
Page 1Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 1

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Token-Based Performance Modeling
Using VHDL

 RASSP Education & Facilitation Program
Module 59

 Version 3.00

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and may only
be used for non-commercial educational purposes. Any other use of this information without the express written permission of the
ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their permission. All information
contained, may be duplicated for non-commercial educational use only provided this copyright notice and the copyright
acknowledgements herein are included. No warranty of any kind is provided or implied, nor is any liability accepted regardless
of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457. Such
data may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except as follows:
Certain parts of this work to other copyright holders and are used with their permission; This information contained herein may be
duplicated only for non-commercial educational use. Any vehicle, in which part or all of this data is incorporated into, shall carry
this notice .

Page 2Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 2

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Rapid Prototyping Design
Process

Performance Modeling

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

REUSE DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW

CODESIGN

This slide shows the application area for performance modeling. It will
be explained in more detail later in the module.

Page 3Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 3

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Goals

l To educate the general digital systems designer on the
benefits and theory of performance modeling, how
performance modeling is done using VHDL, and what
environments are available to automate the creation
and analysis of VHDL-based performance models

l Provide information on:
qPerformance modeling objectives and definitions
qPerformance modeling using VHDL
qVHDL-based performance modeling environments
qHardware/Software codesign performance modeling
qMixed level modeling definitions and objectives
qMixed level modeling using VHDL
qMixed level modeling examples

Page 4Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

.

Copyright  1995-1999 SCRA 4

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction
mGoals and Motivation
mDefinitions
mPerformance Modeling in the Design Process
mMetrics

l Performance Modeling Theory
mQueuing Models
mPetri Nets
mUninterpreted Models

l Non VHDL-Based Performance Modeling Tools

Page 5Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 5

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline (Cont.)

l Techniques for Performance Modeling using
VHDL
m Hardware Performance Models
m Task Level HW/SW Codesign Performance Models

l VHDL-Based Performance Modeling Tools
m ADEPT
m Honeywell PML
m Viewlogic eArchitect
m LMC ATL Performance Modeling Library

l VHDL Performance Modeling Examples

Page 6Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 6

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline (Cont.)

l Mixed Level Modeling
mMixed Level Modeling Objectives
mMixed Level Modeling Approaches
mMixed Level Modeling Examples

l Module Summary

Page 7Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 7

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction
mGoals and Motivation
mDefinitions
mPerformance Modeling in the Design Process
mMetrics

l Performance Modeling Theory
l Non VHDL-Based Performance Modeling Tools
l Techniques for Performance Modeling using VHDL
l VHDL-Based Performance Modeling Tools
l VHDL Performance Modeling Examples
l Mixed Level Modeling
l Module Summary

Page 8Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 8

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Modeling Goals

l Estimate the performance of a given system by
analyzing a high level model of the system
mModel needs to include as little detail as necessary

qShorter model development time
qShorter model simulation time
qEasier interpretation of the results

mModel needs to produce as accurate results as possible
q Increasing accuracy usually means increasing detail - a

conflict with the goal above
qPerformance models often may not produce accurate

absolute results, but will produce accurate comparative
results with a similar model of another system alternative

qSelecting the best candidate architecture can be performed
with an abstract performance model, but model must be
refined to ensure performance goals are met

The goal of performance modeling is to analyze the performance model
of a system using a high-level model. The model needs to be at as high
(abstract) a level as possible to reduce model generation, verification,
and simulation time, but at a low enough level that accurate results are
obtained.

How to determine this level is not an easy process but is usually best
approached from the “to little detail” side down.

Abstract performance models may not give completely accurate
absolute results as in “this architecture will have a throughput of X jobs
per second,” but can give accurate comparative results as in
“architecture A has a 20% greater throughput than architecture B.”

Page 9Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 9

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling Goals
(Cont.)

l Performance models are used for:
mEvaluating and comparing two or more design alternatives

(architecture selection)
qHardware configuration
qSoftware configuration
qHardware/software partitioning

mDetermining the number and size of components (system sizing)
mFinding the system’s performance bottleneck (bottleneck

identification)
mDetermining the optimum value of a parameter (system tuning)
mCharacterizing the load on the system (workload

characterization)
mPredicting the system’s performance at future loads (forecasting)

This list comes from many of the references, but mainly from [Jain91]

In this module, we are discussing the mainly the application of
performance modeling to the architecture selection process.

Page 10Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 10

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Motivation

l Decisions made early in the
design process on
architecture features, e.g.;
m number and type of

processors,
m interconnection network

protocol and topology,
m amount of memory,
m amount of custom hardware,
m implementation technology,
m software architecture,

 determine a significant
portion of the design’s
ultimate cost

l Performance modeling gives
early feedback on the effects
of these decisions

Time

Concept Design Testing Process

20%

40%

60%

80%

100%

Engineering Planning

Cost Committed

Cost Incurred

P
er

ce
n

t
o

f
T

o
ta

l S
ys

te
m

 C
o

st

Phases of the Product Development Cycle

This graph shows that most of the final cost of a system is locked in
during the early phases of the design process when the architecture of
the system is selected. However, the cost incurred in designing and
producing the system does not reach its peak until the product is going
out the door. Therefore, spending some time (and money) looking at the
final cost of candidate architectures and their performance, early in the
design process can save a great deal.

Note that these curves will change some if performance modeling is
used in that more cost will be incurred early as design cost for the early
stages increases, and the cost committed early will be less as the actual
selection of the architecture is done later in the design cycle.

Page 11Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 11

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Benefits

Performance modeling:
l aids in the evaluation of

design alternatives,
l determines bottlenecks,

overdesign, etc.,
l captures design

decisions and
assumptions,

l examines system
behavior at boundary
conditions,

l provides a focal point for
early interaction of
system, hardware, and
software designers

[Hein96]

Cost of Design Errors

Requirements Design Implementation Test Manufacture

Design Error Manifestation & Elimination

Requirements Design Implementation Test Manufacture

Modeling No Modeling

Cumulative Costs

Requirements Design Implementation Test Manufacture

Modeling

No Modeling

This slide shows some of the benefits of performance modeling as seen
by some industrial users of the technique. Note that using performance
modeling results in design errors being manifested and eliminated
earlier in the design process where they are less costly. Also note that
initially, the cost of a design process with performance modeling is
higher, but the overall cost (area under the curve) is lower.

Page 12Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 12

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Modeling Risks

l Initial investment is high (more effort in design
space exploration before “real” design is started)
mTools
mTraining
mModel development

l There is a tendency to dive into the details
mEngineering tendency to do depth-first rather than

breadth-first
mManagement tendency to demand product (hardware &

software)

l Relevant standards do not exist (model
interoperability)

l Modeling effort tends to be throw-away (little
model reuse across different projects)

[Hein96]

The initial investment in performance modeling is high in that it
increases the time spent in design space exploration before the design
of the chosen architecture is actually started. This is increased by the
fact that often, designers need to be trained to use the tools and
develop the models necessary for performance modeling. However, the
goal of performance modeling is to significantly reduce the detailed
design time and cost for the chosen system by eliminating costly
redesigns and design errors, thereby decreasing the overall design time
and cost.

Page 13Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 13

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions

Architecture - the organization of a system in terms of
its components and how they are interconnected
mArchitectural views of a system vary based on the

application, the nature of the system, and the level of
abstraction:
q For an embedded DSP multiprocessing system, the

architectural view might include the data flow graph of
the application software, the hardware components in
terms of processors, memory and interconnection
network, and the mapping of software tasks to
hardware processors

q For a microprocessor, the architectural view might be a
register transfer level description of the processor’s
datapath

The definition of architecture is different for different systems and
different levels of abstraction.

Page 14Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 14

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions

Abstraction Level
 An indication of the degree of detail specified about how a

function is to be implemented.

Architecture Selection
 The analysis and selection of candidate architectures for a

particular system design.

Architecture Verification
 An interactive, hierarchical process whose role is to verify

the functionality and detailed performance of a candidate
architecture using a combination of testbed hardware,
simulator(s), and or emulator(s) prior to detailed hardware
implementation.

Architecture selection and architecture verification will be explained in
more detail later in the module.

Page 15Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 15

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Behavioral Model
 An abstract, high-level executable description which

expresses the function and timing characteristics of the
corresponding physical unit independent of any particular
implementation, especially devoid of specific internal
structure.
mAbstract Behavioral Model - models the component’s

interface above the pin level, often using complex data
types

mDetailed Behavioral Model - models the component’s
interface at the pin level

All definitions of model types are consistent with the RASSP Taxonomy
[Hein97]

Page 16Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 16

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Bus Functional Model
 Used to define the operation of a component with respect

to its surrounding environment. The interface between the
component and its environment are modeled in detail, even
though all of the functions internal to the component do
not have to be modeled, particularly not at the same level
of detail.

Co-Simulation
 In the context of hardware/software co-simulation, this term

refers to the act of simulating the execution of software on
target hardware.

 In the context of simulation technology, the term refers to
the act of cooperatively running multiple distinct
simulators concurrently with inter-process communication
between them. Each simulator is simulating a distinct
section or aspect of the target system.

No notes necessary.

Page 17Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 17

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Data Flow Graph (DFG)
 A directed graph that depicts information flow between

signal-processing primitive operations as "arcs" and the
transforms of operations that are applied on the data as
"nodes."

Functional Model
 A model that describes the data transformations made by a

system without describing a specific implementation

Gate Level Model
 A model that describes the function, timing, and structure

of a component in terms of the interconnection of Boolean
logic gates or the corresponding primitives in an
implementation technology.

No notes necessary.

Page 18Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 18

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Hardware/Software Codesign
 The joint development and verification of both hardware

and software via simulation/emulation from the
hardware/software partitioning of functionality through
design release.

Hierarchy
 A multi-level classification system that supports

aggregation of components into larger components and
decomposition of components into lower level
components.

Implementation Model
 A model that reflects the design of a specific physical

implementation of a hardware component.

No notes necessary.

Page 19Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 19

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Interpreted Model
 A model that includes both the timing and the function of a

system and associates actual values and transformations
with data moving through the system (behavioral model)

Instruction Set Architecture (ISA)
 The externally visible state of a programmable processor

and the functions that the processor can perform. An ISA
model of a processor will execute any machine program for
that processor with same results as the physical machine,
as long as all input stimuli are sent to the model on the same
simulated clock cycle as they arrive at the real processor.

Logic Level Model
 A model that describes a system in terms of Boolean logic

functions and simple memory devices such as flip-flops.
Logic level models and gate level models are at an
equivalent level of abstraction.

No notes necessary.

Page 20Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 20

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Model
 A representation of a real system that does not include all

of the real system’s detail.

Mixed Level Model
 A model composed of components described at different

levels of abstraction, e.g. uninterpreted and interpreted.

Partitioning
 The process of decomposing a complex system or

component into its subcomponents.

Performance
 A collection of measures of quality of a design that relate to

the timeliness of the system in reacting to stimuli.
Measures associated with performance include response
time, throughput, and utilization.

No notes necessary.

Page 21Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 21

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Performance Model
 A model which exhibits the timing characteristics of a

design in such detail that performance metrics can be
obtained from it. Further details such as functionality are
typically not present (uninterpreted model).

Processor-Memory-Switch Level Model
 A model that describes a system in terms of processors,

memories, and their interconnections such as buses or
networks.

Register Transfer Level (RTL) Model
 A model that describes a system in terms of registers,

combinational circuitry, low level buses, and control
circuits, usually implemented as finite state machines.

No notes necessary.

Page 22Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 22

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Requirement
 A description of the necessary and sufficient qualities,

quantities, and functions that a system or component must
exhibit.

Specification
 A set of information which describes how a specific component

or system meets its requirements.

Structural Model
 A model that represents a system or component in terms of the

interconnection topology of the set of internal components.

System Architecture:
 The major subsystems which makeup a system and the

topology of their interconnection. Usually expressed at the RTL
level or higher.

No notes necessary.

Page 23Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 23

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

System Definition
 The process of analyzing customer requirements,

performing functional analysis and system synthesis, and
performing system level trade-offs to determine the
functional and performance specifications for each
subsystem.

Token
 In the context of simulation-based performance modeling,

an abstract representation of a packet of data in a system.
This representation may contain information about the
amount of data it represents, the data’s source,
destination, and its route, but usually doesn’t contain a
representation of the data’s value.

 In the context of a Petri Net, a representation that the
conditions described by a “place” in the Petri Net are
satisfied.

No notes necessary.

Page 24Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 24

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling
Definitions (Cont.)

Top-Down Design
 A design process which starts with a high level, abstract

model of a system which is used for design space
exploration that is then refined into an implementation level
model by an iterative process of partitioning the system
and refining the resulting subsystems.

Uninterpreted Model
 A performance model which represents a system by

modeling the flow of information within the system as
tokens without modeling the actual data values or
transformations.

Virtual Prototype
 The set of simulation models that comprises a prototype

processor. When exercised, the virtual prototype should
behave (function and performance) as closely as possible
to its physical counterpart.

No notes necessary.

Page 25Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 25

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling in the
RASSP Design Process

SYSTEM
DEF.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

REUSE DESIGN LIBRARIES AND DATABASE

HW

SW

HW

SW

FUNCTIONAL
DESIGN

Architecture
Definition

System
Definition

Detailed
DesignA

rc
hi

te
ct

ur
e

S
el

ec
tio

n

A
rc

hi
te

ct
ur

e
V

er
ifi

ca
tio

n

Performance Modeling Area of Application

[Hein96]

This slide shows the RASSP (Rapid Prototyping of Application Specific
Signal Processors) design process and where performance modeling
fits into it. This includes the processes of System Definition, Architecture
Definition, and portions of Detailed Design. Note that Architecture
Definition encompasses Functional Design and the processes of
Architectural Selection Architectural Verification.

How performance modeling is used within these processes is covered in
the following slides...

Page 26Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 26

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The System Definition Process

l Requirements analysis and functional
analysis do not require the use of
performance models although they
may be applied at this point

l System partitioning consists of
functional allocation and performance
verification
m This process overlaps with the

architecture selection process

l Performance verification includes
developing metrics and models,
executing and analyzing results
m Performance models can be used at

this stage
m Other tools such as spreadsheets can

be used for performance verification

Customer
Requirements

System
Requirements

Analysis

Functional
Analysis

System
Partitioning

Architecture
Definition

[Hein96]

This slide presents the functions in the system definition process, which
begins with customer requirements (which may be executable) and
flows into the architecture definition process.

