Methodology

Relnvemlng
Electronlc

Arcmlec(ure |ntvas(rucluve

DARPA @ Tri-Service

Token-Based Performance Modeling
Using VHDL

RASSP Education & Facilitation Program
Module 59

Version 3.00

Copyright & 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and may only
be used for non-commercial educational purposes. Any other use of this information without the express written permission of the
ATl is prohibited. Certain parts of this work belong to other copyright holders and are used with their permission. All information
contained, may be duplicated for non-commercial educational use only provided this copyright notice and the copyright
acknowledgements herein are included. No warranty of any kind is provided or implied, nor is any liability accepted regardless
of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457. Such
data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except as follows:
Certain parts of this work to other copyright holders and are used with their permission; This information contained herein may be
duplicated only for non-commercial educational use. Any vehicle, in which part or all of this data is incorporated into, shall carry
this notice .

Copyright & 1995-1999 SCRA 1

Copyright & 1995-1999 SCRA Page 1

See first page for copyrigh

t notice, distribution

restrictions and disclaimer.

Methodology

{E*ASSP‘B Rapid Prototyping Design

Design
Architecture Infra:

Process e sar
DARPA e Tri-Service Raythean + UCinc « ADL

REUSE DESIGN LIBRARIES AND DATABASE

Primarily Primarily
software VIRTUAL PROTOTYPE hardware
A A A A A
HW HW
Y Y pesion [Fas Y
SYSTEM FUNCTION HW & INTEG.
oer. [| pesen [sw & TEST 3
- PART. = i
SHYESW } pesion || cope
CODEQEGN ~ \
~ N\
~ \
Rl

@ormance Mode@

Copyright & 1995-1999 SCRA

This slide shows the application area for performance modeling. It will
be explained in more detail later in the module.

Copyright & 1995-1999 SCRA Page 2
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

‘Elegg,gg.cg Module Goals

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e To educate the general digital systems designer on the
benefits and theory of performance modeling, how
performance modeling is done using VHDL, and what
environments are available to automate the creation
and analysis of VHDL-based performance models

e Provide information on:
a Performance modeling objectives and definitions
a Performance modeling using VHDL
0 VHDL-based performance modeling environments
0 Hardware/Software codesign performance modeling
0 Mixed level modeling definitions and objectives
0 Mixed level modeling using VHDL
0 Mixed level modeling examples

Copyright & 1995-1999 SCRA 3

Copyright & 1995-1999 SCRA Page 3

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

‘Elegggglcg Module Outline

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Performance Modeling Introduction
0O Goals and Motivation
0 Definitions
o Performance Modeling in the Design Process
O Metrics

e Performance Modeling Theory
O Queuing Models
O Petri Nets
O Uninterpreted Models

e Non VHDL-Based Performance Modeling Tools

Copyright & 1995-1999 SCRA 4

Copyright & 1995-1999 SCRA Page 4
See first page for copyright notice, distribution
restrictions and disclaimer.

ASS

(3 Module Outline (Cont.)

DARPA @ Tri-Service

RASSP E&F
R Ui+ 01

e Techniques for Performance Modeling using
VHDL

O Hardware Performance Models

O Task Level HW/SW Codesign Performance Models
e VHDL-Based Performance Modeling Tools

O ADEPT

O Honeywell PML

O Viewlogic eArchitect

O LMC ATL Performance Modeling Library

e VHDL Performance Modeling Examples

Copyright & 1995-1999 SCRA 5

Copyright & 1995-1999 SCRA Page 5
See first page for copyright notice, distribution
restrictions and disclaimer.

RSoh :
Module Outline (Cont.)

esign
Architecture Infrastructure

DARPA e Tri-Service

RASSP E&F

SCRA * GT » UVA

e Mixed Level Modeling
O Mixed Level Modeling Objectives
O Mixed Level Modeling Approaches
O Mixed Level Modeling Examples

e Module Summary

Copyright & 1995-1999 SCRA

Copyright & 1995-1999 SCRA Page 6
See first page for copyright notice, distribution
restrictions and disclaimer.

RASSP .
Module Outline

esign
Architecture Infrastructure

DARPA e Tri-Service

RASSP E&F
SCRA « GT + UVA

Raytheon

e Performance Modeling Introduction

0O Goals and Motivation

O Definitions

o Performance Modeling in the Design Process
O Metrics

Performance Modeling Theory

Non VHDL-Based Performance Modeling Tools
Techniques for Performance Modeling using VHDL
VHDL-Based Performance Modeling Tools

VHDL Performance Modeling Examples

Mixed Level Modeling

Module Summary

Copyright & 1995-1999 SCRA

Copyright & 1995-1999 SCRA Page 7
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP)
A) Performance Modeling Goals

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Estimate the performance of a given system by
analyzing a high level model of the system
O Model needs to include as little detail as necessary
0 Shorter model development time
0 Shorter model simulation time
O Easier interpretation of the results
O Model needs to produce as accurate results as possible

O Increasing accuracy usually means increasing detail - a
conflict with the goal above

a Performance models often may not produce accurate
absolute results, but will produce accurate comparative
results with a similar model of another system alternative

0 Selecting the best candidate architecture can be performed
with an abstract performance model, but model must be
refined to ensure performance goals are met

Copyright & 1995-1999 SCRA 8

The goal of performance modeling is to analyze the performance model
of a system using a high-level model. The model needs to be at as high
(abstract) a level as possible to reduce model generation, verification,
and simulation time, but at a low enough level that accurate results are
obtained.

How to determine this level is not an easy process but is usually best
approached from the “to little detail” side down.

Abstract performance models may not give completely accurate
absolute results as in “this architecture will have a throughput of X jobs
per second,” but can give accurate comparative results as in
“architecture A has a 20% greater throughput than architecture B.”

Copyright & 1995-1999 SCRA Page 8
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) Performance Modeling Goals

Electronic
Architect

D

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Performance models are used for:

O Evaluating and comparing two or more design alternatives
(architecture selection)

a Hardware configuration
Q Software configuration
a Hardware/software partitioning
O Determining the number and size of components (system sizing)

0o Finding the system’s performance bottleneck (bottleneck
identification)

O Determining the optimum value of a parameter (system tuning)

O Characterizing the load on the system (workload
characterization)

O Predicting the system’s performance at future loads (forecasting)

Copyright & 1995-1999 SCRA 9

This list comes from many of the references, but mainly from [Jain91]

In this module, we are discussing the mainly the application of
performance modeling to the architecture selection process.

Copyright & 1995-1999 SCRA Page 9
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

[ASS‘B Performance Modeling

Electronic
eslgn

Sl 2 Motivation

DARPA @ Tri-Service

e Decisions made early in the
design process on
architecture features, e.g.;

O number and type of
processors,

O interconnection network
protocol and topology,

O amount of memory,

O amount of custom hardware,
O implementation technology,
O software architecture,

determine a significant

100%

80% r

60% - Cost Committed

20% - Cost Incurred

20% r

Percent of Total System Cost

Concept Design Testing Process

Engineering Planning portion of the design’s
Phases of the Product Development Cycle Ultimate cost

Time ———» e Performance modeling gives

early feedback on the effects
Copyright & 19951999 SCRA of these decisions 1

This graph shows that most of the final cost of a system is locked in
during the early phases of the design process when the architecture of
the system is selected. However, the cost incurred in designing and
producing the system does not reach its peak until the product is going
out the door. Therefore, spending some time (and money) looking at the
final cost of candidate architectures and their performance, early in the
design process can save a great deal.

Note that these curves will change some if performance modeling is
used in that more cost will be incurred early as design cost for the early
stages increases, and the cost committed early will be less as the actual
selection of the architecture is done later in the design cycle.

Copyright & 1995-1999 SCRA Page 10
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(ASS‘B Performance Modeling

Electronic
eslgn

: g
i Benefits RASSP £F

Raytheon » UCinc + ADL

DARPA @ Tri-Service

Cost of Design Errors)
Performance modeling:

e aids in the evaluation of
design alternatives,

| | e determines bottlenecks,

Requirements Design Implementation Test Manufacture overdeS|gn’ etc,
Design Error Manifestation & Elimination e captures design
Modeling No Modeling decisions and

assumptions,

e examines system
| | behavior at boundary
Requirements Design Implementation Test Manufacture con d |t| ons,

No Modeli - .
Cumulative Costs = o0od e provides a focal point for

early interaction of
system, hardware, and
software designers

Modeling

Requirements Design Implementation Test Manufacture .
Copyright & 1995-1999 SCRA [Hein96] ,,

This slide shows some of the benefits of performance modeling as seen
by some industrial users of the technique. Note that using performance
modeling results in design errors being manifested and eliminated
earlier in the design process where they are less costly. Also note that
initially, the cost of a design process with performance modeling is
higher, but the overall cost (area under the curve) is lower.

Copyright & 1995-1999 SCRA Page 11
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP))
L') Performance Modeling Risks

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA

Raytheon » UCinc + ADL

e Initial investment is high (more effort in design
space exploration before “real” design is started)
O Tools
O Training
O Model development
e There is a tendency to dive into the details

0O Engineering tendency to do depth-first rather than
breadth-first

O Management tendency to demand product (hardware &
software)
e Relevant standards do not exist (model
interoperability)

e Modeling effort tends to be throw-away (little
model reuse across different projects)

Copyright & 1995-1999 SCRA [Hein9s6] ,,

The initial investment in performance modeling is high in that it
increases the time spent in design space exploration before the design
of the chosen architecture is actually started. This is increased by the
fact that often, designers need to be trained to use the tools and
develop the models necessary for performance modeling. However, the
goal of performance modeling is to significantly reduce the detailed
design time and cost for the chosen system by eliminating costly
redesigns and design errors, thereby decreasing the overall design time
and cost.

Copyright & 1995-1999 SCRA Page 12
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
| Definitions

Design
Architecture " Infrastructure

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL
DARPA e Tri-Service

Architecture - the organization of a system in terms of
its components and how they are interconnected

O Architectural views of a system vary based on the
application, the nature of the system, and the level of
abstraction:

a For an embedded DSP multiprocessing system, the
architectural view might include the data flow graph of
the application software, the hardware components in
terms of processors, memory and interconnection
network, and the mapping of software tasks to
hardware processors

Q For a microprocessor, the architectural view might be a
register transfer level description of the processor’s
datapath

Copyright & 1995-1999 SCRA 13

The definition of architecture is different for different systems and
different levels of abstraction.

Copyright & 1995-1999 SCRA Page 13
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
| Definitions

A

W
Design

Architecture " Infrastructure

Rayih
DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA

Cing » ADL

)

Abstraction Level

An indication of the degree of detail specified about how a
function is to be implemented.

Architecture Selection

The analysis and selection of candidate architectures for a
particular system design.

Architecture Verification

An interactive, hierarchical process whose role is to verify
the functionality and detailed performance of a candidate
architecture using a combination of testbed hardware,

simulator(s), and or emulator(s) prior to detailed hardware
implementation.

Copyright & 1995-1999 SCRA

14

Architecture selection and architecture verification will be explained in
more detail later in the module.

Copyright & 1995-1999 SCRA Page 14
See first page for copyright notice, distribution

restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
Definitions (Cont.)

A
L™ q

RASSP E&F
SCRA* GT + UVA

Design
Architecture " Infrastructure

Raytheon « UCinc ADL
DARPA e Tri-Service

Behavioral Model

An abstract, high-level executable description which
expresses the function and timing characteristics of the
corresponding physical unit independent of any particular

implementation, especially devoid of specific internal
structure.

O Abstract Behavioral Model - models the component’s
interface above the pin level, often using complex data
types

O Detailed Behavioral Model - models the component’s
interface at the pin level

Copyright & 1995-1999 SCRA

15

All definitions of model types are consistent with the RASSP Taxonomy
[Hein97]

Copyright & 1995-1999 SCRA Page 15
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
Definitions (Cont.)

Design
ture Infrastructure

Architect RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

DARPA e Tri-Service

Bus Functional Model

Used to define the operation of a component with respect
to its surrounding environment. The interface between the
component and its environment are modeled in detail, even
though all of the functions internal to the component do
not have to be modeled, particularly not at the same level
of detail.

Co-Simulation

In the context of hardware/software co-simulation, this term
refers to the act of simulating the execution of software on
target hardware.

In the context of simulation technology, the term refers to
the act of cooperatively running multiple distinct
simulators concurrently with inter-process communication
between them. Each simulator is simulating a distinct
section or aspect of the target system.

Copyright & 1995-1999 SCRA 16

No notes necessary.

Copyright & 1995-1999 SCRA Page 16
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
Definitions (Cont.)

A

L™ q
RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

Design
Architecture " Infrastructure

DARPA e Tri-Service

Data Flow Graph (DFG)

A directed graph that depicts information flow between
signal-processing primitive operations as "arcs" and the
transforms of operations that are applied on the data as
"nodes."

Functional Model

A model that describes the data transformations made by a
system without describing a specific implementation

Gate Level Model

A model that describes the function, timing, and structure
of a component in terms of the interconnection of Boolean
logic gates or the corresponding primitives in an
implementation technology.

Copyright & 1995-1999 SCRA 17

No notes necessary.

Copyright & 1995-1999 SCRA Page 17
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
g g Definitions (Cont.)

A

L™ q
RASSP E&F
SCRA* GT + UVA

Rayth,

Cing » ADL

Hardware/Software Codesign

The joint development and verification of both hardware
and software via simulation/emulation from the

hardware/software partitioning of functionality through
design release.

Hierarchy

A multi-level classification system that supports
aggregation of components into larger components and
decomposition of components into lower level
components.

Implementation Model

A model that reflects the design of a specific physical
implementation of a hardware component.

Copyright & 1995-1999 SCRA

18

No notes necessary.

Copyright @ 1995-1999 SCRA

Page 18
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Bﬁé&i"} Performance Modeling

Electronic

e BT Definitions (Cont.)

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

Interpreted Model

A model that includes both the timing and the function of a
system and associates actual values and transformations
with data moving through the system (behavioral model)

Instruction Set Architecture (ISA)

The externally visible state of a programmable processor
and the functions that the processor can perform. An ISA
model of a processor will execute any machine program for
that processor with same results as the physical machine,
as long as all input stimuli are sent to the model on the same
simulated clock cycle as they arrive at the real processor.

Logic Level Model

A model that describes a system in terms of Boolean logic
functions and simple memory devices such as flip-flops.
Logic level models and gate level models are at an
equivalent level of abstraction.

Copyright & 1995-1999 SCRA 19

No notes necessary.

Copyright & 1995-1999 SCRA Page 19
See first page for copyright notice, distribution
restrictions and disclaimer.

Architect

Reinventing

Electronic
Design

ture Infrastructure

DARPA e Tri-Service

Methodology

RASSFY) Performance Modeling

A

L™ q
RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

Definitions (Cont.)

Model

A representation of a real system that does not include all
of the real system’s detail.

Mixed Level Model
A model composed of components described at different
levels of abstraction, e.g. uninterpreted and interpreted.
Partitioning
The process of decomposing a complex system or
component into its subcomponents.
Performance

A collection of measures of quality of a design that relate to
the timeliness of the system in reacting to stimuli.
Measures associated with performance include response
time, throughput, and utilization.

Copyright & 1995-1999 SCRA 20

No notes necessary.

Copyright @ 1995-1999 SCRA

Page 20

See first page for copyright notice, distribution

restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
Definitions (Cont.)

Design
ture Infrastructure

Architect RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

DARPA e Tri-Service

Performance Model

A model which exhibits the timing characteristics of a
design in such detail that performance metrics can be
obtained from it. Further details such as functionality are
typically not present (uninterpreted model).

Processor-Memory-Switch Level Model

A model that describes a system in terms of processors,
memories, and their interconnections such as buses or
networks.

Register Transfer Level (RTL) Model

A model that describes a system in terms of registers,
combinational circuitry, low level buses, and control
circuits, usually implemented as finite state machines.

Copyright & 1995-1999 SCRA 21

No notes necessary.

Copyright & 1995-1999 SCRA Page 21
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
Definitions (Cont.)

A

L™ q
RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

Design
Architecture " Infrastructure

DARPA e Tri-Service

Requirement

A description of the necessary and sufficient qualities,
quantities, and functions that a system or component must
exhibit.

Specification

A set of information which describes how a specific component
or system meets its requirements.

Structural Model
A model that represents a system or component in terms of the
interconnection topology of the set of internal components.
System Architecture:

The major subsystems which makeup a system and the
topology of their interconnection. Usually expressed at the RTL
level or higher.

Copyright & 1995-1999 SCRA 22

No notes necessary.

Copyright & 1995-1999 SCRA Page 22
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF"} Performance Modeling
Definitions (Cont.)

Design
ture Infrastructure

Architect RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

DARPA e Tri-Service

System Definition

The process of analyzing customer requirements,
performing functional analysis and system synthesis, and
performing system level trade-offs to determine the
functional and performance specifications for each
subsystem.

Token

In the context of simulation-based performance modeling,
an abstract representation of a packet of data in a system.
This representation may contain information about the
amount of data it represents, the data’s source,
destination, and its route, but usually doesn’t contain a
representation of the data’s value.

In the context of a Petri Net, a representation that the
conditions described by a “place” in the Petri Net are
satisfied.

Copyright & 1995-1999 SCRA 23

No notes necessary.

Copyright & 1995-1999 SCRA Page 23
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Bﬁé&i"} Performance Modeling
Definitions (Cont.)

Electronic

Design
ture Infrastructure RASSP E&F
SCRA « GT » UVA

Raytheon » UCing + ADL

Architect

DARPA e Tri-Service

Top-Down Design

A design process which starts with a high level, abstract
model of a system which is used for design space
exploration that is then refined into an implementation level
model by an iterative process of partitioning the system
and refining the resulting subsystems.

Uninterpreted Model
A performance model which represents a system by
modeling the flow of information within the system as
tokens without modeling the actual data values or
transformations.

Virtual Prototype
The set of simulation models that comprises a prototype
processor. When exercised, the virtual prototype should
behave (function and performance) as closely as possible
to its physical counterpart.

Copyright & 1995-1999 SCRA

2

No notes necessary.

Copyright & 1995-1999 SCRA Page 24
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
{E*ASSP\ Performance Modeling inthe (£ &
lectronic
Design -
it g RASSP Design Process e
DARPA e Tri-Service P
REUSE DESIGN LIBRARIES AND DATABASE
A A A A A A A
' Y
HW HW
Y Y HwW oesion [T Fae [T Y
sysTeM | L | FUNCTIONAL |_ A / INTEG.
DEF. ™| besieN 7 7 > erest >
sw sw
> swW M besion [T[cooe
g L c
2c 28
g2 28
System Architecture 52 S5 Detailed
Definition Definition <9 <> Design
Performance Modeling Area of Application
Copyright & 1995-1999 SCRA [Hein96] ..

This slide shows the RASSP (Rapid Prototyping of Application Specific
Signal Processors) design process and where performance modeling
fits into it. This includes the processes of System Definition, Architecture
Definition, and portions of Detailed Design. Note that Architecture
Definition encompasses Functional Design and the processes of
Architectural Selection Architectural Verification.

How performance modeling is used within these processes is covered in
the following slides...

Copyright & 1995-1999 SCRA Page 25

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASSP e e
(. The System Definition Process

DARPA @ Tri-Service

Customer
Requirements,

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Requirements analysis and functional
analysis do not require the use of
performance models although they
may be applied at this point

o System e System partitioning consists of
quLr‘lgﬁ,”S‘fS”ts functional allocation and performance
¢ verification
- O This process overlaps with the
Functional architecture selection process
Analysis . X .
¢ e Performance verification includes
developing metrics and models,
System executing and analyzing results
Partitioning
0o Performance models can be used at
¢ this stage
Architecture O Other tools such as spreadsheets can
Definition be used for performance verification
Copyright & 1995-1999 SCRA [Hein96] ,.

This slide presents the functions in the system definition process, which
begins with customer requirements (which may be executable) and
flows into the architecture definition process.

Performance models are not required at the upper levels of the system
definition process although they can be applied at any point. In the
performance verification phase, some type of performance modeling is
required for all but the most trivial of systems.

Copyright & 1995-1999 SCRA Page 26

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF") The Architecture Definition
Process

Design
Avchitecture * Unfastructure RASSP E&F
SCRA » GT » UVA
Raythaan e UCinc » ADL
DARPA e Tri-Service

e Architecture Definition consists of:

System Definition o Defining and evaluating architecture

i alternatives
O Selecting one of more for detailed
Functional | e Refine Requirements evaluation
i Refine Algorith . . .
Design | < Refine Algorihms o Validating function and performance

of candidates

) .
Arohitecture | @ Tradeoffs e Performance models are heavily
* HIS Allocation used during this process for:

Selection o Simulation/Analysis
o Initial architectural evaluation

Y Veril Against O Validation/verification of selected
. e \Verl ainst B H
Architecture | * pot B architectures against performance
Verification | 4 provide Architecture requirements
Framework for -
Detailed Design O Providing hardware/software
y architecture framework for detailed
Detailed Design design activities (mixed level
modeling)
Copyright & 1995-1999 SCRA [Hein9e6] ,,

The architecture definition process is fed by the system definition
process and in turn feeds into the detailed design process.

Performance models can be used in the functional design process to
help refine requirements and algorithms. They most definitely are used
in the architecture selection and verification process for evaluation.

Note that this slide show one view of the architecture definition process,
but it can be pursued in other ways (more of an iterative process, less of
a waterfall, etc.)

Copyright & 1995-1999 SCRA Page 27
See first page for copyright notice, distribution
restrictions and disclaimer.

ASSP . .
(The Detailed Design Process

DARPA @ Tri-Service

e The detailed design process
transforms architectural description
into hardware and software
components

¢ ¢ e The performance model provides a
Hardware Support & Target template for the architecture and a

Modules Software performance budget

Design/Synthesi G ti .
esion ‘Ly" esIs eneia lon e The architectural performance model

can be back annotated with the

performance information from the
detailed simulation

Integration

P’y O Verify the performance of the overall
Test system with actual module
performance data

O Mixed level modeling can be used to
perform this process by cosimulating
detailed models within the high level
performance model

Copyright & 1995-1999 SCRA [Hein96] ,,

Architecture
Definition

This slide shows the detailed design process and how performance
modeling is used in it. Note that this is where mixed level modeling, the
notion of cosimulating performance and behavioral models, is
introduced.

Copyright & 1995-1999 SCRA Page 28
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Relnvemlng
Electromc

Arcmlec(ure |ntvaslrucluve

A Taxonomy of Models

DARPA @ Tri-Service

Independently Describe: 1) Resolution of INTERNAL (kernel) details
2) Representation of EXTERNAL (Interface) details
In terms of:
Temporal Resolution

High Res. Gate Clock Cycle Instr. Cycle System Event Low Res.
Propagation (pS) (10s of nS) (10s of us) (10s of mS)
Data Value Resolution
< ' ' ' '
T T T T
High Res. Bit true Value True Composite Token Low Res.
(0b01101) (13) (13,req,(2.33, j89.2)) (Blue)
Functional Resolution
< ' ' '
} } 1
High Res. All functions modeled Some functions not modeled No functions Low Res.
(Full-functional) (Interface-functional) modeled
Structural Resolution
1 1 1
High Res. Structural Block diagram Single block box Low Res.
Gate netlist Major blocks (No implementation info)
Programming Level (Full implementation) (Some implementation info)
1 1 1 1 } }
High Res. Micro- Assembly HLL (Ada,C) DSP primitive Major Not Low Res.
code code Statements Block-oriented ~modes Programmable

(fmul r1,r2) (i:=i+1) (FFT(a,b,c)) (Search,Track) (Pure HW)
(Note: Low resolution of details = High level of abstraction
High resolution of details = Low level of abstraction

Copyright & 1995-1999 SCRA Copyright © 1997-98 RASSP Taxonomy Working Group used with permission [Hein97] 29

This slide shows the 5 elements of model characteristics that
determines its place in the overall taxonomy of models. The position on

each scale that a model occupies determines what type of model it is
classified as.

This slide is taken from the RASSP taxonomy document.

Copyright & 1995-1999 SCRA Page 29
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

A
L™ q

RASSP E&F
SCRA « GT + UVA

ASSP
(~ Performance Model Taxonomy

DARPA @ Tri-Service

® General performance models contain mainly timing and external
structural information at any level

Internal External
Temporal <GS > < G >
Data Value o >
Functional <€ X > >
Structural >4
SW Programming Level P ——

® Token-based performance models generally have abstract timing and
external structural information

Symbol Key Internal External
- Model resolves information at specific level < D > < O >
Model resolves information at any of the level Temporal
odel resolves information at any of the levels v
S panned, case dependent Data Value > o>
———— Model optionally resolves information at levels Eunctional 4
spanned Structural 0
————— Model resolves partial information at levels spanned, ructura 7 ——
such as control but not data values or functionality
X Model does not contain information on attribute SW Programming Level | —
Copyright & 1995-1999 SCRA Copyright © 1997-98 RASSP Taxonomy Working Group used with permission [Hein97] 5,

General performance models have temporal data (both internal and
external) that can be at essentially any level of abstraction. They have
no internal data value information, and only high level external data
value information (e.g. memory address, size, etc.), no functional
information and only external structural information. Software can be
represented at any level.

Token-based performance models have higher levels of timing
information (e.g. at the task level or data packet level, not instruction
level or individual word level), and higher levels of external structure.
Software is represented at the task level and above.

Copyright & 1995-1999 SCRA Page 30
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASSP . .
(~ Performance Modeling Metrics

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e The most common performance metrics
measured from an individual performance model
are:

O Latency
O Throughput
o Utilization
O Response Time
e Often it is desirable to study how these metrics
vary with system attributes such as:
O Number of processors
O Memory size
O Interconnection bandwidth
O Clock speed

Copyright & 1995-1999 SCRA 31

This section will present the classical performance modeling metrics of
latency, throughput, utilization, and others.

Copyright & 1995-1999 SCRA Page 31
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Relnventlng
Electronlc
‘ e5|gn

DARPA @ Tri-Service

Late n Cy RASSP E&F

SCRA * GT » UVA
Raytheon » UCinc + ADL

e The (average) time measured between the
occurrence of events at a particular point or
points in a model - e.g. the passing of a token

O Intersignal - the time between a token passing two
different points in a model - module inputs to outputs

O Intrasignal - the time between a token passing the same

point
Time: t,=43 ns t,=50 ns
Tokens: @
t,=25ns t,=29 ns
Module 1 Module 2 Module 3

Intrasignal Latency at the input=
(43 ns - 25 ns)=18 ns

Intrasignal Latency at the output=
(50 ns - 29 ns)=21 ns

Intersignal Latency between the input and the output= [(29 ns - 25 ns) + (50 ns - 43 ns)]/2 = 4.5 ns

Copyright & 1995-1999 SCRA 32

Latency is the time between two events.

Usually, latency is the time between two events on different signals, or
in different parts of the model, e.g., the time between the arrival of a
memory request and a memory access - memory latency, or the time
between the sending and receiving of a message - communications
latency. For lack of a better term, this is called intersignal latency.

Sometimes however, the latency between events on the same signal is
important, e.g., the time between subsequent memory accesses or the
time between the processing of RADAR pulses by a SAR system. This

is termed intrasignal latency.

