Module 59 - Lab : Token-Based Performance M odeling
Using VHDL

ATL Performance M odeling Environment Tutorial

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its
Advanced Technology Institute (ATI), and may only be used for non-commercial
educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other
copyright holders and are used with their permission. All information contained, may
be duplicated for non-commercial educational use only provided this copyright notice
and the copyright acknowledgements herein are included. Nowarranty of any kind is
provided or implied, nor isany liability accepted regardless of use.

The United States Government holds “ Unlimited Rights’ in all data contained herein
under Contract F33615-94-C-1457. Such data may be liberally reproduced and
disseminated by the Government, in whole or in part, without restriction except as
follows: Certain parts of this work to other copyright holders and are used with their
permission; This information contained herein may be duplicated only for non-
commercial educational use. Any vehicle, in which part or all of this data is
incor porated into, shall carry thisnotice.

See the RASSP Disclaimer file for additional RASSP Disclaimer, Warranty and
Limitation of Liability Information concerning the material, VHDL code and software
developed under the RASSP programsor incorporated in RASSP material.

Module59 - Lab B

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59 - Lab B

ATL Performance M odeling Environment Tutorial

1. Overview

1.1. This lab will introduce performance modeling using the ATL library elements.
The user will simulate a simple 4 processor Mercury MCV6 multicomputer
system which has been configured to perform a 2D Fast Fourier Transform
(fft). Two different architectural alternatives (as shown in the performance
modeling module) will be investigated. The user can then modify the software
configuration to determine is affect on performance.

Recall that the first architectural aternative has a single 1/0O processor that
performs both the source and sink functions. The second architectura
aternative has two separate processors that perform the source and sink
functionsin parallel.

Note that in this tutorial, the path to the place where the ATL lab material has
been copied and untared is referred to as. <your_path>, and the user’s home
directory isreferred to as. <your_home>.

2. Getting started

2.1. Create adirectory for the performance modeling lab material:

UNI X>> nkdir perf_nodeling
UNI X>> cd perf_nodeling

2.2. Copy the atl_lab filesto that directory.
UNI X>> cp -r <your_pat h>/ perf_nodeling_nod/ atl _|ab .

Note that the space and the, at the end of the command line must not be
omitted.

2.3. Change to the atl_lab directory and setup for the Mentor Graphics VHDL
environment:

UNI X>> cd atl | ab
UNI X>> . bin/ mentor_setup

2.4. A Unix Makefile has been setup to compile all of the required VHDL files.
Perform the compilation:

UNI X>> make

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59 - Lab B

A number of compilation messages should appear. Any errors should be
reported to the lab instructors.

3. Examinethe sourcefiles

3.1. List the contents of the atl_lab directory:
UNI X>> | s

There are severa file and directories listed. The files are the Makefile which
contains the proper commands to compile the VHDL source code, and the
wave.do file which contains the smulator commands to generate a wave form

display of the token signals (as described below). The contents of the
directories are as follows:

- COMPONENTS - contains the VHDL files for the PE, XBAR,
and MCV6 (both the alt1 and alt2 architecture) components.

- PACKAGES - contains the token, fifo, and debug VHDL
packages used by the above components.

- bin - contains the shell scripts and post-processing executable
files.

- programs_altl - contains the programs for the architectural
dternative 1 components to run the scenario used in the
tutorial.

- programs_alt2 - contains the programs for the architectural
dternative 2 components to run the scenario used in the
tutorial.

- results_altl - will contain the ".dat" simulation data files
generated by the PE elements in architectural alternative 1

during simulation. This directory should be empty until the
initial simulation is run.

- results_alt2 - will contain the ".dat" simulation data files
generated by the PE elements during in architectura
aternative 2 during smulation. This directory should be
empty until the initial smulation is run.

- routes - contains the route files needed by the PE and XBAR

elements to route messages to specific processor numbers.
These files are identical for both architectural alternatives.

- work - the directory created to hold the compiled VHDL files
when the initial "make" command was run.

- docs - contains the postscript version of this document.

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59 - Lab B

3.2. It is recommended that the user take a few moments to browse through the
files in the COMPONENTS directory and the programs altl and
programs_alt2 directories.

UNI X>> cd COVPONENTS

UNI X>> nore *. vhdl

UNI X>> cd ../progranms_altl
UNI X>> nore *. dat

UNI X>> cd ../progranms_alt2
UNI X>> nore *. dat

UNI X>> cd ..

Note that in the COMPONENTS directory there are two mcv6 files,
mcv6_altl.vhdl and mvc6_alt2.vhdl, one for each architectural alternative. In
the programs directories, the program files for the 4 PEs that perform the 2D
fft are very similar. The maor difference in the programs for the two
aternatives is in the programs for the 10 processor and the source and sink
processors.

4. Perform the simulations

4.1. The smulations have been setup to write their results to two separate
directories, results altl, and results at2. The two architectura aternatives
will be simulated for 200 ms of real time each. The results will then be
examined to determine the throughput of each alternative.

