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1.  Overview

The objective of this lab is to demonstrate applications of cost modeling to the embedded-

system design. The lab discussion starts by describing the use of cost models for estimating

software life cycle costs. Then, the impact of time-to-market on architecture design is described.

The effect of these cost elements on system design is demonstrated in the design of a simple

compute-intensive application.

2.  Cost Modeling

A parametric cost model is a mathematical representation of parametric cost estimating

relationships (CERs) that provides a logical and predictable correlation between the physical or

functional characteristics of a system and the resultant cost of the system. Such parametric cost

estimating relationships are derived from the statistical correlation of historical system costs with

performance and/or physical attributes of the system. When performing cost analysis, the primary

purpose is not necessarily to use these models to produce precisely accurate point estimates, but

rather to provide estimates of the comparative and relative costs of competing systems. Hence,

the consistency of the model is perhaps more important than the absolute accuracy of its

estimates. Parametric cost models are particularly useful because they are objective, repeatable,

efficient, and they facilitate sensitivity analysis. If derived from a sound representative database,

these parametric models can be relied upon to produce high quality, consistent estimates.

 Parametric techniques focus on major cost drivers, and not minute details. The cost

drivers are the controllable system design or planning characteristics that have a predominant

effect on the system's costs. This allows parametric techniques to be used with limited system

information, thereby making them a viable option in the conceptual stages of design. The two

dominant costs elements which are traditionally neglected in COTS-based embedded systems

design are hardware/software life cycle costs and time-to-market costs. For this reason, we will

focus on the estimation of these two cost factors.

2.1.  Software Cost Modeling

Many parametric software cost estimators have been developed since the late 1970's.

Current commercial software cost estimation tools include COCOMO 2.0, PRICE-S, SEER-

SEM, and REVIC. Most of these tools use algorithms, and some of the more advanced tools such

as SEER are rule-based or knowledge-based as well as interactive. We refer to these tools

interchangeably in this paper to emphasize the flexibility of our methodology.

Software cost estimators primarily consist of a core or nominal effort equation which

relates the labor effort for developing software to the size of the software system. This nominal



Module 57 - Lab A 3

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

3

effort equation represents the cost of developing a software system 'in a perfect world'. Effort

adjustment factors are applied to the nominal estimate to adjust for organization and project

specific economic factors. For example, the PRICE-S Model can be viewed as an onion, with a

core surrounded by several layers. At the core of PRICE-S is a central equation that relates the

labor effort for developing software to the volume of the software system, metered by the

productivity of the organization performing the task. The core labor estimate represents a

'normalized' cost. When moving from the model's inner core to the reality of the outside world,

CERs may be applied that adjust the normalized labor estimate based on the economics and

complicating factors of the specific project.

Although many of these tools use very different parametric CERs, they all make similar

claims about how the design can affect the software development cost. In all cases, historical data

has shown that increased development cost and time can occur as a result of squeezing more and

more functionality in smaller and smaller space and time intervals. REVIC, COCOMO 2.0, and

PRICE-S assume that resource requirements of less than 50 percent capacity have no cost impact.

But as the utilization of system resources increase above this level, the models assume that there

will be more detailed design, less reliance on tools and high level languages, and increased

integration and test requirements. As resource utilization approaches 100 percent, the cost impact

is extreme.

 To quantify this software prototyping principle, the embedded mode REVIC software

development cost model is presented. In the REVIC model, the development cycle includes the

contract award through hardware/software integration and testing. The development effort and

cost equations can be written as follows:

sE is the software development effort in person-months. The software development

cost, sC, is the product of the software development labor cost per person-month, CS, and the

software development effort.  The fi's represent cost drivers which model the effect of personnel,

computer, product, and project attributes on software cost. The constant, A, captures the
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multiplicative effects on effort with projects of increasing size. The default value used in REVIC

for A is 4.44.The scale factor, B, accounts for the relative economies or diseconomies of scale

encountered for software projects of different sizes. The default value used in REVIC for B is

1.2, representing a diseconomy of scale. The effort adjustment factors, fE and fM, denote the

effect of the execution time margin and storage margin on development cost. The relation

between these effort adjustment factors and the CPU and memory utilizations is shown in Figure

1. As the hardware utilization increases, so does the values of the execution time and main

storage constraint multipliers. This increase causes a corresponding increase in the development

cost and time.

Figure 1. Execution-time and main storage constraint effort multipliers

The primary input to the software development (since hardware is COTS and is not

developed within the design cycle) cost equation is the software size estimate, KSLOC. KSLOC
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denotes the equivalent number of source lines of code (thousands) including application code,

OS kernel services, control and diagnostics, and support software. To compute the effective

software size of a product, the size estimate must be adjusted for reuse of COTS software.