Copyright & 1995-1999 SCRA Page 32

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

‘E'eg;*.gn'cg Throughput

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e The (average) number of tokens per unit time
passing a particular point in a model

0O Equal to 1/intrasignal Latency at that point
O Throughput at module/system input = arrival rate
O Throughput at module/system output = completion rate
e When given as a requirement or specification, it
usually implies that arrival rate = completion rate
e Example:

O Requirement that an edge detection system have a
throughput rate of 30 images a second

0 The system must be able to consume 30 images a
second and,

0 Produce representations of the edges in each of the
images consumed, again at a rate of 30 images a
second.

Copyright & 1995-1999 SCRA

33

Throughput is basically 1/some type of latency.

Arrival rate is 1/ the intrasignal latency at the system’s input, Completion
rate is 1/ the intrasignal latency at the system’s output.

When used as a requirement, throughput usually means completion
rate.

Copyright & 1995-1999 SCRA Page 33
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

‘E'eg;r.gn-cg Utilization

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e The fraction (percentage) of time that a module or
system is busy - e.g. contains a token

Total Observed Time = 60 ns

Time: t,=43 ns t,=50 ns
Tokens: @
t,=25ns t,=29 ns
Module 1 Module 2 ——>| Module 3

= (29ns - 25ns) +(50ns - 43ns) .
60ns

Utilizatiol 100% =18.33%

Copyright & 1995-1999 SCRA 34

Utilization is simply the percentage of time (that the system is simulated
for) that the system is actually busy i.e., it contains a token.

Copyright & 1995-1999 SCRA Page 34
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

‘E'egg,gglcg Utilization (Cont.)

DARPA. Tri-Service

e Activity Time Lines
O Display individual device utilization as horizontal bar graphs
0O Useful in visualizing idle time and concurrency

Daribores
Idle time Busy time

o ¢ \ £ X\
/,mm.mlll il el 1l
Monitored
Devices T (TASE]_HONITOR
\ NIB LR RTINSt
TAIEA WONITOR 3
. 1 A

| L 1 1 H | l
Ln ||:m:| .-m n mun 'Iﬂ n bﬂln RELD ma RN MELD VIEHLD

Copyright & 1995-1999 SCRA | - - _ .

Activity time lines are a helpful way to visualize utilization, especially in a
system where some concurrency is possible because they allow that
concurrency to be visualized. This helps to see points where
concurrency is or isn’t happening

Copyright & 1995-1999 SCRA Page 35
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

‘Eleé:;rlgﬂlcg Response TI me

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e The interval between an input to the system and
the system’s resulting output

0o Equal to the intersignal latency between the system’s
input and the system’s output

User’'s System’s
request response

| L.

‘(— Response time —>|

Copyright & 1995-1999 SCRA 36

Response time is a metric that is sometimes used in “user driven
systems” because it measures how long the user must wait from their
input to the desired output.

Copyright & 1995-1999 SCRA Page 36
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Other Metrics

e5|gn
(

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

DARPA @ Tri-Service

e Multiprocessor System Speedup - the ratio of the
uniprocessor runtime to the n processor runtime

Sy = T Where S, = speedup, T, = execution time on n processors,
"~ /T, and T, = execution time on 1 processor

Multiprocessor Speedup

8 /

—o—|deal
Actual

Speedup (Efficiency)
(2]

1 2 3 4 5 6 7 8

Number of Processors

e Uniprocessor System Efficiency - the ratio of the achieved
throughput to the maximum achievable throughput

Copyright & 1995-1999 SCRA 14

Other metrics typically used in system performance analysis include

speedup for a multiprocessor system, and efficiency for a uniprocessor
system (these two are related in that they are both basically the ratio of
the achieved throughput to the theoretical maximum throughput, or visa

versa).

Copyright & 1995-1999 SCRA Page 37

See first page for copyright notice, distribution
restrictions and disclaimer.

RASSP .
Module Outline

esign
Architecture Infrastructure

RASSP E&F

SCRA * GT » UVA

DARPA e Tri-Service

e Performance Modeling Introduction

e Performance Modeling Theory
0 Queuing Models
Q Petri Nets
0 Uninterpreted Models

Non VHDL-Based Performance Modeling Tools
Techniques for Performance Modeling using VHDL
VHDL Based Performance Modeling Tools

VHDL Performance Modeling Examples

Mixed Level Modeling

Module Summary

Copyright & 1995-1999 SCRA 38

Module Outline

Copyright & 1995-1999 SCRA Page 38
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASSP ;
[Performance Modeling Theory

DARPA @ Tri-Service

RASSP E&F

GT e VA
Ryt ICinc « ADL

e Techniques for performance analysis:
O Analytical
0 Markov models
0 Queuing models
a Petri Nets
O Simulation-Based
0 Queuing network models
a Petri Nets
0 Uninterpreted models

O Simulation-based models may be implemented in a

general programming language (C or C++) or a hardware
description language (VHDL)

Copyright & 1995-1999 SCRA

39

There are two basic techniques for performance modeling, analytical,

and simulation-based. The advantages and disadvantages of each will
be explained in each section.

Token-based performance modeling using VHDL is a simulation-based
technique, but the analytical techniques will be introduced here to
provide background for the simulation-based techniques. This section of

the module can be omitted from discussion if this background material is
not required for the given audience.

Copyright & 1995-1999 SCRA Page 39
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP'} Analytical Performance
| Modeling

Design
Avchitecture * Unfastructure RASSP E&F
SCRA » GT » UVA
Raythaan e UCinc » ADL

DARPA e Tri-Service

e Constructing a mathematical model of the
system behavior and solving it for the metrics of
interest

e Analytic models become intractable unless they
are small and at a high level of detail

e However, small analytical models:

O can usually be solved easily and generate accurate
results for the general case

O generate results that have a better predictive value than
those generated by simulation
e In addition, construction of large analytic models
can give good insight into the system even if
they are too difficult to solve

Copyright & 1995-1999 SCRA 40

Analytical performance modeling techniques consist of constructing and
solving a mathematical model of the system. Their main advantage is
their accuracy and the speed with which they can be solved. Their main
disadvantage is the fact that they become intractable for all but the
smallest systems.

[Kant92]

Copyright & 1995-1999 SCRA Page 40
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP\ Simulation-based Performance

Electronic

Design H n
Arch\(t‘ﬂuf\éjlnhas(rucluve 0 e I g

DARPA e Tri-Service

RASSP E&F
- VA

Raytheor inc « ADL

e Simulation models must be constructed at the
appropriate level of detail

e Simulation models generate a lot of raw data that
must be analyzed using statistical techniques

e Careful experiment design is essential to reduce
simulation time while gaining accurate results

e Simulation modeling is more flexible and general
than analytic techniques and can be applied to
models with more detail

e Simulation modeling allows observation of
transient behavior that may be important to
overall system performance

Copyright & 1995-1999 SCRA a1

Simulation-based techniques consist of constructing and executing a
model of the system in a high-level programming language or hardware
description language (hdl). Simulation-based models are more generally
applicable and can handle larger systems. The simulation execution
time can become excessive for very complex systems however, if the
level of detail of the model becomes too high. Unlike analytical models,
which just give indications of system steady-state behavior, simulation-
based models allow observation of the transient behavior of the system
which may be important.

In addition, simulation-based models typically generate large amounts of
data that have to be analyzed using statistical techniques.

[Kant92]

Copyright & 1995-1999 SCRA Page 41
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS

(RE.QQ\ Hybrid Modeling

DARPA @ Tri-Service

RASSP E&F

Ray umu B ur::»‘ oo ADI

e Hybrid modeling is what the performance
modeling community calls the mixing of
analytical and simulation-based modeling
techniques

e A portion of the system is modeled analytically
and the metrics extracted are used as input
parameters to a simulation model

e Hybrid modeling can reduce the number of
events that must be simulated, thus reducing
simulation time

e Analytic modeling of portions of the system allow
faster analysis of trade-offs within that portion

Copyright & 1995-1999 SCRA 42

Hybrid modeling is the term used in the queuing model and Petri Net
community to describe mixed analytical and simulation based
performance modeling. It is a somewhat overloaded term in that hybrid
modeling has also been used to describe the mixture of performance
and behavioral models although the preferred term for that is “mixed
level modeling.”

Hybrid modeling attempts to incorporate the benefits of both analytical
and simulation-based modeling techniques.

Copyright & 1995-1999 SCRA Page 42

See first page for copyright notice, distribution
restrictions and disclaimer.

Architectt

DARPA e Tri-Service

Methodology

RASSF:B Analytical Performance

Reinventing
Electronic
Design

ure Infrastructure

Rayth,

Modeling Definitions ’f‘&

(Cinc » ADL

e Poisson process - a stochastic (random) process
which describes arrivals of jobs to a queue or
departures of jobs from a server

O Occurrences of events during non-overlapping intervals
of time are independent

O Distribution of events are exponential: Ft(to) =1- e It
O For a small Dt, the probability of an event during the
interval is | Dt
e Markov process - a state-based model of a
system which obeys the “memoryless property”
O All past state information is summarized in the present
state

O How long the system has been in the present state does
not determine when it will transition to the next state
(Poisson process)

0

Copyright & 1995-1999 SCRA

43

Most analytical performance modeling techniques are based on a
Poisson process. This is a stochastic process in which the distribution of
events are exponential and occurrences of events in non-overlapping
time intervals are independent. Because of this property, the probability
that an event occurs in a small interval of time is proportional to the
probability distribution.

The Markov model is the basic modeling paradigm. A Markov model is a
state based model where the probability of transitioning from one state
to another is a Poisson process. This allows the model to be easily
solved as will be seen.

Copyright @ 1995-1999 SCRA

Page 43

See first page for copyright notice, distribution

restrictions and disclaimer.

ASS

(3 Markov Models

DARPA @ Tri-Service

RASSP E&F
< G+ 01

Ryt

e Example - consider the reliability analysis of a
system that has two states, operational and failed

O Failure rate is exponential with rate | failur%
our

O Repair rate is exponential with rate mrepair%
our

Balance Equations:

P(entering a state) + P(leaving a state) = 0
3

ark =1

n=0

m m
IPo+mP=0 PO: Given:
| +m iven:
-nPE+1P5=0 :;20005
| =
— Po = 99.95%
Po+ Pr=1 P | +m Pe = 0.05%

Copyright & 1995-1999 SCRA 44

This simple two state example (even though it is derived from reliability
analysis) shows how a Markov model is solved.

Balance equations that are derived from the fact that the sum of all
probabilities entering a state must be equal to all probabilities leaving
that state and all probabilities must sum to 1. These balance equations
can then be solved to determine the probability of being in each state.

Copyright & 1995-1999 SCRA Page 44
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Queuing Models
U

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

Queue Server
A(t)
_
Customer/job ‘ ‘ ‘ ‘ Customer/job
arrivals departures
Notation:
A/B/m/K

A - interarrival time distribution
B - service time distribution
m - the number of servers

K - the storage capacity of the queue (default = ¥)

Distributions:
G - General
Gl - General with iid (independent and identically distributed) characteristic
D - deterministic (fixed)
M - Markovian (exponential)

Copyright & 1995-1999 SCRA 45

This slide describes the convention with which queues are specified.

The discussion here will be limited to M/M queues since they can be
described as Markov models, as will be shown.

iid - independent and identically distributed

[Cassandras93] has probably the best description of queuing networks
and how they can be analyzed as Markov models, but [Sauer81] is also
good and has some good examples.

Copyright & 1995-1999 SCRA Page 45
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS .
(\ Queuing Models (Cont.)

DARPA @ Tri-Service

— ‘ ‘ ‘ ‘ @— Closed Queuing System

n customers ® No external arrivals or departures
® Fixed customer (job) population of N

(N - n) customers

—(Il —
Open Queuing System
® External arrivals or departures allowed
Out ® Infinite customer (job) population
" NEOEIISO,
Copyright & 1995-1999 SCRA 46

Both open and closed queuing networks can be analyzed, but there
must be some restrictions on the arrivals and departures in an open
queuing network so that it may be analyzed using these techniques.

Copyright & 1995-1999 SCRA Page 46
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP
Reinventing
Electronlc
e5|gn

DARPA @ Tri-Service

Analysis of a Single Open
Sl 2 Queue

RASSP E&F
oo+ Ui ADL

Rayth

M/M/1 Queue

Arrival rate = |

- —]
Service rate = m

—(—

Can be modeled as a Markov
birth-death process
| I

o0

I
Oue

|
(i), (i) m(iﬂlm

m m m m

Balance Equation: i=1:

- nP(j)- 1 P(j)+I P(j- 1) +nP(j+1) =0 FOri=Li (m+1)P) =1 P(0) +nP(2)
Thus: @ 6 ~

m+1 P(j)=IP(j- 1) +nP(j+1) IP@+ WEEEP(O) =1 P(0) +|rTP(2)

nmP@)-1P0O)=0 In general: P(2) :ap(l)

| P(n)=—P(n-1),n=123,...
P()=—P(0) m

8

P(n) = gmg P(0)

Copyright & 1995-1999 SCRA a7

This slides shows the analysis if a single queue if infinite size with
exponential arrival and service rates. As shown, the queue can be
modeled with a Markov birth-death process. This allows the steady state
behavior of the queue to be modeled analytically. Note that the service
rate must be greater than the arrival rate for the model to be stable.

Copyright & 1995-1999 SCRA Page 47

See first page for copyright notice, distribution
restrictions and disclaimer.

[ASS'B Analysis of a Single Open
Sl 2 Queue (Cont.)
Balance Equation:
¥
a P(n=1
n=0
a0
ag-=P0O=1
n=0 %] fora geometric progression:
Thus: é_a':l—0<|a|<1
i=0
1_ r P(O) ! Utilization: |
m U=1- P(0)=E=r
o
P(O) =1 F’] where I =I— is called the traffic intensity
m
note that the system is only stable if I < 1

This is calculation of utilization of the server in the single queue system.

Copyright & 1995-1999 SCRA Page 48
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(ASS‘B Analysis of a Single Open Al
Queue (Cont.) o

Desi an
ecture S(
Raythaan e UCinc » ADL

DARPA @ Tri-Service

Mean number of jobs in the system
(expected value of n):

¥ ¥ ¥
o o o
E[nl=a nP(n)=a nPO)r"=gqn@-r)r"=——
n=1 n=1 n=1
Mean response time:
Little’s Law: Mean no. jobs in the system = arrival rate X Mean response time

E[n] =1E[r]
E[r] = E[n] er 0l }{n

-rgl 1o

Mean number of jobs in the queue:

E[n]—a(n DP(n) = a(n DA-r)r’

n=1

Copyright & 1995-1999 SCRA 49

This is the calculation of mean number of jobs in the system, mean
response time, and mean number of jobs in the queue. Note that this
slide introduces Little’s Law, an important theorem in queue analysis.

Copyright & 1995-1999 SCRA Page 49
See first page for copyright notice, distribution
restrictions and disclaimer.

RASSF"} Single Queue Analysis
Example

Design
Architecture " Infrastructure

DARPA e Tri-Service

e Consider a network router modeled as an M/M/1
queue:

O Arrival rate | = 1000 packets per second
O Routing takes an average of 150 ms m= 1/150 ns = 6666 pps

Router utilization: U =r =—="—-=15%

1000
e 0.176
. 1000 '
t-r 1 6666

I ooes =176.5ns

;T 2.1000
-r 1 6666

Mean number of packets in the router: E[n] =

Mean time spent in the router: E[I‘] =

Copyright & 1995-1999 SCRA 50

This is an example of how a real life system can be analyzed as a
M/M/1 queue. Note that the analysis of a system with a limited queue
size (M/M/1/N), which covers more real-life systems, is equally simple.

Copyright & 1995-1999 SCRA Page 50
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{éﬁéﬁn‘;’ Analysis of a Single Queue

Electronic
eslgn

et B with Multiple Servers Rasse car

Raytheon » UCinc + ADL

DARPA e Tri-Service

M/M/m Queue

/D m servers

Arrival rate = | 5 ‘ ‘ ‘

Service rate = m

(o))L o) e (ml) (m) (m+12

m 2m 3m (m-Dm mm

o -1
Probability of zero mr)™ %l (mr)" U
jobs in the system: P(0) = e‘|_+ (mr) g (mr) G

g€ m@-r) & on g

(mr)"
Probability of n P(O) nl ,n<m
jobs in the system: ~ P(n) = .
P(0) ,n3m
Copyright & 1995-1999 SCRA . 51

This is the analysis if an M/M/n system, one with a single exponential
gueue but multiple servers, e.g. a multiprocessor system for transaction
processing.

Copyright & 1995-1999 SCRA Page 51
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(I‘?ASSP
Felectrone”

Design
hitecture Infrastructure

Analysis of a Single Queue
with Multiple Servers (Cont.)

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

M/M/m Queue

Arrival rate = |

- —]
Service rate = m

Probability of jobs in the queue: P(3 m jobs) = _(mr)” P(0) =d

mi(1- r)
Mean number of jobs in the system: E[n]=mr +rd/(1- r)

_ _1 d o
Mean response time: E[r]=—gl+ ——=
m ma-r)g

Utilization of each server: =r =|
ilizati ver: U =71 %mm)

Copyright & 1995-1999 SCRA

52

This is the remainder of the analysis.

Copyright & 1995-1999 SCRA Page 52

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP Single Queue/Multiple Server

Electronic

et Analysis Example

DARPA e Tri-Service

e Consider a network of three computers in a bank
transaction processing center modeled as an M/M/3
queue:

O Arrival rate | =50 transactions per second
O Processing takes an average of 45 ms m= 1/45 ms = 22.22 tps

Computer utilization: U =1 = l— = i =75%
mm 3" 22.22
Probability of all A 4 3 - 1 . 271
computers being idle P(0): P(0) = %ﬁ (3”0.75) + (3 0.75) + (3" 0.75) E
& 3(1-0.75) 1 2 o}

= [7.5938+ 2.25+ 2.5313] " = 8.0808%

Probability of (mr)m
jobs in the queue: d =

e 3
P(0) = 307 0.080808 = 61.3636%

mi(1- 1) 3(1- 0.75)

Copyright & 1995-1999 SCRA 53

An example of an M/M/n queue model.

Copyright & 1995-1999 SCRA Page 53
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP Single Queue/Multiple Server

gy - I
e Analysis Example (Cont.) C

Raythean » UCinc + ADL
DARPA e Tri-Service

Mean number of i’
transactions in the system: E[n] =mr + rd__ 3 0.75+w

1-r) 1- 0.75
= 2.25+1.8409 = 4.0909

Mean response time: E[r] = —g —Q
ml- r)g
1 0 613636 0

=81.826 ms
22 22 3(1 0.75)

Copyright & 1995-1999 SCRA

54

M/M/n example continued.

Copyright & 1995-1999 SCRA Page 54
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP\ Product Form Queuing
| Networks

Design
ure Infrastructure

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

Architectt

DARPA e Tri-Service

= I Ty e 1w

Utilization of ith server: I'; = %n

Probability of n; jobs in the ith queue: = (1- r i)r in‘

Probability of queue lengths of M queues:
P(nl,nz,n3,---nM) = (1' rl)rlnl(l_ I’3)I’ 3n3(1' rs)r3n3"'(1' r M)r MnM
= Pl(nl)Pz(nz)Ps(ns)'“ PM (nm)

In general: where G(N) is a normalizing constant which is
a function of the number of jobs in the system
1 N
P(n,n,ng,---ny) =———Q f,(n)) andf;(n;) is a function of the jobs at the ith
G (N) i=1 server
Copyright & 1995-1999 SCRA 55

This is a brief presentation of the analysis of a chain of M/M/1 queues.
Note the form that the solution takes is the general form of the solution
of a closed network of M/M/1 queues. Queuing networks whose solution
takes this form are called “product form networks.”

Copyright & 1995-1999 SCRA Page 55
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP\ Product Form Queuing
S Network Example

Design
Architecture Infrastructure

n,=(N - n,) jobs

amOalll

DARPA e Tri-Service

n, jobs

m m m m
ORCRCHESD

1 -
P(nl,nz)zm(ﬁlnl m?)

where G(N)=m'""*-m"*

Copyright & 1995-1999 SCRA 56

This is an example of the solution of a closed network of M/M/1 queues.
Note how the solution takes the general product form.

Copyright & 1995-1999 SCRA Page 56
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) Analysis of Complex Queuing

Electronic

Arcm(%umum N etWO r kS JRA}:SI" EaF

Rayth, (Cinc « ADL

DARPA e Tri-Service

e In general product form queuing networks can be
analytically solved if they are small enough

e There are many restrictions on queuing networks
for them to have a product form solution:
O Limited types of service disciplines
0O A single job class per queue
O Limited types of service time distributions
O Service time dependent only on queue length
O Exponential arrival processes for open networks

e Complex queuing networks can be solved by
numerical analysis or event-driven simulation

Copyright & 1995-1999 SCRA 57

Product form queuing networks have a very mathematically “clean”
solution, but there are many restrictions on the queuing networks such
that they are “product form networks.”

Note that complex queuing networks can be solved numerically or by
event driven simulation. This is the basis of many performance tools like
SES Workbench, Extend, Foresight, etc.

Copyright & 1995-1999 SCRA Page 57

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS

(RHQ:B Petri Nets

DARPA @ Tri-Service

e Performance models (as opposed to spreadsheets
or simple hand calculations) are necessary to
analyze systems which embody one or both of
these attributes:

0 contention for resources
O synchronization between concurrent activities

e Queuing models are usually sufficient for
modeling systems that exhibit the first attribute,
but not the second

e Petri Nets, outlined by Carl Adam Petri in 1962, are
an effective method for modeling systems which
exhibit both attributes

Copyright & 1995-1999 SCRA 58

For simple systems that do not exhibit concurrency and contention,
detailed performance modeling may not be necessary, a simple “spread
sheet” approach might suffice. For systems that exhibit concurrency,
and contention (like the transaction system example), queuing models
are applicable. However, for systems that exhibit synchronization
between concurrent activities, queuing models are not adequate.

Petri Nets, developed in 1962, are suited to modeling systems that have
concurrency, contention, and synchronization.

The major reference for Petri Nets is the paper by Murata [Murata89],
but [Cassandras93] is a good text reference.

Copyright & 1995-1999 SCRA Page 58

See first page for copyright notice, distribution
restrictions and disclaimer.

ASS

(3 Petri Nets (Cont.)

DARPA @ Tri-Service

e A Petri Net is a 5-tuple, (P,T,F,W,M;) where:
O P={p;,p,,P3....p,} is a finite set of places,
O T={t, t, t5,...,t} is a finite set of transitions,

OFI (PxT)1p(T xP) is a set of arcs between places and
transitions,

OW:F® {1,2,3,...} is a weight function on each arc,

OMyP® {0,1,2,3,...} is the initial marking in terms of the
number of tokens in each place,

OPIUT=AandPTpT* £

e A Petri Net structure N= (P, T,F,W) without any
specific initial marking is denoted by N

e A Petri Net with the given initial marking is
denoted by (N,M,)

Copyright & 1995-1999 SCRA © IEEE 1989 [Murata89] .,

This is the basic definition of a Petri Net. Note that the basic Petri Net
contains no notion of time or values on the data modeled in the system.

Copyright & 1995-1999 SCRA Page 59
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS) e ey
[\ Petri Net Definitions

DARPA @ Tri-Service

RASSP E&F

Ray umu B ur::»‘ oo ADI

e Place - a storage area for tokens that represents
a specific condition that has to be true (have a
token in it) before an event can take place. Places
are denoted by circles

e Transition - a representation for an event that can
take place in a system being modeled.
Transitions are denoted by lines or boxes

e Token - a representation that a certain condition
has been satisfied. Tokens are denoted by dots
in Places.

Token Transition
Placess —>

o

The basic definitions of the things that make up a Petri Net. Note that
the Petri Net definition of a token is slightly different than the definition
that will be used in the uninterpreted modeling section. In a Petri Net, a
token is a representation that a certain condition, that will cause a
transition to fire, has been satisfied. It does not necessarily denote
actual data that is moving in the system, as is the case with most (but
not all) uninterpreted modeling systems.

Copyright & 1995-1999 SCRA 60

Copyright & 1995-1999 SCRA Page 60
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF") _ _
| e Petri Net Definitions (Cont.)

esign
Architecture Infrastructure RASSP E&F
SCRA » GT » UVA
Rayth JCinc » ADL

DARPA e Tri-Service

e Marking - the number of tokens in each place,
usually denoted by an m vector where m is the
number of places in the Petri Net. The pth
component of M, denoted by M(p) is the number
of tokens in place p.

e Enabled - a transition is enabled when there are
at least f tokens in each of its input places where
fis the weight of each input arc to the transition.

Marking:(2,1,0) pl Enabled transition

Copyright & 1995-1999 SCRA p2 61

No additional notes necessary.

Copyright & 1995-1999 SCRA Page 61

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

e . -
Petri Net Definitions (Cont.)

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Firing - the activation of an enable transition

Qit consumes the required amount of tokens at its input(s)
and produces the required amount of tokens at it output(s)

Net before firing Net after firing

T

e Nondeterminism - when several transitions are
simultaneously enabled, any one may fire first

e Conflict - when the firing of one enabled transition
would disable another enabled transition

Of:! 2 (e)p3
Transitions t1 and t2 conflict \ \ /

11 —— t2
Copyright & 1995-1999 SCRA 62

The nondeterminism of Petri Nets is a significant difference between
them and other uninterpreted modeling techniques. Where two
conflicting transitions are enabled, which one fires first can make a
significant difference in how the model behaves.

Copyright & 1995-1999 SCRA Page 62
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Relnvemlng

Electromc
e5|gn

itecture SI

DARPA @ Tri-Service

Petri Net Definitions (Cont.)

Transition enabled

e Inhibitor Arc - an arc that connects a place and a
transition such that the transition can only fire it
there is NO token in the associated place

Transition not enabled

pl pl
\ tl \ t1

_____ — —O)

Q """"""""""""""" p3 @ ______________________________ o

p2 \ p2
Inhibitor arc

No additional notes necessary.
Copyright & 1995-1999 SCRA Page 63

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS
(Petri Net Definitions (Cont.)

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e State Machine - a Petri Net in which each transition
has only one incoming and outgoing arc

Get 15¢ candy

State machine Petri Net of a I
vending machine - coin return |_|
transitions have been omitted Deposit 106

5¢
Deposit 5¢

ok

4

Get 15¢

Deposit
5¢ candy

Deposit 10¢ i
10¢ Deposit 10¢ 20¢
m Any finite state machine I
can be represented by a I
state machine Petri Net Get 20¢ candy
Copyright & 1995-1999 SCRA © IEEE 1989 [Murata89] ,

This is a Petri Net model of a finite state machine (FSM). By definition,
any FSM can be modeled with a Petri Net. One thing to note here is that
in the real state machine, the firing of each transition is triggered by an
external event, either the insertion of a coin or the pressing of a “get
candy” button. However, in the true Petri Net model, which transition
would fire, in the case where two or more are enabled (0¢, 15¢, 20¢
state), is non-deterministic.

Copyright & 1995-1999 SCRA Page 64
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Petri Net Examples

structure

RASSP E&F

RA GT » UVA

DARPA e Tri-Service

Ready to Ready to
send receive

Send
message

Receive

Buffer message

full

Wait for Message
ack. received

Process 2 ——

:FI Process 1

| A Petri Net model of a simple communications protocol I

Copyright & 1995-1999 SCRA © IEEE 1989 [Murata89]

This is a Petri Net model of a simple interlocking communications
protocol. In fact, both hardware and software systems can be modeled
with Petri Nets - a powerful feature.