Performance models are not required at the upper levels of the system
definition process although they can be applied at any point. In the
performance verification phase, some type of performance modeling is
required for all but the most trivial of systems.

Page 27Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 27

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP The Architecture Definition
Process

l Architecture Definition consists of:
m Defining and evaluating architecture

alternatives
m Selecting one of more for detailed

evaluation
m Validating function and performance

of candidates

l Performance models are heavily
used during this process for:
m Initial architectural evaluation
m Validation/verification of selected

architectures against performance
requirements

m Providing hardware/software
architecture framework for detailed
design activities (mixed level
modeling)

System Definition

Functional
Design

Architecture
Selection

Architecture
Verification

Detailed Design

lRefine Requirements
lRefine Algorithms

l Tradeoffs
lH/S Allocation
l Simulation/Analysis

l Verify Against
Requirements

l Provide Architecture
Framework for
Detailed Design

[Hein96]

The architecture definition process is fed by the system definition
process and in turn feeds into the detailed design process.

Performance models can be used in the functional design process to
help refine requirements and algorithms. They most definitely are used
in the architecture selection and verification process for evaluation.

Note that this slide show one view of the architecture definition process,
but it can be pursued in other ways (more of an iterative process, less of
a waterfall, etc.)

Page 28Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 28

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
The Detailed Design Process

l The detailed design process
transforms architectural description
into hardware and software
components

l The performance model provides a
template for the architecture and a
performance budget

l The architectural performance model
can be back annotated with the
performance information from the
detailed simulation
m Verify the performance of the overall

system with actual module
performance data

m Mixed level modeling can be used to
perform this process by cosimulating
detailed models within the high level
performance model

Architecture
Definition

Hardware
Modules

Design/Synthesis

Support & Target
Software

Generation

Integration
&

Test

[Hein96]

This slide shows the detailed design process and how performance
modeling is used in it. Note that this is where mixed level modeling, the
notion of cosimulating performance and behavioral models, is
introduced.

Page 29Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 29

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
A Taxonomy of Models

Independently Describe: 1) Resolution of INTERNAL (kernel) details
2) Representation of EXTERNAL (Interface) details

In terms of:
Temporal Resolution

High Res. Low Res.

High Res.

High Res.

High Res.

High Res.

Low Res.

Low Res.

Low Res.

Low Res.

Gate
Propagation (pS)

Clock Cycle
(10s of nS)

Instr. Cycle
(10s of uS)

System Event
(10s of mS)

Bit true
(0b01101)

Data Value Resolution

Value True
(13)

Composite
(13,req,(2.33, j89.2))

Token
(Blue)

Functional Resolution

All functions modeled
(Full-functional)

Some functions not modeled
(Interface-functional)

No functions
modeled

Structural Resolution

Structural
Gate netlist

(Full implementation)

Block diagram
Major blocks

(Some implementation info)

Single block box
(No implementation info)

Micro-
code

Assembly
code

(fmul r1,r2)

HLL (Ada,C)
Statements

(i := i+1)

DSP primitive
Block-oriented

(FFT(a,b,c))

Major
modes

(Search,Track)

Not
Programmable

(Pure HW)
(Note: Low resolution of details = High level of abstraction

High resolution of details = Low level of abstraction

Programming Level

Copyright © 1997-98 Copyright © 1997-98 RASSP Taxonomy Working Group used with permission [Hein97]

This slide shows the 5 elements of model characteristics that
determines its place in the overall taxonomy of models. The position on
each scale that a model occupies determines what type of model it is
classified as.

This slide is taken from the RASSP taxonomy document.

Page 30Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 30

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Model Taxonomy

l General performance models contain mainly timing and external
structural information at any level

l Token-based performance models generally have abstract timing and
external structural information

Symbol Key
Model resolves information at specific level

Model resolves information at any of the levels
spanned, case dependent

Model optionally resolves information at levels
spanned

Model resolves partial information at levels spanned,
such as control but not data values or functionality

Model does not contain information on attribute

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

Copyright © 1997-98 Copyright © 1997-98 RASSP Taxonomy Working Group used with permission [Hein97]

General performance models have temporal data (both internal and
external) that can be at essentially any level of abstraction. They have
no internal data value information, and only high level external data
value information (e.g. memory address, size, etc.), no functional
information and only external structural information. Software can be
represented at any level.

Token-based performance models have higher levels of timing
information (e.g. at the task level or data packet level, not instruction
level or individual word level), and higher levels of external structure.
Software is represented at the task level and above.

Page 31Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 31

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Modeling Metrics

l The most common performance metrics
measured from an individual performance model
are:
mLatency
mThroughput
mUtilization
mResponse Time

l Often it is desirable to study how these metrics
vary with system attributes such as:
mNumber of processors
mMemory size
m Interconnection bandwidth
mClock speed

This section will present the classical performance modeling metrics of
latency, throughput, utilization, and others.

Page 32Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 32

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Latency

l The (average) time measured between the
occurrence of events at a particular point or
points in a model - e.g. the passing of a token
m Intersignal - the time between a token passing two

different points in a model - module inputs to outputs
m Intrasignal - the time between a token passing the same

point

Module 2
1

2Tokens:

Time:

t1=25 ns

t2=43 ns

1

2

t1=29 ns

t2=50 ns

Intrasignal Latency at the input=
 (43 ns - 25 ns)=18 ns

Intrasignal Latency at the output=
 (50 ns - 29 ns)=21 ns

Intersignal Latency between the input and the output= [(29 ns - 25 ns) + (50 ns - 43 ns)]/2 = 4.5 ns

Module 1 Module 3

Latency is the time between two events.

Usually, latency is the time between two events on different signals, or
in different parts of the model, e.g., the time between the arrival of a
memory request and a memory access - memory latency, or the time
between the sending and receiving of a message - communications
latency. For lack of a better term, this is called intersignal latency.

Sometimes however, the latency between events on the same signal is
important, e.g., the time between subsequent memory accesses or the
time between the processing of RADAR pulses by a SAR system. This
is termed intrasignal latency.

Page 33Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 33

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Throughput

l The (average) number of tokens per unit time
passing a particular point in a model
mEqual to 1/intrasignal Latency at that point
mThroughput at module/system input = arrival rate
mThroughput at module/system output = completion rate

l When given as a requirement or specification, it
usually implies that arrival rate = completion rate

l Example:
mRequirement that an edge detection system have a

throughput rate of 30 images a second
q The system must be able to consume 30 images a

second and,
qProduce representations of the edges in each of the

images consumed, again at a rate of 30 images a
second.

Throughput is basically 1/some type of latency.

Arrival rate is 1/ the intrasignal latency at the system’s input, Completion
rate is 1/ the intrasignal latency at the system’s output.

When used as a requirement, throughput usually means completion
rate.

Page 34Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 34

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Utilization

l The fraction (percentage) of time that a module or
system is busy - e.g. contains a token

1

2

t1=25 ns

t2=43 ns

1

2

t1=29 ns

t2=50 ns

Total Observed Time = 60 ns

%33.18%100
60

)4350()2529(
nUtilizatio =×

−+−
=

ns
nsnsnsns

Module 2Module 1 Module 3

Tokens:

Time:

Utilization is simply the percentage of time (that the system is simulated
for) that the system is actually busy i.e., it contains a token.

Page 35Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 35

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Utilization (Cont.)

l Activity Time Lines
mDisplay individual device utilization as horizontal bar graphs
mUseful in visualizing idle time and concurrency

Monitored
Devices

Idle time Busy time

Concurrency

Activity time lines are a helpful way to visualize utilization, especially in a
system where some concurrency is possible because they allow that
concurrency to be visualized. This helps to see points where
concurrency is or isn’t happening

Page 36Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 36

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Response Time

l The interval between an input to the system and
the system’s resulting output
mEqual to the intersignal latency between the system’s

input and the system’s output

Time

Response time

User’s
request

System’s
response

Response time is a metric that is sometimes used in “user driven
systems” because it measures how long the user must wait from their
input to the desired output.

Page 37Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 37

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Other Metrics

l Multiprocessor System Speedup - the ratio of the
uniprocessor runtime to the n processor runtime

n
n T

TS 1= Where Sn = speedup, Tn = execution time on n processors,
and T1 = execution time on 1 processor

Multiprocessor Speedup

0

2

4

6

8

1 2 3 4 5 6 7 8

Number of Processors

S
p

ee
d

u
p

 (
E

ff
ic

ie
n

cy
)

Ideal

Actual

l Uniprocessor System Efficiency - the ratio of the achieved
throughput to the maximum achievable throughput

Other metrics typically used in system performance analysis include
speedup for a multiprocessor system, and efficiency for a uniprocessor
system (these two are related in that they are both basically the ratio of
the achieved throughput to the theoretical maximum throughput, or visa
versa).

Page 38Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 38

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction

l Performance Modeling Theory
qQueuing Models
qPetri Nets
qUninterpreted Models

l Non VHDL-Based Performance Modeling Tools
l Techniques for Performance Modeling using VHDL
l VHDL Based Performance Modeling Tools
l VHDL Performance Modeling Examples
l Mixed Level Modeling
l Module Summary

Module Outline

Page 39Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 39

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Performance Modeling Theory

l Techniques for performance analysis:
mAnalytical
qMarkov models
qQueuing models
qPetri Nets

mSimulation-Based
qQueuing network models
qPetri Nets
qUninterpreted models

mSimulation-based models may be implemented in a
general programming language (C or C++) or a hardware
description language (VHDL)

There are two basic techniques for performance modeling, analytical,
and simulation-based. The advantages and disadvantages of each will
be explained in each section.

Token-based performance modeling using VHDL is a simulation-based
technique, but the analytical techniques will be introduced here to
provide background for the simulation-based techniques. This section of
the module can be omitted from discussion if this background material is
not required for the given audience.

Page 40Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 40

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analytical Performance
Modeling

l Constructing a mathematical model of the
system behavior and solving it for the metrics of
interest

l Analytic models become intractable unless they
are small and at a high level of detail

l However, small analytical models:
mcan usually be solved easily and generate accurate

results for the general case
mgenerate results that have a better predictive value than

those generated by simulation

l In addition, construction of large analytic models
can give good insight into the system even if
they are too difficult to solve

Analytical performance modeling techniques consist of constructing and
solving a mathematical model of the system. Their main advantage is
their accuracy and the speed with which they can be solved. Their main
disadvantage is the fact that they become intractable for all but the
smallest systems.

[Kant92]

Page 41Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 41

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simulation-based Performance
Modeling

l Simulation models must be constructed at the
appropriate level of detail

l Simulation models generate a lot of raw data that
must be analyzed using statistical techniques

l Careful experiment design is essential to reduce
simulation time while gaining accurate results

l Simulation modeling is more flexible and general
than analytic techniques and can be applied to
models with more detail

l Simulation modeling allows observation of
transient behavior that may be important to
overall system performance

Simulation-based techniques consist of constructing and executing a
model of the system in a high-level programming language or hardware
description language (hdl). Simulation-based models are more generally
applicable and can handle larger systems. The simulation execution
time can become excessive for very complex systems however, if the
level of detail of the model becomes too high. Unlike analytical models,
which just give indications of system steady-state behavior, simulation-
based models allow observation of the transient behavior of the system
which may be important.

In addition, simulation-based models typically generate large amounts of
data that have to be analyzed using statistical techniques.

[Kant92]

Page 42Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 42

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Hybrid Modeling

l Hybrid modeling is what the performance
modeling community calls the mixing of
analytical and simulation-based modeling
techniques

l A portion of the system is modeled analytically
and the metrics extracted are used as input
parameters to a simulation model

l Hybrid modeling can reduce the number of
events that must be simulated, thus reducing
simulation time

l Analytic modeling of portions of the system allow
faster analysis of trade-offs within that portion

Hybrid modeling is the term used in the queuing model and Petri Net
community to describe mixed analytical and simulation based
performance modeling. It is a somewhat overloaded term in that hybrid
modeling has also been used to describe the mixture of performance
and behavioral models although the preferred term for that is “mixed
level modeling.”

Hybrid modeling attempts to incorporate the benefits of both analytical
and simulation-based modeling techniques.

Page 43Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 43

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analytical Performance
Modeling Definitions

l Poisson process - a stochastic (random) process
which describes arrivals of jobs to a queue or
departures of jobs from a server
mOccurrences of events during non-overlapping intervals

of time are independent
mDistribution of events are exponential:

mFor a small ∆t, the probability of an event during the
interval is λλ∆t

l Markov process - a state-based model of a
system which obeys the “memoryless property”
mAll past state information is summarized in the present

state
mHow long the system has been in the present state does

not determine when it will transition to the next state
(Poisson process)

() e t
t tF 0

0 1
λ−−=

Most analytical performance modeling techniques are based on a
Poisson process. This is a stochastic process in which the distribution of
events are exponential and occurrences of events in non-overlapping
time intervals are independent. Because of this property, the probability
that an event occurs in a small interval of time is proportional to the
probability distribution.

The Markov model is the basic modeling paradigm. A Markov model is a
state based model where the probability of transitioning from one state
to another is a Poisson process. This allows the model to be easily
solved as will be seen.

Page 44Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 44

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Markov Models

l Example - consider the reliability analysis of a
system that has two states, operational and failed
mFailure rate is exponential with rate λλ

mRepair rate is exponential with rate µµ
hour

failures

hour
repairs

O F

λλ

µµ

Balance Equations:
P(entering a state) + P(leaving a state) = 0

∑
∞

=

=
0n

1Pn

-λλPO + µµPF = 0

- µµPF + λλPO = 0

PO + PF = 1

µλ
µ
+

=oP

µλ
λ
+

=FP

Given:
λλ = 0.0005
µµ = 1
PO = 99.95%
PF = 0.05%

This simple two state example (even though it is derived from reliability
analysis) shows how a Markov model is solved.

Balance equations that are derived from the fact that the sum of all
probabilities entering a state must be equal to all probabilities leaving
that state and all probabilities must sum to 1. These balance equations
can then be solved to determine the probability of being in each state.

