacity have no cost impact.
But as the utilization of system resources increase above this level, the models assume that there
will be more detailed design, less reliance on tools and high level languages, and increased
integration and test requirements. As resource utilization approaches 100 percent, the cost impact
IS extreme.

To quantify this software prototyping principle, the embedded mode REVIC software
development cost model is presented. In the REVIC model, the development cycle includes the
contract award through hardware/software integration and testing. The development effort and
cost equations can be written as follows:

S
Sc = C s¢

Sg is the software devel opment effort in person-months. The software devel opment

AN
B
sg = A(KSLOC)® fefy, O f,
=1
cost, sc, Is the product of the software development labor cost per person-month, C®, and the

software development effort. The fi's represent cost drivers which model the effect of personnel,
computer, product, and project attributes on software cost. The constant, A, captures the
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multiplicative effects on effort with projects of increasing size. The default value used in REVIC
for A is 4.44.The scale factor, B, accounts for the relative economies or diseconomies of scale
encountered for software projects of different sizes. The default value used in REVIC for B is
1.2, representing a diseconomy of scale. The effort adjustment factors, fE and fM, denote the
effect of the execution time margin and storage margin on development cost. The relation
between these effort adjustment factors and the CPU and memory utilizations is shown in Figure
1. As the hardware utilization increases, so does the values of the execution time and main
storage constraint multipliers. This increase causes a corresponding increase in the development
cost and time.
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Figure 1. Execution-time and main storage constraint effort multipliers

The primary input to the software development (since hardware is COTS and is not
developed within the design cycle) cost equation is the software size estimate, KSLOC. KSLOC
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denotes the equivalent number of source lines of code (thousands) including application code,
OS kernél services, control and diagnostics, and support software. To compute the effective
software size of a product, the size estimate must be adjusted for reuse of COTS software.
Software size estimates are composed of two parts, the number of new source lines of code and
the number of adapted source lines of code. COCOMO 2.0 uses a variation of the following
model to estimate the equivaent number of new lines of code:

(AA+SU +0.4- DM +0.3- CM +0.3- IM)
100

KSLOC = KNSLOC + KASLOC-

The symbols in the equations are defined in Table 1. Also, additional refinement to the
Size estimate is necessary to account for the costs of software re-engineering and conversion.
Methods for modeling these costs are described in the COCOMO 2.0 Reference Manual. Some
overall software sizing techniques include the Pert Sizing, the Wideband Delphi technique,
function point sizing, and sizing by analogy. Software size serves as the dominant cost driver for
parametric software cost estimators.

Table 1. Software Sizing Model Symbol Definitions
Symbol Description
KNSLOC Size of component expressed in thousands of new source lines of code

KASLOC Size of the adapted COT S software component expressed in thousands of
adapted source lines of code

AA Degree of assessment and assimilation of COTS software

SU Software understanding penalty and interface checking penalty
DM Percentage of design modified

CM Percentage of code modified

IM Percentage of integration and test modified

Tight resource constraints have a similar effect on software maintenance cost. Many of
the models assume that software maintenance costs are determined by substantially the same cost
driver attributes that determine software development costs. For example, REVIC models the
annual software maintenance effort as:
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The maintenance costs are determined by multiplying the maintenance effort by the
software maintenance labor cost per person-month. The mfi's refer to the maintenance effort
adjustment factors for which are primarily the same as those used in the software development
cost equations. ACT is the annual change traffic. This metric corresponds to the fraction of the
software productOs source instructions which undergo change during a typical year, either
through addition or modification. KSLOC, A, B, ,fg, and fy, are defined as before, and thereby,
have the same effect on maintenance costs as on devel opment costs.

When faced with the prospect of long development schedules which will cause a product
to be delivered to market late, many managers attempt to compress the schedule by throwing
more people (e.g., person-hours) at the problem. Most of the parametric software cost estimation
models show that schedule compression sometimes has the adverse effect of greatly increasing
development cost. This increase in cost is usually due to the larger labor force, which in turn
increases communication problems, thereby adding errors and inefficiencies within the team.
REVIC models this effect of schedule compression by using a schedule constraint effort
multiplier to scale the software development effort as shown in Figure 2. The REVIC
devel opment time equation can be written as follows:

D SCED
Enom) 100

ST =C(s

where st denotes the software development time in calendar months. sg,on, Signifies the estimated
development effort under nominal schedule constraints (no schedule compression/expansion).