Copyright & 1995-1999 SCRA Page 65
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Petri Net Examples (Cont.) b

structure RASSP E&F
SCRA* GT » UVA
Raythean » UCinc + ADL

DARPA e Tri-Service

| Tokens in:
m pl represent processors executing in
their private memory
t2 p4 t4 m p2 represent free busses
M H: m p3 represent memory request that have
not been served
m p4 represent processors accessing
pl t1 p3 shared memories
m p5 represent processors requesting the
same shared memory accessed by a token
(processor) in p4
| Firing of transition:
m t1 represents the issuing of access
requests
t3 p5 t5 m t2 or t3 represent making a memory
choice
m t4 represents the end of a memory access
for which there is no outstanding request
m t5 represents the end of a memory access
for which processors are queued

A Petri Net model of a multiprocessor system with 5 processors,
three shared memories, and two processor-memory busses

5

Copyright & 1995-1999 SCRA © IEEE 1989 [Murata89] .

This is a more complex Petri Net model of a multiprocessor system with
5 processors, three shared memories, and two processor-memory
busses. It is intended to show how systems of this type can be modeled
with Petri Nets and that there is not a one-to-one correspondence
between tokens, place, and transitions and hardware components or
data packets in a real system - which sometimes makes them difficult to
conceive.

See [Murata89] for more details on this example.

Copyright & 1995-1999 SCRA Page 66
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ﬁ£§n§n3 -
flegg.gwcg 3 Reachability Graphs

DARPA @ Tri-Service

RASSP E&F
< G+ 01

Ryt

tl t2

p1 (9 K(p1)=2

p2 (f K(p2)=1
—

Note: this a finite-capacity net
where place p1 can hold no more
than 2 tokens and place p2 can hold
no more than 1 token - which limits
the size of the reachability graph.

Copyright & 1995-1999 SCRA © IEEE 1989 [Murata89] ,

This slide introduces reachability graphs which are representations of
the “states” or markings of a Petri Net and how they are reached by
various transition firings.

The nodes in the reachability graph are markings (e.g., 10 isthe
marking where there is one token in p; and 0 tokens in p-.

The arcs in the reachability graph are the transitions that move the Petri
Net from one marking to another.

Note that in order to make the reachability graph for this example
tractable (as far as drawing it), the example is a finite capacity net in
that p; can hold no more than 2 tokens and p, can hold no more than 1
token.

Once the reachability graph is constructed, it can be analyzed using
various graph algorithms.

Copyright & 1995-1999 SCRA Page 67
See first page for copyright notice, distribution
restrictions and disclaimer.

() rainecanays
Petri Net Analysis

DARPA @ Tri-Service

e Once constructed, Petri Net models can be
analyzed for many properties:

e Reachability - a marking M,, is reachable from M
if there exists a firing sequence from Mg to M,
Othe set of all possible markings reachable from M in a
net (N,Mg) is denoted R(N,Mg) and is the set of states
that the system can obtain
e Boundedness - a Petri Net is k-bounded if the
number of tokens in each place does not exceed
a finite number k for any marking reachable from
Mg
O by verifying that a Petri Net is k-bounded, it is
guaranteed that any buffers of size k will not overflow

Copyright & 1995-1999 SCRA 68

Here are some of the attributes that the Petri Net can be analyzed for.
All of these attributes can be examined analytically using the
reachability graph and do not require simulating or “animating” the Petri
Net.

Reachability analysis can be used to see if the Petri Net can attain any
“undesirable” state. Boundedness can be used to determine if the
“capacity of any state (e.g. buffer size) can be overflowed.

Copyright & 1995-1999 SCRA Page 68
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

e . |
Petri Net Analysis (Cont.)

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA

Raytheon » UCinc + ADL

e Liveness - a Petri Net (N,My) is live if, no matter
what marking has been reached, it is possible to
fire any transition of the net through some firing
sequence

e Liveness shows that a system has not reached a
state where a portion of the system can no longer
operate

O proving liveness is hard - so there are degrees of
liveness
e Reversibility - a Petri Net (N,M;) is reversible if
for each marking in R(N,M) it is possible to get
back to M,

e Home state - a marking M’ is a home state if it is
reachable from every marking in R(N,Mg)

Copyright & 1995-1999 SCRA

69

Liveness can again show that the Petri Net does not attain an
“undesirable” state in which its not exactly deadlocked, but some
transitions can no longer be fired.

Reversibility shows that a Petri Net can regain its “home state” from any
state it can attain.

Copyright & 1995-1999 SCRA Page 69
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

e . |
Petri Net Analysis (Cont.)

DARPA e Tri-Service

e Coverability - a marking M in a Petri Net (N,M) is
coverable if there exists a marking M’ in R(N,Mg)
such that M’(p) ® M(p) for each p in the net

e Persistence - a Petri Net is persistent if for any
two enabled transitions, firing of one will not
disable another

0O Useful in the context of parallel program schemata and
asynchronous sequential circuits

e Fairness - two transitions tl and t2 are in a
bounded-fair relation if the maximum number of
time that either one can fire while the other one is
not firing is bounded

Copyright & 1995-1999 SCRA 70

Here are more attributes that can be determined from the analysis of a
Petri Net and its reachability graph.

Copyright & 1995-1999 SCRA Page 70
See first page for copyright notice, distribution
restrictions and disclaimer.

e . |
Petri Net Analysis Methods

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Coverability tree method - enumeration of all
reachable markings or their coverable markings
O limited to “small” nets because of the state space
explosion
e Matrix-equation approach - simultaneous
equations that govern the dynamic behavior of
systems modeled by Petri Nets

e Reduction or decomposition techniques -
reducing the Petri Net model from a complex to
more simple form that can be analyzed

Oin many cases, the above two techniques are applicable
to only certain subclasses of Petri Nets

Copyright & 1995-1999 SCRA

7

Various methods for analyzing Petri Nets for the metrics discussed.

Copyright & 1995-1999 SCRA Page 71
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(RAS§'§ ; .
Timed Petri Nets

DARPA @ Tri-Service

RASSP E&F
< G+ 01

Ryt

e In timed Petri Nets, each transition has a firing
time which represents the time taken by the
activity represented by the transition

e There are two semantic models for timed
transition firing:

O atomic firing (AF) - after the transition is enabled, it
delays its firing time and then consumes and produces
tokens at that time

o nonatomic firing (NF) - as soon as the transition is

enabled, it removes the enabling tokens from its input
places, delays its firing time, and then produces tokens

pl p2 pl GD\ ® 2
@ timed transition 2y
i iti
nl -] N Cv)
AF Semantics nl mmem t1 NF Semantics

Copyright & 1995-1999 SCRA 72

Timed Petri Nets are the more useful form for performance analysis.
Both NF and AF semantics can be employed although AF is more
general in that NF can be described in AF.

A potential problem with AF is that in conflicting transitions, an enabled
transition may be disabled during its delay time by the firing of another
transition.

Copyright & 1995-1999 SCRA Page 72

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

Reinventing

'} Petri Net Timing Functions

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Transition timing functions can depend on the
number of tokens in a specific place in the Petri
Net

transition timing is

based on m2, the

number of tokens > m2nl s {1
in place p2 ¥

e Transition timing functions can be deterministic
or stochastic

e Transition timing functions can be continuous
time or discrete time

Copyright & 1995-1999 SCRA

73

Timing functions for transitions can be a function of the number of
tokens in a place. Also, timing functions can be deterministic of
stochastic. General Stochastic Petri Nets can be analyzed as Markov
Models (as will be shown).

Copyright & 1995-1999 SCRA Page 73
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

;Iegg,ggmg Colored Petri Nets

DARPA @ Tri-Service

e Colored Petri Nets (CPN) are Petri Nets in which
tokens may belong to different categories, show
different types of behavior, or carry user defined
information

e Transition firing rules or timing may be dependent
on the types of tokens present in the input places

O Transition firing may modify the color of tokens that are
consumed and produced by it

0O Color information is denoted on the arcs

p1(e) p2
X\ Y
t1
=f(x, y)é>

Colored Petri Nets (CPN) include the notion of values (or classes) on
the tokens. Note that CPNs are what is used as the mathematical
foundation for UVa’s ADEPT tool.

In this example, the color of the token produced by the firing of transition
t1 is a function [f(x,y)] of the color of the tokens in the p1 and p2 places.

RASSP E&F

Ray umu B ur::»‘ oo ADI

Copyright & 1995-1999 SCRA 74

Copyright & 1995-1999 SCRA Page 74

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASSP ; . .
{ Stochastic Petri Net Analysis

DARPA @ Tri-Service

Petri Net

Markov Model

MOLI 1415 (Ml lI lJIrI25 (@

12
14 13 14 13
14 |1+ 5
(s Tws) s
Copyright & 1995-1999 SCRA I 2 75

As shown here, a Stochastic Petri Net can be translated into a Markov
Model via its reachability graph.

Copyright & 1995-1999 SCRA Page 75
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS
(Petri Net Model of a Queue

DARPA @ Tri-Service

e A timed Petri Net structure can be used to model
the dynamic behavior of a queuing system:

a A(t)
(customer/job arrives)
Q ﬁ !

S

A(t) ‘ ‘ ‘ (service starts)
NG —
Customer/job Customer/job B
arrivals departures

[+
(customer/job departs)

B(®)

Queuing Model Petri Net Model

Copyright & 1995-1999 SCRA 76

Here is an example of how a queuing model can be modeled using Petri
Nets - a further demonstration of their modeling power.

Copyright & 1995-1999 SCRA Page 76
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP\ Simulation-Based Performance

Electronic
Architect

Sl 2 Modeling ‘f,.&

Rayth, (Cinc « ADL

DARPA e Tri-Service

e Both complex queuing models and complex Petri
Nets can be analyzed by event-driven simulation

e Event cycle:

Process active events, e.g.:

® fire transitions
® move jobs into/out of server \

Determine time of new events

Advance simulation caused by active events (using
time to time of next random variables for stochastic
event models), e.g.:

® next transition firing time
® next job completion time

Place new events
on event queue

Copyright & 1995-1999 SCRA 77

As mentioned before, complex queuing models and Petri Nets, although
they may not be solvable via analytical techniques, can be solved by
simulation. There are many commercial tools available that do this.

This is an illustration of the basic event driven simulation cycle. You
simply process all events scheduled for a given time, and determine
what new events are generated for what future times. These events are
added to the “event queue” and time is advanced to the earliest future
time in the event queue. All events at that time are then processed and
the cycle begins again.

Alternatively to event-driven simulation, the simulation cycle can be
done on a discrete time interval (e.g. 1 ns) and simulation time
advances at regular intervals. All signals can be updated to new values
(which may be the same as old ones) at each time interval. This eases
the management of simulation time and the event queue.

Copyright & 1995-1999 SCRA Page 77
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

e . |
Uninterpreted Modeling

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Queuing models and Petri Nets provide formal methods for modeling
systems

O Analytical solution
O Simulation-based solution
e Queuing models and Petri Net representations become cumbersome
for complex systems
e Itis possible to model systems at an equivalent level without using
the queuing model or Petri net formalism
e This methodology has been termed “uninterpreted modeling” and is
generally characterized by models that:
O represent data in the system as abstract “tokens”

o model the size and time taken by data being transferred in the system,
but do not represent its actual values

o model the time and resources necessary for computation to take place,
but do not actually perform it

Copyright & 1995-1999 SCRA 78

It is possible to model systems at a high level without using either the
gueuing model or Petri Net formalism. This is a separate issue from the
analytical vs. simulation-based solution issue, although models that do
not have the queuing model or Petri Net formalism obviously have to
use simulation-based solutions.

In general “uninterpreted modeling” the system is modeled at such a
level as the data in the system that is moved from component to
component is modeled, but its values and transformations performed on
it are not. Timing is modeled, but usually at a high level. Recall that the
taxonomy of performance models showed this level of abstraction. In
general, all of the modeling environments discussed from her on out will
be general “uninterpreted modeling” environments although some of
them may include elements of queuing models (SES Workbench) and
Petri Nets (ADEPT)

Copyright & 1995-1999 SCRA Page 78

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*IASSP Uninterpreted Modeling Example
> e Hardware Performance Model

Architect RASSP E&F
SCRA* GT » UVA

Raythean » UCinc + ADL
DARPA e Tri-Service

e Consider a model of a Processor and a memory system

tokens modeling memory requests:

®address
®size
CPU models timing ®read/write Memory system models
of instruction CPU Memory timing of memory requests:
execution and System ®cache hit/miss
issues memory Model Model ®page mode hit/miss
requests _ ®disk access time
tokens modeling memory data:
®size

e CPU and memory model can be abstract performance
models that use deterministic or stochastic timing

e Tokens are user defined data structures

e Using this type of model, it is possible to measure:
O Average memory access latency
O Average memory bandwidth provided
O Average instruction execution time

Copyright & 1995-1999 SCRA

79

Here is an example of an uninterpreted model of a CPU and memory
system. This is an example that will be utilized in the section on VHDL
performance modeling examples. Notice that the tokens in the model
actually model the passing of data between the CPU and the memory

and are fairly abstract in nature, as are the CPU and memory
component models.

Copyright & 1995-1999 SCRA Page 79
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(T?ASSP Uninterpreted Modeling Example

Reinventing

X o Hardware/Software Task Level
¥ Performance Modeling

RASSP E&F
SCRA* GT + UVA

Raythean » UCinc + ADL
DARPA e Tri-Service

e A very useful area for performance modeling is the

mapping of a computationally complex algorithm onto a
multicomputer architecture

e Dataflow algorithms for digital signal processing
applications is a primary example

Application Software

Scheduler - allocates
Task Graph

tasks to hardware

@ resources
— (s (1)
Hardware Architecture
(s () (o] [cru] [oru)
X X X

Application Global
Specific | 3% Network >
Processor MemOl’y

Copyright & 1995-1999 SCRA Sensors | I/o | 80

This is another type of uninterpreted model that will also be used in the
example section, a hardware/software task level model. Here the
software is a set of tasks, often modeled as a dataflow graph, that
communicates with a “scheduler” to obtain hardware resources
(processors, memories, switches) on which to execute. Usually, the
software tasks provide information on how much hardware resources
they require (data size, number of floating point instructions, etc.) and
the hardware model actually delays the required simulated time.

Copyright & 1995-1999 SCRA Page 80
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

R e i
Electrionicg Module Outllne

esign
Architecture Infrastructure

DARPA e Tri-Service

RASSP E&F

SCRA * GT » UVA

e Performance Modeling Introduction
e Performance Modeling Theory

e Non VHDL-Based Performance Modeling Tools

Techniques for Performance Modeling using VHDL
VHDL-Based Performance Modeling Tools

VHDL Performance Modeling Examples

Mixed Level Modeling

Module Summary

Copyright & 1995-1999 SCRA

81

Module Outline

Copyright & 1995-1999 SCRA Page 81

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSPY Non VHDL-Based Performance

Electronic

R Modeling Tools

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e There are a number of commercial and university
tools for analyzing and simulating Petri Nets

e There are a number of non VHDL-based
performance modeling packages that fall into the
uninterpreted modeling category:

O SES Workbench
O Foresight
OBones

O NetSyn

O Sim Script

o Ptolemy

Copyright & 1995-1999 SCRA 82

There are a number of commercial and educational packages available
for Petri Net analysis and general “uninterpreted” performance
modeling. Most of these are implemented in C or C++ and as such, are
a bit divorced from the electronic system design process. However,
because of their number and popularity, some discussion of them is
warranted here.

Copyright & 1995-1999 SCRA Page 82
See first page for copyright notice, distribution
restrictions and disclaimer.

ASS

(\ SES/workbench®

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e SES/workbench is an uninterpreted/queuing
model environment
e Application areas include:
O Hardware architecture design
O Computer system and network capacity planning
O Network performance analysis and design
O Distributed system performance analysis
O Software requirements analysis and design

e Includes a GUI for model building, simulation,
and results processing environments

e Includes capability for user extension

Copyright & 1995-1999 SCRA 83

As an example of the types of tools in the general uninterpreted
performance modeling category that are available, SES workbench® will
be presented in some detail. SES does have some basis in queuing
network modeling, but performance models that do not include queues
can be built with it, so it falls into the more general category.

This presentation was taken from the Scientific and Engineering
Software, Inc. web page: http://www.ses.com

A through reading of the material on Workbench there will suffice as
background to present these slides.

Copyright & 1995-1999 SCRA Page 83
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Relnvemlng
El ec ronlc

Archnecture |ntras|ruclure

DARPA @ Tri-Service

Blocks

SES/workbench Building By

RASSP E&F
RA* GT » UVA

Raytheor

« ADL

» Submodel

management
nodes

* Flow Control
nodes

« Passive Resource
management

SES/workbench provides 25 primitive building blocks
for creating models

* Active
Resource
management

nodes

Copyright & 1995-1999 SCRA

Copyright 1999, SES, Inc. All Rights Reserved.

I C

nodes

« User Extension/
Custom
Function nodes

[SES]

See http://www.ses.com

Copyright & 1995-1999 SCRA

See first page for copyright notice, distribution

restrictions and disclaimer.

Page 84

Methodology

{ASS\ SES/workbench Model

Electronic
eslgn

Sl 2 Development

DARPA @ Tri-Service

e SES workbench performance models are created
using a GUI interface

o placing and interconnecting building blocks to
represent system function/structure

BN

D 1] I | Zl

sourcelob sinkdob

Copyright 1999, SES, Inc. All Rights Reserved. [SES]
Copyright & 1995-1999 SCRA

See http://www.ses.com

Copyright & 1995-1999 SCRA Page 85
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

SES/workbench Model

Ao
P T P arameter | 7 atl on RASSP E&F
o

Raytheor

DARPA e Tri-Service

e Model objects (building blocks and
interconnections) have a
corresponding specification form
where the behavior can be further

Meneing Discipline
priority rul- N

Defaule Priority |

i | fofs |
parameterized
RE Quantum
ovechead [N
Restart HD
Priority
Descriitlﬂr\
Options
N / typs Ml netonce B wetnod I
[AN g (D) 5]
souresloh gettten cpu disk relnen sinklah
Copyright 1999, SES, Inc. All Rights Reserved. [SES]

Copyright & 1995-1999 SCRA

See http://www.ses.com

Page 86

Copyright @ 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP SES/workbench Probability

Electronic

et and Queuing Disciplines

DARPA e Tri-Service

- RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e SES/workbench has a number of built-in
probability disciplines:
o Normal, inormal
O Exponential, hyperexponential
O Geometric
Qetc.
e SES/workbench also has a number of queuing
disciplines:
O First come first serve
O Last come first serve
O Round robin
O Processor Sharing

O Non-preemptive, preemptive, and polling priority
schemes

Copyright & 1995-1999 SCRA 87

See http://www.ses.com

Copyright & 1995-1999 SCRA Page 87
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology -

Bﬁ&%ﬁ\ SES/workbench Model

Electronic
1

A Simulation
U

DARPA e Tri-Service

RASSP E&
SCRA » GT » UVA

ADL

Raythean

e SES/workbench models can be animated to show the flow
of information

to dizk agatenm

&
EE ‘tem_pmccent
welt_Por_cpu
rouke bakch ke
— T 3]
=oTE T,
=1
Eifty_parcent

routado_jobe “[==F

Rafaronsa
0 nmnrE_rratem

Copyright 1999, SES, Inc. All Rights Reserved. [SES]
Copyright & 1995-1999 SCRA
See http://www.ses.com
Copyright & 1995-1999 SCRA Page 88

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

[ASS‘B SES/workbench Model

Electronic

Simulation (Cont.)

DARPA @ Tri-Service

e SES/workbench includes the capability of viewing the
model statistics as the model executes

 Gather statistics o .
on V.VO rkload’ [truck_irwentory_scheduling rasponse Hean
environment and Eruck_inventory_scheduling_Locals - ——

B - [E] assign_truck Population £ -
application 5 _ .
performance j u b h # ﬂ 0

0 Tine
* Inspect the assign_truck _
. il

current work in - =l /] G

enter_truck_scheduling forvard_paperwork ruck_assigne:

your system | =

Category :shipping_request
Phase 1

Port none

Location :assign_truck
LastTrace: join pending

~ copy_L:

Reference

| hold paper_work_till_truck_sssigned o papervork_complete

* Analyze the

B
application load Sl — sptate_sopy
- —~ Power
on the execution s 0
environment ST [T T T P
Copyright 1999, SES, Inc. All Rights Reserved. [SES]
Copyright & 1995-1999 SCRA

See http://www.ses.com

Copyright & 1995-1999 SCRA Page 89
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(ASS‘B SES/workbench Model

Electronic

Simulation (Cont.)

DARPA @ Tri-Service

RASSP E&F
SCTAGT s UrA
Raythao .

e SES/workbench provides model statistics on system
performance that permit verification, debugging, and
optimization of system designs

e Statistics may be built-in or user-defined

“L
ArArsrararastistss IETRILED STRTIETIC REPIRT sisstsmismastisisins

#¥itat1Etin Repartt
QUEUE PORILATION oF node cpu

[f padaled labd
[h subnadel; driver

astegery! AL
HEFH: 1.2817 warlanae! B2 ptdewt 1.744
mitimn; O maEsiea; 10 erding valuar i
aitatietic Reparty
RESFIMSE TIME of node cru

[n module; lakl
[subradelt deiver

cotegory: AL
HERH: 4. 4646 warianoe! 19,42 etdew: 3.E
NAKLNE Y 05006 mad ik 20,267

gengle courtz 4716

Copyright & 1995-1999 SCRA Copyright 1999, SES, Inc. All Rights Reserved.

[SES] %

See http://www.ses.com

Copyright & 1995-1999 SCRA Page 90
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

[ASS\ User Extensions to

Electronic

SES/workbench

DARPA @ Tri-Service

e Users can extend the graphical modeling icons to
represent unique system behaviors

Hane
secvice Tine [N

Jueueing Discipline
priarity e T SET

Default Priority

Tine Fule [N
ER Quantum
overhead ervice Node Msthod
Restart if (c_category == CATEGORY_A)
service uniform(3.0,4.0);
P . else
frerity service expo (5 0}
Descriitlﬂr\
Options

Type R Instance [Hethod [ER

Copyright 1999, SES, Inc. All Rights Reserved. [SES]
Copyright & 1995-1999 SCRA
See http://www.ses.com
Copyright & 1995-1999 SCRA Page 91

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology -

RASSP User Extensions to

Electronic

b e SES/workbench (Cont.)

DARPA e Tri-Service

RASSP E&F
SCRA » GT » UVA

ADL

Raythean

e Users can add custom icons to the SES/workbench to
represent portions of the modeled system in a more self-
explanatory manner

Tl e P B L1174 re
L L.' — - h s D1 1sanid 1
(o= pmn
Fubil o Bl ok Ted epbore_Hetusrk Trark_Lirmz
I—IT Corparuis LA
Ineermal _Frae L 1es Telepon e

Copyright 1999, SES, Inc. All Rights Reserved. [SES]
Copyright & 1995-1999 SCRA
See http://www.ses.com
Copyright & 1995-1999 SCRA Page 92

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{ASS\ User Extensions to

Electronic

SES/workbench (Cont.)

DARPA @ Tri-Service

e Users can create custom documentation of the system
design from the SES/workbench model files

= Tusra/users/dvmo/ling_systemreport

Tonraf e e/ i Sy emTO e

Flo Bt Fomat i il Gryhcs T
Sp LT EPoTImY & & 2 o

L PP R—
|

& SES/design
[Sesresion 515] [Fiie: oo
o® =] ERNETIST

: 0.1 boca Module Componentceu. ... f
0.1 Submodel Component cpu. . 3 psid Softrere Hardvre

g o : R = =
st Globals Vorklesd DB_SERVER[] cpy[]

m;::k : =8

gl Parancters DB_sub (]

=g

CREDIT_VALIDATE
032: Submodel Companent start_up_siRvic won

94:Locax Module Components_su cem

045: Submodel Component set._sp i

I ez e |z

Copyright 1999, SES, Inc. All Rights Reserved. [SES]

Copyright & 1995-1999 SCRA

See http://www.ses.com

Copyright & 1995-1999 SCRA Page 93

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

feseh)
e) Ptolemy from U.C. Berkeley 2

structure RASSP E&F
SCRA « GT » UVA

Raythean » UCinc + ADL

DARPA e Tri-Service

e System-level design framework

O Covers higher levels of system specifications
as well as lower level of system description

0 Implements heterogeneous embedded
systems

a Allows mixing models of computation and
implementation languages

O Provides graphical specification of system
parameters and mathematical models of
systems

O Supports hierarchy using object-oriented
principles of polymorphism and information
hiding in C++

O Provides capability for interaction between
different domains

Copyright & 1995-1999 SCRA 9

[Ptolemy96].

This section describes UC Berkeley's Ptolemy functional modeling tool.
Ptolemy is targeted as a tool to model and simulate the function of a
DSP system, but, as is described in this section, it has been used to
perform uninterpreted performance modeling.

Biographical Names
Ptol-e-my \'ta”:l-e-me”-\
2d cent. A.D. Claudius Ptolemaeus - Alexandrian astronomer

Copyright & 1995-1999 SCRA Page 94
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

() Ptolemy
System Description

Design

g RASSP E&F
SCRA » GT » UVA
Raythaan e UCinc » ADL

DARPA ® Tri-Service

e Universe: Complete program or application
e Domain: Model of execution that includes a
simulation scheduler
O DE - Discrete Event
O SDF - Synchronous Dataflow
O DDF - Dynamic Dataflow
e Stars: Modeling modules within a domain either

precoded from Ptolemy library or can be
implemented by user-provided code

e Galaxies: Hierarchical block which internally contains
Stars as well as possibly other Galaxies

e Particles

O Data passes between blocks in discrete units called particles
(in some domains, called a token)

Copyright & 1995-1999 SCRA 9%

This slide outlines the parts of a Polemy simulation.

Copyright & 1995-1999 SCRA Page 95
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

e Ptolemy
| System Description (Cont.)

Design
ture Infrastructure

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

Architect

DARPA e Tri-Service

Universe

/Domain

T S T

/

Copyright 1996, University of California at Berkeley. Used with permission. [Ptolemy96] %

Copyright & 1995-1999 SCRA

This figure shows the general outline of a system model in Ptolemy.
General modeling blocks in Ptolemy are called “stars.” A hierarchical
collection of stars used to model a large piece of functionality is called a
Galaxy. Stars communicate with each other by passing particles (similar
to tokens). A specific modeling paradigm in Ptolemy is called a domain.
An entire model is Ptolemy is called a Universe.

Copyright & 1995-1999 SCRA Page 96

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(RE:ASS:} Ptolemy
v s Heterogeneous System Modeling

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

DARPA @ Tri-Service

XXXUniverse
K(XX Stars XXXDomain
& Galaxies,
/ XXXWormhoIe\
YYYDomain\

G~

YYY Stars
& Galaxies

XXXfromUniversal YYYtoUniversal Particles

Evept Horizo

XXXtoUniversal YYYfromUniversal P arti C | es

WL)

Copyright 1996, University of California at Berkeley. Used with permission. [Ptolemy96] 07

Copyright & 1995-1999 SCRA

A model of computation (such as discrete event, synchronous dataflow,
dynamic dataflow, etc.) is called a Domain in Ptolemy. Each domain
includes building blocks, or stars (which the user can add to by writing
their own), a scheduler that executes the portion of a model that resides
in its domain, and wormholes that interface data and events between
domains.