Software size estimates are composed of two parts, the number of new source lines of code and

the number of adapted source lines of code. COCOMO 2.0 uses a variation of the following

model to estimate the equivalent number of new lines of code:

The symbols in the equations are defined in Table 1. Also, additional refinement to the

size estimate is necessary to account for the costs of software re-engineering and conversion.

Methods for modeling these costs are described in the COCOMO 2.0 Reference Manual. Some

overall software sizing techniques include the Pert Sizing, the Wideband Delphi technique,

function point sizing, and sizing by analogy. Software size serves as the dominant cost driver for

parametric software cost estimators.

Table 1 .   Software Sizing Model Symbol Definitions
Symbol Description

KNSLOC Size of component expressed in thousands of new source lines of code
KASLOC Size of the adapted COTS software component expressed in thousands of

adapted source lines of code
AA Degree of assessment and assimilation of COTS software
SU Software understanding penalty and interface checking penalty
DM Percentage of design modified
CM Percentage of code modified
IM Percentage of integration and test modified

Tight resource constraints have a similar effect on software maintenance cost. Many of

the models assume that software maintenance costs are determined by substantially the same cost

driver attributes that determine software development costs. For example, REVIC models the

annual software maintenance effort as:

100
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The maintenance costs are determined by multiplying the maintenance effort by the

software maintenance labor cost per person-month. The mfi's refer to the maintenance effort

adjustment factors for which are primarily the same as those used in the software development

cost equations. ACT is the annual change traffic. This metric corresponds to the fraction of the

software productÕs source instructions which undergo change during a typical year, either

through addition or modification. KSLOC, A, B, ,fE, and fM are defined as before, and thereby,

have the same effect on maintenance costs as on development costs.

 When faced with the prospect of long development schedules which will cause a product

to be delivered to market late, many managers attempt to compress the schedule by throwing

more people (e.g., person-hours) at the problem. Most of the parametric software cost estimation

models show that schedule compression sometimes has the adverse effect of greatly increasing

development cost. This increase in cost is usually due to the larger labor force, which in turn

increases communication problems, thereby adding errors and inefficiencies within the team.

REVIC models this effect of schedule compression by using a schedule constraint effort

multiplier to scale the software development effort as shown in Figure 2. The REVIC

development time equation can be written as follows:

where sT denotes the software development time in calendar months. sEnom signifies the estimated

development effort under nominal schedule constraints (no schedule compression/expansion).

The constant C captures the multiplicative effects on development time for projects of increasing
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effort. REVIC's default value for C is 6.2. The scale factor D accounts for the relative economies

or diseconomies of scale encountered for software projects of different required efforts. REVIC's

default value for D is 0.32, representing an economy of scale. SCED is the percent

compression/expansion to the nominal deployment schedule. Figure 2 illustrates that the REVIC

model assumes that the nominal schedule cannot be compressed by more than 25 percent. Most

parametric software cost models agree that there is a limit on the amount a schedule can be

compressed. Furthermore, the amount of schedule compression is also constrained by the number

of available full-time software personnel, which can be quantitatively described as follows:

When the hardware platform consists of mostly COTS components, long software development

times will dominate the overall system development time. Thus, software development time will

be the major factor determining time-to-market for the HW/SW product.

Figure 2. The Cost Impact of Schedule Constraints
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2.2.   Time-to-Market Cost Modeling

While the implications of constraining the HW/SW architecture can be very detrimental

to software development cost, the corresponding effect on development time can be even more

devastating. For commercial products, time-to-market costs can often outweigh design,

prototyping, and production costs. A recent survey showed that being six months late to market

resulted in an average of 33% profit loss. Engineering managers stated that they would rather

have a 100% overrun in design and prototyping costs than be three months late to market with a

product. Early market entry allows for increased brand name recognition, market share, and

product yields.

 There have been numerous attempts at quantitatively modeling the effect of delivering a

product to market late. As previously mentioned, market research performed by Logic

Automation (now owned by Synopsys) has shown that the demand and potential profits for a new

HW/SW product can be modeled by a triangular window of opportunity as shown in Figure 3.

The non-shaded region of the triangle signifies the lost of revenue due to late entry in the market.

This loss in revenue can be mathematically stated as follows:

Figure 3. A typical time-to-market cost model
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R0 refers to the expected product revenue. d+ is the delay (months) in delivering a product

to market, and W is half the product life cycle (months). If the product life cycle is short, being

late to market can spell disaster.

3.  Design Experiment

Our goal for this laboratory exercise is to demonstrate the use of cost modeling in the

architectural design an embedded platform. Figure 4 shows the data flow graph (DFG) for the

simple application. Each node in the DFG is annotated with its execution time on the generic

processor used in this lab. Also, each edge in the DFG is annotated with the communication

volume which is transferred between the communicating nodes during each iteration. The

combination of the application code and support software is estimated to account for 5000 lines

of source code (KSLOC = 5). Data is input to the algorithm at 50 samples/sec. Hence, the real-

time constraint on each task (node) is 20 ms.