The constant C captures the multiplicative effects on development time for projects of increasing
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effort. REVIC's default value for C is6.2. The scale factor D accounts for the relative economies
or diseconomies of scale encountered for software projects of different required efforts. REVIC's
default value for D is 0.32, representing an economy of scale. SCED is the percent
compression/expansion to the nominal deployment schedule. Figure 2 illustrates that the REVIC
model assumes that the nominal schedule cannot be compressed by more than 25 percent. Most
parametric software cost models agree that there is a limit on the amount a schedule can be
compressed. Furthermore, the amount of schedule compression is also constrained by the number
of available full-time software personnel, which can be quantitatively described as follows:

S
Fo® 5

When the hardware platform consists of mostly COTS components, long software devel opment
times will dominate the overall system development time. Thus, software development time will
be the major factor determining time-to-market for the HW/SW product.
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Figure 2. The Cost Impact of Schedule Constraints
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2.2. Time-to-Market Cost Modeling

While the implications of constraining the HW/SW architecture can be very detrimental
to software development cost, the corresponding effect on development time can be even more
devastating. For commercial products, time-to-market costs can often outweigh design,
prototyping, and production costs. A recent survey showed that being six months late to market
resulted in an average of 33% profit loss. Engineering managers stated that they would rather
have a 100% overrun in design and prototyping costs than be three months late to market with a
product. Early market entry alows for increased brand name recognition, market share, and
product yields.

There have been numerous attempts at quantitatively modeling the effect of delivering a
product to market late. As previously mentioned, market research performed by Logic
Automation (now owned by Synopsys) has shown that the demand and potential profits for a new
HW/SW product can be modeled by a triangular window of opportunity as shown in Figure 3.
The non-shaded region of the triangle signifies the lost of revenue due to late entry in the market.
Thisloss in revenue can be mathematically stated as follows:
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Figure 3. A typical time-to-market cost model
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R, refers to the expected product revenue. d* is the delay (months) in delivering a product
to market, and W is half the product life cycle (months). If the product life cycle is short, being
late to market can spell disaster.

3. Design Experiment

Our goal for this laboratory exercise is to demonstrate the use of cost modeling in the
architectural design an embedded platform. Figure 4 shows the data flow graph (DFG) for the
simple application. Each node in the DFG is annotated with its execution time on the generic
processor used in this lab. Also, each edge in the DFG is annotated with the communication
volume which is transferred between the communicating nodes during each iteration. The
combination of the application code and support software is estimated to account for 5000 lines
of source code (KSLOC = 5). Datais input to the algorithm at 50 samples/sec. Hence, the real-
time constraint on each task (node) is 20 ms.

1.5ms 15ms 5ms

Figure 4. Data flow graph for simple embedded application
Case 1: In this case, the entire application is implemented on one processor.
We estimate the costs for this ssmple assignment.  If the resource utilization is
very high, then the cost of such a design in terms of person months and
schedule can be very high.

Case 2: In this case, we subdivide the application into two portions, each of
which runs on a separate processor, and the processors are interconnected via a
communication pathway (in this case a crossbar chip).
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One concern in Case 2 is that if the communication subsystem were not fast enough for
the application, then the real-time guarantees required by the application may not be satisfied. In
addition, the overhead caused by interprocessor communication can increase the processor
utilization, thereby increasing the software cost and schedule. Therefore, this close coupling
between cost and performance modeling is needed to complete the laboratory.

3.1. Nominal Software Cost Estimation

The REVIC model will be used to estimate the cost and schedule for the various HW/SW
architectural candidates. The application requires 5,000 lines of source code. Thus, the nominal
software development (assuming all effort multipliers equal 1.0) effort can be computed as
follows:

Effort = 4.44 (5)*%~

We wish to adjust now for the execution-time resource constraint (fz), which can be
calculated from a description of the real-time performance of the algorithm.