Copyright & 1995-1999 SCRA Page 97
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP Ptolemy

3 Cseenic Heterogeneous System Modeling
Wvsred (Cont.)

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL
DARPA e Tri-Service

e Ptolemy allows cosimulation of different modeling
domains through the use of wormholes

e Wormhole

O Looks like a star from outside, but internally looks like a
galaxy in a different domain; contains its own scheduler

O Scheduler on the outside treats it like a star, but internally it
has its own scheduler - supports heterogeneity

O Particles pass from one domain to another (in or out of a
wormhole) through an Event- Horizon - Manages possible
format translations between two models of computations

Copyright & 1995-1999 SCRA 98

Stars communicate across different domains using wormholes.
Wormholes allow heterogeneous models with stars from different
domains to be constructed.

Copyright & 1995-1999 SCRA Page 98
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(RAS§'§ .
Ptolemy Domains

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Domain is a collection of stars, schedulers, and targets
O Domain A is said to be a subdomain of B if its stars can be used within B
O Domains support different models of computation
0 Synchronous Dataflow (SDF) Domain
=Flow of control is predictable at compile time

=»Data-dependent flow of control is allowed within the confines of a
star

=>Used for DSP algorithm development

= A rich library of stars, including polyphase real and complex FIR
filters

0 Dynamic Dataflow (DDF) domain
=»>Extends SDF by data-dependent flow of control

=Run-time scheduling, supports conditionals, data-dependent
iteration, and true recursion

a Discrete-event (DE) Domain
a Circuit Simulation (Thor) Domain

Copyright & 1995-1999 SCRA %

More discussion of domains.
Example:

A high-level dataflow model of a signal processing system can be
connected to a hardware simulator that in turn may be connected
to a discrete-event model of a communication network

BDF domain implements a compile-time scheduler for DDF
graphs that supports run-time flow of control; similar to SDF.
Attempts to construct a compile-time scheduler - like DDF

- achieves the efficiency of SDF with the generality of DDF.

HOF domain: takes a function as an argument and/or returns a
function. It implements a star called Map, that can apply any
other star (or galaxy) to the sequence(s) at its inputs thereby
“mapping” itself to the other star or galaxy.

Copyright & 1995-1999 SCRA Page 99
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS .
(3 Ptolemy Domains (Cont.)

DARPA @ Tri-Service

Code Generation
G

Q

@@@@@@@

Design - Circuit
Methodology Communlcatlng Discrete-event Simulation
Management processors
Copyright & 1995-1999 SCRA Copyright 1996, University of California at Berkeley. Used with permission. [Ptolemy96] 100

This is a graphical representation of the domains available within
Ptolemy and how they interact with the Ptolemy kernel.

Copyright & 1995-1999 SCRA Page 100
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{éﬁéﬁnﬁ Performance Modeling of an HPSC

Electronic

Design H H l’ ‘
g g Architecture Using Ptolemy Rasse £ar

RA GT » UVA

DARPA e Tri-Service

e HPSC architecture provides:

0O high data bandwidth

O distributed processing

Ooreal time processing
e Goal is to simplify development by separating:

O application software implementing algorithm

0O system software passing data among processing nodes
e HPSC comprises:

O Processing nodes

O LANai (network interfaces)

O Myrinet network of switches
| | | |

” 4 4 ”
e —am— =
1 = gpt — —
- ot ot Switch -
—am — —
16-port
! ! ! — switth —
e — e —
(- ——— -
&
poS‘

Switch
m LANai dpot — &yt LANai
I | I |

Signal Processing Applications & Rapid Development

[LMC-Sanders]

Copyright & 1995-1999 SCRA 101

This is a presentation of how High Performance Scalable Computing
systems can be accomplished using Ptolemy. HPSC systems are those
types of systems utilized in the RASSP program. This method for
performance modeling is described in detail in [Pauer97], so a through
reading of that paper will suffice to explain these slides.

Copyright & 1995-1999 SCRA Page 101
See first page for copyright notice, distribution
restrictions and disclaimer.

RS :
HPSC Processing Nodes

esign
Architecture Infrastructure

RASSP E&F

RA GT » UVA

DARPA e Tri-Service

e Implement application algorithms

e Consist of

o one or more digital signal processors and/or RISC
processors

o programmable hardware logic like Field Programmable
Gate Arrays (FPGASs) or Application Specific Integrated
Circuits (ASICs)

O a combination of the above

osA—os (o]
] | |
[Fed— o] |
| ASIC
[osfl——{os7) FPGA ASIC FPGA
i i i
e
Signal Processing Applications & Rapid Development [LMC-Sanders]
Copyright & 1995-1999 SCRA 102
See [Pauer97].
Copyright & 1995-1999 SCRA Page 102

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

B e
E.gg MyriNet LANai

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Acts as the interface between the processing node and
the network

e Contains independent transmit and receive sections
e Transmits and receives data at 160 Mbyte/second rate

e Has high speed dedicated static RAM to load and store
data

e Uses data synchronization tables to route data through
network (transmit) or organize incoming data from
network (receive)

e Creates packet header on transmit side

LANAI Transmit DST Desk LANAI Receive DST
Packet Address Size Routewords Index Packet Address Size
0 0x40000000 512 0432 4 0 0x70000000 1024
1 0x40000200 256 12036 2 1 0x70000400 256
N-1 0X40001100 2048 517 1 M-1 0x70001000 512
Signal Processing Applications & Rapid Development [LMC-Sanders]
Copyright & 1995-1999 SCRA 103
See [Pauer97].
Copyright & 1995-1999 SCRA Page 103

See first page for copyright notice, distribution
restrictions and disclaimer.

I§AS§P] .
Myrinet Network of Switches

esign
Architecture Infrastructure

RASSP E&F

SCRA * GT » UVA

DARPA e Tri-Service

Myrinet network is comprised of a network of multi-port switches
Ports have independent transmit and receive ports

Most common are 4-port, 8-port, and 16-port switches

Have throughput of 160 Mbytes/second

Operate by extracting port number from header, and passing
data packet through specified transmit port

Very low latency

e No buffering - packet is transmitted as soon as header is
decoded

e Must handle contention when multiple packets from different
receive ports are addressed to same transmit port

Route words:

0 0
3 4-port 4-port .
Stitch i Switeh
29 40
_3 4 A-port —
S/!/)ict)c i S/!/)ict)c 1
Route words: 2| 2|
101
Signal Processing Applications & Rapid Development [LMC-Sanders]
Copyright & 1995-1999 SCRA 104
See [Pauer97].
Copyright & 1995-1999 SCRA Page 104

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{I'?ASS F!B
Reconi

Architecture |nfraslmz:(ure

DARF'A. Tri-Service

Myrinet Routing Example

No Contention

lo lo lo

0

- LANGai 2 b T &b v — LANai
4 I _s 8-port _14 —
4 Switch 2 2
- LANa — ghol — Shoh =3 — LANai
3 | q 1 16-port
s . 0 Switch
i 3 t 7 3 4port _11 q
- LANa — sfifth= = o= = LANa
2 6 8port _ Ao X -
aobit Switch 2 dovort 6
- LANai * Sutteh T = St — LANai
E P El q
Route Words
21133
21115
{MRD 21317
0001111
it s gt i Ot (LMC-Sanders]
Copyright & 1995-1999 SCRA 105
See [Pauer97].
Copyright & 1995-1999 SCRA Page 105

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

Reinventing
Electronic
esign
Architecture Infrastructure

DARPA e Tri-Service

Myrinet Routing Example

Contention

o lo

4-port .__a 4-port __7 15
Switch T = —Swigh L — — — — —

9 o | 5
3 4-port|_3 4-port __s
1 Switch t
£ |
3 4-ooH—— 34 p
Switch 1 1
] 6 8poft __
7 n Switth 2 P
-port .5 —3 ZT-D'O AN
: — —2 — -SWiteh- 1 — —
El 4l 2| 9
Route Words
12133
01111
13017
1315
ignlProcssing Agplations & Repid Develapment [LMC-Sanders]
Copyright & 1995-1999 SCRA 106
See [Pauer97].
Page 106

Copyright & 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology -

RASSP) - New Ptolemy Stars for Myrinet

Electronic
1

et Performance Model

DARPA e Tri-Service

RASSP E&F
¢ - VA

Raytheon » UCing + ADL

e Modeling done in the Discrete Event (DE) Domain: event-driven
model of computation
O SourceNode star: creates data blocks at specified rate
O Node star: processes data blocks at specified rate
O LANai star
0 using data blocks from the SourceNode or Node, the transmit side
of LANai creates data packets to transmit to the network
O receive side of LANai receives data packets from the network and
reassembles data packets to create data blocks for the Node

0 receive side also receives control packets to suspend or resume
transmission of data

O Switch star

O receives data or control packets on one port and retransmits them
on another port

a must handle contention and send appropriate control packets to
suspend or resume data transmission

O NotUsed star: used to terminate unused ports on Switch stars

Signal Processing Applications & Rapid Development [LMC-Sanders]
Copyright & 1995-1999 SCRA 107

See [Pauer97].

Copyright & 1995-1999 SCRA Page 107
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

Reinventing
Electronic
i

esign
Architecture Infrastructure

DARPA e Tri-Service

New Ptolemy Performance
Modeling Stars for Myrinet

RASSP E&F
SCRA » A

ce ADL

Raytheon

Myrinet Performance Modeling Stars

portoo |

portOT |\

<~

port02)\
<\

-

P L) s porto3 |

port04 I

netoutput
g <

locallnput
=3

N
netiput | mm /| sbgai eAOuUtput ¢
S port0s

Sy

>—

port06 | /|

<~

r1
I

lotUsed

=1
porto7.

Signal Processing Applications & Rapid Development

Copyright & 1995-1999 SCRA

| p;m 1

'/BortOB

| | port09

T
port10

6 rort swicn | F

[LMC-Sanders]

108

See [Pauer97].

Copyright & 1995-1999 SCRA Page 108

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Bﬁ&%ﬂ New Ptolemy Particles (data

Electronic

Arcml%umum p ac ket S) Jnﬁfs_n' E&F

Raytheon » UCing + ADL

DARPA e Tri-Service

e NodeDataBlock represents block of data sent to/from
SourceNode or Node from/to LANai
e Packet particle
O serves as pure virtual (abstract) base class for other packets
e DataPacket particle
O derived from Packet
O represents typical Myrinet data packet
e ControlPacket particle
O derived from Packet
O represents Myrinet control packet
O STOP or GO control packet
e Feedback particles (modified)

O used on internal feedback queues of stars to cause the star to be
revisited (executed) at a future time

Signal Processing Applications & Rapid Development [LMC-Sanders]
Copyright & 1995-1999 SCRA 109

See [Pauer97].

Copyright & 1995-1999 SCRA Page 109
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS) .
(3 LANal Star State Diagram

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e State Diagram illustrates behavior as DataBlock
consisting of N data packets is transmitted

e Variable i represents packet index

e Variable ignore is used as counter for the number
of feedback particles to ignore due to incoming
STOP messages

g) lgnore--
— > LANai free w_-
ignare--
/_ NodeDataBlock
i=1 STOP
A ignore++

LANai transmitting
(packet i of N)

Yes,

ignore--

State Diagram of Myrinet LANai Behavior

Signal Processing Applications & Rapid Development

[LMC-Sanders]
Copyright & 1995-1999 SCRA 110

See [Pauer97].

Copyright & 1995-1999 SCRA Page 110
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology -

RASSP

Reinventing

g | Myrinet Switch State Diagram

esig
Architecture Infrastructure

RASSP E&
SCRA » GT » UVA

ADL

Raythean

DARPA e Tri-Service

e State diagram applies to each individual port within a Switch

e Variable ignore is used as counter for the number of feedback
particles to ignore due to incoming STOP messages

e Variable queued is used as counter for the number of data
packets queued

e Event DP N represents data packet received on port N (current
packet)

e Event DP X represents data packet arriving on other than port N

> Port free

queued++ ignore--

FB 4

Port blocked

queued++

ignore++

ignore--

DP N (current packet) replaced by ¥ist request in the queue

Signal Processing Applications & Rapid Development)))) [LMC-Sanders]
Copyright & 1995-1999 SCRA State diagram of Myrinet Switch Port Behavior 111

See [Pauer97].

Copyright & 1995-1999 SCRA Page 111
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{ASS'§ Simple 4 Switch Network

Electronic

Modeling Example

DARPA. Tri-Service

Myrinet Modeling Example

H] logallput [iz netinput | 8~ LANA acsloutu Nodé
- ./ port2 \ / port2
E <

port port

o< -
localOufput | ANai mem | netinput s

port
| 7

SourceNode

S <<
netOutput Tocallnput

ort3 port] / \ port3
Sy V1

Far-rart vt Feur-rart it
locallnput | . netputput netinput |\ LANai jocaloutput Node]|
s s S

=

Ll
[T

SourceNode
localOufput | ANai "\ B | netinput T nétoufput localinput
N A { A
porto ort2 port / port2
]]] netOutput netinput localOutput Node
port ort3 port ort3
ISourceNode / | / |
localOufput | ANai "\ el | netinput Four-por vt eur-por i netoutput locallnput
Signal Processing Applications & Rapid Development [LMC-Sanders]
Copyright & 1995-1999 SCRA 112

See [Pauer97].

Copyright & 1995-1999 SCRA Page 112
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

Reinventing
Electronic
i

esign
Architecture Infrastructure

DARPA e Tri-Service

Results for Simple Network
Example

RASSP E&F
SCRA + C A

ADL

Raytheon

Gantt Chart

seeent) I

Signal Processing Applications & Rapid Development

Copyright & 1995-1999 SCRA

Gantt Tool Display of Simple Myrinet Modeling Example
Yellow: start-up latency
Blue: normal transmission/reception
Green: processing of data on Node
Orange: origin of contention, one or more packets queued in the switch
Red: propagating effect of switch contention down current data path

[LMC-Sanders]
113

See [Pauer97].

Copyright @ 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 113

Methodology

RASSE Complex Myrinet Network

Electronic
1

b e Modeling Example

DARPA e Tri-Service

0.0] fconplc

chomatic

e o
Multiple Layers of Myrinet Switches

oo,

Signal Processing Applications & Rapid Development [LMC-Sanders]
Copyright & 1995-1999 SCRA 114

See [Pauer97].

Copyright & 1995-1999 SCRA Page 114
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

Reinventing
Electronic
i

esign
Architecture Infrastructure

Network Example

DARPA e Tri-Service

Results for Complex Myrinet

= ;
e Yellow: start-up latency

Gantt Chart

e Blue: normal
transmission/reception

e Green: processing of
data on Node

e Orange: origin of
contention, one or more
packets queued in the
switch

e Red: propagating effect
of switch contention
down current data path

=

Rl Lotos 0

spress [3 241 190

Signal Processing Applications & Rapid Development

Copyright & 1995-1999 SCRA

[LMC-Sanders]

See [Pauer97].

Copyright & 1995-1999 SCRA Page 115

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) Benefits Seen Using Ptolemy

Electronic
Sl

et Performance Model

DARPA e Tri-Service

RASSP E&F
SCRA » GT » UVA

inc « ADL

Raytheon

e Allows different hardware configurations to be examined
without the expense or time of procuring or setting up
hardware

e Rapid exploration of many hardware configurations

e Provides both macro and micro view at the behavior of the
system

O Where bottlenecks exist and why
O Where underutilized capability exists
O Overall system performance can be predicted (estimated)

e Performance modeling can provide information to
hardware

O Architecture and interconnects
O DSTs can be reused

Goal: to have performance models predict performance to
within +/- 10% of actual

Signal Processing Applications & Rapid Development [LMC-Sanders]

Copyright & 1995-1999 SCRA 116

See [Pauer97].

Copyright & 1995-1999 SCRA Page 116
See first page for copyright notice, distribution

restrictions and disclaimer.

Methodology

R e i
Eigctrionicg Module Outllne

esign
Architecture Infrastructure

DARPA e Tri-Service

RASSP E&F

SCRA * GT » UVA

e Performance Modeling Introduction
e Performance Modeling Theory
e Non VHDL-Based Performance Modeling Tools

e Techniques for Performance Modeling using VHDL

VHDL-Based Performance Modeling Tools
VHDL Performance Modeling Examples
Mixed Level Modeling

Module Summary

Copyright & 1995-1999 SCRA

Module Outline

Copyright & 1995-1999 SCRA Page 117

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

Reinventing
Electronic

Design
Architecture " Infrastructure

Advantages of Using VHDL for
Performance Modeling

RASSP E&F
SCRA* GT + UVA

Raytheon » UCinc + ADL

DARPA e Tri-Service

e Adopted as a standard language and supported by
many tools, vendors, and platforms

e Provides an expressive language with a built-in
timing model, and full hierarchy and configurations
which allows rapid development of highly flexible
models of hardware

e Allows for easier consistency checks

e Provides a single language approach for system
hardware modeling from concept to implementation

e Provides tight coupling to the lower levels of design

O Mixed level modeling technique for model refinement can
utilize off-the-shelf VHDL models for system components

O High level performance model components written in VHDL
can be used as starting point for fully behavioral and/or
synthesizable VHDL models

Copyright & 1995-1999 SCRA 118

As a hardware description language, VHDL has many desirable features

for describing hardware already built-in such a a timing model, support
for design hierarchy and configuration, etc. A general programming
language such as C or C++ has none of these things.

A single language approach is beneficial because it means that

hardware designers can work in VHDL to describe their components at
all levels from the system level on down. Also, the system level VHDL
models can be a starting point for fully behavioral or even synthesizable

VHDL models of components.

Copyright & 1995-1999 SCRA Page 118

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) Techniques for Performance

Electronic

Design H 1 J
et e Modeling Using VHDL g

Rayih (Cinc + ADL
DARPA e Tri-Service

Archi

e Petri Nets, Queuing Networks, and general
uninterpreted models can, and have been,
implemented in VHDL

e The major issues are:

0O Defining the “token” data type

a Field(s) for handshaking - passing of tokens
between modules

a Fields for “bookkeeping” - source, destination, ID
number, creation time, etc.

Q Fields for user defined information - size of data
packet, routing, etc.

0O Defining the mechanism for passing tokens between
modules

O Encapsulating this information into a package for use in
the performance modeling “environment”

Copyright & 1995-1999 SCRA 119

Traditional performance modeling methods such as queuing models and
Petri Nets, have been implemented in VHDL by UVa and others, as
have more general uninterpreted performance modeling environments.

The major issues in this type of modeling effort in VHDL are discussed
above.

Copyright & 1995-1999 SCRA Page 119
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP . .
') Defining Tokens in VHDL

e Tokens must be setup to contain various fields of information
e VHDL record structures are typically used to define tokens:

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

TYPE uinterface_token IS
destination : nane_type;
sour ce : nanme_type;
t_type : token_type;
si ze : data_size;
val ue : | NTEGER
id : ud DType;
start _time : TINE;
priority : | NTEGER
state : State_Type;
pr ot ocol : Protocol _Type;
col lisions : I NTEGER
retries : | NTEGER;
route ;| NTEGER;
parml_real : REAL;
par n2_r eal : REAL;
par ml_i nt : | NTEGER
parn2_i nt : | NTEGER

. END RECORD,
e Caveats:

O Indexing through large numbers of record fields can make module code
verbose - consider using arrays within the records for user-defined data
fields

O The simulation execution time for a VHDL performance model is
proportional to the size of the tokens - use minimum size tokens and
pass large amounts of data between modules using another mechanism

Copyright & 1995-1999 SCRA 120

This slide includes the source code (somewhat modified) for the generic
interface token developed by Honeywell Technology Center as an
example.

Tokens in VHDL are probably best described as records. However, if
large numbers of user defined fields are to be included, it is sometimes
better to define those as arrays within the record structure. This allows
the code that accesses the user defined fields to do so with loops and to
index them easily (e.g., token.user_array(value_one)).

Another issue to consider is that it has become apparent that the size of
the token has a great influence on the simulation time of the model,
especially if a bus resolution function is used to pass tokens between
modules.

Copyright & 1995-1999 SCRA Page 120
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RIASSP‘B Passing Large Amounts of Data 4
| Between Modules in VHDL Rasse ear

Design
ure Infrastructure
SCRA « GT » UVA
haon « UCH

Rayth, (Cinc « ADL

Architectt

DARPA e Tri-Service

e Define token as small as possible to reduce
simulation time

e Use Honeywell’s “functional memory” concept to
pass data that will not fit into the standard token

Data Source Data Sink
Default Token

Contains “pointer” to
data in one of its

Large data item standard fields

e.g. image

“Functional Memory” implemented as
global signal - all modules can read
and write
 Array of stacks
« Support for variable size data
packets
* Support for standard types -

integer, real, etc.
Copyright & 1995-1999 SCRA 121

The problem with passing large amounts of data in a token is that large
tokens slow down the VHDL simulation greatly. Also, if only one token
signal in a given model needs to carry a large amount of information, all
tokens will be large (because they all have to be the same size) which is
a waste of simulation speed and memory.

A solution developed by Honeywell as part of their PML (to be
presented later) is to have a global signal, declared in a package and
visible to all architectures, that can be used as a storage space to pass
large amounts of data. Modules that want to pass data write it into this
“functional memory” which is implemented as an array of stacks
supporting generic types like integers and reals, and pass pointers to
the information to other modules in one of the standard token fields.
These other modules can then read the information out of the functional
memory as required.

Copyright & 1995-1999 SCRA Page 121
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP'} Passing Tokens Between
| Modules

Design
Architecture " Infrastructure

DARPA e Tri-Service

e Some type of interlocking handshaking protocol
IS necessary

e VHDL bus resolution functions are typically used

e There are two general scenarios:
O Point-to-point module connections

Data Source Data Sink

- —=

O Multi-point module connections

Data Source 1

Data Sink 1

Data Source 2 <

Data Sink 2

Data Source 3 <

Copyright & 1995-1999 SCRA 122

Some type if interlocking mechanism to pass tokens from one module to
another is necessary. VHDL bus resolution functions are typically used,
both in the point-to-point and multiple driver/reader case, because the
token signal is bi-directional. That is, the data source has to be able to
drive the new token onto the signal and the data destination has to be
able to drive the acknowledgement onto the signal. The two sources
require a resolution function.

An alternative (used in the ATL models and in the latest version of
ADEPT) is to have unidirectional signals, one from source to destination
to place the initial token, and another from the destination to the source
to acknowledge the token.

Copyright & 1995-1999 SCRA Page 122

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP Point-to-point Module 3
s e Connections Ehter sar

SCRA = GT » UVA
DARPA e Tri-Service -

e No source and destination information is needed in the token

e A VHDL bus resolution function is required to implement the
handshaking protocol
O Three or four state handshaking protocol

state = “removed”

Data Source writes “present” to signal w Data Sink sees “present” on signal

Time

state = “present”
Data Source sees “acked” on signal r Data Sink writes “acked” on signal

state = “acked”
Data Source writes “released” to signalw Data Sink sees “released” on signal

state = “released”
Data Source sees “removed” on signal r Data Sink writes “removed” on signal

v

Copyright & 1995-1999 SCRA state = “removed

123

This is an example of how a four state, point-to-point token passing

protocol works and why it need a resolution function (taken from
ADEPT).

Copyright & 1995-1999 SCRA Page 123
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(ASS'} Multi-point Module Al
Connections Rasse £ar

Desi an
(
Raythaan e UCinc » ADL

DARPA @ Tri-Service

e Source and destination information is needed in the token
for routing

e A VHDL bus resolution function is required to implement
the handshaking protocol and resolve the multiple drivers

Data Source 1 sends

a token to Data Sink 2
Data Sink 1 acknowledges token

rfrom Data Source 3
Data Source 2 <

Data Sink 2 acknowledges token
from Data Source 1

Data Source 3 sends y

a token to Data Sink 1 w :

Copyright & 1995-1999 SCRA

[]

T

This is a multipoint communications protocol. Why a bus resolution
function is needed here is self-evident. This is the token passing
protocol used in the Honeywell PML, eArchitect.

Copyright & 1995-1999 SCRA Page 124

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) Encapsulating Information in a

Electronic

A Package
U g

DARPA e Tri-Service

A

L™ q
RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

e A VHDL package should be used to encapsulate
the performance modeling specific information
O Token type and subtype definitions
O Constants
O Bus resolution function
O Functions and procedures for manipulating tokens

package performance_nodeling is
type handshake is (renpved, acked, released, present);
type token is
record

end recor d;
type token_vector is array (integer range <>) of token;
constant def_token_pr: token := (present,def_colors);
function token_present (tk: token) return bool ean;
function token_acked (tk: token) return bool ean;
function token_rel eased (tk: token) return bool ean;
function token_renmoved (tk: token) return bool ean;
--handshake functions
procedure place_token (signal tk: out token; constant ntk: token;
. constant delay: time:=0 ns; constant st: handshake: =present);
end per f or mance_nodel i ng;

Copyright & 1995-1999 SCRA 125

Finally, once all of the information necessary to do performance
modeling is defined (types, functions, procedures), it should be
encapsulated into a package that can be made visible to any
performance modeling component that needs it.

Copyright & 1995-1999 SCRA Page 125
See first page for copyright notice, distribution
restrictions and disclaimer.

RASSP .
Module Outline

esign
Architecture Infrastructure

RASSP E&F

SCRA * GT » UVA

DARPA e Tri-Service

Performance Modeling Introduction

Performance Modeling Theory

Non VHDL-Based Performance Modeling Tools
Techniques for Performance Modeling using VHDL

e VHDL-Based Performance Modeling Tools
o ADEPT
a Viewlogic eArchitect
=>Honeywell PML
0 LMC ATL Performance Modeling Library

e VHDL Performance Modeling Examples
e Mixed Level Modeling
e Module Summary

Copyright & 1995-1999 SCRA 126

Module Outline

Copyright & 1995-1999 SCRA Page 126
See first page for copyright notice, distribution
restrictions and disclaimer.

[ASS‘B VHDL-Based Performance
Modeling Tools/Libraries

Deslgn
itectu s(ucture

RASSP E&F
SCRA * GT » UVA

Raytheon » UCinc + ADL

DARPA ® Tri-Ser

e Advanced Design Environment Prototype Tool
(ADEPT) - University of Virginia

e eArchitect - Viewlogic Inc.

O Performance Modeling Library - Honeywell Technology
Center

e LMC ATL Performance Modeling Library

Copyright & 1995-1999 SCRA 127

UVa’s ADEPT system is a set of library elements and a set of tools for
constructing VHDL performance models.

Viewlogic’s eArchitect product is a set of tools for constructing and
analyzing the results of, VHDL performance models. It includes a
performance modeling library based on the Performance Modeling
Library developed by Honeywell Technology Center.

The Lockheed Martin, Advanced Technology Laboratory has developed
a small library of VHDL performance modeling elements, specifically
targeted at modeling Mercury Race Multicomputers, and a few tools for
analyzing their results.