Figure 4. Data flow graph for simple embedded application

Case 1: In this case, the entire application is implemented on one processor.

We estimate the costs for this simple assignment.   If the resource utilization is

very high, then the cost of such a design in terms of person months and

schedule can be very high.

Case 2: In this case, we subdivide the application into two portions, each of

which runs on a separate processor, and the processors are interconnected via a

communication pathway (in this case a crossbar chip).

 T1  T2  T3  T4  T5  T6

1.5 ms 3 ms 5ms 1.5 ms 3 ms 5 ms

8KB 8KB 8KB 8KB 8KB
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One concern in Case 2 is that if the communication subsystem were not fast enough for

the application, then the real-time guarantees required by the application may not be satisfied. In

addition, the overhead caused by interprocessor communication can increase the processor

utilization, thereby increasing the software cost and schedule. Therefore, this close coupling

between cost and performance modeling is needed to complete the laboratory.

3.1.  Nominal Software Cost Estimation

The REVIC model will be used to estimate the cost and schedule for the various HW/SW

architectural candidates. The application requires 5,000 lines of source code.   Thus, the nominal

software development (assuming all effort multipliers equal 1.0) effort can be computed as

follows:

Effort = 4.44 (5)1.2 =

We wish to adjust now for the execution-time resource constraint (fE), which can be

calculated from a description of the real-time performance of the algorithm.

3.2.  Adjusted Software Cost Estimation

3.2.1.  Case 1

For Case 1, we assume that the execution-time for one iteration of the algorithm can be

computed by summing the computation times for each task in the DFG. As previously

mentioned, the real-time constraint for each task is 20 ms. Therefore, the processor utilization is:

(1.5 + 3 + 5 + 1.5 + 3 + 5)/ 20 = 0.95

or 95% processor utilization

From the REVIC table (in the Cost Modeling Module) we obtain the execution-time

resource constraint effort multiplier to be:

fE =

Cost (adjusted) for the software development is = 30.6 * 1.66 = 50.8 person

months.

Cost in dollars (assuming $15,000 per person month) =

The development time (assuming a nominal schedule) is:

sT = 6.2 (50.8)0.32 = 21.8 months
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3.2.2.  Case 2

For Case 2, let us assume that we want to reduce the cost of the design, so we try to

reduce the execution-time effort adjustment factor by using two processors interconnected by a

communication pathway (a crossbar).   If communication time is assumed to be zero, the

aggregate utilization is halved. However, the interprocessor communication overhead can have a

dominant effect on performance when tasks are poorly allocated to processors or poorly

scheduled.

Figure 5. Multiprocessor architecture with poorly allocated tasks

Verification of the Cost-Driven Architecture Design (Case 2a)

The single processor implementation uses benchmarked execution times for performance

estimates and perform no interprocessor communication. Therefore, simulation-based

performance modeling is not needed for Case 1.

However, Case 2 is a multiprocessor implementation which requires interprocessor

communication. Figure 5 shows a HW/SW architecture implementation for the example

application.VHDL performance modeling will be used to estimate the overhead associated with

communication and to ensure that the processor implementation meets real-time constraints.

The makefiles and libraries used in this exercise were developed for use with the Mentor

Graphics QuickVHDL tools on a UNIX-based platform. To get started, create a directory for the

performance modeling section of the lab in your home directory as follows

>> mkdir PF_LABS

>> cd PF_LABS

Processor 1

T1, T3, T5

Processor 2

T2, T4, T6

CROSSBAR
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The file "m57_lab_a.tar" will be made available with your labkit and it should be copied

to this performance modeling directory. To uncompress and untar the "m57_lab_a.tar" file type:

>> tar -xvf m57_lab_a.tar

The performance modeling code for our example embedded application is now stored in

your directory. The "m57_lab_a" directory has a number of subdirectories and files. They are

described as follows:

• m57_lab_a/COMPONENTS/ - contains the RACEway crossbar and

compute element processor models, xbar.vhdl and ce.vhdl.

• m57_lab_a/PACKAGES/ - contains the packages with define the

communication token structure and FIFO elements.

• m57_lab_a/PROGRAM?/ - contains programs files used to configure

the processor architectures. For example, p1_cost.dat is used to

program processor 1.

• m57_lab_a/ROUTES/ - contains the route files used for routing of

communications between each processor in the system.

• m57_lab_a/SYSTEM/ - contains the top-level structural VHDL

performance modeling code for the two processor architecture.

• m57_lab_a/RESULTS?/ - contains output files of pre-run VHDL

simulations for the experiments described in this lab.

To simulate the architecture depicted in Figure 5, the performance model must first be

compiled and the route and program files must be copied into the system simulation directory.