Page 45Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 45

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Queuing Models

ServerQueue

A(t)

B(t)
Customer/job
arrivals

Customer/job
departures

Notation:
A/B/m/K
A - interarrival time distribution
B - service time distribution
m - the number of servers

K - the storage capacity of the queue (default = ∞∞)

Distributions:
G - General
GI - General with iid (independent and identically distributed) characteristic
D - deterministic (fixed)
M - Markovian (exponential)

This slide describes the convention with which queues are specified.

The discussion here will be limited to M/M queues since they can be
described as Markov models, as will be shown.

iid - independent and identically distributed

[Cassandras93] has probably the best description of queuing networks
and how they can be analyzed as Markov models, but [Sauer81] is also
good and has some good examples.

Page 46Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 46

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Queuing Models (Cont.)

1

2

n customers

(N - n) customers

Closed Queuing System
l No external arrivals or departures
l Fixed customer (job) population of N

CPU I/O

Out

In

Open Queuing System
l External arrivals or departures allowed
l Infinite customer (job) population

Both open and closed queuing networks can be analyzed, but there
must be some restrictions on the arrivals and departures in an open
queuing network so that it may be analyzed using these techniques.

Page 47Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 47

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of a Single Open
Queue

M/M/1 Queue

Arrival rate = λ
Service rate = µ

0

λλ

µµ
1 2 3 j-1 j j+1

λλ λλ λλ λλ λλ λλ λλ

µµ µµ µµ µµ µµ µµ µµ

Can be modeled as a Markov
birth-death process

Balance Equation:
0)1()1()()(=++−+−− jPjPjPjP µλλµ

)1()1()(++−=+ jPjPjP µλλµ
Thus:

For j=1:

0)0()1(=− PP λµ

)0()1(PP
µ
λ

=

)2()0()1()(PPP µλλµ +=+

)2()0()0()1(PPPP µλ
µ
λµλ +=








+

)1()2(PP
µ
λ

=In general:
,...3,2,1),1()(=−= nnPnP

µ
λ

)0()(PnP
n









=

µ
λ

This slides shows the analysis if a single queue if infinite size with
exponential arrival and service rates. As shown, the queue can be
modeled with a Markov birth-death process. This allows the steady state
behavior of the queue to be modeled analytically. Note that the service
rate must be greater than the arrival rate for the model to be stable.

Page 48Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 48

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of a Single Open
Queue (Cont.)

Balance Equation:

1||0,
1

1

0

<<
−

=∑
∞

=

a
a

a
i

i

for a geometric progression:

∑
∞

=

=
0

1)(
n

nP

1)0(
0

=






∑
∞

=

P
n

n

µ
λ

1)0(
1

1
=

−
P

µ
λ

µ
λ

−= 1)0(P

Thus:

Utilization:

ρ
µ
λ

==−=)0(1 PU

µ
λρ = is called the traffic intensitywhere

note that the system is only stable if 1<ρ

This is calculation of utilization of the server in the single queue system.

Page 49Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 49

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of a Single Open
Queue (Cont.)

Mean number of jobs in the system
(expected value of n):

∑ ∑∑
∞

=

∞

=

∞

= −
=−===

1 11 1
)1()0()(][

n n

n

n

n nnPnnPnE
ρ

ρρρρ

Mean response time:

Little’s Law: Mean no. jobs in the system = arrival rate X Mean response time

][][rEnE λ=

ρ
µ

λρ
ρ

λ −
=








−

==
1

1
1

1

][
][

nE
rE

Mean number of jobs in the queue:

∑ ∑
∞

=

∞

= −
=−−=−=

1 1

2

1
)1)(1()()1(][

n n

n
q nnPnnE

ρ
ρρρ

This is the calculation of mean number of jobs in the system, mean
response time, and mean number of jobs in the queue. Note that this
slide introduces Little’s Law, an important theorem in queue analysis.

Page 50Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 50

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Single Queue Analysis
Example

l Consider a network router modeled as an M/M/1
queue:
mArrival rate λλ = 1000 packets per second
mRouting takes an average of 150 µµs µ = 1/150 µs = 6666 pps

%15
6666

1000
====

µ
λρURouter utilization:

Mean number of packets in the router: 176.0

6666
10001

6666
1000

1
][=

−
=

−
=

ρ
ρ

nE

Mean time spent in the router: sµ
ρ

µ
5.176

6666
10001

6666
1

1

1
][=

−
=

−
=rE

This is an example of how a real life system can be analyzed as a
M/M/1 queue. Note that the analysis of a system with a limited queue
size (M/M/1/N), which covers more real-life systems, is equally simple.

Page 51Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 51

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of a Single Queue
with Multiple Servers

M/M/m Queue

Arrival rate = λ
Service rate = µ

0

λλ

µµ
1 2 m-1 m m+1

λλ λλ λλ λλ λλ λλ

2µ2µ 3µ3µ ((m−1)µ−1)µ mµµ mµµ

m servers

Probability of zero
jobs in the system:

1
1

1 !

)(

)1(!

)(
1)0(

−−

=








+

−
+= ∑

m

n

nm

n
m

m
m

P
ρ

ρ
ρ

Probability of n
jobs in the system:

mn
m
m

P

mn
n

m
P

nP mn

n

≥

<
=

,
!

)0(

,
!

)(
)0(

)({
ρ

ρ

This is the analysis if an M/M/n system, one with a single exponential
queue but multiple servers, e.g. a multiprocessor system for transaction
processing.

Page 52Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 52

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of a Single Queue
with Multiple Servers (Cont.)

M/M/m Queue

Arrival rate = λ
Service rate = µ

)(µ
λρ mU ==Utilization of each server:

δ
ρ

ρ
=

−
=≥)0(

)1(!

)(
)(P

m
m

jobsmP
m

Probability of jobs in the queue:

Mean number of jobs in the system:)1(][ρρδρ −+= mnE

Mean response time: 







−

+=
)1(

1
1

][
ρ

δ
µ m

rE

This is the remainder of the analysis.

Page 53Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 53

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Single Queue/Multiple Server
Analysis Example

l Consider a network of three computers in a bank
transaction processing center modeled as an M/M/3
queue:
mArrival rate λλ = 50 transactions per second
mProcessing takes an average of 45 ms µ = 1/45 ms = 22.22 tps

%75
22.223

50
=

×
===

µ
λρ

m
UComputer utilization:

Probability of all
computers being idle P(0):

[] %0808.85313.225.25938.7

!2
)75.03(

!1
)75.03(

)75.01(!3
)75.03(

1)0(

1

1213

=++=








 ×
+

×
+

−
×

+=

−

−

P

%3636.61080808.0
)75.01(!3

)75.03(
)0(

)1(!

)(3

=×
−

×
=

−
= P

m
m m

ρ
ρδ

Probability of
jobs in the queue:

An example of an M/M/n queue model.

Page 54Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 54

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Single Queue/Multiple Server
Analysis Example (Cont.)

Mean number of
transactions in the system:

0909.48409.125.2

75.01
613636.075.0

75.03
)1(

][

=+=
−

×
+×=

−
+=

ρ
ρδρmnE

Mean response time:

ms826.81
)75.01(3

613636.0
1

22.22
1

)1(
1

1
][

=







−

+=









−

+=
ρ

δ
µ m

rE

M/M/n example continued.

Page 55Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 55

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Product Form Queuing
Networks

µ1 µ2 µk

i
i µ

λρ =Utilization of ith server:

Probability of ni jobs in the ith queue: in
ii ρρ)1(−=

Probability of queue lengths of M queues:

)()()()(

)1()1()1()1(),,,(

332211

333311321
331

mM

n
MM

nnn
M

nPnPnPnP

nnnnP M

L

LL

=
−−−−= ρρρρρρρρ

∏
=

=
M

i
iiM nf

NG
nnnnP

1
321)(

)(
1

),,,(L

where G(N) is a normalizing constant which is
a function of the number of jobs in the system

and fi(ni) is a function of the jobs at the ith
server

In general:

This is a brief presentation of the analysis of a chain of M/M/1 queues.
Note the form that the solution takes is the general form of the solution
of a closed network of M/M/1 queues. Queuing networks whose solution
takes this form are called “product form networks.”

Page 56Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 56

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Product Form Queuing
Network Example

µ1

µ2

n1 jobs

n2=(N - n1) jobs

1
1

1
2

211
1

1
2

21

)(

)(
1

),(21

++

++

−=

×
−

=

NN

nn
NN

NG

nnP

µµ

µµ
µµ

where

N,0

µµ11

µµ22

N-1,1 N-2,2

µµ11 µµ11

µµ22 µµ22

0,N

µµ11

µµ22

This is an example of the solution of a closed network of M/M/1 queues.
Note how the solution takes the general product form.

Page 57Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 57

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of Complex Queuing
Networks

l In general product form queuing networks can be
analytically solved if they are small enough

l There are many restrictions on queuing networks
for them to have a product form solution:
mLimited types of service disciplines
mA single job class per queue
mLimited types of service time distributions
mService time dependent only on queue length
mExponential arrival processes for open networks

l Complex queuing networks can be solved by
numerical analysis or event-driven simulation

Product form queuing networks have a very mathematically “clean”
solution, but there are many restrictions on the queuing networks such
that they are “product form networks.”

Note that complex queuing networks can be solved numerically or by
event driven simulation. This is the basis of many performance tools like
SES Workbench, Extend, Foresight, etc.

Page 58Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 58

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Nets

l Performance models (as opposed to spreadsheets
or simple hand calculations) are necessary to
analyze systems which embody one or both of
these attributes:
m contention for resources
msynchronization between concurrent activities

l Queuing models are usually sufficient for
modeling systems that exhibit the first attribute,
but not the second

l Petri Nets, outlined by Carl Adam Petri in 1962, are
an effective method for modeling systems which
exhibit both attributes

For simple systems that do not exhibit concurrency and contention,
detailed performance modeling may not be necessary, a simple “spread
sheet” approach might suffice. For systems that exhibit concurrency,
and contention (like the transaction system example), queuing models
are applicable. However, for systems that exhibit synchronization
between concurrent activities, queuing models are not adequate.

Petri Nets, developed in 1962, are suited to modeling systems that have
concurrency, contention, and synchronization.

The major reference for Petri Nets is the paper by Murata [Murata89],
but [Cassandras93] is a good text reference.

Page 59Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 59

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Nets (Cont.)

l A Petri Net is a 5-tuple, (P,T,F,W,M0) where:
mP={p1,p2,p3,…pn} is a finite set of places,
mT={t1,t2,t3,…,tn} is a finite set of transitions,
mF ⊆ (P xT) (T xP) is a set of arcs between places and

transitions,
mW:F → {1,2,3,…} is a weight function on each arc,
mM0:P → {0,1,2,3,…} is the initial marking in terms of the

number of tokens in each place,
mP T = ∅ and P T ≠ ∅.

l A Petri Net structure N= (P,T,F,W) without any
specific initial marking is denoted by N

l A Petri Net with the given initial marking is
denoted by (N,M0)

[Murata89]© IEEE 1989

This is the basic definition of a Petri Net. Note that the basic Petri Net
contains no notion of time or values on the data modeled in the system.

Page 60Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 60

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Definitions

l Place - a storage area for tokens that represents
a specific condition that has to be true (have a
token in it) before an event can take place. Places
are denoted by circles

l Transition - a representation for an event that can
take place in a system being modeled.
Transitions are denoted by lines or boxes

l Token - a representation that a certain condition
has been satisfied. Tokens are denoted by dots
in Places.

Places

TransitionToken

The basic definitions of the things that make up a Petri Net. Note that
the Petri Net definition of a token is slightly different than the definition
that will be used in the uninterpreted modeling section. In a Petri Net, a
token is a representation that a certain condition, that will cause a
transition to fire, has been satisfied. It does not necessarily denote
actual data that is moving in the system, as is the case with most (but
not all) uninterpreted modeling systems.

Page 61Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 61

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Definitions (Cont.)

l Marking - the number of tokens in each place,
usually denoted by an m vector where m is the
number of places in the Petri Net. The pth
component of M, denoted by M(p) is the number
of tokens in place p.

l Enabled - a transition is enabled when there are
at least f tokens in each of its input places where
f is the weight of each input arc to the transition.

2

Enabled transitionp1

p2

p3

t1

Marking:(2,1,0)

No additional notes necessary.

Page 62Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 62

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Definitions (Cont.)

l Firing - the activation of an enable transition
m it consumes the required amount of tokens at its input(s)

and produces the required amount of tokens at it output(s)

2
p1

p2

p3

t1

Net before firing

2
p1

p2

p3

t1

Net after firing

l Nondeterminism - when several transitions are
simultaneously enabled, any one may fire first

l Conflict - when the firing of one enabled transition
would disable another enabled transition

p1 p2 p3

t1 t2Transitions t1 and t2 conflict

The nondeterminism of Petri Nets is a significant difference between
them and other uninterpreted modeling techniques. Where two
conflicting transitions are enabled, which one fires first can make a
significant difference in how the model behaves.

Page 63Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 63

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Definitions (Cont.)

l Inhibitor Arc - an arc that connects a place and a
transition such that the transition can only fire it
there is NO token in the associated place

Transition enabledp1

p2

p3

t1

Transition not enabledp1

p2

p3

t1

Inhibitor arc

No additional notes necessary.

Page 64Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 64

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Definitions (Cont.)

l State Machine - a Petri Net in which each transition
has only one incoming and outgoing arc

State machine Petri Net of a
vending machine - coin return
transitions have been omitted

❍ Any finite state machine
can be represented by a
state machine Petri Net

Get 15¢ candy

o¢
p1

Deposit 5¢

Deposit 10¢

5¢

Deposit
5¢

Deposit
5¢

Deposit
5¢

10¢ 20¢

15¢

Deposit 10¢

Deposit 10¢

Get 20¢ candy

Get 15¢
candy

[Murata89]© IEEE 1989

This is a Petri Net model of a finite state machine (FSM). By definition,
any FSM can be modeled with a Petri Net. One thing to note here is that
in the real state machine, the firing of each transition is triggered by an
external event, either the insertion of a coin or the pressing of a “get
candy” button. However, in the true Petri Net model, which transition
would fire, in the case where two or more are enabled (0¢, 15¢, 20¢
state), is non-deterministic.

Page 65Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 65

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Examples

Ready to
send

Buffer
full

Buffer
full

Wait for
ack.