Copyright & 1995-1999 SCRA Page 127
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) - Advanced Design Environment

Electronic

g e Prototype Tool (ADEPT)

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA

Raytheon » UCinc + ADL

e Provides a unified design environment that
permits linking of the design phases from initial
concept to the final physical implementation

e Supports performance and dependability
modeling from the same representation

e Includes a mathematical foundation based on
Petri Nets

e Consists of a library of modeling modules and
tools for constructing and analyzing system
models

Copyright & 1995-1999 SCRA 128

The Advanced Prototype Design Environment from UVa is a general
VHDL-based uninterpreted modeling environment that also includes a
Petri Net foundation (as will be explained). It consists of a library of
modules for constructing system-level performance and Dependability
models, and a set of tools for constructing and analyzing those models.

More information, including complete documentation and source code
for ADEPT can be found on the UVa Center For Semicustom Integrated
Systems web page:

http://csis.ee.virginia/

under the Publications and Tools sections. This includes some more
detailed examples of performance, dependability, and mixed level
modeling using ADEPT.

Copyright & 1995-1999 SCRA Page 128
See first page for copyright notice, distribution
restrictions and disclaimer.

ASS

[\ ADEPT (Cont.)

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Token based performance and dependability
modeling environment

O Performance modeling - latency, utilization, throughput

O Dependability modeling - reliability, safety, availability, fault
simulation

e Consists of:

0O A set of predefined modules for constructing system level
models

a Control, color, delay, fault, hybrid and miscellaneous
module categories

Q Libraries of application specific modeling modules

O VHDL behavioral and Colored Petri Net (CPN)
representations for each module

O Tools for generating, simulating, and analyzing models

Copyright & 1995-1999 SCRA 129

ADEPT's strengths consist of:

« the inclusion of a mathematical foundation which makes analytical
analysis of ADEPT models possible,

* the capability to perform performance and reliability modeling from the
same ADEPT model without modification,

« the inclusion of a library of elements with which interfaces to
behavioral models can be easily constructed for mixed level modeling,
and

« the ability of the user to easily extend the ADEPT libraries.

ADEPT’s weaknesses include:

« the fact that the low level nature of the ADEPT modules sometimes
makes model construction difficult and time consuming?, and

« the fact that because its VHDL based, simulation of ADEPT models
can take a long time?.

Notes:

1) This is being alleviated somewhat by the addition of libraries of more complex
modules, although these modules often lack the Petri Net representation.

2) This is being addressed by an effort to simplify and speedup the simulation of
ADEPT models.

Copyright & 1995-1999 SCRA Page 129
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(e
ADEPT Modules

DARPA @ Tri-Service

ADEPT Symbol VHDL Behavioral Description
ARBITER2

library uvalib;
use uvalib.uva.all;
use uvalib.rng.all:
entity arbiter2 is
port (in_1: inout token;
in_: inout token:
out_1: inout token;
out_2: inout token);
end arbiter2;
architecture ar_arbiter2 of arbiter2 is
begin
pr_arbiter2 : process
begin
wait on in_1, in_2 until token_present (in_1)
or token_present (in_2):
if token_present (in_1) then
out_1 <= in_1;
wait on out_1 until token_acked (out_1);
release_token (out_1);
ack_token (in_1);
wait on in_1 until token_released (in_1);
remove_token (in_1);
elsif token_present (in_2) then
out_2 <= in_2;
wait on out_2 until token_acked (out_2);
release_token (out_2);
ack_token (in_2);
wait on in_2 until token_released (in_2);
remove_token (in_2);
end if;
end process pr_arbiter2;
end ar_arbiter2;

Copyright & 1995-1999 SCRA [UVA] 130

This figure shows the ADEPT symbol for an arbiter module - a module
that serializes two tokens that arrive simultaneously on its inputs - its
corresponding VHDL behavioral description, and its corresponding
Colored Petri Net description. All of the ADEPT modules have a symbol
and VHDL behavioral description that can be used for simulation. The
ADEPT primitive modules - those in the Control, Color, Delay, Fault,
Miscellaneous, and Hybrid categories - have colored Petri Net
descriptions.

Copyright & 1995-1999 SCRA Page 130
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology -

P N

BASSP
ADEPT Tokens A

Architecture > Ofrastrutture RASSP E&F

y
U SCRA » GT ® UVA

Raythean » UCinc + ADL
DARPA e Tri-Service

 SOURCE | | FI XED_DELAY TSI
i step:lns i Signal A: token_res E E Signal B: token_res i
i timebase:1 ns T :4 delay:1 ns + i
i srcl :L far E i snkl
ADEPT
Modules

e handshake is (renoved, present, acked, released);
e token_fields is (status,
i tagl, tag2, tag3, tag4, tagb, tag6, tag7,
Userspeufled tag8, tag9, taglo tagll, tagl2, tagl3,
tag fields tagl4, tagls5, boolel, boole2, bool e3,
color, tkf_sig_name, tkf_node, tkf_index,
tkf_act _tine);
type color_type is array (token_fields range tagl to act_tinme) of integer;
type token is
record
status : handshake;
color : color_type;
end record;
type token_vec is array (natural range <>) of token;
function token_res_func (tkvec: token_vec) return token;
subtype token_res is token_res_func token;

-
<<
heg=]

[UVA]

Copyright & 1995-1999 SCRA 131

ADEPT modules are connected via VHDL signals. These signals carry
the tokens between the modules. The ADEPT tokens are implemented
in VHDL as a record structure with two fields, a status field that is used
to implement the 4 state handshaking, and a color field which is an array
of integers used to hold user-defined information.

A VHDL bus resolution function, called token_res_function, is used to
implement the point-to-point token passing mechanism as described
earlier.

The point-to-point token mechanism uses a 4 state, fully-interlocked
protocol. The states (enumerated in the handshake type) are “present,”
“ack(nowledg)ed,” “released,” and “removed.”

Copyright & 1995-1999 SCRA Page 131
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

[ASS‘B ADEPT Token Passing

Electronic

Sl 2 Mechanism

DARPA @ Tri-Service

: E@/i fa1 Wi

................

Event Sequence

Event Time Delta Description Resolved | Resolved

Signal A | Signal B
1 0ns 1 Source module places token on A present | removed
2 5ns 0 Delay module places token on B -- present
3 5ns 1 Sink module acknowledges token on B -- acked
4 5ns 2 Delay module releases token on B -- released
5 5ns 2 Delay module acknowledges token on A | acked --
6 5ns 3 Sink module removes token on B -- removed
7 5ns 3 Source module releases token on A released
8 5ns 4 Delay module removes token on A removed
9 (notshown) | 10 NS 0 Source module places token on A present

[UVA]

Copyright & 1995-1999 SCRA 132

This is a detailed description of the ADEPT token passing protocol using
a simple source/delay/sink model. Note that the only time that actually
passes in the model is that taken up by the delay module - the token
handshaking takes place in VHDL delta cycles with no time delay. In
general, only delay module in ADEPT have actual time delays
associated with them. All other modules use only delta delay. This fact
can sometimes cause problems (delta cycle races) in constructing an
ADEPT model.

Copyright & 1995-1999 SCRA Page 132
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS

(3 ADEPT Libraries

DARPA @ Tri-Service

e Basic ADEPT Building Blocks
0O Control modules - source, sink, and route tokens
O Color modules - modify the color fields of tokens
O Delay modules - add delay to the flow of tokens
O Fault modules - allow injections of faults onto tokens

O Miscellaneous modules - count tokens, terminate
simulation, etc.

O Hybrid Modeling modules - construct mixed level
modeling interfaces

e Application Specific Libraries
O Task level modeling library
O Communication network modeling library
0O Cycle-based system modeling library

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

Copyright & 1995-1999 SCRA 133

There are six categories of basic ADEPT building blocks out of which
general system models can be constructed. As stated previously, these
module have both a VHDL behavioral description and the Colored Petri
Net description.

Because of the difficulty with which users have been constructing
complex models out of the basic building blocks, libraries of more
complex constructs and modeling modules have been developed. The
elements in these libraries, which are targeted towards modeling
systems in certain application areas, have only the VHDL behavioral
description for simulation.

See [ADEPT_LR96] for more details on all of the ADEPT modules.

Copyright & 1995-1999 SCRA Page 133
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

Relnventlng

aes | Basic ADEPT Building Blocks
R (ADEPT Modules)

DARPA e Tri-Service

e Control Modules - 19 basic modules that source,

smk and route tokens

JUNCTI ON2

UNI ON2

step:1 ns
timebase:1 ns

£ o

ARBI TER2

SEQUENCE2

BUFFER

FEEDBACK

Copyright @ 1995-1999 SCRA

—<>

—o

i@iﬂcﬂ :

DECI DER TRI GGER SW TCH QUEUE

fle\d (agl 0
O—> gz —O | e o
base i pass_cond:1 v
XXX XXX

Copyright & 1995-1999 SCRA

There are 19 modules in the Control category. These modules include
the source and sink module for creating and destroying tokens, the wye,
junction and union modules for fanning in and fanning out tokens, the
buffer and feedback modules for buffering parts of the a system model
from others, queue modules, for storing tokens, and other modules for
routing tokens within a model.

There are also the “C” modules, like the CNOT and CXOR, that
manipulate so called “control,” or independent tokens. In ADEPT, the
tokens that are passed between modules using the 4 state interlocked
protocol, are called “data” or dependent tokens. Independent or “control”
tokens are tokens which have one source, but no real sinks. Then can
take on only two of the 4 states in the protocol, present and released.
They are generally used to carry routing and control information. For
example, the output from the queue module which tells if the queue is
full or not, and the inputs to the decider and switch module which
determine if, and which output is active, are “control” tokens. See
[ADEPT_UM96] for more details.

Page 134

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS
(‘3 ADEPT Modules (Cont.)

° Color Modules - 11 modules that manipulate (read,
write, modify) the user-defined color fields of a token

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

< ¢ ¢

SC D scI RC S
source:tagl : source:tagl : :
dest:tagl destitagl release:true
XXX XXX XXX
OPERATE o CPERATE | o CONSTANT RANDOM
t1-t5:00000 X
field:tag1 field:tag1l 6-t10:0000 0 field:tagl
o o oo < o ,
> op:add N > opaia 111500000 [> threshola:z0 <J-<>
b1-b3:false false dist:InitUniform(0,100)
false
< < XXX XXX
COVMPARATOR xxx COWMPARATOR | xxx FI LE_READ FILE_WRI TE
field:tagl field:tagl ToBs dat A
ield:tag: ield:tag: X
O O
> opie < op-eq menamez ;ﬂgn{amez:
dal

Copyright & 1995-1999 SCRA [UVA]

135

The color modules are used to access the user-defined (color fields) of
the tokens. The set color (SC_D, SC_1) modules set values on tokens
passing through them, and does the file_read module the read color
(RC) module and the file_write module read color fields and write them
onto other tokens or a file. The operator and comparator modules allow
arithmetic and logical operations with token color fields, and the random
module puts a random value on a color field.

Copyright & 1995-1999 SCRA Page 135
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS
(‘3 ADEPT Modules (Cont.)

) Delay Modules - 6 modules that add timing to a
performance model by delaying the passage of tokens

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

FI XED_DELAY DATA_DELAY Ul NT_DELAY
0_
X unit_step:1 ns unit_step:1 ns
O—1> delay:ins O e g o> field:tag1
CFl XED_DELAY CDATA_DELAY | NT_DELAY
<>_
unit_step:1 ns unit_step:1 ns
P> daayns i----<> S i----o ot v |—<>

[UVA]

Copyright & 1995-1999 SCRA 136

As stated previously, the delay modules are the only modules in the
basic ADEPT set that have simulation time associated with them. There
are fixed and data dependent delays for both “data” and “control” type
tokens and more complex delay modules for modeling synchronization
type events.

Copyright & 1995-1999 SCRA Page 136
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

e
ADEPT Modules (Cont.)

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Miscellaneous Modules - 3 modules that collect
performance statistics and terminate simulations

<o

% o MONI TOR
\V \V
filename:
T EYT
J J

Copyright & 1995-1999 SCRA [UVA]

137

The miscellaneous module category includes the collector, which writes
the time that a token passes a certain point in the model to a file, the
terminator module, which can stop a simulation after a chosen number
of tokens have gone past a specific point, and the monitor module,
which writes latency and utilization data out to a file for post-processing
by the ADEPT tools.

Copyright & 1995-1999 SCRA Page 137
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS
(‘3 ADEPT Modules (Cont.)

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Fault Modules - 13 modules (not all shown) that
simulate the injection and detection of faults for
dependability modeling

FAULT/ ERROR_DETECT

FAULT xoxx I’ o @ o
X X% prop._thresi0.9 < S
dist:InitGeom(0.01,0.0) improp_thres:-1 O ilename:
O_D o <>—F,__’_<> <>—F,__’_<> <>_[> deptecidelay‘)"s O
A
READ_FAULT SET_FAULT <> XXX FAIl L_RECORDER

e Hybrid Modules - modules that are used to construct
mixed-level modeling interfaces

[UVA]

Copyright & 1995-1999 SCRA 138

The fault modules allow the insertion and detection of faults into an
ADEPT model for reliability analysis.

Copyright & 1995-1999 SCRA Page 138
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP'} .
ADEPT Library Modules

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Module Builder’s Library - hierarchical modules that
are constructs of ADEPT modules that are commonly
used in building ADEPT models

DECREMENTER
CONST_SOURCE RANDOM _DELAY AN N2
step:1
-
dist:InitUniform(0,100) field:tagl o —
Z:Zblazes-1 ns o " eshold:1.0 —o < <O \\ .

) unit_step:1 ns : /

XXX XX o
XXX

[UVA]

Copyright & 1995-1999 SCRA 139

The Module Builders Library is a library of constructs commonly used in
constructing ADEPT models. For example, the random delay module
delays a token according to a random number. It is a hierarchical
module built up mainly from a Random module and a Data Delay
module. The Decrementer module will decrement the value on a token
tag by a set amount. It is built up from a Read Color, Operator, and Set
Color module.

Copyright & 1995-1999 SCRA Page 139
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP'} .
ADEPT Library Modules

Rayih
DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
2 JCing « ADL

e Task Level Library - modules for modeling systems at
a high level of abstraction where the algorithm is
broken down into individual tasks (similar to a
queuing model level)

QUEUE_DELAY QUEUE_LI FO
AN o i
value:0 _—
0—‘ ‘ ‘ - O— field:tagl _0 _—
X e —___——
X length:5
XXX o
DELAY GATE
max_number:5

§ DY

Copyright & 1995-1999 SCRA [UVA]

140

The Task Level Library is intended to allow users to build high level
models of various application areas. The elements in this library consist
of various Server module, various type of queue, like FIFO, LIFO, and
Priority, and special routing modules like the gate and hold. The
modules in this library were modeled, to some extent, on the types of
modules available in the Extend tool from Imagine That Inc.

Copyright & 1995-1999 SCRA Page 140
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS
(‘3 ADEPT Library Modules

RASSP E&F
SCRA* GT + UVA
DARPA @ Tri-Service

Raytheon » UCinc + ADL

e Multiprocessor Communications Network Modeling
Library - modules for modeling systems at the
processor/memory/switch level

O Includes generic CPU plus models of ATM, SCI, Ethernet,
Mercury Raceway, and Myrinet network components

O Network models consist of routers and transmitters and
receivers to interface CPUs to specific network routers

CPU RACE_TRANS : o
< XBAR
Routefile:routefile - H
— Source_Address:0 XXX
buff_size:10 Max_Size:1
filename:program Foed RACE_RECEI VER
XXX XXX
$644

Copyright & 1995-1999 SCRA

[UVA]

141

The Multiprocessor Communication Network Modeling library was
developed under the RASSP program to ease modeling of embedded
multicomputer applications. It includes a generic CPU, much like the
ATL CPU model to be discussed, and network modules to model
Raceway, Myrinet, SCI, Ethernet, and ATM networks.

Copyright & 1995-1999 SCRA Page 141
See first page for copyright notice, distribution
restrictions and disclaimer.

ASS

(\ ADEPT Modeling Flows

DARPA. Tri-Service

1
RASSP E&F
SCRA* GT » UVA

Raytheon » UCinc + ADL

ADEPT Module
Symbol Library

Schematic
Capture

ADEPT Module

. ADEPT Module
CPN Library

ADEPT Schematic IRIL (LTerErsy
(EDIF)
Colored Petri Net Model /\ Hierarchical VHDL Model
(ADEPT Generated) (ADEPT Generated)
Automated Abstraction GBS Semi-automated
s Automated e Construction of
of Dependability q Reliability .
o Model Reduction S Hybrid Model
Characteristics and for Simulation Analysis using the Interf
Generation of e ADEPT-REST MEEEES
Analytical Models P P Interface ¢ T

/ \ »L Detailed Design
using VHDL
Fault Trees Markov Models Flattened VHDL
¢ ¢ Petri Net Y ¢
T

|EEE Std. 1076 Compliant VHDL Simulator I
Fault Tree/Markov Model Solver I

Simulation-based Performance and Dependability Analysis
Analytical Dependability Analysis

Copyright & 1995-1999 SCRA [UVA] 12

This is a representation of the ADEPT modeling flows. Notice that there
are two basic types of analysis, analytical (mainly for dependability
modeling) and simulation-based (for both dependability and
performance modeling). The boxes shown in blue are processes that
are automated by tools developed for the ADEPT environment and the
blue drums are ADEPT libraries of symbols, VHDL behavioral
descriptions, and CPN descriptions.

Copyright & 1995-1999 SCRA Page 142
See first page for copyright notice, distribution
restrictions and disclaimer.

Ll
Elgé:;rignicg ADEPT TOOI FIOWS

n
Architecture Infrastructure

1
RASSP E&F
SCRA « GT » UVA
Royiheor .
DARPA e Tri-Service

Cinc + ADL

PN: Petri Net

Schematic Mentor Graphics Design Architect
i AM Symbo| B g
AM: ADEPT Module Libtary Capture or
OrCAD Capture

EDIF Netlister
Hierarchical EDIF 2.0

Translator from EDIF to
Hierarchical Internal ADEPT Format

AM VHDL
Library

AM-PN
Library

Internal
Formag Hierarclhical
Internal
. Translgtor to Format
PN Reduction Petri Net S
and Translation to <€ : ranslator to
Markov Models v Flattened Petri Net Hierarchical VHDL

Petri Net Reduction
Markov Model v

Markov Model Petri Net to VHDL Hierarchical ADEPT
Solver Module VHDL
VHDL

Flattened PN VHDL Simulator

Analytical Dependability

Evaluation Simulation-Based Performance and

Dependability Evaluation
Copyright & 1995-1999 SCRA [UVA]

143

This slide shows how the actual ADEPT tools fit together with the
various intermediate formats. Unfortunately, not all tools are available in
all versions of ADEPT. Specifically, only the EDIF to structural VHDL
path is supported on the PC platform with the OrCAD Capture tool.

Copyright & 1995-1999 SCRA Page 143
See first page for copyright notice, distribution
restrictions and disclaimer.

Eiont” ADEPT Schematic Capture

g
Architecture Infrastructure

RASSP E&F

SCRA* GT + UVA
ce ADL
DARPA e Tri-Service

= Design Architect 5
Design Architect

MGC Fle Edit Setup Miscellaneous Libraries Check Report Yiew Help ADEPT A1 Utils] ADEPT 2.0 Utils

Sl 0 (Wldse) (desoni | schematic |shestl 3 ¢) () wito VHDL from EDIF (o) T

Schematics1 designl sheetl __ it yHDL (from EDIF)

edit VHDL

compile VHDL

simulate VHDL

animate schematic [
L

- BanRs Fhere i o astve symkol

Time Line

Stats (Graphical)

Stats (Text)

Reliability [TexT] [oraw]

Tnroughput

noroe) oh. T

analysis programs

schematic_add_route

Dolay: 2

¥ P = ¥ 1 s Fr 1 ¥y i il
Selet preapry | Unsckotl | Adiie | Popup e | Frsesimbol || SetGridsnap | |adTot & Move] Viewarea || Setun session | Puidowntreny | FeseiFie | Pop Window
Selct Usriex, | Unsslct area | dd Bl it Preperty || ~Connect A1 | 5| Cho Text Uale | View o1 Edtrie | Cios Wndow
Recpen Selsot | Move Copy Fosoect | Check aheet Open Down
Copyright & 1995-1999 SCRA [|

144

This screen shot shows the construction of an ADEPT schematic within
Design Architect. Notice that all of the ADEPT utilities for constructing,
simulation, and analyzing the results of an ADEPT model are available
via pull-down menus.

Copyright & 1995-1999 SCRA Page 144
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
@ o
*. Ay
RASSP P i,
Reinventing ost Frocessing 100lIs
Electronic
e BAARS Dynamic Metric Displ rasse rar
rehitecture . “Infrastructure
o ynamic Metric Display asse E8
Raytheor ce ADL
DARPA e Tri-Service
| =) baars T 7]
Performance = E R e
file v) View) Editv) Re-draw) Z) O) 1) AS) AT) U
240 G0: ¥, ¥ = [518.868, 7.21612] L) Ry u) D) Pz
Queue Length Gale:
Which data set would you like to | C
24.0 H
Tokens |
i -
Inter-Signal Latency (N|f5
o
Intra- Signal Latency at | &
16.0 =
Cancel Intra-Signal Latency at | ©
v
Throughput at gt 7ol | =
YT - . P I
hreughput Throughput at Qufput (T 0O 20000 40000 S0UCO 80ODO 10000.0
8.00 Tirne (Nanoseconds)
et utiization (ercent | 47 cator csis_va.ee.virginiacdui0.0 | Mon May 22 14:32:54 1985
Utilization
Settings
TASK3_QUEUEL TASK 1 QUEUEL
TASK 2 QUEUEL TASK 4_QUEUEL
Demo Completion Quenes
Center for S encienstom
100% Scale Done Integeaced Sy stems
University of Virginia.
Time: 10000 ns Demo complete demo speed: 0.0 demo s {real sec
Copyright & 1995-1999 SCRA [UVA]

This is a screen shot of one of the available ADEPT post processing
tools. This tool will give the user a dynamic playback of queue lengths,

and module latency, utilization, and throughput over simulation time and
then graph the results.

Copyright & 1995-1999 SCRA Page 145
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(EgAssp ADEPT Post Processing Tools g &
Archuec«EIggg'gﬂlcjmcm.e (C O n t .) %Asp E&F‘
Bl Timeline Utilization Display s 0

wasoed | LT HTRLEL DREL 1]
weowronl | [LTLEETERETTEEETT
LI (1IN BTN Y
—— _“

!
] IIII.I'I ZII].JJ 004 700.0 ﬂl]ll

[UVA]

Copyright & 1995-1999 SCRA 146

This is a screen shot of another of the available ADEPT post processing
tools. This tool presents utilization as a standard timeline display.

Copyright & 1995-1999 SCRA Page 146
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP\ Honeywell Performance
| Modeling Library (PML)

Design
ture Infrastructure

Architect RASSP E&F
SCRA* GT + UVA

Raytheon » UCinc + ADL

DARPA e Tri-Service

e Targeted towards high-level description,
specification, and performance analysis of
computing systems at a system level

e Serves as a simulatable specification, aids the
identification of bottlenecks, and supports
performance validation

e Can be used for capturing and documenting
architectural-level designs, and can be used as a
testbed for architectural performance analysis
studies

e Comprises the performance modeling library for
Viewlogic's performance tool

Copyright & 1995-1999 SCRA [Honeywell] ,,

Now the Performance Modeling Library (PML) developed by Honeywell
Technology Center in Minneapolis MN will be discussed. PML is a
VHDL-based performance modeling library of elements targeted
towards modeling a system at the processor-memory-switch level. It
allows the modeling and simulation of the system’s hardware and
software. PML is the basis of the Viewlogic eArchitect performance
modeling tool.

Copyright & 1995-1999 SCRA Page 147

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

“ie) PML in the Design Process

Architectt asty

RASSP E&F

w__~ 74+ - Uk
aythaan e UCinc « ADI

DARPA e Tri-Service

System
Requirement; \
Requirements composition A Library Yﬁcomposmon L
¢ ~ Arch. Perf > Soft
VHDL rcen. Pert. oftware
@we@@ Performance

........... Mixed Level
Behavioral

MODELING

VHDL Behavioral- Software PDL
level Mode Prototype

Design

VHDL Gate- Executable
Test/Integ level Mods

| 4>

Prototype
Copyright & 1995-1999 SCRA Hardware [Honeywell] ,,q

This figure illustrates where the PML (and eArchitect) are intended to be
used in the design process. Note that a capability for mixed level
modeling (explained in the next section) is built into PML/eArchitect.

Copyright & 1995-1999 SCRA Page 148

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

‘E.egg,gg.cg PML Features

DARPA @ Tri-Service

RASSP E&F
< G+ 01

Ryt

e Generic building blocks

O Can be assembled and configured rapidly to many
degrees of fidelity with minimal effort

O Modules are interconnected with structural VHDL
O Types available:

Q Input Device

0 Output Device

a Pipeline

a Memory

Q Processor

Q Bus

e Appropriate to apply at architectural level

O Actual device under study (such as a signal processor)
and its environment (such as sensors and actuators)

Copyright & 1995-1999 SCRA [Honeywell] o

The overall approach in PML was to develop a small library of generic
building blocks with many generic inputs that allowed them to be
parameterized to model many different devices. The library actually
contains only 5 modules and several different bus resolution functions to
model communications protocols. These devices are targeted at
modeling the architectural (PMS) level.

Copyright & 1995-1999 SCRA Page 149
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
(R ASSP
einventing ° °
S PML Token Description
tecturs s‘ RASSP E&F
SCRA« GT + UVA
Raythaan e UCinc » ADL
DARPAQTn Service
TYPE uinterface_token IS
RECORD
user fields
par mL_r eal : REAL; -- these are placed first to avoid
par n2_r eal : REAL; -- sone oddities on Sparcs (ACK!)
parml_i nt : | NTEGER;
par m2_i nt : | NTEGER;
control flow
destination : name_type;
source I name_type;
t_type : token_type;
performance fields
si ze : data_size;
val ue : | NTEGER,
token tracking or statistics fields
id : uG DType;
start_time : TINE;
comuni cation fields
priority : | NTEGER;
state : State_Type;
prot ocol : Protocol _Type;
user conmuni cation tracking and control fields
col l'i sions : | NTEGER;
retries : | NTEGER,
route : | NTEGER;
END RECORD;
Copyright & 1995-1999 SCRA [Honeywell] 4,

Here is a description of the generic token defined by Honeywell
Technology Center for interoperability of performance models [HTC97].
The actual token used inside of PML is proprietary and slightly different
than this, but this example gives the overall structure and how it is
different from the ADEPT token.

Copyright & 1995-1999 SCRA Page 150
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASS .
(PML Token Passing Protocol

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

%

ack

Bus Master Bus Slave

—busy
%}

e The state field in the token is used to implement token passing
O Similar to the ADEPT system developed at UVa
e Bus state has four values: (idle, request, ack, busy)

O By changing this field value, the models pass the state of the token
to each other

e Unlike the ADEPT token passing mechanism, multiple bus
masters and bus slaves are allowed

O The bus resolution function can be parameterized to model several
“real” bus protocols

Copyright & 1995-1999 SCRA

[Honeywell] o,

The VHDL bus resolution function (BRF) used in PML uses four states
to pass tokens on busses that have multiple drives and sources. For
simple point-to-point connections, only three states are used for
simulation efficiency. The BRF can be parameterized (or modified) to

model several “real” bus protocols - thus the VHDL BRF is actually part
of the model.