This is done automatically with the following commands:

>> cd m57_lab_a

>> make1.com

>> cd SYSTEM

>> qhsim toy1 &

QHSIM>> run 25 ms

# ** Note: Real-Time Deadline Met!!

#    Time: 20000001 ns Iteration: 0  Instance:/pe1

# ** Note: WARNING: Real-Time Deadline Missed!!

#    Time: 23288721 ns  Iteration: 0  Instance:/pe2



Module 57 - Lab A 13

Copyright 1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

13

During simulation, you should notice a message noting that the real-time deadlines some

real-time deadlines have been missed. To see detailed information, type the following

commands:

>> grep Missed pe*

pe2_B1_TREE1_timeline.dat: RT DEADLINE : Missed by

1788 us

>> more pe2*

The GANTT diagram describing the execution of the application on the two processors in

shown in Figure 6. Processor 2 is activated after task 1 on processor 1 completes execution. The

excessive communication overhead due to the poor task assignment causes the architectural

implementation to miss the real-time deadline. Processor 2 takes 21.8 ms to complete one

iteration. However, the real-time deadline is 20 ms. Thus, the processor misses the constraint.

Figure 6. Gantt diagram for architectural implementation with poor task

assignment

In order to meet the real-time constraint, we reassign the tasks to processors as shown in

Figure 7 and pipeline the computation. This case can be simulated as follows:

>> cp ../PROGRAMS_2/* .

Click on FILE in the QHSIM window and select RESTART DESIGN.

QHSIM>> run 30 ms

# ** Note: Real-Time Deadline Met!!

#    Time: 20000001 ns  Iteration: 0  Instance:/pe1

Processor 1:

Processor 2:

1.5   11.2 12.7 20 ms

    0.9

T1

4.5

IDLE

6.2 14.4 17.4

 comm
  ovh     T3 IDLE

comm
  ovh T5

comm
  ovh

3.9 8.9 10.6 12.1 15.1 16.8 21.8

T2 T4 T6IDLE IDLE
comm.
  ovh

comm.
  ovh
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# ** Note: Real-Time Deadline Met!!

#    Time: 29500001 ns  Iteration: 0  Instance:/pe2

We now observe that the architecture implementation meets the real-time constraints.

To calculate the communication overhead due to interprocessor communication, examine

the output file produced by the performance modeling simulation. To do this, type:

>> grep overhead pe*

pe1_B1_TREE1_timeline.dat: Communication overhead for

time interval: 1 us

Figure 7. New task assignment for the multiprocessor implementation

pe1_B1_TREE1_timeline.dat: Communication overhead for

time interval: 1 us

pe2_B1_TREE1_timeline.dat: Communication overhead for

time interval: 858 us

This communication overhead data can be used obtain an accurate processor utilization

estimate. The Gantt chart describing the processor execution are shown in Figure 8.

Processor 1

T1, T2, T3

Processor 2

T4, T5, T6

CROSSBAR
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Figure 8. Gantt Chart for implementation with improved task assignment

Software Cost Estimation

The processor utilization is computed as:

(Total Computation time + Total Comm. Overhead)/ (No. of Processors * 20

ms)

Hence, Proc. Util = (19 + 0.9)/40 = .4975   or 49.75%

From the REVIC table (in the Cost Modeling Module) we obtain the execution-time

resource constraint effort multiplier to be:

fE =

Cost (adjusted) for the software development is = 30.6 * 1.0 =  30.6 person

months.

Cost in dollars (assuming $15,000 per person month) =

Compute the development time (assuming a nominal schedule) is:

 sT  =

3.3.  Hardware Procurement Cost

We are assuming that the hardware cost can be added to the software cost as follows:

Production Volume =  1000 units.

Design 1 (hardware cost) = 3000 * 1000 = $3M, at $3000 a board.

Proc. 1

Proc. 2

1.5 4.5 9.5

0.9 2.4 5.4 10.4 20 ms

20 ms

T1 T2 T3

T4 T5 T6

IDLE

IDLE
comm.
  ovh.
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Design 2 (hardware cost) =  5000 * 1000 = $5M at $5000 a board.

Compute the total hardware plus software costs.

Case 1:

Case 2:

3.4.  Time-to-Market Cost Calculation

The product lifetime 2W =   2 years.

Maximum available revenue R0 = $10M.

For a product deployment goal of 19 months and 22 months, use the time-to-market cost

model described in Section 2.2 to compute the revenue will be lost due to schedule delays for

both architectures for both goals.
Table 2

19 months 22 months
Case 1
Case 2

3.5.  Total System Cost Calculation

Now, compute the total system costs (software development, hardware procurement, and

time-to-market costs) for the candidate architectures.
Table 3

19 months 22 months
Case 1
Case 2

For this application, does adding for hardware (an extra processor) actually reduce overall

system costs?