Ack.
received

Ack.
sent

Message
received

Ready to
receive

Process 1Process 2

Send
message

Receive
ack.

Receive
message

Send
ack.

A Petri Net model of a simple communications protocolA Petri Net model of a simple communications protocol

[Murata89]© IEEE 1989

This is a Petri Net model of a simple interlocking communications
protocol. In fact, both hardware and software systems can be modeled
with Petri Nets - a powerful feature.

Page 66Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 66

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Examples (Cont.)

A Petri Net model of a multiprocessor system with 5 processors,
three shared memories, and two processor-memory busses

A Petri Net model of a multiprocessor system with 5 processors,
three shared memories, and two processor-memory busses

p1

t2

t1

t4

t3 t5

p3

p2

p4

p5

● Tokens in:
❍ p1 represent processors executing in
their private memory
❍ p2 represent free busses
❍ p3 represent memory request that have
not been served
❍ p4 represent processors accessing
shared memories
❍ p5 represent processors requesting the
same shared memory accessed by a token
(processor) in p4

● Firing of transition:
❍ t1 represents the issuing of access
requests
❍ t2 or t3 represent making a memory
choice
❍ t4 represents the end of a memory access
for which there is no outstanding request
❍ t5 represents the end of a memory access
for which processors are queued

[Murata89]© IEEE 1989

This is a more complex Petri Net model of a multiprocessor system with
5 processors, three shared memories, and two processor-memory
busses. It is intended to show how systems of this type can be modeled
with Petri Nets and that there is not a one-to-one correspondence
between tokens, place, and transitions and hardware components or
data packets in a real system - which sometimes makes them difficult to
conceive.

See [Murata89] for more details on this example.

Page 67Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 67

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Reachability Graphs

p1

t2t1

p2

K(p1)=2

K(p2)=1

Note: this a finite-capacity net
where place p1 can hold no more
than 2 tokens and place p2 can hold
no more than 1 token - which limits
the size of the reachability graph.

1 0

2 0

0 0 0 1

1 1

2 1

t1
t1

t2 t3

t4

t4
t1

t1

t4

t2

[Murata89]© IEEE 1989

This slide introduces reachability graphs which are representations of
the “states” or markings of a Petri Net and how they are reached by
various transition firings.

The nodes in the reachability graph are markings (e.g., 1 0 is the
marking where there is one token in p1 and 0 tokens in p2.

The arcs in the reachability graph are the transitions that move the Petri
Net from one marking to another.

Note that in order to make the reachability graph for this example
tractable (as far as drawing it), the example is a finite capacity net in
that p1 can hold no more than 2 tokens and p2 can hold no more than 1
token.

Once the reachability graph is constructed, it can be analyzed using
various graph algorithms.

Page 68Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 68

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Analysis

l Once constructed, Petri Net models can be
analyzed for many properties:

l Reachability - a marking Mn is reachable from M0
if there exists a firing sequence from M0 to Mn
m the set of all possible markings reachable from M0 in a

net (N,M0) is denoted R(N,M0) and is the set of states
that the system can obtain

l Boundedness - a Petri Net is k-bounded if the
number of tokens in each place does not exceed
a finite number k for any marking reachable from
M0
mby verifying that a Petri Net is k-bounded, it is

guaranteed that any buffers of size k will not overflow

Here are some of the attributes that the Petri Net can be analyzed for.
All of these attributes can be examined analytically using the
reachability graph and do not require simulating or “animating” the Petri
Net.

 Reachability analysis can be used to see if the Petri Net can attain any
“undesirable” state. Boundedness can be used to determine if the
“capacity of any state (e.g. buffer size) can be overflowed.

Page 69Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 69

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Analysis (Cont.)

l Liveness - a Petri Net (N,M0) is live if, no matter
what marking has been reached, it is possible to
fire any transition of the net through some firing
sequence

l Liveness shows that a system has not reached a
state where a portion of the system can no longer
operate
mproving liveness is hard - so there are degrees of

liveness

l Reversibility - a Petri Net (N,M0) is reversible if
for each marking in R(N,M0) it is possible to get
back to M0

l Home state - a marking M’ is a home state if it is
reachable from every marking in R(N,M0)

Liveness can again show that the Petri Net does not attain an
“undesirable” state in which its not exactly deadlocked, but some
transitions can no longer be fired.

Reversibility shows that a Petri Net can regain its “home state” from any
state it can attain.

Page 70Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 70

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Analysis (Cont.)

l Coverability - a marking M in a Petri Net (N,M0) is
coverable if there exists a marking M’ in R(N,M0)
such that M’(p) ≥ M(p) for each p in the net

l Persistence - a Petri Net is persistent if for any
two enabled transitions, firing of one will not
disable another
mUseful in the context of parallel program schemata and

asynchronous sequential circuits

l Fairness - two transitions t1 and t2 are in a
bounded-fair relation if the maximum number of
time that either one can fire while the other one is
not firing is bounded

Here are more attributes that can be determined from the analysis of a
Petri Net and its reachability graph.

Page 71Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 71

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Analysis Methods

l Coverability tree method - enumeration of all
reachable markings or their coverable markings
m limited to “small” nets because of the state space

explosion

l Matrix-equation approach - simultaneous
equations that govern the dynamic behavior of
systems modeled by Petri Nets

l Reduction or decomposition techniques -
reducing the Petri Net model from a complex to
more simple form that can be analyzed
m in many cases, the above two techniques are applicable

to only certain subclasses of Petri Nets

Various methods for analyzing Petri Nets for the metrics discussed.

Page 72Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 72

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Timed Petri Nets

l In timed Petri Nets, each transition has a firing
time which represents the time taken by the
activity represented by the transition

l There are two semantic models for timed
transition firing:
matomic firing (AF) - after the transition is enabled, it

delays its firing time and then consumes and produces
tokens at that time

mnonatomic firing (NF) - as soon as the transition is
enabled, it removes the enabling tokens from its input
places, delays its firing time, and then produces tokens

p1

t2

p2

t1ν1 NF Semantics

p1

t1

p2

ν1
timed transition

AF Semantics

Timed Petri Nets are the more useful form for performance analysis.
Both NF and AF semantics can be employed although AF is more
general in that NF can be described in AF.

A potential problem with AF is that in conflicting transitions, an enabled
transition may be disabled during its delay time by the firing of another
transition.

Page 73Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 73

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Timing Functions

l Transition timing functions can depend on the
number of tokens in a specific place in the Petri
Net

l Transition timing functions can be deterministic
or stochastic

l Transition timing functions can be continuous
time or discrete time

p1

t1

p2

m2ν1

transition timing is
based on m2, the
number of tokens
in place p2

Timing functions for transitions can be a function of the number of
tokens in a place. Also, timing functions can be deterministic of
stochastic. General Stochastic Petri Nets can be analyzed as Markov
Models (as will be shown).

Page 74Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 74

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Colored Petri Nets

l Colored Petri Nets (CPN) are Petri Nets in which
tokens may belong to different categories, show
different types of behavior, or carry user defined
information

l Transition firing rules or timing may be dependent
on the types of tokens present in the input places
mTransition firing may modify the color of tokens that are

consumed and produced by it
mColor information is denoted on the arcs

p1

t1

p2

X Y

=f(x,y)

Colored Petri Nets (CPN) include the notion of values (or classes) on
the tokens. Note that CPNs are what is used as the mathematical
foundation for UVa’s ADEPT tool.

In this example, the color of the token produced by the firing of transition
t1 is a function [f(x,y)] of the color of the tokens in the p1 and p2 places.

Page 75Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 75

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Stochastic Petri Net Analysis

p1

t1 λλ1

t2 m2 λλ2

t5

λλ5

p2p3 p4

t3 λλ3

t4 λλ4

2 0 0 0 1 1 0 0 0 2 0 0

0 0 2 2 1 0 1 1 0 1 1 1

t2

t1

t5

t2

t1

t5

t2

t1

t5

t3

t4

t4 t3 t4 t3

Petri Net Reachability Graph

M0 M1 M2

M4 M3 M5

Markov Model

M0 M2

M4 M3 M5

M1

λλ4

λλ4

λλ3 λλ2

λλ3λλ4λλ3

λλ1+λλ5

λλ1+λλ5 λλ1+λλ5

λλ2 λλ2

As shown here, a Stochastic Petri Net can be translated into a Markov
Model via its reachability graph.

Page 76Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 76

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Petri Net Model of a Queue

Customer/job
arrivals

Customer/job
departures

Q

A(t)
B(t)

A(t)

B(t)

I

B

a

s

c

(customer/job arrives)

(customer/job departs)

(service starts)

Queuing Model Petri Net Model

l A timed Petri Net structure can be used to model
the dynamic behavior of a queuing system:

Here is an example of how a queuing model can be modeled using Petri
Nets - a further demonstration of their modeling power.

Page 77Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 77

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simulation-Based Performance
Modeling

l Both complex queuing models and complex Petri
Nets can be analyzed by event-driven simulation

l Event cycle:

Process active events, e.g.:
l fire transitions
l move jobs into/out of server

Process active events, e.g.:
l fire transitions
l move jobs into/out of server

Determine time of new events
caused by active events (using
random variables for stochastic
models), e.g.:

l next transition firing time
l next job completion time

Determine time of new events
caused by active events (using
random variables for stochastic
models), e.g.:

l next transition firing time
l next job completion time

Place new events
on event queue

Place new events
on event queue

Advance simulation
time to time of next

event

Advance simulation
time to time of next

event

As mentioned before, complex queuing models and Petri Nets, although
they may not be solvable via analytical techniques, can be solved by
simulation. There are many commercial tools available that do this.

This is an illustration of the basic event driven simulation cycle. You
simply process all events scheduled for a given time, and determine
what new events are generated for what future times. These events are
added to the “event queue” and time is advanced to the earliest future
time in the event queue. All events at that time are then processed and
the cycle begins again.

Alternatively to event-driven simulation, the simulation cycle can be
done on a discrete time interval (e.g. 1 ns) and simulation time
advances at regular intervals. All signals can be updated to new values
(which may be the same as old ones) at each time interval. This eases
the management of simulation time and the event queue.

Page 78Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 78

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Uninterpreted Modeling

l Queuing models and Petri Nets provide formal methods for modeling
systems
m Analytical solution
m Simulation-based solution

l Queuing models and Petri Net representations become cumbersome
for complex systems

l It is possible to model systems at an equivalent level without using
the queuing model or Petri net formalism

l This methodology has been termed “uninterpreted modeling” and is
generally characterized by models that:
m represent data in the system as abstract “tokens”
m model the size and time taken by data being transferred in the system,

but do not represent its actual values
m model the time and resources necessary for computation to take place,

but do not actually perform it

It is possible to model systems at a high level without using either the
queuing model or Petri Net formalism. This is a separate issue from the
analytical vs. simulation-based solution issue, although models that do
not have the queuing model or Petri Net formalism obviously have to
use simulation-based solutions.

In general “uninterpreted modeling” the system is modeled at such a
level as the data in the system that is moved from component to
component is modeled, but its values and transformations performed on
it are not. Timing is modeled, but usually at a high level. Recall that the
taxonomy of performance models showed this level of abstraction. In
general, all of the modeling environments discussed from her on out will
be general “uninterpreted modeling” environments although some of
them may include elements of queuing models (SES Workbench) and
Petri Nets (ADEPT)

Page 79Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 79

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Uninterpreted Modeling Example
Hardware Performance Model

l Consider a model of a Processor and a memory system

CPU
Model

Memory
System
Model

tokens modeling memory requests:
laddress
lsize
lread/write

tokens modeling memory data:
lsize

CPU models timing
of instruction
execution and
issues memory
requests

Memory system models
timing of memory requests:
lcache hit/miss
lpage mode hit/miss
ldisk access time

l CPU and memory model can be abstract performance
models that use deterministic or stochastic timing

l Tokens are user defined data structures
l Using this type of model, it is possible to measure:

m Average memory access latency
m Average memory bandwidth provided
m Average instruction execution time

Here is an example of an uninterpreted model of a CPU and memory
system. This is an example that will be utilized in the section on VHDL
performance modeling examples. Notice that the tokens in the model
actually model the passing of data between the CPU and the memory
and are fairly abstract in nature, as are the CPU and memory
component models.

Page 80Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 80

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Uninterpreted Modeling Example
Hardware/Software Task Level

Performance Modeling

l A very useful area for performance modeling is the
mapping of a computationally complex algorithm onto a
multicomputer architecture

l Dataflow algorithms for digital signal processing
applications is a primary example

Task 1

Task 2

Task 3 Task 4

Task 5

Application Software
Task Graph

Scheduler - allocates
tasks to hardware

resources

Hardware Architecture

CPU CPU CPU

Global
Memory

Sensors I/O

Network
Application

Specific
Processor

This is another type of uninterpreted model that will also be used in the
example section, a hardware/software task level model. Here the
software is a set of tasks, often modeled as a dataflow graph, that
communicates with a “scheduler” to obtain hardware resources
(processors, memories, switches) on which to execute. Usually, the
software tasks provide information on how much hardware resources
they require (data size, number of floating point instructions, etc.) and
the hardware model actually delays the required simulated time.

Page 81Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 81

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction
l Performance Modeling Theory

l Non VHDL-Based Performance Modeling Tools

l Techniques for Performance Modeling using VHDL
l VHDL-Based Performance Modeling Tools
l VHDL Performance Modeling Examples
l Mixed Level Modeling
l Module Summary

Module Outline

Page 82Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 82

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Non VHDL-Based Performance
Modeling Tools

l There are a number of commercial and university
tools for analyzing and simulating Petri Nets

l There are a number of non VHDL-based
performance modeling packages that fall into the
uninterpreted modeling category:
mSES Workbench
mForesight
mBones
mNetSyn
mSim Script
mPtolemy

There are a number of commercial and educational packages available
for Petri Net analysis and general “uninterpreted” performance
modeling. Most of these are implemented in C or C++ and as such, are
a bit divorced from the electronic system design process. However,
because of their number and popularity, some discussion of them is
warranted here.