Copyright & 1995-1999 SCRA Page 151
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

e .
PML Generic Components

DARPA e Tri-Service

A

L™ q
RASSP E&F
SCRA* GT + UVA

Raytheon » UCing + ADL

Device Example

Input Analog Sensor

Output Heads-Up display
Pipeline Rendering pipeline
Memory Data memory
Processor SHARC DSP Processor

. Bus .VME Bus
e Library has over 50 generic components

e Primary characteristics are modeled with the following
generic characteristics

O Unit: the size of data input
O Throughput: the frequency at which UNITS can be processed
O Latency: propagation through a component
O TxForm: the increase/decrease in the amount of data
e Generics are described by a distribution of the form
O String = “POISSON 4 range 0 100”
O String = “UNIFORM range 10 20”

Copyright & 1995-1999 SCRA [Honeywell] 15

As stated previously, the PML library consists of 5 major modules, but

there are many examples of modules parameterized to model specific
devices in the library.

PML contains a sophisticated string processing language for
specification of complex generic parameters to the models.

Copyright & 1995-1999 SCRA Page 152
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

A Electr_onicg P M L I n p ut DeVI Ce JRASP E&F

Design
Architecture Infrastructure

SCRA * GT » UVA
Raytheon » UCinc + ADL

DARPA e Tri-Service

Generates tokens per given

: distribution (e.g. Sensor)

Roadmap

Begin process
Initialize token counters and distributions
Generate new token fields
Delay for period
Write token to output
Accumulate performance statistics
End process

[Honeywell]

Copyright & 1995-1999 SCRA 153

A PML input device is like a Source module in ADEPT, it creates tokens
at a specified rate. Note that all modules in PML participate in the
generation of performance statistics like latency and utilization.

Copyright & 1995-1999 SCRA Page 153

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

esign
Architecture Infrastructure

DARPA e Tri-Service

PML Output Device

RASSP E&
SCRA » GT » UVA

ADL

Raythean

Accepts tokens per given — 5
frequency (e.g. Display)

Roadmap

Begin process
Initialize distributions
Generate distributions
Delay for period and await input
Accumulate performance statistics
End process

Copyright & 1995-1999 SCRA

[Honeywell] 154

An output device is like a Sink module in ADEPT

Copyright & 1995-1999 SCRA Page 154
See first page for copyright notice, distribution
restrictions and disclaimer.

. It consumes tokens.

Methodology
“H
RASSP T

PML Pipeline

esign
Architecture Infrastructure

RASSP E&
SCRA » GT » UVA

ADL

Raythean

DARPA e Tri-Service

—_— ——> Delays token per given value

Roadmap

Begin process

Initialize distributions

Wait for pipeline request

Generate new token fields

Write token to output

Accumulate performance statistics
End process

Copyright & 1995-1999 SCRA [Honeywell] 15

The pipeline component delays tokens. It can also, by changing token
fields, route tokens.

Copyright & 1995-1999 SCRA Page 155
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Ll
Eigctrionicg P M L M e m O ry

esign
Architecture Infrastructure

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

DARPA e Tri-Service

Responds to read or write
request per given configuration

Roadmap

Begin process
Initialize distributions

Wait for memory request
Generate new token fields

Write token to output

Accumulate performance statistics

End process

[Honeywell] 156

Copyright & 1995-1999 SCRA

The memory component consumes memory request tokens and after a
specified delay, generates memory access tokens.

Page 156

Copyright @ 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

PML Processor Model

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UC

Define Software Tasks Define Software
A

(Cinc » ADL

Iy Architecture
v
Task Bus v
Define
Scheduler Kernel
¢ T Services
Interrupt > Define
YY) peLprocessor | processor <:| Processor
clock frequency ISA
Connect required A
interrupts Processor Bus y Characterize processor bus
Disk I/F Bus Floating Point | | pjemory || Dual Port
Berreresannarnnnnnas e I nterface COprOCeSSOr Memory

Copyright & 1995-1999 SCRA [Honeywell] 157

The processor model is the heart of the PML. It is capable of running a
representation of the software that the real system will execute. That
software representation, while written in VHDL can be at a level of
abstraction that ranges from the task level down to the detailed
functional level.

The PML processor is basically a request-resource model. The software
representation executes and a specified point, requests resources (e.g.
memory access, 1000 floating point multiplies, 100 integer adds, etc.)
from the processor. The processor schedules these operations on the
hardware resource when it is available and delays the software
execution until they are completed. The software continues from that
point until more hardware resources are needed.

The processor is parameterized by specifying its Instruction Set
Architecture (ISA) and what and how many resources are consumed by
each instruction in the ISA. Sophisticated operating system constructs
such as interrupts and multitasking can be modeled as well.

Copyright & 1995-1999 SCRA Page 157
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASSP
(PML Processor Model (Cont.)

DARPA @ Tri-Service

RASSP E&F
< G+ 01

Ryt

e Make the control flow decisions for the simulation
e Processor models execute user-supplied VHDL
programs and are divided into four parts:
O Software models - VHDL as a HOL
0 Can be abstracted at high-level performance facets
0 Can be as detailed as ISA instructions
O The scheduler or thread manager
O The processor hardware model
O Dedicated hardware under processor control

e Attributes necessary for the processor simulation are
throughput, available resources, instruction timing, etc.

e Trade-off is cost and time spent modeling versus the
fidelity necessary to obtain the required data

Copyright & 1995-1999 SCRA [Honeywell] 158

The processor model allows detailed modeling of software at various
levels of abstraction executing on different types and speeds of

processors. One drawback of this fidelity (and its associated complexity)
is long simulation times.

Copyright & 1995-1999 SCRA Page 158
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(’ o, Viewlogic’s eArchitectO

Reinventing

fegs.gng Performance Modeling
Environment

e eArchitect is a VHDL-based environment for analyzing
the performance of hardware/software systems

e eArchitect includes a set of tools for graphically
constructing hardware/software system models and
displaying the results of performance simulations

e eArchitect allows the modeling of software as data
flow graphs or flow charts

e eArchitect provides a parameterized library of
hardware components from which to construct the
hardware model

O Based on the Performance Modeling Library (PML) developed
by Honeywell Technology Center

O Hardware models are at the Processor, Memory, Switch
(PMS) level of abstraction

Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 150

RASSP E&F

Ray umu B ur::»‘ oo ADI

Copyright & 1995-1999 SCRA

This section describes Viewlogic’s eArchitect O tool. eArchitect is very
ADEPT like in that it includes tools for constructing, simulating, and
analyzing performance models in VHDL. It uses the Performance
Modeling Library (PML) developed by Honeywell Technology Center as
its module library. The development of eArchitect was funded as part of
the RASSP program.

Note that unlike ADEPT, eArchitect (like PML) is targeted at one specific
level of performance modeling (the processor, memory, switch (PMS)
level) and does not have a mathematical foundation or support
dependability analysis.

Copyright & 1995-1999 SCRA Page 159
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP
Reinventing
Electronic
Design
Architecture “Infra:

structure

DARPA e Tri-Service

eArchitect Tool Set

RASSP E&F

RA GT » UVA

VHDL

Copyright & 1995-1999 SCRA

; - Analysis
Library Model Toglls
Browser Library
\
A
Modeling Tools
_ VHDL
Performance Design Compiler/
Requirement Repository Simulator
Capture
VHDL

Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

[Viewlogic]
160

This is the eArchitect tool set. Like ADEPT, a commercial, third party,
VHDL simulator is used as the simulation engine and must be obtained

separately.

Copyright & 1995-1999 SCRA Page 160

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASSP . . .
(~ Hardware Design in eArchitect

DARPA @ Tri-Service

File Edit Model View

Architecture "test” of block "

~Nol=xs S8 B =2

ignul_21

=ignul_25

Copyright & 1995-1999 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 161

This is an illustration of the construction of the hardware model in
eArchitect. The hardware model consists of processor models and
communications switch models from the PML library (as will be
presented). The modules used in the model can be parameterized, via
the GUI, to model different types of processors and networks.

Copyright & 1995-1999 SCRA Page 161
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP

Reinventing

E'ss;zgnw\ eArchitect Library Browser

Architecture astructure

DARPA e Tri-Service

Copyright & 1995-1899 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 16

This is the eArchitect library browser. It is used to select standard
hardware components out of the library for instantiation into a
performance model. eArchitect comes with the complete PML library of
generic elements and several specific components (like a Mercury
RaceWay crossbar switch) built out of those generic components.

Copyright & 1995-1999 SCRA Page 162
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP Software Design in eArchitect (4§
Data Flow Graph o

Design
Architecture Infrastructure

DARPA e Tri-Service

File Edit Model |

"sbarArch” of block '

- J
NEEEER &3 -] 2]

Copyright & 19951399 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 163

This is an illustration of the description of the software application in
eArchitect. Here, the software is described as a dataflow graph as is
common in embedded DSP applications.

Copyright & 1995-1999 SCRA Page 163
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP Software Design in eArchitect

Flone =
Arch\lwuclure F I OW C h art :Akfsfssz

DARPA e Tri-Service

f =TT 1
Ll

|
=l mioipigigsiyl slsin:z

FRIEE | sk sedouied e akUer o reslrin o
dedptaming mamags b8 =l LE LSS

HEa e eSsmaps o
[T

(TP p——
bRy e

Procas. ks Pracews s

——
T
¥
=] =
|am it i S e b L1 ol] L i
Copyright & 1995-1999 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] ,,

Software can also be described as a control flow graph in eArchitect as
shown here.

In addition to the two methods shown in this slide and the previous one,
software in eArchitect can be coded directly in VHDL by the user (with
appropriate calls to the hardware resource models), and included in the
eArchitect model.

Copyright & 1995-1999 SCRA Page 164

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSE) Software to Hardware Mapping

Electronic’

R In eArchitect

DARPA e Tri-Service

Copyright & 1995-1999 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 165

Once the hardware and software models are completed, the next step is
to map the software tasks onto specific hardware processors for
execution. This is done with the software mapping tool as shown here.

Copyright & 1995-1999 SCRA Page 165
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology - -
RASSF!} Analysis of Results in
Reinventing -
Electronic A h t t
X & eArcnitec
oaRPAS T serve Utilization
4 rlormance Metric Analyzer 1
Copyright & 1995-1999 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 166

Like ADEPT, eArchitect contains a number of tools for analyzing the
data from the performance model simulation. This is the eArchitect
utilization tool display. It displays specific processor utilization as a
moving horizontal bar graph.

Copyright & 1995-1999 SCRA Page 166
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology - - -
o &
R ASSE Analysis of Results in 7N
e Architect 4
Mecturs > O ot eArcnitec RASSP E&F
. . SCRA = GT » UVA
Utilization (Hot Spots) g
File Display
Block: root_block Architecture: test
System: SAR System Architecture: xbarRaceArch
Utilization oz I Rt
Bowrdd | o
siansl |7
Ion Ins
—
Boardl _,:n'-ywl—_s—i:;lcxs—’ 12;9.-.".1_4 i‘{A 1030«.«1[
Board2 19 signal !
F7 sisnal
Run: test 1
Copyright & 1995-1999 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 167

Here is another eArchitect post-simulation data display tool. In this case,
its a “hot spot” display which show module utilization in color codes.
Modules that appear towards the red side of the spectrum are highly
utilized and may represent a bottleneck in the computation. If however,
all modules are towards the blue side of the spectrum, the overall
system may be over designed resulting in wasted resources.

Copyright & 1995-1999 SCRA Page 167
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

@AS?F!} Analysis of Results in
eArchitect
v Activity Time Lines

i esi
Architecture Infrastructure

Copyright & 1995-1899 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic]

This is a screen shot of the activity time line display available in
eArchitect. It is fairly standard.

Copyright & 1995-1999 SCRA Page 168
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP Analysis of Results in

i eArchitect

s g
Architecture Infrastructure

baRoAS T service Throughput

Copyright & 1995-1999 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 160

Here is the throughput display from eArchitect.

Copyright & 1995-1999 SCRA Page 169
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

eArchitect Design Flow

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UC

(Cinc » ADL

Construct Model Simulate Analyze

Model
Software

Map
Software
onto
Hardware

A icall Complete VHDL
utomatically 8
Generate VHDL » Compiler/

Model Simulator

i .. Model — —
~ Hardware

Copyright & 1995-1999 SCRA Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved. [Viewlogic] 170

This slide shows the overall design flow in eArchitect. Again, the
hardware architecture is modeled using the PML library modules
configured to model the chosen hardware architecture. This includes
specifying the ISA of the chosen processors and their execution rates,
and the network configuration and its communication rates. The
software is modeled as a set of tasks that communicate in a specific
way and take a certain amount of resources in terms of computation and
communication. Finally, the mapping of software tasks to processors is
specified. The eArchitect tools then generate a VHDL model of the
complete system which is then compiled and simulated on the chosen
commercial VHDL simulator. The data that results from that simulation
can then be displayed graphically by the eArchitect post-simulation
analysis tools.

Copyright & 1995-1999 SCRA Page 170
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{hAssp Lockheed Martin ATL

Reinventing

Performance Modeling
vt Modules

e LM ATL’s modules were designed for maximum simulation

efficiency in hardware/software performance modeling of a DSP

application executing on a Mercury Raceway Multicomputer

Network Hardware Model: processor, memory, switch level
1 1

structure

RASSP E&F
SCRA* GT + UVA

Raytheon » UCinc + ADL

[P] [P] [P] [P]
[MHSHSHSHMI [MHSHSHSHMI
[P] [P] [P] [P]

Copyright & 1995-1999 SCRA [Lockheed Martin] ,7,

As part of the RASSP program, ATL was tasked to use performance
modeling in the design of several benchmark embedded DSP systems.
Their efforts to use PML and ADEPT at an early point in the program
were hindered by the long simulation times of both ADEPT and PML
models and by the unavailability, at that time, of the eArchitect tool and
a suitable PMS level modeling library in ADEPT. In response, they
developed a very lightweight PMS level modeling environment for

Mercury Raceway systems with an emphasis on reduced simulation
times.

Note that both ADEPT and PML have since addressed the simulation
time problem with good results.

Copyright & 1995-1999 SCRA Page 171
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSE ATL Performance Modeling

Electronic

Arcm(enlﬂgjlglnnhasvumum M (o) d u I es JRA}:SI" E&F

Rayth, (Cinc « ADL

DARPA e Tri-Service

e The library includes two basic modules:
O A simple processing element (PE)
O A network switch element intended to model the Mercury
Cross bar switch (Xbar)
e The emphasis in creation of the library was the
reduction of simulation time for the resulting
performance models

O No VHDL bus resolution function was used to implement the
token passing mechanism - each interconnection consists
of two one-way interconnections

O Shared variables were used within modules to pass data
between processes

O A minimum size token was defined

O A simpler 4-event mechanism was devised to model the
passing of data between PEs over the network

Copyright & 1995-1999 SCRA 172

The ATL library consists of two components, a processor model (which
includes a network interface), and a switch model. The switch is
intended to model the Mercury Raceway crossbar switch.

Much emphasis was placed on reducing simulation times and the
results were very good in that regard - ATL VHDL performance models
of the Raceway system simulate in an equivalent time to models written
in C. However, the disadvantage of this more ad hoc approach over
ADEPT or PML is the limited library of components available (which had
to be written specifically for this network model) and a less general
applicability.

Copyright & 1995-1999 SCRA Page 172
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

[ASS'B Processing Element (PE)
Model

e5|gn
ecture Sl

DARPA @ Tri-Service

e Contains local memory for
storage of local data and
software programs

e Consists of two concurrent
Ty
processes

Sw Computation Agent T
Program o Computation agent

interprets application
software

S— N

Communications Agent o Communications agent
handles asynchronous

transmission and reception

of messages through
network

Network
(Raceway Xbars)

Copyright & 1995-1999 SCRA [Lockheed Martin] ;;5

The ATL processing element (PE) consists of two parts; the
computation agent that reads CPU instruction from a file and executes
them, and a communications agent that interfaces to the network model
and handles message sends and receives.

Copyright & 1995-1999 SCRA Page 173
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP Software Applications Program

Electronic

Arch\lec(ureesIgl':ﬂasvucluve
oy for PE Model

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Six instructions for performance model:

RECVMESSG(message_|ID, Message_length)

SENDMESSG(message_ID, destination_PE, message_length, priority)
CECOMPUTE(time_delay, task_name)

MONOTONIC (time_delay)

STARTOVER

PROGMDONE

e Example program: [recvnessg 2 4096
sendnessg 1 2 4096 3
ceconpute 5160 P1R1
recvimessg 2 8192
sendnessg 1 2 8192 3
recvimessg 3 8192
sendnessg 1 3 8192 3
ceconpute 5160 P1Cl
recvimessg 3 8192
sendnessg 1 3 8192 3
progndone

startover

e Additional instructions can be added for “virtual prototype”
which includes functionality

Copyright & 1995-1999 SCRA [Lockheed Martin] ,7,

The ATL CPU model has 6 instructions that fall into three basic modes,
compute, send and receive. Additional instructions that perform actual
data translations (complex multiply, matrix operations, etc.) can be
added in the first “virtual prototype” stage when some functionality is
added to the model.

Copyright & 1995-1999 SCRA Page 174
See first page for copyright notice, distribution
restrictions and disclaimer.

RASSP) DY
(‘3 Switch Element (Xbar) Model s
Architecture Infrastructure &F

SCRA * GT » UVA
Raytheon » UCinc + ADL

DARPA e Tri-Service

e N port component that
PORT1 PORT4 routes data
Status: IdI S . Ci d
S| o e Diatue: Connecte > e Forms network when
gqnn_Prt: - gqnnf’nrf connected to other SEs
rority: -- N
il rlorty and PEs
CoRT2 CORTE e N concurrent VHDL
Status: Connected Status: Idle prOCGSSGS -one per pOI’t
Dir: ouT Dir: - H H
ConnPrt: 6 ConnPrt: -- handle C_IrCUIt
Priority: 3 Priority: - connection, message
transfer, and reallocation
PORT3 PORT6 (preemption) operations
Status: Connected Status: Connected
> Dir: IN Dir: IN
ConnPrt: 4 ConnPrt: 2
Priority: 1 Priority: 3

[Lockheed Martin] ;75

Copyright & 1995-1999 SCRA

The switch element in the ATL library models a 6 port Mercury Raceway
crossbar switch. This crossbar is circuit switched and can handle up to
three simultaneous connections. It is modeled in VHDL using 6
concurrent VHDL processes, one to handle each port on the crossbar.
The crossbar functions of circuit setup, teardown and preemption are
handled.

Copyright & 1995-1999 SCRA Page 175

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP
Reinventing
Electronic

Design
Architecture " Infrastructure

DARPA e Tri-Service

Simplified Message Passing
Protocol

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

Previous Approach: Four Token Protocol

—
[EEy
[as

O
o
z
m
i
o
2
T
m
N

PE1

Copyright & 1995-1999 SCRA

e
m
=
i
o
2
>
(@]
~
a
N

ﬁ
o
2
O
o
z
m
)
m
N

TO, TO,
PE1 Xbar PE2 PEl Xbar PE2
mE X e
T0, 1
PE1 Xbar PE2 PE1 Xbar PE2
(PED)——(xbar——>(PE2) (PEV) %
TO, T1

P

TOg T1,
TO,
C) Xbar PE2 _ _
DATA T1=TO+size* rate + fixed_latency
TOg
PE1 PE2
DATA
T1

Simulation accounted for correct
transfer time, but half the number
of token events were used

[Lockheed Martin] 174

This is an illustration of how the normal message passing protocol, as
modeled in a performance modeling environment, was simplified to
reduce the number of tokens needed. Note that this token passing

mechanism is

a modeling artifact, it is not how the Raceway actually

passes data, so changing it does not affect the model fidelity as long as
care is taken to keep the timing the same.

Also note that the ATL module do not use bus resolution functions to

pass tokens - they use two unidirectional signals - further decreasing the

execution time of the simulation.

Copyright @ 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 176

Methodology

(I‘?ASSP
Felectrone”

Design
ure Infrastructure

Simplified Message Passing
Protocol (Cont.)

Architectt

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

Copyright & 1995-1999 SCRA

Preemption Contention
TO, TO,
(D (PED
REQ Y(PE1 PE2
T2 NACK
0
T2 Preempt
1
PE1 Xbar PE2
DONE
T2,
PE1 Xbar PE2
DONE

[Lockheed Martin] ,;,

These figures illustrate how preemption and contention (requesting a

busy path) are handled in the simplified ATL protocol.

Copyright & 1995-1999 SCRA Page 177

See first page for copyright notice, distribution
restrictions and disclaimer.

e .
PE Protocol State Diagram

DARPA e Tri-Service

Methodology

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

Copyright & 1995-1999 SCRA

T=T1| Send Done
Register receipt of
message D

Recvr and
Trnsmttr
Idle

Req | Set T1-delay

Preempt | Send Done (incomplete)

Out-going message
queue not
empty | Send Req

Nack | Try again
or Req

Done (incomplete) | Resume again

Done | Cancel out-going message

e State diagram of PE’s Communications Agent process
implemented in VHDL

[Lockheed Martin] 174

The communications agent and how it handles the various network
functions such as requesting a path for a message, sending the
message, and responding to preemption, is fairly complex, so it was
designed as a state machine. This state machine was then implemented
in VHDL to perform the required function. Note that within the PE VHDL
code, the communications agent and computation agent pass data back

and forth using shared variable instead of signals, further reducing
simulation execution time.

Copyright @ 1995-1999 SCRA

See first page for copyright notice, distribution

restrictions and disclaimer.

Page 178

Methodology -

RASSP .
') SE Port Process State Diagram

esig
Architecture Infrastructure

P E&F

VA

DARPA e Tri-Service

Req_priority > Port_priority | Launch Preempt

Pending
Preempt

Preempt | Relay Preempt

Req and Avail | Allocate ports
and forward Req

Nack | Relay back Nack
orReq and reallocate ports

Connected

Done on Output | relay back Preempt
and reallocate ports

Preempt on input | Forward Preempt

Preempt on Output | relay back Preempt
and reallocate ports

e State diagram of VHDL process for each port of the SE

Copyright & 1995-1999 SCRA [Lockheed Martin] ;79

This is the state diagram for the VHDL process that implements the
procedures of the port in the switch element (crossbar).

Copyright & 1995-1999 SCRA Page 179

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(E*ASSP Performance Metrics from ATL £ &
| Performance Models sisar 1ar

Design
Architecture " Infrastructure
RA Te UVA

DARPA e Tri-Service

e Statistics are recorded using shared variables
e Simulation output includes:

O Link and PE utilization

O Resource and link contentions

O Processor and communications time-lines

-
_VHDlj —>| Time_line
Simulation Event File
< Ty
—> XY-Plotter | ———>

Copyright & 1995-1999 SCRA [Lockheed Martin] 144

A simple set of tools for collecting and analyzing performance metrics
from the ATL modules was devised. The main tool is a time line
utilization analysis tool that is capable of displaying both the times when

the PEs are busy computing and when the communications network is
busy.

Copyright & 1995-1999 SCRA Page 180
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP Expanding Performance Model

Electronic

Design H H ' ‘
et B into Virtual Prototype ot

Performance Model ;
(Timing, Structure Only) Function

O
!

Level 0 Virtual Prototype

Full-Behavioral Model
(Timing, Structure & Function)

DARPA e Tri-Service

e Add data fields to tokens
e Add data transformations to Computation Agent of PE
e Add File I/O for data input and output

Copyright & 1995-1999 SCRA [Lockheed Martin] ,g;

After a high level performance model (with timing, but no functional
information) is developed and analyzed, function can be added in terms
of data values and data transformations. This forms what is termed in
the Virtual Prototyping module as a level 0 virtual prototype (high level
function plus timing).

Copyright & 1995-1999 SCRA Page 181
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(I'?ASSP)
Module Outline

Infrastructure

DARPA e Tri-Service

RASSP E&F

SCRA * GT » UVA

Performance Modeling Introduction

Performance Modeling Theory

Non VHDL-Based Performance Modeling Tools
Techniques for Performance Modeling using VHDL
VHDL-Based Performance Modeling Tools

e VHDL Performance Modeling Examples

e Mixed Level Modeling
e Module Summary

Copyright & 1995-1999 SCRA

182

Module Outline

Copyright Page 182

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Resst) VHDL Performance Modeling
| Examples

Design
Architecture Infrastructure RASSP E&F
SCRA » GT ® UVA
Raythean « UCinc « ADL

DARPA e Tri-Service

e ADEPT models of Queuing systems
0o single M/M/1 queue
0O singe M/M/3 queue

e High-level ADEPT model of a task graph

O abstract system model used to determine performance
bottleneck and number of processors necessary to meet
throughput requirements

Copyright & 1995-1999 SCRA 183

There are several examples of VHDL based performance models
included in this module. Most are based on the ADEPT system, but on
uses the ATL performance modeling modules. However, there are many
more examples available in the documentation for eArchitect and
ADEPT and in the applications notes and case studies prepared as part
of the RASSP program.

Copyright & 1995-1999 SCRA Page 183
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(hasse) ADEPT Model of an M/M/1
| Queue

Design
Avchitecture * Unfastructure RASSP E&F
SCRA » GT » UVA
Raythaan e UCinc » ADL
DARPA e Tri-Service

ADEPT Schematic

RANDOM_TIMED_SOURCE

queue_modo_fifo N
mmi_in length: 100 aon

it step 1ns
((((@ 00
dsInin 0

mm_queve

saver_Monitor

MONITOR

mm1._Monitor

e Uses modules from Task Level Modeling library to model queue and server
and monitor module to gather performance statistics

Copyright & 1995-1999 SCRA 184

This is a simple model of the M/M/1 queuing system presented and
analyzed earlier, using the ADEPT system. The modules used to
construct this model come from the ADEPT Task Level Modeling and
Module Builder’s libraries.

The random_timed_source module generates a token with a random
exponential arrival rate with a mean of 1000 ns (this example is
modeled on a ns time scale instead of the ms time scale of the
analytical example - the results are the same however). The delay
module is connected to a random module such that it has a random,
exponential service rate with a mean of 150 ns.

The monitor modules are standard ADEPT modules that are place in an
ADEPT model to measure standard performance metrics. They record
tokens as the pass by their inputs and outputs and write the information
into files that are then interpreted and displayed by the ADEPT post-
simulation analysis tools.

Copyright & 1995-1999 SCRA Page 184
See first page for copyright notice, distribution
restrictions and disclaimer.

%ss) ADEPT Model of an M/M/1
P AL L Q ueue Results

RASSP E&F
SCRA* GT + UVA

Raythean » UCinc + ADL
DARPA e Tri-Service

Performance Metrics

¢ Performance Metrics
Inter-signal Latency Utilization
778.000 15.002
@—emml_monitor
622.400 | E 12,001 E
) § = @—eserver_monitor

‘® 466.800 [© S 9.001 b B
= I
> o
Q E=1
8 g
T 311.200 = 6.001 b
-)

155.600 | 3.000 |- 1

4 5 a5 0.000
0.0 0.0 199948.8 399897.6 599846.4 799795.2 999744.0
199948.8 399897.6 599846.4 799795.2 999744.C Time(ns)
Time(ns)

Ave. Latency = 173.126 ns

Copyright & 1995-1999 SCRA

These are the results of the simulation of the M/M/1 ADEPT model.
Note that the average latency of jobs (tokens) within the system is

173.126 ns as reported by the ADEPT analysis tools and that the
average utilization of the server is 15%.