4.2. Simulate alternative 1 for 200 ms:

UNI X>> ghsi m ncv6_altl
A ghsim.mod window should appear:

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59 - Lab B

ghsim.mod

_Rn | oo [step | stepOver | ek |
£

4.3. Setup a waveform window to view the token signals that connect the
processors to the RACEWay crossbar switch:
HSIM 1> do wave. do

A wave window which will trace the "purpose" or status fields of the token
signals should appear:

/binl,pl

Copyright ©1995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59-LabB

4.4. Run the smulation for 200 ms:

QHSIM 2> run 200 ns

In the wave window, use the Zoom->Full Size menu item to view the
waveform for the signals throughout the smulation time. The wave window
should show the purpose field value alternating between "req" and "ack" as
tokens are passed through the mode!:

= Wave (]

File Edit Zoom Prop Cursor

[TT0 T11 T TJres Tred [rea Dred [T JIT 1)
0 0TI T T e (1T T 1)
(0T T Jres Treal Tbed Trea 1T 1T 1T 1)
NI Rl EIIEIe
[real [lres 1 rea] TJreal Thvea ke 1T I T U1 1)

LT Tk IT YIT YT SIT YUY WY (T 13

I T T T T T T T T T T T T T T T Y T O A
100 m= SO0 s

| 5% = = 15
0 nz to 200 ms

4.5. Exit the ssmulation:

@HSIM 3> quit
Press the yes button when the confirm dialog box comes up.

4.6. Simulate the alternate 2 architecture for 200 ms of real time:

UNI X>> ghsi m ncv6_al t?2
QHSIM 1> run 200 ns
QHSIM 2> quit
Press the yes button when the confirm dialog box comes up.

5. Usethe post-simulation analysistoolsto view the smulation results

5.1. Shell scripts have been written to process the outputs of the smulations and
plot them using the ATL post-processing tools. View the results of
architectural aternative 1:

UNI X>> bin/plot_altl

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59 - Lab B

The first command in this shell script smply concatenates all of the ".dat"
files in the results altl directory into a file called intermed.time in that
directory. A number of messages will then scroll past on the screen indicating
that the timeline program has been called to generate the viewl.tin and
view2.tIn timeline files. The viewl.tIn file contains the timeline data for the
processor busy times and the view2.tIn file contains the timeline data for the
communication links busy times. Finally, the visualization program xgraph is
invoked on the viewl.tin file to show the processor busy time data. The
resulting window should look like this:

xgraph
| H| mn Tine-Line Plot
| memn oo

Apel_CARDL

/pe3_CARDL

/ped_CARDL

Note that in this plot, every two computation units for a processing element
indicates a completion of a complete 2D fft operation. Therefore, as can be
seen from the figure, architecture alternative 1 completes about 9 1/2
iterations of the 2D fft operation in 200 ms.

Press the Quit button on the xgraph tool when done viewing the results. A
second graph of the communications busy times will appear:

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59 - Lab B

| ®graph
| ZoutH [*| P Tine-Line Plot
| mmEmE e

|

Points Spel_CARTIL
Felirau |7

Reset.
" Werint JHiF
Quit

/pe3_CARDL

/ped_CARDL

SO000 : 150000

This plot indicates that very little time is spend in actual communication vs.
computation. Press the Quit button on the xgraph tool when done viewing the
results.

UNI X>> bin/plot_alt2

The post-processing tools will be invoked as before and a plot of the processor
busy times will appear:

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59 - Lab B

ime-Line Plot

Pan ¥ /pel_CARDL

/pe2_CARDL

/pei_CARDL

/ped_CARDL

Asink_CARDL

LTl Talu} 1 150000 200001

Note that this architectural alternative processes 17 1/2 iterations of the 2D fft
operation in the same 200 ms.

The plot of the communication busy times will appear:

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module59 - Lab B 11

ing Time-Line Plot

/ped_CARDL

SO0 : 150000

Again, this plot shows that communications time is much less than processing
time.

Copyright 01995-1999 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

Module 59 - ATL Performance M odeling Environment
Exercises

Assignment 1.

Modify the programs for the 1O processor in architectural alternative 1 and the
sink processor in architectural alternative 2 so that the sink process takes 100
ns instead of 10,000 nrs. Use the post-processing tools to look at the results. Is
the performance of alternative 2 significantly better than alternative 1 in this
scenario?

Hint - look for the "cecompute 10000 POST_P1 " command in their
program files.

Assignment 2:

Devise atask alocation where instead of parallelizing the individual iterations
of the 2D fft operation across 4 processors, the entire operation is performed
on a single processor and subsequent iterations of the 2D fft operation are
pipelined to the remaining processors. Write programs to perform this task
dlocation on both architectural aternatives. Simulate and compare the
performance of this task allocation on each architecture to each other and to
the parallel task allocation. Which architecture and task allocation has the best
throughput? What happens to the latency of each 2D fft operation in the
pipelined task allocation?

Copyright 01995-1998 SCRA
See first page for copyright notice,
Distribution restrictions and disclaimer