Page 83Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 83

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SES/workbench®

l SES/workbench is an uninterpreted/queuing
model environment

l Application areas include:
m Hardware architecture design
mComputer system and network capacity planning
mNetwork performance analysis and design
mDistributed system performance analysis
mSoftware requirements analysis and design

l Includes a GUI for model building, simulation,
and results processing environments

l Includes capability for user extension

As an example of the types of tools in the general uninterpreted
performance modeling category that are available, SES workbench® will
be presented in some detail. SES does have some basis in queuing
network modeling, but performance models that do not include queues
can be built with it, so it falls into the more general category.

This presentation was taken from the Scientific and Engineering
Software, Inc. web page: http://www.ses.com

A through reading of the material on Workbench there will suffice as
background to present these slides.

Page 84Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 84

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP SES/workbench Building
Blocks

SES/workbench provides 25 primitive building blocks
for creating models

• Submodel• Submodel
managementmanagement
nodesnodes

• Flow Control• Flow Control
nodesnodes

• Active• Active
ResourceResource
managementmanagement
nodesnodes

• Passive Resource• Passive Resource
managementmanagement
nodesnodes

• User Extension/• User Extension/
CustomCustom
Function nodesFunction nodes

• Connection/• Connection/
StatisticalStatistical
arcsarcs

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 85Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 85

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP SES/workbench Model
Development

l SES workbench performance models are created
using a GUI interface
mplacing and interconnecting building blocks to

represent system function/structure

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 86Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 86

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP SES/workbench Model
Parameterization

l Model objects (building blocks and
interconnections) have a
corresponding specification form
where the behavior can be further
parameterized

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 87Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 87

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP SES/workbench Probability
and Queuing Disciplines

l SES/workbench has a number of built-in
probability disciplines:
mNormal, inormal
mExponential, hyperexponential
mGeometric
metc.

l SES/workbench also has a number of queuing
disciplines:
mFirst come first serve
mLast come first serve
mRound robin
mProcessor Sharing
mNon-preemptive, preemptive, and polling priority

schemes

See http://www.ses.com

Page 88Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 88

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP SES/workbench Model
Simulation

l SES/workbench models can be animated to show the flow
of information

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 89Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 89

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP SES/workbench Model
Simulation (Cont.)

• Inspect the• Inspect the
current work incurrent work in
your systemyour system

• Gather statistics• Gather statistics
on workload,on workload,
environment andenvironment and
applicationapplication
performanceperformance

• Analyze the• Analyze the
application loadapplication load
on the executionon the execution
environmentenvironment

l SES/workbench includes the capability of viewing the
model statistics as the model executes

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 90Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 90

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP SES/workbench Model
Simulation (Cont.)

l SES/workbench provides model statistics on system
performance that permit verification, debugging, and
optimization of system designs

l Statistics may be built-in or user-defined

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 91Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 91

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP User Extensions to
SES/workbench

l Users can extend the graphical modeling icons to
represent unique system behaviors

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 92Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 92

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP User Extensions to
SES/workbench (Cont.)

l Users can add custom icons to the SES/workbench to
represent portions of the modeled system in a more self-
explanatory manner

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 93Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 93

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP User Extensions to
SES/workbench (Cont.)

l Users can create custom documentation of the system
design from the SES/workbench model files

[SES]Copyright 1999, SES, Inc. All Rights Reserved.

See http://www.ses.com

Page 94Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 94

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Ptolemy from U.C. Berkeley

l System-level design framework
mCovers higher levels of system specifications

as well as lower level of system description
q Implements heterogeneous embedded

systems
qAllows mixing models of computation and

implementation languages
mProvides graphical specification of system

parameters and mathematical models of
systems

mSupports hierarchy using object-oriented
principles of polymorphism and information
hiding in C++

mProvides capability for interaction between
different domains

[Ptolemy96].

This section describes UC Berkeley's Ptolemy functional modeling tool.
Ptolemy is targeted as a tool to model and simulate the function of a
DSP system, but, as is described in this section, it has been used to
perform uninterpreted performance modeling.

Biographical Names

Ptol-e-my \'ta^:l-e-me^-\

2d cent. A.D. Claudius Ptolemaeus - Alexandrian astronomer

Page 95Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 95

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Ptolemy
 System Description

l Universe: Complete program or application
l Domain: Model of execution that includes a

simulation scheduler
mDE - Discrete Event
mSDF - Synchronous Dataflow
mDDF - Dynamic Dataflow

l Stars: Modeling modules within a domain either
precoded from Ptolemy library or can be
implemented by user-provided code

l Galaxies: Hierarchical block which internally contains
Stars as well as possibly other Galaxies

l Particles
mData passes between blocks in discrete units called particles

(in some domains, called a token)

This slide outlines the parts of a Polemy simulation.

Page 96Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 96

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

Domain

Ptolemy
 System Description (Cont.)

Universe

Star

Star

StarGalaxy

Star

Star

Galaxy Star

Particles

[Ptolemy96]Copyright 1996, University of California at Berkeley. Used with permission.

This figure shows the general outline of a system model in Ptolemy.
General modeling blocks in Ptolemy are called “stars.” A hierarchical
collection of stars used to model a large piece of functionality is called a
Galaxy. Stars communicate with each other by passing particles (similar
to tokens). A specific modeling paradigm in Ptolemy is called a domain.
An entire model is Ptolemy is called a Universe.

Page 97Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 97

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

XXXDomain

Ptolemy
 Heterogeneous System Modeling

XXXUniverse

Scheduler

Scheduler

YYYfromUniversal

YYYtoUniversal XXXfromUniversal

XXXtoUniversal

E
ve

n
t

H
o

ri
zo

n

XXXWormhole

YYYDomain

Particles

Particles

YYY Stars
& Galaxies

XXX Stars
& Galaxies

[Ptolemy96]Copyright 1996, University of California at Berkeley. Used with permission.

A model of computation (such as discrete event, synchronous dataflow,
dynamic dataflow, etc.) is called a Domain in Ptolemy. Each domain
includes building blocks, or stars (which the user can add to by writing
their own), a scheduler that executes the portion of a model that resides
in its domain, and wormholes that interface data and events between
domains.

Page 98Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 98

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Ptolemy
 Heterogeneous System Modeling

(Cont.)

l Ptolemy allows cosimulation of different modeling
domains through the use of wormholes

l Wormhole
mLooks like a star from outside, but internally looks like a

galaxy in a different domain; contains its own scheduler
mScheduler on the outside treats it like a star, but internally it

has its own scheduler - supports heterogeneity
mParticles pass from one domain to another (in or out of a

wormhole) through an Event- Horizon - Manages possible
format translations between two models of computations

Stars communicate across different domains using wormholes.
Wormholes allow heterogeneous models with stars from different
domains to be constructed.

Page 99Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 99

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Ptolemy Domains

l Domain is a collection of stars, schedulers, and targets
m Domain A is said to be a subdomain of B if its stars can be used within B
m Domains support different models of computation
q Synchronous Dataflow (SDF) Domain
ðFlow of control is predictable at compile time
ðData-dependent flow of control is allowed within the confines of a

star
ðUsed for DSP algorithm development
ðA rich library of stars, including polyphase real and complex FIR

filters
q Dynamic Dataflow (DDF) domain
ðExtends SDF by data-dependent flow of control
ðRun-time scheduling, supports conditionals, data-dependent

iteration, and true recursion
q Discrete-event (DE) Domain
q Circuit Simulation (Thor) Domain

More discussion of domains.

Example:

A high-level dataflow model of a signal processing system can be
connected to a hardware simulator that in turn may be connected
to a discrete-event model of a communication network
BDF domain implements a compile-time scheduler for DDF
graphs that supports run-time flow of control; similar to SDF.
Attempts to construct a compile-time scheduler - like DDF

- achieves the efficiency of SDF with the generality of DDF.

HOF domain: takes a function as an argument and/or returns a
function. It implements a star called Map, that can apply any
other star (or galaxy) to the sequence(s) at its inputs thereby
“mapping” itself to the other star or galaxy.

Page 100Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 100

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Ptolemy Domains (Cont.)

SDF BDF DDF PN

PTOLEMY
Kernel

Code Generation

CG

CGC

CG 56

CG 96

Silage

VHDLF

VHDLB

Sproc

MDSDF

Multidimensional
SDF

DMM

Design
Methodology
Management

CP

Communicating
processors

DE

Discrete-event

Thor

Circuit
Simulation

[Ptolemy96]Copyright 1996, University of California at Berkeley. Used with permission.

This is a graphical representation of the domains available within
Ptolemy and how they interact with the Ptolemy kernel.

Page 101Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 101

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Modeling of an HPSC
Architecture Using Ptolemy

l HPSC architecture provides:
mhigh data bandwidth
mdistributed processing
m real time processing

l Goal is to simplify development by separating:
mapplication software implementing algorithm
msystem software passing data among processing nodes

l HPSC comprises:
mProcessing nodes
mLANai (network interfaces)
mMyrinet network of switches

Signal Processing Applications & Rapid Development

Node LANai

Node LANai

Node LANai

Node LANai

NodeLANai

NodeLANai

NodeLANai

NodeLANai4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

8-port
Switch

4-port
Switch

4-port
Switch

8-port
Switch

16-port
Switch

[LMC-Sanders]

This is a presentation of how High Performance Scalable Computing
systems can be accomplished using Ptolemy. HPSC systems are those
types of systems utilized in the RASSP program. This method for
performance modeling is described in detail in [Pauer97], so a through
reading of that paper will suffice to explain these slides.

Page 102Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 102

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
HPSC Processing Nodes

l Implement application algorithms
l Consist of

mone or more digital signal processors and/or RISC
processors

mprogrammable hardware logic like Field Programmable
Gate Arrays (FPGAs) or Application Specific Integrated
Circuits (ASICs)

ma combination of the above

DSP DSP

Memory

MemoryMemory

DSP DSP

Memory Memory

FPGA

Memory

FPGA

FPGA

Memory

ASIC

Memory

ASIC

DSP DSP

MemoryMemory

Memory

FPGA

ASIC

Signal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 103Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 103

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
MyriNet LANai

l Acts as the interface between the processing node and
the network

l Contains independent transmit and receive sections
l Transmits and receives data at 160 Mbyte/second rate
l Has high speed dedicated static RAM to load and store

data
l Uses data synchronization tables to route data through

network (transmit) or organize incoming data from
network (receive)

l Creates packet header on transmit side

Signal Processing Applications & Rapid Development

LANAI Transmit DST

Packet
0

Address
0x40000000

Size
512

Route words
0 4 3 2

Index
4

1 0x40000200 256 1 2 0 3 6 2
: : : :

N-1 0X40001100 2048 517 1

Desk
LANAI Receive DST

Packet Address Size
0 0x70000000 1024
1 0x70000400 256
:

M-1 0x70001000 512

: :

[LMC-Sanders]

See [Pauer97].

Page 104Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 104

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Myrinet Network of Switches

l Myrinet network is comprised of a network of multi-port switches
l Ports have independent transmit and receive ports
l Most common are 4-port, 8-port, and 16-port switches
l Have throughput of 160 Mbytes/second
l Operate by extracting port number from header, and passing

data packet through specified transmit port
l Very low latency
l No buffering - packet is transmitted as soon as header is

decoded
l Must handle contention when multiple packets from different

receive ports are addressed to same transmit port

Signal Processing Applications & Rapid Development

4-port
Switch

4-port
Switch NodeLANai

Node LANai

Node LANai
3

0

2 2

1

1
3

3 3
1

0

2
0 2 0

Route words:
1 1

Route words:
1 0 1

1

4-port
Switch

4-port
Switch

[LMC-Sanders]

See [Pauer97].

Page 105Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 105

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Myrinet Routing Example

Signal Processing Applications & Rapid Development

No Contention

Route Words
2 1 1 3 3
2 1 1 1 5
2 1 3 1 7
0 0 0 1 1 1 1

Node LANai

Node LANai

Node LANai

Node LANai

NodeLANai

NodeLANai

NodeLANai

NodeLANai4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

8-port
Switch

4-port
Switch

4-port
Switch

8-port
Switch

16-port
Switch

3

3

3

3

0

0

0

0

2

2

2

3

3

1

1

1

1

2

7

6

5

7

6

5

3

3

1

1

1

2

3

2

2 0

0

0

4

1

1

1
15

2
14

3
13

12

11

10

9

00

1

2

3

4

5

6

7

4 3

[LMC-Sanders]

See [Pauer97].

Page 106Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 106

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Myrinet Routing Example

Contention

Route Words
1 2 1 3 3
0 1 1 1 1
1 3 0 1 7
1 3 1 5

Signal Processing Applications & Rapid Development

3

3

3

3

0

0

0

0

2

2

2

3

3

1

1

1

1

2

7

6

5

7

6

5

3

3

1

1

1

2

3

2

2 0

0

0

4

1

1

1
15

2
14

3
13

12

11

10

9

00

1

2

3

4

5

6

7

4 3

Node LANai

Node LANai

Node LANai

Node LANai

NodeLANai

NodeLANai

NodeLANai

NodeLANai4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

4-port
Switch

8-port
Switch

4-port
Switch

4-port
Switch

8-port
Switch

16-port
Switch

[LMC-Sanders]

See [Pauer97].

Page 107Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 107

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP New Ptolemy Stars for Myrinet
Performance Model

l Modeling done in the Discrete Event (DE) Domain: event-driven
model of computation
m SourceNode star: creates data blocks at specified rate
m Node star: processes data blocks at specified rate
m LANai star

q using data blocks from the SourceNode or Node, the transmit side
of LANai creates data packets to transmit to the network

q receive side of LANai receives data packets from the network and
reassembles data packets to create data blocks for the Node

q receive side also receives control packets to suspend or resume
transmission of data

m Switch star
q receives data or control packets on one port and retransmits them

on another port
q must handle contention and send appropriate control packets to

suspend or resume data transmission
m NotUsed star: used to terminate unused ports on Switch stars

Signal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 108Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 108

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP New Ptolemy Performance
Modeling Stars for Myrinet

Signal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 109Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 109

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP New Ptolemy Particles (data
packets)

l NodeDataBlock represents block of data sent to/from
SourceNode or Node from/to LANai

l Packet particle
m serves as pure virtual (abstract) base class for other packets

l DataPacket particle
m derived from Packet
m represents typical Myrinet data packet

l ControlPacket particle
m derived from Packet
m represents Myrinet control packet
m STOP or GO control packet

l Feedback particles (modified)
m used on internal feedback queues of stars to cause the star to be

revisited (executed) at a future time

Signal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 110Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 110

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
LANai Star State Diagram

l State Diagram illustrates behavior as DataBlock
consisting of N data packets is transmitted

l Variable i represents packet index
l Variable ignore is used as counter for the number

of feedback particles to ignore due to incoming
STOP messages

LANai free

LANai transmitting

(packet i of N)
LANai blockedignore = 0 ?i = N ?