Recall that the analytical results for this model were 176.5 ns and 15%
respectively.

Copyright & 1995-1999 SCRA Page 185
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(rass®) ADEPT Model of an M/M/3
| Queue

Design
Architecture " Infrastructure

RASSP E&F
- VA

Raytheon « UCinc ADL

DARPA e Tri-Service

ADEPT Schematic

Copyright & 1995-1999 SCRA 186

This an ADEPT model of an M/M/3 queue. It is similar to the M/M/1
model except that it obviously has three servers (delay/random module
combinations). The pro_3 module is from the Task Level Modeling
library and it routes tokens on its input, from the queue, to any output
that is free (l.e. any server that is not busy). Note that it has a built-in
priority that if more than one server is free, then it routes the token (job)
to the lowest numbered output first, but that is immaterial to this model.

Copyright & 1995-1999 SCRA Page 186

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

[ASS'§ ADEPT Model of an M/M/3
Queue Results

e5|gn
ecture S(

DARPA @ Tri-Service

Performance Metrics Performance Metrics
264.000 Inter-signal Latency 96.633 Utilization
@—omm3_monitor
211.200 77.306 |
@ 158.400 & 57.980
= 5
9 = @—eserver_monitor
Q
< 105.600 = 38653 |
K] =
35
52.800 19.327
0.000& 0.00
0.0 1999.8 3999.6 5999.4 7999.2 9999.0 1999.8 3999:6 5999.4 7999.2 9999.0
Time(ns) Time(ns)

Ave. Utilization =75 %

Copyright & 1995-1999 SCRA

Here are the results of the ADEPT M/M/3 model. Note that the average
utilization for the servers is 75% which agrees with the analytical results
and the average latency seems to be close to the analytical result of 81

ns (again, this simulation was on a ns scale as opposed to the ms scale
of the analytical analysis).

Copyright & 1995-1999 SCRA Page 187
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

T | Task Graph Problem

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Jobs arrive at a regular rate (50 ns)

e Jobs do not have to remain time
correlated during processing

» 20 ns

N3

e All tasks have input queues

e Task 1: Preprocessing and
classification (30% of inputs classified

as noisy) - estimated processing time »

20 ns
» 290 ns

e Task 2: Processing of non-noisy inputs
- estimated processing time » 20 ns

e Task 3: Processing of noisy inputs -

estimated processing time » 290 ns »20ns

o Task 4: Postprocessing - estimated time
» 20 ns

Copyright & 1995-1999 SCRA

188

This is a simple task graph problem that further illustrates the ADEPT
performance modeling environment. In this problem, there is a set of
jobs (say images to process) that arrive from a sensor at a regular rate.
The first task is to classify the images as to their clarity - noisy or non-
noisy. An average of 30% of the images are classified as noisy and
must be filtered. The remaining non-noisy images must be formatted,
but that takes much less time than the filtering operation. Finally, all
images must be compressed for storage. Images do not need to remain
correlated in the time that they arrived as they pass through the system,
l.e., non-noisy images may move ahead of noisy images during
processing.

An ADEPT model will be constructed to explore the issue of how many
processors are required to perform the noisy image filtering to meet
throughput requirements. A more detailed version of this model, with
links to lower levels of hardware/software codesign and mixed level
modeling, is available in the standard ADEPT deliverable.

Copyright & 1995-1999 SCRA Page 188
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Relnvemlng I n I tl al
Electronic
Deslgn
itectu ruz:lu

ADEPT Task Graph Model

DARPA @ Tri-Service

ADEPT Schematic

e Queuing network model constructed using Task Level Modeling library
modules

Copyright & 1995-1999 SCRA 189

This is the initial ADEPT performance model of the task graph problem.
It is a high-level queuing network model with only one processor
performing the noisy image filtering process.

Copyright & 1995-1999 SCRA Page 189
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

%ﬁg) Initial
Aree] ADEPT Task Graph Model
Rtvverall Results

Performance Metrics
Queue Length

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

26.000

| @—etask2_queue_in

=—ataskl_queue_in
20.800 | <@—<task4_queue_in
A——=task3_queue_in

15.600
[}
c
[3)
X
e
10.400
5.200
0.000 (48 VYAN . L e il ..
0.0 2000.0 4000.0 6000.0 8000.0 10000.0
Time
Copyright & 1995-1999 SCRA 190

This is a plot of the number of items in the input queues to each task.
Note that the number of items in the input queue to task 3 is increasing.
Despite the slight decrease in the number of images in the queue
towards the end of the simulation, it is clear that one processor is not
enough to keep up with the number of filtering requests and that at least
one more processor performing that task will be necessary.

Copyright & 1995-1999 SCRA Page 190

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(ASS‘B Revised AR
ADEPT Task Graph Model s sar

Desi g n
ec
Raythean » UCinc + ADL

DARPA @ Tri-Service

ADEPT Schematic

Copyright & 1995-1999 SCRA 101

Here is a model with two processors for task 3. Again, a pro_2 module
is used to schedule jobs from the task 3 queue onto idle task 3
processors.

Again, a more detailed model of this scenario, where task 3 is taken
down one more level to model actual software algorithms executing on a
Digital Signal Processor, and task 4 is taken down to a behavioral model
of an ALU using mixed level modeling, is included in the ADEPT
package.

Copyright & 1995-1999 SCRA Page 191
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{ ASS\ Revised
ADEPT Task Graph Model

e5|gn
itecture Sl

Results

Performance Metrics
Qpeue Lenglth

6.000
@—>otask3 queue_1
4.800 - =—-#task2_queue_in |
: <o—etaskl_queue_in
Aa——atask4d _queue_in
3.600

2.400

1.200

0.0 2000.0 4000.0 6000.0 8000.0 10000.0
Time

Copyright & 1995-1999 SCRA 192

Here is the plot of queue depths for the two task 3 processor model and
it shows that the depth of the task 3 queue is bounded, so two
processors for that task should be enough. However, more detail should
be added to the model to further prove this conclusion as the results
show that the task 3 queue still may fill up if the estimate of the time
required to perform the filtering is optimistic.

Copyright & 1995-1999 SCRA Page 192
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) VHDL Performance Modeling

Eetone ¥
g g Examples (Cont.) [eser sar
e Hardware performance model of a CPU executing
with various memory architectures
O Various traces of CPU memory accesses
o Performance model developed using UVa’'s ADEPT
tools and library
O Architectural alternatives involve various memory
system configurations
e Task level hardware/software performance model
02D FFT executing in parallel on a 4 processor Mercury
MCV6 type multicomputer
o Performance model developed using ATL library

elements
O Architecture alternatives involve different I/O strategies

193

Copyright & 1995-1999 SCRA

Next will be presented two more performance modeling example. One,
a performance model of a CPU and memory modeled with ADEPT, and
another, a hardware/software task level performance model done with

the ATL performance modeling modules.

Copyright & 1995-1999 SCRA Page 193
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP\ CPU/Memory Performance
| Model

Design
Architecture " Infrastructure

DARPA e Tri-Service

e Objective is to determine the performance of
memory systems for various access patterns

e Access patterns are supplied in the form of
address traces

e Performance metrics are average memory
latency or percentage of peak memory bandwidth

e High level VHDL performance model constructed
using UVa ADEPT performance modeling
environment

e Two memory architectures tested:

O Simple memory - uniform access time of 80 ns/word

O Page Mode memory - page hit access time of 40 ns,
page miss access time of 120 ns

Copyright & 1995-1999 SCRA 194

The CPU/memory performance model is a simple example of a
“hardware only” type of performance model. The objective of the
performance model is to be able to determine the performance of
various memory system architectures on typical memory traces.

At this point, only two different memory architectures were tested:

- a simple memory model in which each access takes a uniform time
(based on the size of the access) of 80 ns per word.

- a page mode dram memory model where the memory system is
divided up into “pages” of a specified size. If an access is made to a
memory location that is on the same page as the one immediately
preceding in, the “page hit access time” is 40 ns. If the access is on a
different page, then the current page has to be closed and a new one
opened which results in a “page miss access time” of 120 ns. Therefore,
grouping accesses into groups that hit the same page (as will be seen in
the DAXPY example trace) can result in significantly decreased access
time.

Copyright & 1995-1999 SCRA Page 194
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(E*ASSP\ ADEPT Performance Model
e CPU Model

Design
Architecture Infrastructure

DARPA e Tri-Service

ADEPT Schematic ADEPT Symbol
CPU

> CPU_OUT

XXX

TERMINATOR

nnnnn

e CPU reads trace information from a file, sends access request to memory,
and simulates instruction execution time when access is granted

Copyright & 1995-1999 SCRA 195

This is the simple CPU model. At the start of simulation time, the Source
module generates a token which passes through the File_read module
and picks up the first set of trace information. The token then weights at
the Switch module until it is released by it. Also at time zero, the
Feedback module generates an initial token (once at time 0 only) which
enters the Data_delay module. The Data_delay module models the
actual execution of instructions by the CPU and delays the CPU’s
instruction time (10 ns) times the number of instructions the current
memory access allows to execute (contained on tagl of the token). The
initial token from the feedback module delays for one instruction (10 ns)
and then passes through the RC module. The RC module produces a
“control” token on its output which is connected to the Switch module
which causes the Switch to release the next token to the memory
system. The token from the RC module is then consumed by the Sink
module. After the token leaves the switch module and is passed to the
memory system model (through the CPU_OUT port), the Source
module produces another token which passes through the File_Read
module and waits at the Switch module until it is released by the token
returning from the memory model (through the CPU_IN port). When the
File_read module reaches the end of the address trace file, it sends a
“control” token to the terminator module which terminates the simulation.

Copyright & 1995-1999 SCRA Page 195
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Reeaw | ADEPT Performance Model
Simple Memory Model

Design
Architecture " Infrastructure

DARPA e Tri-Service

ADEPT Schematic

BUFFER DATA_DELAY

mem_in mem_out

ADEPT Symbol

MEMORY

memory_delay: 20 ns

XXX
e Simple memory models uniform access times to all memory locations

Copyright & 1995-1999 SCRA 196

This is the simple memory system model. When the token arrives from
the CPU (through the MEM_IN port), it is buffered by the buffer module
and then waits at the data delay module for a time determined by the
number of words the access is for (determined by tag2 of the incoming
token). Notice that the access time is independent of the actual address
that is addresses (specified by tag3 of the token). Also note that the
default delay time is 20 ns per word, but that is overwritten by the 80 ns
specified on the top level schematic (as seen in the coming slide).

Copyright & 1995-1999 SCRA Page 196
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Reeaw | ADEPT Performance Model
Page Mode Memory Model

Design
Architecture " Infrastructure

haon « UCin » ADL

DARPA e Tri-Service

ADEPT Symbol

PAGE_MODE_DRAM

hit_delay: 40 ns o s
miss_delay: 120 ns
‘#’r page_size: 64 ot

nnnnnnnnnnnnnnnnn

XXX

e Page Mode DRAM models memory with faster access times to memory
locations on the same “page” as previous accesses

Copyright & 1995-1999 SCRA 197

This is the model of the page mode dram which is more complex than
the simple memory model, but still very straight froward. When a token
enters the model (through the MEM_IN port), the Sequence module
creates a copy of it and send it to the Operator module. The address of
that token (on tag3) is divided by the specified page size (provided on
tag3 of the other token input to the Operator by the Constant Source
module and the Page_size generic on the overall symbol) to generate
the resulting page number on tagl of the output at the bottom of the
Operator module. Once this process is complete, the first Sequence
module passes the original token to the SC_D module where the page
number is written onto tag4 for the token. It then passes to the second
Sequence module which creates a copy of the token and send it to the
Comparator module. The comparator module compares the page
number on tag4 of the token to the previous page number stored on its
other input token. If they are equal, the Comparator signals the Decider
module to send the original token through the Data_delay that has the
hit_delay. If they are not equal, the Decider sends the token though the
lower path. In the lower path, the token is delayed for one miss_delay
time to simulate the opening of the new page and the accessing of the
first word of the request. Then the number of words requested is
decremented by one and the token is delayed for the remaining number
of words times the hit_delay. Finally the token passes through the Wye
module which sends one copy of the token, containing the new current
page number on its tag4, to the Comparator module and another copy
out of the memory back to the CPU.

Copyright & 1995-1999 SCRA Page 197
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP ADEPT Performance Model @3
R e CPU and Simple Memory

Architect RASSP E&F
SCRA* GT » UVA
Raythean » UCinc + ADL

DARPA e Tri-Service

ADEPT Schematic
i MEMORY
program_file program.dat to_mem memory_delay: 80 ns from_mem
int_delay: O S S et —
mem1l
cpul

MONITOR

monl

Copyright & 1995-1999 SCRA 198

This is the ADEPT schematic of the overall model with the simple
memory. Notice that the memory access time on the memory model has
been changed to 80 ns which will override the 20 ns default as

explained before.

Copyright @ 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 198

Methodology L o - Ay
. Ay
RASSP 1
ADEPT Performance Model ‘
Iec(ufeeSigII:laslrucluve
e CPU and Page Mode Memory o
DARPA e Tri-Service
ADEPT Schematic
CPU PAGE_MODE_DRAM
orogramfle rogramt to_mem :::;i:y;y: ig; . from_mem
cry_our page_size: 64
inst_delay: 10ns i mem_in mem_out
meml
cpul
MONITOR
1 M: 1 N1,
= 5
monl
Copyright & 1995-1999 SCRA 199

This is the ADEPT schematic of the CPU with the page mode memory
model.

Copyright & 1995-1999 SCRA Page 199
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP
'} Memory Access Traces
Architecture Infrastructure RASSP E&F
Moverf ol

DARPA e Tri-Service

e Three traces were analyzed: e Trace format:
O Uniform access O Number of CPU instructions
O Random access O Number of words accessed
O DAXPY algorithm access O Memory address

Uniform Access - a linear Random Access - a random
addressing of memory by addressing of memory for 1,2,4,

single words with one or 8 words with 1-4 CPU
CPU instruction per word instructions per word

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

63443
4373

31344
59607
23048
61114
42889
1380

33567
13239

RPRRRRPRRRRER
RPRRRRPRRRRRER

WA BPBWNBPWAWN

2
4
8
4
8
2
4
8
8
4

Copyright & 1995-1999 SCRA 200

Three traces were run through the two memory system models, a
simple uniform access, a random access, and a DAXPY algorithm
access with loop unrolling. The traces were in the following format:

<number of instructions> <number of words> <memory address>

where number of instructions is the number of CPU instruction (time 10
ns) that the CPU will delay for after the access is granted, number of
words is the number (times the access time) that the memory will delay
in returning the access, and memory address is just that.

The uniform access is a single instruction, single word access where the
address starts at a specify point (1000 in this example) and increments
by 1 for each successive access.

The random access is an access where the number of instruction is
random uniformly distribute between 1 and 4, the number of words is
random uniformly distributed over the values of 1,2,4, and 8, and the
address is a uniform randomly distributed number.

Copyright & 1995-1999 SCRA Page 200
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSF’}
Felectrone”

Design
Architecture " Infrastructure

DARPA e Tri-Service

Memory Access Traces
DAXPY Algorithm

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

DAXPY Algorithm Access - a read of two vectors

for(i=1;i<length;i++) {

(contiguous blocks of memory) followed by a write z(i) = a*x(i) + y(1);

to a third vector

Normal access pattern: Unrolled access pattern: 1000
read x(1) read x(1) 1001
read y(1) read x(2) 18%2
performarithmetic read y(1 1020
wite z(1) read y(2 1021
read x(2 performarithnetic 1002
read y(2 performarithmetic 1003
performarithnetic wite z(1 1012
wite z(2) wite z(2 1013
A . 1022

1023

Memory Map

X vector

Y vector

Z vector

NNRRRRERONRPRRPRNONRPRRERRNONRRRRPRNNR R PR
NNNRNRIRNNRINNRNRR NN RN RN R RN R NN RN
=
o
=
S

Copyright & 1995-1999 SCRA

The DAXPY algorithm access is the simulation of the accesses that
would happen if the CPU was running the algorithm to add two vectors
(one times a constant), resulting in a third vector as shown. The vectors
are stored in contiguous areas of memory as arrays that are typically on
different memory pages.

If the DAXPY algorithm is executed in its native form, it will result in the
pattern: read first X value, read first Y value, write first Z value, read
second X value, etc. The problem with this is that if the vectors are
indeed on different pages, each memory access will result in a page
miss.

One solution to this is to “unroll” the loop so as to group accesses to the
same page together. For example, in a twice unrolled case (loop
unrolling factor of 2) the access pattern would be: read first X (and store
in register) read second X, read first Y, read second Y, perform two
multiply/adds, write first Z, write second Z. In this case, the first read or
write would be a page miss, and the second would be a page hit.
Obviously, the ideal would be to unroll the loop many times, but in
reality, the amount of unrolling that can be done is limited by the size of
the processor’s register file.

Copyright & 1995-1999 SCRA Page 201

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
Reinventing U M f A R I t
(E'eg;f.gﬂ':} nirorm ACCess ReSUults
tectur s(RASSP E&F
SCRA » GT » UVA
Raythean « UCinc « ADL
DARPA @ Tri-Service
Simple Memory Page Mode Memory
Uniform Accesses Uniform Accesses
Inter-signal Latency Inter-signal Latency
80.000 120.000
@—emonl @—emonl
64.000 Bl 96.000
g 48.000 @ 72000
< 32000 < 48000
16.000 |- b 24,000 f
o 0.0 1782.0 3564.0 5346.0 7128.0 8910.0 o0 0.0 1048.0 2096.0 3144.0 4192.0 5240.0
Time(ns) Time(ns)
Average Latency = 80 ns Average Latency = 42.4 ns
Copyright & 1995-1999 SCRA 202

Here are the results for the uniform access trace for both the simple
memory and the page mode DRAM. The simple memory has a uniform
access time of 80 ns for each request (of one word size). The page
mode DRAM has an initial access time of 120 ns, but then subsequent
accesses have times of only 40 ns until the address jumps to the next
page. Note that the pages in this example are 64 words long and the
addresses start in the middle of a page, that's why the second miss
comes earlier than the third.

Copyright & 1995-1999 SCRA Page 202
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
Reinventing R d A R I
(E'eS;'.gR"’v} andom Access Results
tecture s(RASSP E&F
SCRA « GT » UVA
Raythaan e UCinc » ADL
DARPA @ Tri-Service
Simple Memory Page Mode Memory
Random Accesses Random Accesses
Inter-signal Latency Inter-signal Latency
640.000 RSy ' 400,000 = 2 X
e@—emonl @—emonl
512.000 1 320.000 H
@ 384000 @ 240000
ES £
g 256000 T 160.000
128.000 w 80.000 |
) 67900 135800 203700 27160.0 33950.0 0
imes) 0.0 5380.0 wmgr?me(nlg)moo 215200 26900.0
Average Latency = 327.3 ns Average Latency = 243.6 ns
Copyright & 1995-1999 SCRA 203

These are the results for the random access traces. The page mode
DRAM is somewhat better than the simple memory here in spite of the
fact that the addresses are random because many of the accesses are
for multiple words and the page mode DRAM has a lower overall access
time for them.

Copyright & 1995-1999 SCRA Page 203

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP
Relnvemlng
El ec ronic
e5|gn

DARPA @ Tri-Service

DAXPY Access Results
Sl 2 Latency

Simple Memory

Page Mode Memory

DAXPY Results - Loop Unrolling of 4

Unrolling| Average | ==
Factor | Latency .|
DAXPY Results
DDDDDD Inter-signal Latency]_ 160 ns
—emont 4 100 ns| £ Wi HH\ HH HH
111111] 8 90.25 nS| & woo f
— woo] 16 85.71 ns

Inter- g\Ll y

32,000 |

Latency(ns

(> 67980 135960 203940 27120 339900
TTTTTTTT

zzzzzz

DAXPY Results - Loop Unrolling of 16
Inter-signal Latency

00 103640 207280 310920 414560

TTTTTTTT

s200 10000

uuuuuu

Average Latency = 160 ns

uuuuuu

o G650 13080 199620 266160 332700
Time(ns)
Copyright & 1995-1999 SCRA

Here are the results for the DAXPY accesses. The time for the simple
memory is fixed because the access size is fixed. However, for the page
mode DRAM, the results vary with the unrolling factor - more unrolling,
lower average latency as the page misses are amortized over more
page hits.

Copyright & 1995-1999 SCRA Page 204

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
RASSP
(DAXPY Access Results A
Desi .
P ML Average Memory Bandwidth il
DARPA @ Tri-Service
DAXPY Results
Memory Bandwidth vs. Unrolling Factor
14.0 T r
A ,
5 120 - g
B2
o
=
2
£ 100 | .
=
©
c
©
o
g sof _
5 .
s o—eMaximum
Page Model Dram
6.0 % £ =—-=aSimple Memory
700 5.0 10.0 15.0
Unrolling Factor
Copyright & 1995-1999 SCRA 205

Here are the results graphed as memory bandwidth (1/average latency).
Note that as the unrolling factor goes up, the average latency for the
page mode DRAM approaches the theoretical maximum (1/page hit
time).

Copyright & 1995-1999 SCRA Page 205
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) Task Level Hardware/Software

Reinventing
Electronic

e BT Performance Model

DARPA e Tri-Service

RASSP E&F
SCRA* GT + UVA

Raytheon » UCinc + ADL

e Performance model of a parallelized software
algorithm running on a multiprocessor system

e The objective is to determine of the design of the
software system, the selection of the hardware
architecture, and the mapping of software tasks
to hardware resources, meets the performance
goals

e The performance goal is usually stated in terms
of throughput - jobs/second

Copyright & 1995-1999 SCRA 206

This section describes an example of a hardware/software performance
model constructed using the ATL model elements.

Copyright & 1995-1999 SCRA Page 206

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP\ Task Level Hardware/Software

Electronic

< mene Performance Model (Cont.)

DARPA e Tri-Service

2D FFT Algorithm Executed on a Mercury MCV6 Multicomputer
Application Software

8192 bytes 4096 bytes 8192 bytes 8192 bytes 8192 bytes 16384 bytes

100 ns 0ns 5160 s 0ns 5160 s 0ns 10000 s

Target Hardware

[Processor 1 [] Processor 3
[Processor 2 [] ProcEssor 4

[vo ProcESSOR(S))E COMMUNICATION
Copyright & 1995-1999 SCRA 207

The upper part of the figure shows the overall structure of the software
algorithm in terms of tasks, how long they require for computation (on
the bottom in blue), and communications between them and the
amounts of communication (in black above). The algorithm is a 2D Fast
Fourier Transform (FFT). The NOPs in the algorithm are simply place
holders to make the figure more clear. For example, after receiving the
initial data from the pre-processing task, all of the processors, without
doing any computation, exchange data with each other to perform the
row FFT. This is shown in more detail on the next page.

The lower part of the figure show the hardware architecture. A 4
processor Mercury Race Multicomputer (called an MCV6), with either
one or two 1/O processors.

Copyright & 1995-1999 SCRA Page 207
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP) 2D FFT Algorithm Distributed

Reinventing
Electronic
i

et B Across Four Processors

DARPA e Tri-Service

N COLUMNS
< —>
2 —> B S
:
&
= <— ——>
e B Sl
Image preprocessed Processors exchange adjacent Each processor has N/4 After row FFT processors

and distributed to rows complete rows exchange rows back

all the processors « Perform row FFT

It frsm]

Each processor has N/4 After column FFT processors processors and

complete columns
exchange columns back
« Perform column FFT 9 postprocessed

Processors exchange adjacent
columns

[] ProcEssor 1 [] ProcEssOR 3
[] Processor 2 [] ProcEssor 4

[vo ProCESSOR(S))E COMMUNICATION

Copyright & 1995-1999 SCRA

This is more detail on how the image data is allocated to the processors
and how it is exchanged during the processing of the algorithm.

Copyright & 1995-1999 SCRA Page 208

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

ASSP
[¢ Alternate System Architectures

DARPA @ Tri-Service

Single I/O Board Parallel Input and Output Board
PROCESSORS PROCESSORS

N \ y

TWO THREE TWO THREE

RACEWAY =
SWITCH

RACEWAY =
SWITCH

ONE FOUR ONE FOUR

/0 Source SINK
e Single channel for input and output e Two channels_available for
e Pre and Post processing performed simultaneous input and output
serially on a single processor e Pre and Post processing performed

in parallel on two processors

Copyright & 1995-1999 SCRA 209

These are the two alternate systems architectures that are investigated
using the performance model. Both architectures have 4 processors and
a Raceway crossbar switch, but the first architecture has a single 1/0
board which must perform both the pre and post-processing tasks and
sending and receiving images to/from the other processors must be
serialized.

In the second architecture, there is a separate source and sink
processor to perform the pre and post-processing task respectively, and
sending and receiving images to/from the 4 processors can occur in
parallel.

Note that in the ATL performance model, regular processing elements
(PEs) are used to model the 1/0O, Source and Sink processors.

Copyright & 1995-1999 SCRA Page 209
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(E*ASSP ATL Performance Model of

Electronic

Design 1 J ’ ‘
e Alternate System Architectures et

DARPA e Tri-Service

Main Main
Processor Processor

MAIN_PROC
COMM_PROC

PRE (SOURCE) PROCESSOR POST (SINK) PROCESSOR

ceconpute 100 PRE_P1 recvnessg 5 163840 3
sendmessg 1 1 81920 3 recvimessg 6 163840 3

COMM_PROC

sendnmessg 2 2 81920 3 recvnessg 7 163840 3
sendmessg 3 3 81920 3 recvnmessg 8 163840 3
sendnmessg 4 4 81920 3 ceconput e 10000 POST_P1
startover startover

Copyright & 1995-1999 SCRA

210

This slide shows more detail on the ATL performance model and how

the PE modules (for the Source and Sink modules) read their programs
out of a file.

Notice that the programs end in a “startover” command which makes
them run the program in an endless loop. This way, the performance
model can be simulated for some fixed amount of time and the number
of loops which the model executes can be observed as a performance
measure.

Copyright & 1995-1999 SCRA Page 210
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
RASSP ATL Performance Model
REellnvemlng
ALY, Results
DARPAoTn Service ProceSSIng Tlme
Single I/0 Board Case Parallel Input and Output Board Case
Processing Time-Line Plot Processing Time-Line Plot
[0 CARDL } o o e e e Isource_CARDL r
/pel_CARD1
IpeLCARDL | == == e e e =
g ?) /pe2_CARD1
g P2 CARDL | . e — — = §
e = Ipe3_CARD1
Ipe3 CARDL } == e e e e e e
/pe4_CARDL
P4 CARDL | — — — — — — — — — — Jsink_CARD1
Time (uS) Time (uS)
Copyright & 1995-1999 SCRA 211

Here are the results of the performance model from the STL time line
tool. These graphs show the compute times for the modules. Notice that
the second architectural alternative (with the Source and Sink
processors) has much better throughput in terms of the number of loop
iterations (> 20) than the first architectural alternative (<11).