3.2. Adjusted Software Cost Estimation
3.2.1. Casel

For Case 1, we assume that the execution-time for one iteration of the algorithm can be
computed by summing the computation times for each task in the DFG. As previousy
mentioned, the real-time constraint for each task is 20 ms. Therefore, the processor utilization is:

(1.5+3+5+15+3+5)/20=0.95
or 95% processor utilization

From the REVIC table (in the Cost Modeling Module) we obtain the execution-time
resource constraint effort multiplier to be:

fe-

Cost (adjusted) for the software development is = 30.6 * 1.66 = 50.8 person
months.
Cost in dollars (assuming $15,000 per person month) =

The devel opment time (assuming a nominal schedule) is:

st = 6.2 (50.8)>%? = 21.8 months

Copyright 01995-1999 SCRA 10
See first page for copyright notice,
Distribution restrictions and disclaimer



3.2.2. Case 2

For Case 2, let us assume that we want to reduce the cost of the design, so we try to
reduce the execution-time effort adjustment factor by using two processors interconnected by a
communication pathway (a crossbar). If communication time is assumed to be zero, the
aggregate utilization is halved. However, the interprocessor communication overhead can have a
dominant effect on performance when tasks are poorly allocated to processors or poorly
scheduled.

Processor 1 Processor 2

T1, T3, T5 T2, T4, T6

!
CROSSBAR >

Figure 5. Multiprocessor architecture with poorly allocated tasks

Verification of the Cost-Driven Architecture Design (Case 2a)

The single processor implementation uses benchmarked execution times for performance
estimates and perform no interprocessor communication. Therefore, simulation-based
performance modeling is not needed for Case 1.

However, Case 2 is a multiprocessor implementation which requires interprocessor
communication. Figure 5 shows a HW/SW architecture implementation for the example
application.VHDL performance modeling will be used to estimate the overhead associated with
communication and to ensure that the processor implementation meets real -time constraints.

The makefiles and libraries used in this exercise were developed for use with the Mentor
Graphics QuickVHDL tools on a UNIX-based platform. To get started, create a directory for the
performance modeling section of the lab in your home directory as follows

>> nkdir PF_LABS
>> cd PF_LABS
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The file "m57_lab_atar" will be made available with your labkit and it should be copied
to this performance modeling directory. To uncompress and untar the "m57_lab_atar” file type:
>> tar -xvf nb7_lab_a.tar

The performance modeling code for our example embedded application is now stored in
your directory. The "m57 lab_a' directory has a number of subdirectories and files. They are
described as follows:

nb7 | ab_a/ COMPONENTS/ - contains the RACEway crossbar and
compute element processor models, xbar . vhdl andce. vhdl .

nb7_I| ab_a/ PACKAGES/ - contains the packages with define the
communication token structure and FIFO elements.

nb7 | ab_a/ PROGRAM?/ - contains programs files used to configure
the processor architectures. For example, pl cost. dat is used to
program processor 1.

nb7 | ab_a/ ROUTES/ - contains the route files used for routing of
communications between each processor in the system.

nb7 | ab_a/ SYSTEM - contains the top-level structura VHDL
performance modeling code for the two processor architecture.

nb7_| ab_a/ RESULTS?/ - contains output files of pre-run VHDL
simulations for the experiments described in this lab.

To simulate the architecture depicted in Figure 5, the performance model must first be
compiled and the route and program files must be copied into the system simulation directory.
This is done automatically with the following commands:

>> cd nb7_| ab_a

>> makel. com
cd SYSTEM
>> ghsimtoyl &

QHSI M>> run 25 ns
# ** Note: Real -Tine Deadline Met!!
# Ti me: 20000001 ns Iteration: O Instance:/pel
# ** Note: WARNING Real -Tine Deadline M ssed!!
# Time: 23288721 ns Iteration: O Instance:/pe2

>

\Y
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During simulation, you should notice a message noting that the real-time deadlines some
real-time deadlines have been missed. To see detailed information, type the following
commands:

>> grep M ssed pe*

pe2_Bl TREEl1l tineline.dat: RT DEADLINE : M ssed by
1788 us

>> nore pe2*

The GANTT diagram describing the execution of the application on the two processors in
shown in Figure 6. Processor 2 is activated after task 1 on processor 1 completes execution. The
excessive communication overhead due to the poor task assignment causes the architectural
implementation to miss the real-time deadline. Processor 2 takes 21.8 ms to complete one
iteration. However, the real-time deadline is 20 ms. Thus, the processor misses the constraint.