FB

NodeDataBlock
STOP

GO

No

Yes

Yes

No
i++

i = 1
ignore++

FB

FB

ignore--

ignore--

ignore--

State Diagram of Myrinet LANai BehaviorSignal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 111Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 111

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Myrinet Switch State Diagram

l State diagram applies to each individual port within a Switch
l Variable ignore is used as counter for the number of feedback

particles to ignore due to incoming STOP messages
l Variable queued is used as counter for the number of data

packets queued
l Event DP N represents data packet received on port N (current

packet)
l Event DP X represents data packet arriving on other than port N

Port free

Port transmitting

Port waiting

Por t blockedignore = 0 ?queued = 0 ?

No

Yes

Yes

No
FB

FBDP X
FB

DP N

STOP

DP X

DP N

DP X

ignore--

queued++

ignore--

queued++

queued++

queued++
ignore++

ignore--

queued--
GO

DP N (current packet) replaced by ¼rst request in the queue

State diagram of Myrinet Switch Port Behavior
Signal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 112Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 112

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simple 4 Switch Network
Modeling Example

Signal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 113Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 113

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Results for Simple Network
Example

Gantt Tool Display of Simple Myrinet Modeling Example

Signal Processing Applications & Rapid Development

l Yellow: start-up latency
l Blue: normal transmission/reception
l Green: processing of data on Node
l Orange: origin of contention, one or more packets queued in the switch
l Red: propagating effect of switch contention down current data path

[LMC-Sanders]

See [Pauer97].

Page 114Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 114

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Complex Myrinet Network
Modeling Example

Signal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 115Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 115

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Results for Complex Myrinet
Network Example

Signal Processing Applications & Rapid Development

l Yellow: start-up latency
l Blue: normal

transmission/reception
l Green: processing of

data on Node
l Orange: origin of

contention, one or more
packets queued in the
switch

l Red: propagating effect
of switch contention
down current data path

[LMC-Sanders]

See [Pauer97].

Page 116Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 116

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Benefits Seen Using Ptolemy
Performance Model

l Allows different hardware configurations to be examined
without the expense or time of procuring or setting up
hardware

l Rapid exploration of many hardware configurations
l Provides both macro and micro view at the behavior of the

system
m Where bottlenecks exist and why
m Where underutilized capability exists
m Overall system performance can be predicted (estimated)

l Performance modeling can provide information to
hardware
m Architecture and interconnects
m DSTs can be reused

l Goal: to have performance models predict performance to
within +/- 10% of actual

Signal Processing Applications & Rapid Development [LMC-Sanders]

See [Pauer97].

Page 117Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 117

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction
l Performance Modeling Theory
l Non VHDL-Based Performance Modeling Tools

l Techniques for Performance Modeling using VHDL

l VHDL-Based Performance Modeling Tools
l VHDL Performance Modeling Examples
l Mixed Level Modeling
l Module Summary

Module Outline

Page 118Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 118

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Advantages of Using VHDL for
Performance Modeling

l Adopted as a standard language and supported by
many tools, vendors, and platforms

l Provides an expressive language with a built-in
timing model, and full hierarchy and configurations
which allows rapid development of highly flexible
models of hardware

l Allows for easier consistency checks
l Provides a single language approach for system

hardware modeling from concept to implementation
l Provides tight coupling to the lower levels of design

mMixed level modeling technique for model refinement can
utilize off-the-shelf VHDL models for system components

mHigh level performance model components written in VHDL
can be used as starting point for fully behavioral and/or
synthesizable VHDL models

As a hardware description language, VHDL has many desirable features
for describing hardware already built-in such a a timing model, support
for design hierarchy and configuration, etc. A general programming
language such as C or C++ has none of these things.

A single language approach is beneficial because it means that
hardware designers can work in VHDL to describe their components at
all levels from the system level on down. Also, the system level VHDL
models can be a starting point for fully behavioral or even synthesizable
VHDL models of components.

Page 119Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 119

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Techniques for Performance
Modeling Using VHDL

l Petri Nets, Queuing Networks, and general
uninterpreted models can, and have been,
implemented in VHDL

l The major issues are:
mDefining the “token” data type

q Field(s) for handshaking - passing of tokens
between modules

q Fields for “bookkeeping” - source, destination, ID
number, creation time, etc.

q Fields for user defined information - size of data
packet, routing, etc.

mDefining the mechanism for passing tokens between
modules

mEncapsulating this information into a package for use in
the performance modeling “environment”

Traditional performance modeling methods such as queuing models and
Petri Nets, have been implemented in VHDL by UVa and others, as
have more general uninterpreted performance modeling environments.

The major issues in this type of modeling effort in VHDL are discussed
above.

Page 120Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 120

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Defining Tokens in VHDL

l Tokens must be setup to contain various fields of information
l VHDL record structures are typically used to define tokens:

 TYPE uinterface_token IS
 RECORD
 destination : name_type;
 source : name_type;
 t_type : token_type;
 size : data_size;
 value : INTEGER;
 id : uGIDType;
 start_time : TIME;
 priority : INTEGER;
 state : State_Type;
 protocol : Protocol_Type;
 collisions : INTEGER;
 retries : INTEGER;
 route : INTEGER;
 parm1_real : REAL;
 parm2_real : REAL;
 parm1_int : INTEGER;
 parm2_int : INTEGER;
 END RECORD;

 TYPE uinterface_token IS
 RECORD
 destination : name_type;
 source : name_type;
 t_type : token_type;
 size : data_size;
 value : INTEGER;
 id : uGIDType;
 start_time : TIME;
 priority : INTEGER;
 state : State_Type;
 protocol : Protocol_Type;
 collisions : INTEGER;
 retries : INTEGER;
 route : INTEGER;
 parm1_real : REAL;
 parm2_real : REAL;
 parm1_int : INTEGER;
 parm2_int : INTEGER;
 END RECORD;

l Caveats:
m Indexing through large numbers of record fields can make module code

verbose - consider using arrays within the records for user-defined data
fields

m The simulation execution time for a VHDL performance model is
proportional to the size of the tokens - use minimum size tokens and
pass large amounts of data between modules using another mechanism

This slide includes the source code (somewhat modified) for the generic
interface token developed by Honeywell Technology Center as an
example.

Tokens in VHDL are probably best described as records. However, if
large numbers of user defined fields are to be included, it is sometimes
better to define those as arrays within the record structure. This allows
the code that accesses the user defined fields to do so with loops and to
index them easily (e.g., token.user_array(value_one)).

Another issue to consider is that it has become apparent that the size of
the token has a great influence on the simulation time of the model,
especially if a bus resolution function is used to pass tokens between
modules.

Page 121Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 121

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Passing Large Amounts of Data
Between Modules in VHDL

l Define token as small as possible to reduce
simulation time

l Use Honeywell’s “functional memory” concept to
pass data that will not fit into the standard token

Data Source Data Sink
Default Token

Contains “pointer” to
data in one of its

standard fields

“Functional Memory” implemented as
global signal - all modules can read
and write

• Array of stacks
• Support for variable size data

packets
• Support for standard types -

integer, real, etc.

Large data itemLarge data item
e.g. imagee.g. image

The problem with passing large amounts of data in a token is that large
tokens slow down the VHDL simulation greatly. Also, if only one token
signal in a given model needs to carry a large amount of information, all
tokens will be large (because they all have to be the same size) which is
a waste of simulation speed and memory.

A solution developed by Honeywell as part of their PML (to be
presented later) is to have a global signal, declared in a package and
visible to all architectures, that can be used as a storage space to pass
large amounts of data. Modules that want to pass data write it into this
“functional memory” which is implemented as an array of stacks
supporting generic types like integers and reals, and pass pointers to
the information to other modules in one of the standard token fields.
These other modules can then read the information out of the functional
memory as required.

Page 122Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 122

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Passing Tokens Between
Modules

l Some type of interlocking handshaking protocol
is necessary

l VHDL bus resolution functions are typically used
l There are two general scenarios:

mPoint-to-point module connections

mMulti-point module connections
Data Source 1

Data Sink 1

Data Source 2

Data Source 3
Data Sink 2

Data Source Data Sink

Some type if interlocking mechanism to pass tokens from one module to
another is necessary. VHDL bus resolution functions are typically used,
both in the point-to-point and multiple driver/reader case, because the
token signal is bi-directional. That is, the data source has to be able to
drive the new token onto the signal and the data destination has to be
able to drive the acknowledgement onto the signal. The two sources
require a resolution function.

An alternative (used in the ATL models and in the latest version of
ADEPT) is to have unidirectional signals, one from source to destination
to place the initial token, and another from the destination to the source
to acknowledge the token.

Page 123Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 123

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Point-to-point Module
Connections

l No source and destination information is needed in the token
l A VHDL bus resolution function is required to implement the

handshaking protocol
m Three or four state handshaking protocol

Data Source writes “present” to signal Data Sink sees “present” on signal

state = “present”

state = “removed”

Data Source sees “acked” on signal Data Sink writes “acked” on signal

state = “acked”

Data Source writes “released” to signal Data Sink sees “released” on signal

state = “released”

Data Source sees “removed” on signal Data Sink writes “removed” on signal

state = “removed”

Time

Start:

This is an example of how a four state, point-to-point token passing
protocol works and why it need a resolution function (taken from
ADEPT).

Page 124Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 124

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Multi-point Module
Connections

l Source and destination information is needed in the token
for routing

l A VHDL bus resolution function is required to implement
the handshaking protocol and resolve the multiple drivers

Data Source 1 sends
a token to Data Sink 2

Data Sink 1 acknowledges token
from Data Source 3

Data Source 2

Data Source 3 sends
a token to Data Sink 1

Data Sink 2 acknowledges token
from Data Source 1

This is a multipoint communications protocol. Why a bus resolution
function is needed here is self-evident. This is the token passing
protocol used in the Honeywell PML, eArchitect.

Page 125Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 125

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Encapsulating Information in a
Package

l A VHDL package should be used to encapsulate
the performance modeling specific information
mToken type and subtype definitions
mConstants
mBus resolution function
mFunctions and procedures for manipulating tokens

package performance_modeling is
 type handshake is (removed, acked, released, present);
 type token is
 record
 ...
 end record;
 type token_vector is array (integer range <>) of token;
 constant def_token_pr: token := (present,def_colors);
 function token_present (tk: token) return boolean;
 function token_acked (tk: token) return boolean;
 function token_released (tk: token) return boolean;
 function token_removed (tk: token) return boolean;
 --handshake functions
 procedure place_token (signal tk: out token; constant ntk: token;
 constant delay: time:=0 ns; constant st: handshake:=present);
end performance_modeling;

package performance_modeling is
 type handshake is (removed, acked, released, present);
 type token is
 record
 ...
 end record;
 type token_vector is array (integer range <>) of token;
 constant def_token_pr: token := (present,def_colors);
 function token_present (tk: token) return boolean;
 function token_acked (tk: token) return boolean;
 function token_released (tk: token) return boolean;
 function token_removed (tk: token) return boolean;
 --handshake functions
 procedure place_token (signal tk: out token; constant ntk: token;
 constant delay: time:=0 ns; constant st: handshake:=present);
end performance_modeling;

Finally, once all of the information necessary to do performance
modeling is defined (types, functions, procedures), it should be
encapsulated into a package that can be made visible to any
performance modeling component that needs it.

Page 126Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 126

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction
l Performance Modeling Theory
l Non VHDL-Based Performance Modeling Tools
l Techniques for Performance Modeling using VHDL

l VHDL-Based Performance Modeling Tools
qADEPT
qViewlogic eArchitect

ðHoneywell PML
q LMC ATL Performance Modeling Library

l VHDL Performance Modeling Examples
l Mixed Level Modeling
l Module Summary

Module Outline

Page 127Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 127

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL-Based Performance
Modeling Tools/Libraries

l Advanced Design Environment Prototype Tool
(ADEPT) - University of Virginia

l eArchitect - Viewlogic Inc.
mPerformance Modeling Library - Honeywell Technology

Center

l LMC ATL Performance Modeling Library

UVa’s ADEPT system is a set of library elements and a set of tools for
constructing VHDL performance models.

Viewlogic’s eArchitect product is a set of tools for constructing and
analyzing the results of, VHDL performance models. It includes a
performance modeling library based on the Performance Modeling
Library developed by Honeywell Technology Center.

The Lockheed Martin, Advanced Technology Laboratory has developed
a small library of VHDL performance modeling elements, specifically
targeted at modeling Mercury Race Multicomputers, and a few tools for
analyzing their results.

Page 128Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 128

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Advanced Design Environment
Prototype Tool (ADEPT)

l Provides a unified design environment that
permits linking of the design phases from initial
concept to the final physical implementation

l Supports performance and dependability
modeling from the same representation

l Includes a mathematical foundation based on
Petri Nets

l Consists of a library of modeling modules and
tools for constructing and analyzing system
models

The Advanced Prototype Design Environment from UVa is a general
VHDL-based uninterpreted modeling environment that also includes a
Petri Net foundation (as will be explained). It consists of a library of
modules for constructing system-level performance and Dependability
models, and a set of tools for constructing and analyzing those models.

More information, including complete documentation and source code
for ADEPT can be found on the UVa Center For Semicustom Integrated
Systems web page:

http://csis.ee.virginia/

under the Publications and Tools sections. This includes some more
detailed examples of performance, dependability, and mixed level
modeling using ADEPT.

Page 129Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 129

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT (Cont.)

l Token based performance and dependability
modeling environment
mPerformance modeling - latency, utilization, throughput
mDependability modeling - reliability, safety, availability, fault

simulation

l Consists of:
mA set of predefined modules for constructing system level

models
qControl, color, delay, fault, hybrid and miscellaneous

module categories
q Libraries of application specific modeling modules

mVHDL behavioral and Colored Petri Net (CPN)
representations for each module

mTools for generating, simulating, and analyzing models

ADEPT’s strengths consist of:

• the inclusion of a mathematical foundation which makes analytical
analysis of ADEPT models possible,

• the capability to perform performance and reliability modeling from the
same ADEPT model without modification,

• the inclusion of a library of elements with which interfaces to
behavioral models can be easily constructed for mixed level modeling,
and

• the ability of the user to easily extend the ADEPT libraries.