Copyright & 1995-1999 SCRA Page 211
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Relnvemlng

Electromc
e5|gn

3[

ecture

DARPA @ Tri-Service

ATL Performance Model

Results
Communications Waiting Time

Single I/O Board Case

Communications Time-Line Plot

Parallel Input and Output Board Case

Communications Time-Line Plot

fio_CARD1 —_— e N > S
IpELCARDL | -y e e e — - IPE2CARDL |« 1w mw e b g emn e e e g e g e
* #*
8 8
3 P2CARDL [ry e i ¢ s e e e — S PEBLCARDL b b e e e
]
Q [}
Jpe3 CARDL | o o o e o e e e s e ¢ e e JBACARDL b bocie e mee s s te e el
N s e T e o S S
o 50000 100000 150000 200000 o 50000 100000 150000 200000
Time (uS) Time (uS)
Copyright & 1995-1999 SCRA 212

This is an activity time line plot of the communications (including waiting
time) in the two alternative architectures. Note that the second
architecture spends a great deal less time communicating or waiting for
communications resulting in the higher throughput.

Copyright & 1995-1999 SCRA Page 212

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

R e i
Electrionicg Module Outllne

esign
Architecture Infrastructure

DARPA e Tri-Service

RASSP E&F

SCRA * GT » UVA

Performance Modeling Introduction

Performance Modeling Theory

Non VHDL-Based Performance Modeling Tools
Techniques for Performance Modeling using VHDL
VHDL-Based Performance Modeling Tools

VHDL Performance Modeling Examples

o Mixed Level Modeling
O Mixed Level Modeling Objectives
O Mixed Level Modeling Approaches
O Mixed Level Modeling Examples

e Module Summary

Copyright & 1995-1999 SCRA

213

Module Outline

Copyright & 1995-1999 SCRA Page 213

See first page for copyright notice, distribution
restrictions and disclaimer.

ASS

[\ Mixed Level Modeling

DARPA @ Tri-Service

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Cosimulation of models containing uninterpreted
(performance) and interpreted (behavioral) level
components

e Interfaces between abstraction levels needed to
perform this cosimulation

e Interface must solve problems in two areas
caused by differences in levels of abstraction
O Timing abstractions - a single token event in a

performance model may represent thousands of events
in a behavioral model

O Data abstractions - a token may not contain all of the
information needed to accurately drive a behavioral
model

Copyright & 1995-1999 SCRA 214

This section explains the concept of mixed level modeling, the
cosimulation of performance and behavioral models, and how it is
implemented in ADEPT. ADEPT was chosen as the example for this
section as the theory and implementation of mixed level modeling is
more advanced in ADEPT than other performance modeling
environments as of this date. More information on this subject can be
obtained from the UVa Center For Semicustom Integrated Systems
web page:

http://csis.ee.virginia.edu/

eArchitect (through PML) includes the capability for constructing mixed
level models, but the facilities for developing methods to resolve timing
and data abstraction are less well developed and require more user
interaction.

Copyright & 1995-1999 SCRA Page 214
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology -
RASSP i i R
Mixed Level Modeling .0
Egctr_onlc
M.‘(\“B Taxono my RASSP E&F
SCRA = GT » UVA
Raythaan e UCinc » ADL
DARPA e Tri-Service .
Internal External
Temporal <G> <G> T
oken-Based
Data Value ray >
Performance Model
Functional <€ tat % >
Structural X €)
SW Programming Level
|
Interface
Abstract Behavioral Model Y
Internal External
Temporal < GEEEED> < GEEEED> Bus,
DataValue < CENEED> < GEEED> nProc Interface
Functional < GEEEE> < GEEED> Clock
Structural % rad
SW Programming Level <€—¢C—————>
Detailed Behavioral Model
RHW
Symbol Key Internal External |——>
- T <G> < AfBUSE
emporal
— DataValue <G> <@ —> nProc D Bus
— Functional (_>v -_——> g
Structural -
— Clock
% SW Programming Level y <=0t
—— T TaTToT
Copyright & 1995-1999 SCRA 215

This figure illustrates where the components of mixed level models lie in
the RASSP taxonomy. It is clear from this description that token-based
performance models have abstract timing and little or no data values
(and data transformations - function) and that behavioral models have
more detailed timing and data values. Therefore, it is easy to see that an
interface(s) is needed between them when they are simulated in the

same model.

Copyright @ 1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Page 215

(E%ASSP\ General Mixed Level Model B
L, Structure D IaF

Raythaan » UCin » ADL

DARPA e Tri-Service

Tokens

1

[¢b] - s (D]
O Entity ... Q
© ©
= =
2 Architecture 9
S] > Process(clk) £
— - _> D
5 — > A<=B after 5 ns; =

1 > ... -

[UVA]

216

Copyright & 1995-1999 SCRA

This is the general structure of a mixed level model. Here a single
component in the performance model has been replaced with a
behavioral component. Interfaces are required on its input and output to
resolve the tokens to values and values to token conversion problem.

Copyright & 1995-1999 SCRA Page 216

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
(E*ASSP Mixed Level Modeling Interface (§.&
Electronic \
Design T
Architecture Infrastructure X n my RASSP E&F
v axono i
DARPA @ Tri-Service
Mlxed Level Models
system
model Synchronous Asynchronous
interpreted m ‘A\
element Comb. SD| Comb.
[= [= [=3 c [=
T 9 T 9 T2 = T2
modeling o o S5k E S5
objective E £ E £ S E £ ‘g =
28 28 22 g 28
Interfaces and methodology
available within ADEPT
SDE - Sequential Dataflow Element Interfaces can be
SCE - Sequential Control Element constructed within ADEPT
Copyright & 1995-1999 SCRA [UVA] 217

This figure shows the taxonomy of hybrid models that was developed
jointly between UVa and Honeywell Technology Center (their version is
slightly different) to classify the solutions. Note that most work thus far
has concentrated on the problem of timing verification.

Copyright & 1995-1999 SCRA Page 217
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

[ASS'B Mixed Level Modeling
Interfaces

‘ eslgn RASSPE&F
G A

Ryt
DARPA @ Tri-Service

e Mixed level modeling hybrid interfaces are available
within PML for each of the library elements

O The interface is code-based - generation of much of the
code is automated

O User generated code must be inserted to make the final
uninterpreted to interpreted conversion

e ADEPT contains a library of elements for
constructing mixed level modeling interfaces
O Interfaces are available for interpreted components that are:
0 Combinational components
a Finite State Machine with Data-Path (FSMD) components
0 Complex sequential components (e.g. microprocessors)

O Methodologies for using these interfaces for timing
verification have been developed

Copyright & 1995-1999 SCRA [UVA] 218

As stated previously, PML has a mixed level modeling interface
capability, but it is mainly code based and the user must supply the
VHDL code that performs the tokens to values and values to tokens
conversion.

ADEPT has a library of standard “hybrid” elements out of which mixed
level modeling interfaces can be developed. For some classes of
models in the taxonomy, the interface can be generated with no user
coding, or new modules required. In other cases, some generation of
application specific modules by the user is required.

Copyright & 1995-1999 SCRA Page 218
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(ASS\ Mixed Level Interface for
Combinational Interpreted
Elements

e Timing abstraction - settling-time problem - how to

determine the correct time to release token(s) from the
hybrid element

ot eslgn S‘ RASSP E&F

Ray umu B ur::»‘ oo ADI

O Solution: time expansion technique
0 Execute the hybrid element in the fast time domain

0 Execute the remaining performance model in the slow
time domain

| outputs unstable
Token

Arrives Final | outputs stable
f min l T max Time
<> TS min TS max
di
d
u [UVA]

Copyright & 1995-1999 SCRA 219

This figure illustrates the problem of timing in mixed level models when
the behavioral (or interpreted) element is combinational. A token arriving
at the interface to the hybrid element, which contains the interpreted
combinational component, triggers application of the new values to the
inputs of the combinational element. Then after some time, the
generation of the final outputs from the combinational element will
trigger the release of the token from the hybrid element. The problem is
the fact that the outputs of the combinational element take variable
times to settle to the final value and it is difficult to determine when that
has happened. The solution, called time expansion, is to run the
combinational element in “fast time” which is usually 10 times faster
than the performance model time scale, wait the maximum delay time of
the combinational element in fast time, observe when, in fast time, the
combinational element’s outputs settled to their final values, and then
scale this time up to slow time and release the token at the proper time
in slow time.

Copyright & 1995-1999 SCRA Page 219
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(’ ASS\ Mixed Level Interface for
Combinational Interpreted

Electronic

DARPAQTnServnce Elements (Cont-)

e Data abstraction - how to fill in the unknown inputs to the
interpreted element to achieve meaningful results

O Identify the statistically important inputs to the combinational
component (in terms of delay) - Delay Controlling Inputs (DCI)

0O Assign values to DCIs to produce minimum or maximum delay
O Treat other inputs as “don’t cares”

O Typically, the number of DCIs decrease dramatically as other inputs
become known

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

Circuit C2670 - Output 1098

& Linear
60.07\ O—9 Experiment: A
Experiment: B
9 * **Experiment: C

Unknown Delay Controlling Inputs
o
*

*.

.0 [} -
0.0 20.0 40.0 60.0 80.0

Number of Delay Controlling Inputs [UVA]

Copyright & 1995-1999 SCRA 220

Another problem attacked in the mixed level area in ADEPT is the
problem of specifying the inputs to the combinational element, that could
not be derived from the incoming toke (called “unknown inputs”) in such
a way as to generate meaningful results, usually either minimum or
maximum delay.

A technique has been developed to determine the inputs that have the
most influence on the delay of the combinational element (called DCIs)
and setting them to the values that cause the best or worst case values.
In theory, this is an exponentially complex problem, but the results, as
shown here, have demonstrated that as a few inputs are known from the
performance model, the number of DClIs drops dramatically, resulting in
the problem quickly becoming tractable.

Copyright & 1995-1999 SCRA Page 220
See first page for copyright notice, distribution
restrictions and disclaimer.

{' ASS\ Mixed Level Interface for
Reinventing T T
o Combinational Interpreted .
DARPA ® Tri-Service E I e m e n tS (C O n t -) Rm};: - “:j‘:‘l}r’”
e Interface Structure
[] [) [J
-
()
_V) !)EV ALUATOR _ EVALUATOR
> —
a7y | R IS
ACT_TIME
ACTI VATOR —>> -
— ‘dEJ RECORDER
P § s
= tvdl I—)
actl 8 : Tmax:25 ns|
@
I e- »
. S>> [
Hybrid Element £ -
TVD_BI T
T = []
okens @ rsnd >
Values V¥V 1
[J RELEASER
. [UVA] tvan - ACT TIME r
Copyright & 1995-1999 SCRA

This is the structure of the mixed level interface in ADEPT for
combinational interpreted elements that implements time expansion.
When a token arrives at the input to the hybrid element, the U/I
component converts values on the token to values on the combinational
element’s inputs and runs the DCI algorithm if need be. At the same
time, the activator records the token arrival time and passes it to the
evaluator. The evaluator waits the maximum combination delay time in
fast time, measures the actual combination delay in fast time, and
scales that up and releases the token at the proper time in slow time.

Copyright & 1995-1999 SCRA Page 221
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology
{:Eﬁén%n% Combinational Interpreted
lectronic
eslgn
R P Element Results
DARPA @ Tri-Service
Hybrid Model '
FI XED_DELAY . FIXED_DELAY SINK
fd1 quel fd2 snkl
pre-processing post-processing
. . 0.0200 r
Simulation .
Results 2 0019 r
2
2 0.0180
o
Lt
- 0.0170 -
5
2
© 0.0160 [
5
IS
£ 00150 - === uninterpreted results
== hybrid results
0.0140
0.0 2.0 4.0 6.0 8.0
Computer 3 Queue Depth
Copyright & 1995-1999 SCRA 222

Here are some simple results from a mixed level model with a
combinational element. Note that the throughput achieved by the mixed
level model has the same shape as the original performance modeling
results (which is good), but it is shifted as a result of having actual delay
values from the behavioral component.

Copyright & 1995-1999 SCRA Page 222
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(ASS'} Mixed Level Interface for
Sequential Finite State
Machine Elements

e Finite State Machine with Data Path (FSMD)
components

O Component consists of a data path with an FSM controller

O Component has some outputs (either from the data path or
controller) which signify the completion of data processing

O A behavioral description of the state machine exists from
which a State Transition Graph (STG) can be extracted

control outputs datapath inputs

FSMD ¢
fout[tn_ut >| datapath
’_) unction datapath ¢ontrol
next-state ¢
function datapath
outputs
datapath status

Copyright & 1995-1999 SCRA [UVA]

223

Another area of mixed level modeling investigated in ADEPT was that of
an interpreted component that was a finite state machine with datapath
(FSMD). This is an interpreted component who'’s function can be
described by a state transition graph (STG). This is important because
it allows graph algorithms to be used to analyze the STG to determine
maximum and minimum delay. In addition, a requirement is that there
be some outputs, either from the state machine or datapath, the can be

used to determine the completion of processing for a given token arrival
event.

Examples of these types of elements include a dedicated FFT chip or a
floating point coprocessor.

Copyright & 1995-1999 SCRA Page 223
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

(ASS\ Mixed Level Interface for

Sequential Finite State

Machine Elements (Cont.)
e Timing abstraction - interface must be able to detect

the completion of data processing outputs and
release the token from the hybrid element

Electronic
eslgn
itecture S(r

RASSP E&F

Ray umu B ur::»‘ oo ADI

e Detection process is synchronized with the clock for
the FSMD component

0 No settling time problem - sample outputs on the proper
clock edge

a Clock must be generated

e Data abstraction - how to fill in the unknown inputs to
the FSMD such that the outputs are valid in the
maximum (worst case) or minimum (best case)
number of clock cycles

Copyright & 1995-1999 SCRA [UVA] 224

The timing abstraction problem is easier with FSMD components as

there is no settling problem - everything is resolved on a clock edge.

However, the clock input to the FSMD must be generated, usually by
the mixed level interface elements.

The data abstraction problem is similar to the combinational element
one - how to specify the unknown inputs such that minimum or
maximum delay results.

Copyright & 1995-1999 SCRA Page 224
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Relnvemlng

Electronlc
e5|gn

itecture s(r

DARPA @ Tri-Service

Mixed Level Interface for
Sequential Finite State
Machine Elements (Cont.)

RASSP E&F
SCRA* GT + UVA
Raythean » UCinc + ADL

e Interface Structure

U/l Operator Interpreted Element 1/U Operator

o i (FSMD) [
i A4 v i
! L datapath datapath T H
| Driver | ! linputs outputs 1= | Colorer i+
___ 5 | clock_ 4 V:. :
i | Generator| i - I control control ia | Output :
i i inputs outputs i1, | Condition_|
i) i \" | Detector | !
i Activator i ! :
extract : add/update
L) info. from hd Sequential_ —>| info. 021 —.>
token Releaser token
Tokens Tokens
from U toU
domain domain
Tokens ®
Values V
[UVA]

Copyright & 1995-1999 SCRA 225

This is the structure of the mixed level interface for FSMD components.
The driver and clock generator perform the U/I function and the activator
performs the same function as in the previous example. The Colorer,
output_condition_detector, and sequential_releaser perform the
functions of the evaluator, that is, determining when to release the token
from the hybrid element after the proper delay time according to the
interpreted component.

Copyright & 1995-1999 SCRA Page 225

See first page for copyright notice, distribution
restrictions and disclaimer.

Archi

DARI

itect

i?einventi_ng
Design
wuclum

Methodology

ASSE Solving the Data Abstraction

Problem for FSMD
Components

Electronic

RASSP E&F
SCRA* GT + UVA

Raythean » UCinc + ADL
PA @ Tri-Service

e Utilize the STG to search for the maximum (minimum) path
between the initial state and the ending state

control outputs datapath inputs

FSMD A
Steps to the methodology:

foutp_ut datapath .

unction |, anath éontrol ° D_ete_rmme the outpgts and values_ that
nextstate ¢ signify the completion of processing
function datapath ® Minimize the state transition graph

outputs (STG) to remove non delay controlling

datapath status inputs

Copyrigh

® Search the resulting STG for longest
(shortest) path from initial state to
final state

SOREY.

® @& %
STG

td 1995-1999 SCRA

® Use the resulting delay to determine
the token release time

[UVA]

226

This figure outlines the methodology used to determine the minimum or
maximum delay, in terms of clock cycles, for the FSMD interpreted
component using the component’s STG. First, the outputs that do not
affect when the token is released are removed from the STG and the
resulting STG is simplified. Next, the resulting STG is searched to find

the sh

ortest (minimum time) or longest (maximum time) path from the

initial state to the final state. Finally, the inputs necessary to drive the

FSMD

along this path are applied to the interpreted component in the

simulation.

Copyright @ 1995-1999 SCRA

Page 226

See first page for copyright notice, distribution

restrictions and disclaimer.

RASSF’V) FSMD Interpreted Element
lectronic
P T R esu I t S nkfs:" E&F
DARPA e Tri-Service gt * 4
Example Model
Integer .
Ungi’t Mixed Level Model
Fetch o Results
LUl ! Performance Comparison
Floating
Poipt mg N _
Unit -03 §4 \ Upper bound
= 3 Lower bound|
g g& \\ Uniterpreted
g o2 A gy model
Q.l | | Jl
04— !
0 04 08 1
Fraction of known inputs
Increasing Model
Copyright & 1995-1999 SCRA Refinement [UVA] ,,,

Here are some results from an example of applying the technique to an
FSMD mixed level model. In this case, it was a performance model of a
processor with a fetch unit, an integer unit and a floating point unit. The
floating point unit was replaced with its interpreted (behavioral)
representation. The results show how the upper and lower bounds
(minimum and maximum delay) on performance can be generated for
the model at various levels of refinement. As the model is refined, the
fraction of inputs for which the actual values are known from the
performance model increase, and the bounds get tighter and finally
converge. Also notice that, as is quite typical, the initial estimate of the
performance as used in the high level performance model, was
inaccurate.

Copyright & 1995-1999 SCRA Page 227

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Bﬁ&%ﬁ\ Mixed Level Interface for

Electronic

Design 1 J
e COmplex Sequential Elements g

Rayih (Cinc + ADL
DARPA e Tri-Service

Architect

e Timing abstraction - interface must resolve the fact
that a single token event in a performance model may
resolve to hundreds or even thousands of events for a
complex interpreted element

o E.g. a packet of data, represented by a single token arriving
over a communications network, may take thousands of clock
cycles for an ISA level model of a CPU to process

e Data abstraction - in this case, the level of complexity
of the interpreted element is such that automatic
determination of the unknown input values is not
possible - user specification is required

O Read actual data information from a file
O Generate data algorithmically
O Assign true “don’t cares” stochastically

Copyright & 1995-1999 SCRA [UVA]

228

Finally, mixed level interface elements were developed for “complex
sequential elements” which are sequential elements that are too
complex to describe as state machines. In this case, the interface is
more ad hoc, and is targeted at solving the timing abstraction problem.
The user must solve the data abstraction problem for interpreted
elements such as these.

Elements that fall into this category include microprocessors,
microcontrollers, and even entire computer systems.

Copyright & 1995-1999 SCRA Page 228
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Bﬁé&i") Mixed Level Interface for

Electronic

w e COmplex Sequential Elements

DARPA e Tri-Service

Archi RASSP E&F

SCRA * GT » UVA
Raytheon » UCinc + ADL

e “Watch-and-React” hybrid interface based on
principals of logic analyzers and pattern generators

e Consists of two main elements:

O Trigger - detects events on the outputs of the sequential
elements and produces the specified events in the
uninterpreted model

O Driver - detects the arrival of tokens from the uninterpreted
model and produces the specified series of events on the
inputs to the sequential element

O Interface elements are programmable via input files to provide
a general, and reusable, interface solution

Copyright & 1995-1999 SCRA [UVA] 220

The so called “watch and react” hybrid interface is build on the principals
of logic analyzers. The interface watches the outputs of the interpreted
element for certain “trigger” conditions, and when they occur, it takes the
appropriate action. Likewise, when the performance model dictates that
some new inputs be supplied to the interpreted component, a “program”
can be executed that generates a complex set of input sequences to the
interpreted component.

Copyright & 1995-1999 SCRA Page 229
See first page for copyright notice, distribution
restrictions and disclaimer.

RASSP .
T | Complex Sequential Elements sl

e5|gn
l:l

{' Mixed Level Interface for

(Cont.) T o

DARF'A. Tri-Service

e Interface Structure

Trigger
Event

File

v TRI GGER
—> -
condition:tagl .
—_—> b
probe_value:tagl
——————————>| filename:f.dat .

—————— > probe_size:d | o
Comp|eX ————————— > delay_unitlns [

Sequential v DR‘I’\Q/E Z

InterprEted < condition:tagl .
~€————————probe_val

Element probe_val uedtaa(gl

«————————| probe_size:d | _

«—— | delay unitlns [*%

drvi
WAR Xbrld
Inter
Tokens @
Values V¥V

[UVA] .

Copyright & 1995-1999 SCRA

Here is the general structure of the watch and react interface. Both the
trigger and driver element can be programmed by input files - which
keeps them general in nature and avoids having the user to generate
new VHDL code for a specific application.

Copyright & 1995-1999 SCRA Page 230

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

RASSP Watch-and-React Interface

Electronic

Amm.wﬁj'g.""mwm Ex am p | e RASSP E&F
SCRA « GT « UVA
Raythaan e UCinc » ADL
DARPA e Tri-Service .
35vee8 System Hybrid Interface Mechanical System
Copyright & 1995-1999 SCRA [UVA] 231

Here is an example of the use of the watch and react interface. It is a
motor control system in which an actual behavioral model of a
microcontroller, along with its associated memory system has been
inserted. The motor control system and its feedback mechanism are
modeled at a system level using ADEPT modules.

Copyright & 1995-1999 SCRA Page 231

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

{E*ASSP Watch-and-React Interface

Electronic

esign J .’ ‘
et Example Results s s

DARPA e Tri-Service

System Response - Motor Speed vs. Time

80.0 v T v v
©) S
£ BTN A X \H s EhY
~ 600 r 2 S s { - -
Q@
=%
IS - -
©
]
R
S 400 r -
E
° -
Q
[}
o
n
5 20.0 <—® Sensor Output -
° ©—© CPU Response
=

0.0 & . .

0.0 100000.0_ 200000.0 300000.0

Time (ns) (VA

Copyright & 1995-1999 SCRA 232

Here are some results from the mixed level model illustrating the proper
control of the motor speed. Note that the behavioral model of the
microcontroller is executing an actual control program from a memory
model and responding to perturbations in the motor speed in the
performance model of the motor system.

Copyright & 1995-1999 SCRA Page 232
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

R e i
Electrionicg Module Outllne

esign
Architecture Infrastructure

RASSP E&F
SCRA « GT + UVA

Raytheon

DARPA e Tri-Service

Performance Modeling Introduction

Performance Modeling Theory

Non VHDL-Based Performance Modeling Tools
Techniques for Performance Modeling using VHDL
VHDL-Based Performance Modeling Tools

VHDL Performance Modeling Examples

Mixed Level Modeling

Module Summary

Copyright & 1995-1999 SCRA 233

Module Outline

Copyright & 1995-1999 SCRA Page 233

See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Riene
Ei:t?ctrionicg Module Summary

esign
Architecture Infrastructure

RASSP E&F
SCRA » GT » UV,

Raytheon » UCing + ADL

DARPA e Tri-Service

e Performance modeling has a rich theoretical basis and has been
used for a number of years to analyze the performance of complex
computer systems

e Performance modeling can significantly improve the overall design
quality and time by allowing greater design space exploration early
in the design process

e Performance models can be analytical or simulation-based -
simulation-based models have greater applicability to complex
systems

e VHDL is an excellent language for implementing simulation-based
performance models
O Provides a single language approach for system hardware modeling
from concept to implementation in a language that many digital
designers are comfortable with

O Provides tight coupling to the lower levels of design through mixed
level modeling of performance and behavioral level components

Copyright & 1995-1999 SCRA 234

Copyright & 1995-1999 SCRA Page 234
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

Electromcg Refe re nces

Arcmleclure |ntvaslrucluve

DARPA @ Tri-Service

[ADEPT_LR96] ADEPT A.1 Library Reference Manual, CSIS Technical Report No. 960625, Department
of Electrical Engineering, University of Virginia, December, 1996. See
http://www.ee.virginia.edu/research/CSIS/

[ADEPT_UM96] Unified Modeling Reference Manual (ADEPT Version A.1), CSIS Technical Report No.
960620.0, Department of Electrical Engineering, University of Virginia, December, 1996.

[Cassandras93] Cassandras, Christos G., Discrete Event Systems, Modeling and Performance Analysis,
Aksen Associates Incorporated Publishers, 1993.

[IEEE] All referenced IEEE material is used with permission.

[Hein96] Hein, C., T. Carpenter, “Tutorial: VHDL-Based Rapid Prototyping for Large DSP Systems,”
Presented at the Second Annual RASSP Conference, October 10th, 1996.

[Hein97] Hein, C., T. Carpenter, A. Gadient, R. Harr, P. Kalutkiewicz, V. Madisetti, “RASSP VHDL
Modeling Terminology and Taxonomy,” Revision 2.2, March 27, 1997.

[Honeywell] Honeywell, RASSP slide presentation. Used with permission.

[HTC97] RASSP VHDL Performance Modeling Interoperability Guideline, Version 3.0, Honeywell
Technology Center, March 31, 1997.

[Jain91] Jain, R., The Art of Computer Systems Performance Analysis, Techniques for Experimental
Design, Measurement, and Modeling, John Wiley & Sons, Inc., 1991.

[Kant92] Kant, K., Introduction to Computer System Performance Evaluation, McGraw-Hill, Inc., 1992.

Copyright & 1995-1999 SCRA 235

Copyright & 1995-1999 SCRA Page 235
See first page for copyright notice, distribution
restrictions and disclaimer.

Methodology

[ASS‘B References

Electronic

(cont)

DARPAoTn Service
[LMC-Sanders] LMC - Sanders, RASSP slide presentation. This work was performed by Sanders, a
Lockheed Martin Company, as a part of the Sanders RASSP program under contract NO0014-93-C-
2172 to the Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375-5326.
The Sponsoring Agency is: Defense Advanced Research Projects Agency, Electronic System
Technology Office, 3701 North Fairfax Drive, Arlington, VA 22203-1714. The Sanders RASSP team
consists of Sanders, Motorola, Hughes, and I1SX.

[Lockheed Martin] Lockheed Martin ATL slide presentation.

[Murata89] Murata, T., “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, Vol.
77, No. 4, April 1989; © IEEE 1989

[Pauer97] Pauer, E. K., “High Performance Scalable Computing Performance Modeling Using Ptolemy,”
Proceedings of the IASTED International Conference on Modeling and Simulation, May 1997, pp. 452-
455.

[Ptolemy 96] Lee, E. A, et. al., The AlImagest Volumes 1-4, - The Ptolemy Reference Manual, 1996. Used
with permission. See http://ptolemy.eecs.berkeley.edu/

[Richards97] Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal
Processors, Kluwer Academic Publishers, Norwell, MA, 1997

[Sauer81] Sauer, C. H., K. M. Chandy, Computer Systems Performance Modeling, Prentice-Hall, Inc.,
1981.

[SES] Scientific and Engineering Software, Inc. Slide presentation. Used with permission. See
http://www.ses.com.

[Viewlogic] Viewlogic eArchitect slide presentation. Used with permission. See http://www.viewlogic.com.

[UVA] University of Virginia slide presentation based upon [ADEPT_LR96] & [ADEPT_UM296]. Used with
permission.

Copyright & 1995-1999 SCRA 236

Copyright & 1995-1999 SCRA Page 236

See first page for copyright notice, distribution
restrictions and disclaimer.