T1 com | comim
Processor 1: IDLE | ovh T3 IDLE ovn| T5
15 45 6.2 11.2 127 144 17.4 20 ms
Cco comm comnj.
Processor 2: OI\T,E* T2 IDLE ovh| T4 | IDLE ovh| T6
09 3.9 8.9 106 121 15.1 16.8 21.8

Figure 6. Gantt diagram for architectural implementation with poor task

assignment
In order to meet the real-time constraint, we reassign the tasks to processors as shown in
Figure 7 and pipeline the computation. This case can be ssmulated as follows:

>> cp ../ PROGRAMS_ 2/ *

Click on FILE in the QHSIM window and select RESTART DESIGN.

QHSI M>> run 30 ns
# ** Note: Real -Tinme Deadline Met!!
# Ti me: 20000001 ns |Iteration: O Instance:/pel
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# ** Note: Real -Tine Deadline Met!!
# Ti me: 29500001 ns Iteration: O Instance:/pe2

We now observe that the architecture implementation meets the real-time constraints.

To calculate the communication overhead due to interprocessor communication, examine
the output file produced by the performance modeling simulation. To do this, type:
>> grep overhead pe*
pel Bl TREEL tineline.dat: Comrunication overhead for
tinme interval: 1 us

Processor 1 Processor 2

T1, T2, T3 T4, T5,T6

!
CROSSBAR >

Figure 7. New task assignment for the multiprocessor implementation
pel Bl TREEL tineline.dat: Comrunication overhead for
time interval: 1 us
pe2_Bl TREEL tineline.dat: Comrunication overhead for
time interval: 858 us

This communication overhead data can be used obtain an accurate processor utilization
estimate. The Gantt chart describing the processor execution are shown in Figure 8.
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Proc.1 | T1| T2 T3 IDLE

15 45 9.5 20 ms

com
Proc. 2 ovh. T4l T5 T6 IDLE

09 24 54 104 20 ms
Figure 8. Gantt Chart for implementation with improved task assignment

Software Cost Estimation
The processor utilization is computed as:

(Total Computation time + Total Comm. Overhead)/ (No. of Processors * 20
ms)

Hence, Proc. Util = (19 + 0.9)/40 = .4975 or 49.75%

From the REVIC table (in the Cost Modeling Module) we obtain the execution-time
resource constraint effort multiplier to be:

fi-

Cost (adjusted) for the software development is = 30.6 * 1.0 = 30.6 person
months.

Cost in dollars (assuming $15,000 per person month) =

Compute the development time (assuming a nominal schedule) is:
ST =

3.3. Hardware Procurement Cost

We are assuming that the hardware cost can be added to the software cost as follows:

Production VVolume = 1000 units.

Design 1 (hardware cost) = 3000 * 1000 = $3M, at $3000 a board.
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Design 2 (hardware cost) = 5000 * 1000 = $5M at $5000 a board.

Compute the total hardware plus software costs.

Case 1:

Case 2:
3.4. Time-to-Market Cost Calculation

The product lifetime 2W = 2 years.
Maximum available revenue Ry = $10M.

For a product deployment goal of 19 months and 22 months, use the time-to-market cost
model described in Section 2.2 to compute the revenue will be lost due to schedule delays for

both architectures for both goals.
Table 2
19 months 22 months

Casel
Case?2

3.5. Total System Cost Calculation

Now, compute the total system costs (software development, hardware procurement, and

time-to-market costs) for the candidate architectures.
Table 3
19 months 22 months

Casel
Case 2

For this application, does adding for hardware (an extra processor) actually reduce overall
system costs?
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