ADEPT’s weaknesses include:

• the fact that the low level nature of the ADEPT modules sometimes
makes model construction difficult and time consuming1, and

• the fact that because its VHDL based, simulation of ADEPT models
can take a long time2.

Notes:
1) This is being alleviated somewhat by the addition of libraries of more complex
modules, although these modules often lack the Petri Net representation.

2) This is being addressed by an effort to simplify and speedup the simulation of
ADEPT models.

Page 130Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 130

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Modules

1

2

1

2

IN

IN

OUT

OUT

ARBITER2

XXX

in_1 out_1

in_2 out_2

ADEPT Symbol
library uvalib;
 use uvalib.uva.all;
 use uvalib.rng.all;
entity arbiter2 is
 port (in_1: inout token;
 in_2: inout token;
 out_1: inout token;
 out_2: inout token);
end arbiter2;
architecture ar_arbiter2 of arbiter2 is
begin
 pr_arbiter2 : process
 begin
 wait on in_1, in_2 until token_present (in_1)
 or token_present (in_2);
 if token_present (in_1) then
 out_1 <= in_1;
 wait on out_1 until token_acked (out_1);
 release_token (out_1);
 ack_token (in_1);
 wait on in_1 until token_released (in_1);
 remove_token (in_1);
 elsif token_present (in_2) then
 out_2 <= in_2;
 wait on out_2 until token_acked (out_2);
 release_token (out_2);
 ack_token (in_2);
 wait on in_2 until token_released (in_2);
 remove_token (in_2);
 end if;
 end process pr_arbiter2;
end ar_arbiter2;

VHDL Behavioral Description

CPN Description

in_1_a in_2_a

in_2_rin_1_r

out_1_r out_2_r

out_1_a out_2_a

p1 p2

p

t1 t2

t3 t4

[UVA]

This figure shows the ADEPT symbol for an arbiter module - a module
that serializes two tokens that arrive simultaneously on its inputs - its
corresponding VHDL behavioral description, and its corresponding
Colored Petri Net description. All of the ADEPT modules have a symbol
and VHDL behavioral description that can be used for simulation. The
ADEPT primitive modules - those in the Control, Color, Delay, Fault,
Miscellaneous, and Hybrid categories - have colored Petri Net
descriptions.

Page 131Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 131

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Tokens

Signal A: token_res Signal B: token_res

ADEPT
Modules

SINK

snk1

SOURCE

src1

step:1 ns

timebase:1 ns

FIXED_DELAY

fd1

delay:1 ns

type handshake is (removed, present, acked, released);
type token_fields is (status,

 tag1, tag2, tag3, tag4, tag5, tag6, tag7,
 tag8, tag9, tag10, tag11, tag12, tag13,

 tag14, tag15, boole1, boole2, boole3,
 color, tkf_sig_name, tkf_mode, tkf_index,
 tkf_act_time);

type color_type is array (token_fields range tag1 to act_time) of integer;
type token is
 record
 status : handshake;
 color : color_type;
 end record;
type token_vec is array (natural range <>) of token;
function token_res_func (tkvec: token_vec) return token;
subtype token_res is token_res_func token;

type handshake is (removed, present, acked, released);
type token_fields is (status,

 tag1, tag2, tag3, tag4, tag5, tag6, tag7,
 tag8, tag9, tag10, tag11, tag12, tag13,

 tag14, tag15, boole1, boole2, boole3,
 color, tkf_sig_name, tkf_mode, tkf_index,
 tkf_act_time);

type color_type is array (token_fields range tag1 to act_time) of integer;
type token is
 record
 status : handshake;
 color : color_type;
 end record;
type token_vec is array (natural range <>) of token;
function token_res_func (tkvec: token_vec) return token;
subtype token_res is token_res_func token;

User specified
tag fields

[UVA]

ADEPT modules are connected via VHDL signals. These signals carry
the tokens between the modules. The ADEPT tokens are implemented
in VHDL as a record structure with two fields, a status field that is used
to implement the 4 state handshaking, and a color field which is an array
of integers used to hold user-defined information.

A VHDL bus resolution function, called token_res_function, is used to
implement the point-to-point token passing mechanism as described
earlier.

The point-to-point token mechanism uses a 4 state, fully-interlocked
protocol. The states (enumerated in the handshake type) are “present,”
“ack(nowledg)ed,” “released,” and “removed.”

Page 132Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 132

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Token Passing
Mechanism

 Event Sequence
Event Time Delta Description Resolved Resolved

Signal A Signal B

SINK

snk1

SOURCE

src1

step:1 ns

timebase:1 ns

FIXED_DELAY

fd1

delay:1 ns

1

1 0 ns 1 Source module places token on A present removed

5

5 5 ns 2 Delay module acknowledges token on A acked --

2

2 5 ns 0 Delay module places token on B -- present

3

3 5 ns 1 Sink module acknowledges token on B -- acked

4

4 5 ns 2 Delay module releases token on B -- released

6

6 5 ns 3 Sink module removes token on B -- removed

7

7 5 ns 3 Source module releases token on A released --

8

8 5 ns 4 Delay module removes token on A removed --
9 (not shown) 10 ns 0 Source module places token on A present --

[UVA]

This is a detailed description of the ADEPT token passing protocol using
a simple source/delay/sink model. Note that the only time that actually
passes in the model is that taken up by the delay module - the token
handshaking takes place in VHDL delta cycles with no time delay. In
general, only delay module in ADEPT have actual time delays
associated with them. All other modules use only delta delay. This fact
can sometimes cause problems (delta cycle races) in constructing an
ADEPT model.

Page 133Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 133

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Libraries

l Basic ADEPT Building Blocks
mControl modules - source, sink, and route tokens
mColor modules - modify the color fields of tokens
mDelay modules - add delay to the flow of tokens
mFault modules - allow injections of faults onto tokens
mMiscellaneous modules - count tokens, terminate

simulation, etc.
mHybrid Modeling modules - construct mixed level

modeling interfaces

l Application Specific Libraries
mTask level modeling library
mCommunication network modeling library
mCycle-based system modeling library

There are six categories of basic ADEPT building blocks out of which
general system models can be constructed. As stated previously, these
module have both a VHDL behavioral description and the Colored Petri
Net description.

Because of the difficulty with which users have been constructing
complex models out of the basic building blocks, libraries of more
complex constructs and modeling modules have been developed. The
elements in these libraries, which are targeted towards modeling
systems in certain application areas, have only the VHDL behavioral
description for simulation.

See [ADEPT_LR96] for more details on all of the ADEPT modules.

Page 134Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 134

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Basic ADEPT Building Blocks
(ADEPT Modules)

l Control Modules - 19 basic modules that source,
sink, and route tokens

WYE2

XXX

JUNCTION2

XXX

UNION2

XXX

SINK

XXX

SOURCE

XXX

step:1 ns

timebase:1 ns

BUFFER

XXX

FEEDBACK

XXX

ARBITER2

XXX

SEQUENCE2

XXX

LOCK2

XXX

TRIGGER

XXX

DECIDER

XXX

field:tag1

base:0

SWITCH

XXX

pass_cond:1

QUEUE

XXX

length:3

CAND2

XXX
CNOT

XXX

COR2

XXX

CXOR2

XXX

CKofM

XXX

K:1

M:1

op:eq

[UVA]

There are 19 modules in the Control category. These modules include
the source and sink module for creating and destroying tokens, the wye,
junction and union modules for fanning in and fanning out tokens, the
buffer and feedback modules for buffering parts of the a system model
from others, queue modules, for storing tokens, and other modules for
routing tokens within a model.

There are also the “C” modules, like the CNOT and CXOR, that
manipulate so called “control,” or independent tokens. In ADEPT, the
tokens that are passed between modules using the 4 state interlocked
protocol, are called “data” or dependent tokens. Independent or “control”
tokens are tokens which have one source, but no real sinks. Then can
take on only two of the 4 states in the protocol, present and released.
They are generally used to carry routing and control information. For
example, the output from the queue module which tells if the queue is
full or not, and the inputs to the decider and switch module which
determine if, and which output is active, are “control” tokens. See
[ADEPT_UM96] for more details.

Page 135Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 135

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Modules (Cont.)

l Color Modules - 11 modules that manipulate (read,
write, modify) the user-defined color fields of a token

OPERATE XXX

op:add
field:tag1

OPERATE_I XXX

op:add
field:tag1

COMPARATOR XXX

op:le
field:tag1

COMPARATOR_I XXX

op:eq
field:tag1

CONSTANT

XXX

t1-t5:0 0 0 0 0

t6-t10:0 0 0 0 0

t11-t15:0 0 0 0 0

b1-b3:false false
 false

RANDOM

XXX

threshold:1.0

field:tag1

dist:InitUniform(0,100)

FILE_READ

XXX

filename1:
tags2read.dat

filename2:
f.dat

FILE_WRITE

XXX

filename1:
tags2write.dat

filename2:
f.dat

XXX

SC_D

source:tag1
dest:tag1

SC_I

source:tag1
dest:tag1

XXX

RC

release:true

XXX

[UVA]

The color modules are used to access the user-defined (color fields) of
the tokens. The set color (SC_D, SC_I) modules set values on tokens
passing through them, and does the file_read module the read color
(RC) module and the file_write module read color fields and write them
onto other tokens or a file. The operator and comparator modules allow
arithmetic and logical operations with token color fields, and the random
module puts a random value on a color field.

Page 136Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 136

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Modules (Cont.)

l Delay Modules - 6 modules that add timing to a
performance model by delaying the passage of tokens

FIXED_DELAY

XXX

delay:1 ns

DATA_DELAY

XXX

unit_step:1 ns

field:tag1

CFIXED_DELAY

XXX

delay:1 ns

CDATA_DELAY

XXX

unit_step:1 ns

field:tag1

UINT_DELAY

XXX

unit_step:1 ns

field:tag1

INT_DELAY

XXX

unit_step:1 ns

field:tag1

[UVA]

As stated previously, the delay modules are the only modules in the
basic ADEPT set that have simulation time associated with them. There
are fixed and data dependent delays for both “data” and “control” type
tokens and more complex delay modules for modeling synchronization
type events.

Page 137Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 137

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Modules (Cont.)

l Miscellaneous Modules - 3 modules that collect
performance statistics and terminate simulations

TERMINATOR

XXX

stop_after:10

MONITOR

XXX

M:2 N:2

JJ

COLLECTOR

XXX

filename:
times.dat

[UVA]

The miscellaneous module category includes the collector, which writes
the time that a token passes a certain point in the model to a file, the
terminator module, which can stop a simulation after a chosen number
of tokens have gone past a specific point, and the monitor module,
which writes latency and utilization data out to a file for post-processing
by the ADEPT tools.

Page 138Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 138

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Modules (Cont.)

l Fault Modules - 13 modules (not all shown) that
simulate the injection and detection of faults for
dependability modeling

FAULT XXX

dist:InitGeom(0.01,0.0)

l Hybrid Modules - modules that are used to construct
mixed-level modeling interfaces

READ_FAULT

XXX

SET_FAULT

XXX

FAULT/ERROR_DETECT

XXX

prop_thres:0.9

improp_thres:-1

detect_delay:0 ns

FAIL_RECORDER

XXX

filename:
fail_report.dat

[UVA]

The fault modules allow the insertion and detection of faults into an
ADEPT model for reliability analysis.

Page 139Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 139

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Library Modules

l Module Builder’s Library - hierarchical modules that
are constructs of ADEPT modules that are commonly
used in building ADEPT models

CONST_SOURCE

XXX

step:1 ns

timebase:1 ns

RANDOM_DELAY

XXX

unit_step:1 ns

threshold:1.0
dist:InitUniform(0,100)

DECREMENTER

XXX

field:tag1

step:1
FANIN2

XXX

[UVA]

The Module Builders Library is a library of constructs commonly used in
constructing ADEPT models. For example, the random delay module
delays a token according to a random number. It is a hierarchical
module built up mainly from a Random module and a Data Delay
module. The Decrementer module will decrement the value on a token
tag by a set amount. It is built up from a Read Color, Operator, and Set
Color module.

Page 140Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 140

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Library Modules

l Task Level Library - modules for modeling systems at
a high level of abstraction where the algorithm is
broken down into individual tasks (similar to a
queuing model level)

DELAY

XXX

max_number:5

XXX

GATE

value:0

XXX

HOLD

field:tag1
op:eq

QUEUE_DELAY

XXX
XXX

QUEUE_LIFO

length:5

[UVA]

The Task Level Library is intended to allow users to build high level
models of various application areas. The elements in this library consist
of various Server module, various type of queue, like FIFO, LIFO, and
Priority, and special routing modules like the gate and hold. The
modules in this library were modeled, to some extent, on the types of
modules available in the Extend tool from Imagine That Inc.

Page 141Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 141

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Library Modules

l Multiprocessor Communications Network Modeling
Library - modules for modeling systems at the
processor/memory/switch level
m Includes generic CPU plus models of ATM, SCI, Ethernet,

Mercury Raceway, and Myrinet network components
mNetwork models consist of routers and transmitters and

receivers to interface CPUs to specific network routers

XXX

CPU

buff_size:10
filename:program

RACE_TRANS

XXX

Routefile:routefile
Source_Address:0

Max_Size:1

RACE_RECEIVER
XXX

XBAR
XXX

[UVA]

The Multiprocessor Communication Network Modeling library was
developed under the RASSP program to ease modeling of embedded
multicomputer applications. It includes a generic CPU, much like the
ATL CPU model to be discussed, and network modules to model
Raceway, Myrinet, SCI, Ethernet, and ATM networks.

Page 142Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 142

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Modeling Flows

Schematic
Capture

Schematic
Capture

ADEPT Module
Symbol Library

ADEPT Module
CPN Library

ADEPT Module
VHDL Library

Hierarchical VHDL Model
(ADEPT Generated)

Colored Petri Net Model
(ADEPT Generated)

ADEPT Schematic
(EDIF)

Fault Trees Markov Models Flattened VHDL
Petri Net

Automated Abstraction
of Dependability

Characteristics and
 Generation of

Analytical Models

Automated Abstraction
of Dependability

Characteristics and
 Generation of

Analytical Models

Automated
Model Reduction

for Simulation
 Speedup

Automated
Model Reduction

for Simulation
 Speedup

Automated
Reliability

Analysis using the
ADEPT-REST

Interface

Automated
Reliability

Analysis using the
ADEPT-REST

Interface

Semi-automated
Construction of
Hybrid Model

Interfaces

Semi-automated
Construction of
Hybrid Model

Interfaces

Fault Tree/Markov Model SolverFault Tree/Markov Model Solver IEEE Std. 1076 Compliant VHDL SimulatorIEEE Std. 1076 Compliant VHDL Simulator

Detailed Design
using VHDL

Detailed Design
using VHDL

Analytical Dependability Analysis
Simulation-based Performance and Dependability Analysis

[UVA]

This is a representation of the ADEPT modeling flows. Notice that there
are two basic types of analysis, analytical (mainly for dependability
modeling) and simulation-based (for both dependability and
performance modeling). The boxes shown in blue are processes that
are automated by tools developed for the ADEPT environment and the
blue drums are ADEPT libraries of symbols, VHDL behavioral
descriptions, and CPN descriptions.

Page 143Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 143

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Tool Flows

PN: Petri Net
AM: ADEPT Module Schematic

Capture

Schematic
Capture

Mentor Graphics Design Architect
or

OrCAD Capture

Translator from EDIF to
Internal ADEPT Format

Translator from EDIF to
Internal ADEPT Format

EDIF NetlisterEDIF Netlister

Hierarchical EDIF 2.0

PN Reduction
and Translation to

Markov Models

PN Reduction
and Translation to

Markov Models

Markov Model
Solver

Markov Model
Solver

Analytical Dependability
Evaluation

Markov Model

Translator to
Petri Net

Translator to
Petri Net

Petri Net ReductionPetri Net Reduction

Petri Net to VHDLPetri Net to VHDL

Flattened Petri Net

Flattened PN VHDL

Hierarchical
Internal
Format

Translator to
Hierarchical VHDL

Translator to
Hierarchical VHDL

VHDL
Simulator

VHDL
Simulator

Simulation-Based Performance and
Dependability Evaluation

Hierarchical
Internal
Format

Hierarchical ADEPT
Module VHDL

AM-PN
Library

AM Symbol
Library

AM VHDL
Library

[UVA]

This slide shows how the actual ADEPT tools fit together with the
various intermediate formats. Unfortunately, not all tools are available in
all versions of ADEPT. Specifically, only the EDIF to structural VHDL
path is supported on the PC platform with the OrCAD Capture tool.

Page 144Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 144

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
ADEPT Schematic Capture

[UVA]

This screen shot shows the construction of an ADEPT schematic within
Design Architect. Notice that all of the ADEPT utilities for constructing,
simulation, and analyzing the results of an ADEPT model are available
via pull-down menus.

Page 145Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 145

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Post Processing Tools
BAARS Dynamic Metric Display

[UVA]

This is a screen shot of one of the available ADEPT post processing
tools. This tool will give the user a dynamic playback of queue lengths,
and module latency, utilization, and throughput over simulation time and
then graph the results.

Page 146Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 146

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Post Processing Tools
(Cont.)

Timeline Utilization Display

[UVA]

This is a screen shot of another of the available ADEPT post processing
tools. This tool presents utilization as a standard timeline display.

Page 147Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 147

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Honeywell Performance
Modeling Library (PML)

l Targeted towards high-level description,
specification, and performance analysis of
computing systems at a system level

l Serves as a simulatable specification, aids the
identification of bottlenecks, and supports
performance validation

l Can be used for capturing and documenting
architectural-level designs, and can be used as a
testbed for architectural performance analysis
studies

l Comprises the performance modeling library for
Viewlogic's performance tool

[Honeywell]

Now the Performance Modeling Library (PML) developed by Honeywell
Technology Center in Minneapolis MN will be discussed. PML is a
VHDL-based performance modeling library of elements targeted
towards modeling a system at the processor-memory-switch level. It
allows the modeling and simulation of the system’s hardware and
software. PML is the basis of the Viewlogic eArchitect performance
modeling tool.

Page 148Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 148

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML in the Design Process

Performance

Mixed Level

Behavioral

Requirements

Design

Test/Integ

Build

Generic
Library

Arch. Perf.
Model

System
Requirements

Executable

Hardware requir.
Decomposition Anal.

VHDL
Hardware

Perf. Model

VHDL Behavioral-
level Model

VHDL Gate-
level Model

Prototype
Hardware

Software Requir.
Decomposition Anal.

Software
Perf. Model

Software PDL
Prototype

Code

MODELING

[Honeywell]

This figure illustrates where the PML (and eArchitect) are intended to be
used in the design process. Note that a capability for mixed level
modeling (explained in the next section) is built into PML/eArchitect.

Page 149Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 149

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Features

l Generic building blocks
mCan be assembled and configured rapidly to many

degrees of fidelity with minimal effort
mModules are interconnected with structural VHDL
mTypes available:

q Input Device
qOutput Device
qPipeline
qMemory
qProcessor
qBus

l Appropriate to apply at architectural level
mActual device under study (such as a signal processor)

and its environment (such as sensors and actuators)
[Honeywell]

The overall approach in PML was to develop a small library of generic
building blocks with many generic inputs that allowed them to be
parameterized to model many different devices. The library actually
contains only 5 modules and several different bus resolution functions to
model communications protocols. These devices are targeted at
modeling the architectural (PMS) level.

Page 150Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 150

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Token Description

 TYPE uinterface_token IS
 RECORD
 -- user fields
 parm1_real : REAL; -- these are placed first to avoid
 parm2_real : REAL; -- some oddities on Sparcs (ACK!)
 parm1_int : INTEGER;
 parm2_int : INTEGER;

 -- control flow
 destination : name_type;
 source : name_type;
 t_type : token_type;

 -- performance fields
 size : data_size;
 value : INTEGER;

 -- token tracking or statistics fields
 id : uGIDType;
 start_time : TIME;

 -- communication fields
 priority : INTEGER;
 state : State_Type;
 protocol : Protocol_Type;

 -- user communication tracking and control fields
 collisions : INTEGER;
 retries : INTEGER;
 route : INTEGER;

 END RECORD;

[Honeywell]

Here is a description of the generic token defined by Honeywell
Technology Center for interoperability of performance models [HTC97].
The actual token used inside of PML is proprietary and slightly different
than this, but this example gives the overall structure and how it is
different from the ADEPT token.

Page 151Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 151

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Token Passing Protocol

l The state field in the token is used to implement token passing
m Similar to the ADEPT system developed at UVa

l Bus state has four values: (idle, request, ack, busy)
m By changing this field value, the models pass the state of the token

to each other

l Unlike the ADEPT token passing mechanism, multiple bus
masters and bus slaves are allowed
m The bus resolution function can be parameterized to model several

“real” bus protocols

Bus Master Bus Slave

request

ack

busy

idle

[Honeywell]

The VHDL bus resolution function (BRF) used in PML uses four states
to pass tokens on busses that have multiple drives and sources. For
simple point-to-point connections, only three states are used for
simulation efficiency. The BRF can be parameterized (or modified) to
model several “real” bus protocols - thus the VHDL BRF is actually part
of the model.

Page 152Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 152

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Generic Components

l Library has over 50 generic components
l Primary characteristics are modeled with the following

generic characteristics
m Unit: the size of data input
m Throughput: the frequency at which UNITS can be processed
m Latency: propagation through a component
m TxForm: the increase/decrease in the amount of data

l Generics are described by a distribution of the form
m String = “POISSON 4 range 0 100”
m String = “UNIFORM range 10 20”

Device Example
Input Analog Sensor
Output Heads-Up display
Pipeline Rendering pipeline
Memory Data memory
Processor SHARC DSP Processor
Bus VME Bus

[Honeywell]

As stated previously, the PML library consists of 5 major modules, but
there are many examples of modules parameterized to model specific
devices in the library.

PML contains a sophisticated string processing language for
specification of complex generic parameters to the models.

Page 153Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 153

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Input Device

Generates tokens per given
distribution (e.g. Sensor)

Roadmap

Begin process
Initialize token counters and distributions
Generate new token fields
Delay for period
Write token to output
Accumulate performance statistics

End process

[Honeywell]

A PML input device is like a Source module in ADEPT, it creates tokens
at a specified rate. Note that all modules in PML participate in the
generation of performance statistics like latency and utilization.

Page 154Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 154

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Output Device

Accepts tokens per given
frequency (e.g. Display)

Roadmap

Begin process
Initialize distributions
Generate distributions
Delay for period and await input
Accumulate performance statistics

End process

[Honeywell]

An output device is like a Sink module in ADEPT. It consumes tokens.

Page 155Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 155

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Pipeline

Delays token per given value

Roadmap

Begin process
Initialize distributions
Wait for pipeline request
Generate new token fields
Write token to output
Accumulate performance statistics

End process

[Honeywell]

The pipeline component delays tokens. It can also, by changing token
fields, route tokens.

Page 156Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 156

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Memory

Responds to read or write
request per given configuration

Roadmap

Begin process
Initialize distributions
Wait for memory request
Generate new token fields
Write token to output
Accumulate performance statistics

End process

[Honeywell]

The memory component consumes memory request tokens and after a
specified delay, generates memory access tokens.

Page 157Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 157

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Processor Model

Define Software TasksA B N Define Software
Architecture

Connect required
interrupts

Disk I/F Bus
Interface

Floating Point
Coprocessor

Interrupt
Set processor

clock frequency

Memory Dual Port
Memory

Characterize processor busProcessor Bus

Processor

Scheduler
Define
Kernel

Services

Define
Processor

ISA

Task Bus

[Honeywell]

The processor model is the heart of the PML. It is capable of running a
representation of the software that the real system will execute. That
software representation, while written in VHDL can be at a level of
abstraction that ranges from the task level down to the detailed
functional level.

The PML processor is basically a request-resource model. The software
representation executes and a specified point, requests resources (e.g.
memory access, 1000 floating point multiplies, 100 integer adds, etc.)
from the processor. The processor schedules these operations on the
hardware resource when it is available and delays the software
execution until they are completed. The software continues from that
point until more hardware resources are needed.

The processor is parameterized by specifying its Instruction Set
Architecture (ISA) and what and how many resources are consumed by
each instruction in the ISA. Sophisticated operating system constructs
such as interrupts and multitasking can be modeled as well.

Page 158Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 158

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PML Processor Model (Cont.)

l Make the control flow decisions for the simulation
l Processor models execute user-supplied VHDL

programs and are divided into four parts:
mSoftware models - VHDL as a HOL

qCan be abstracted at high-level performance facets
qCan be as detailed as ISA instructions

mThe scheduler or thread manager
mThe processor hardware model
mDedicated hardware under processor control

l Attributes necessary for the processor simulation are
throughput, available resources, instruction timing, etc.

l Trade-off is cost and time spent modeling versus the
fidelity necessary to obtain the required data

[Honeywell]

The processor model allows detailed modeling of software at various
levels of abstraction executing on different types and speeds of
processors. One drawback of this fidelity (and its associated complexity)
is long simulation times.

Page 159Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 159

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Viewlogic’s eArchitect
Performance Modeling

Environment
l eArchitect is a VHDL-based environment for analyzing

the performance of hardware/software systems
l eArchitect includes a set of tools for graphically

constructing hardware/software system models and
displaying the results of performance simulations

l eArchitect allows the modeling of software as data
flow graphs or flow charts

l eArchitect provides a parameterized library of
hardware components from which to construct the
hardware model
mBased on the Performance Modeling Library (PML) developed

by Honeywell Technology Center
mHardware models are at the Processor, Memory, Switch

(PMS) level of abstraction
[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

This section describes Viewlogic’s eArchitect  tool. eArchitect is very
ADEPT like in that it includes tools for constructing, simulating, and
analyzing performance models in VHDL. It uses the Performance
Modeling Library (PML) developed by Honeywell Technology Center as
its module library. The development of eArchitect was funded as part of
the RASSP program.

Note that unlike ADEPT, eArchitect (like PML) is targeted at one specific
level of performance modeling (the processor, memory, switch (PMS)
level) and does not have a mathematical foundation or support
dependability analysis.

Page 160Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 160

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
eArchitect Tool Set

Library
Browser

Model
Library

Design
Repository

Analysis
Tools

VHDL
Compiler/
Simulator

Performance
Requirement

Capture

Modeling Tools

VHDL

VHDL

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

This is the eArchitect tool set. Like ADEPT, a commercial, third party,
VHDL simulator is used as the simulation engine and must be obtained
separately.

Page 161Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 161

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Hardware Design in eArchitect

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

This is an illustration of the construction of the hardware model in
eArchitect. The hardware model consists of processor models and
communications switch models from the PML library (as will be
presented). The modules used in the model can be parameterized, via
the GUI, to model different types of processors and networks.

Page 162Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 162

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
eArchitect Library Browser

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

This is the eArchitect library browser. It is used to select standard
hardware components out of the library for instantiation into a
performance model. eArchitect comes with the complete PML library of
generic elements and several specific components (like a Mercury
RaceWay crossbar switch) built out of those generic components.

Page 163Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 163

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Software Design in eArchitect
Data Flow Graph

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

This is an illustration of the description of the software application in
eArchitect. Here, the software is described as a dataflow graph as is
common in embedded DSP applications.

Page 164Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 164

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Software Design in eArchitect
Flow Chart

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

Software can also be described as a control flow graph in eArchitect as
shown here.

In addition to the two methods shown in this slide and the previous one,
software in eArchitect can be coded directly in VHDL by the user (with
appropriate calls to the hardware resource models), and included in the
eArchitect model.

Page 165Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 165

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Software to Hardware Mapping
in eArchitect

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

Once the hardware and software models are completed, the next step is
to map the software tasks onto specific hardware processors for
execution. This is done with the software mapping tool as shown here.

Page 166Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 166

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of Results in
eArchitect
Utilization

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

Like ADEPT, eArchitect contains a number of tools for analyzing the
data from the performance model simulation. This is the eArchitect
utilization tool display. It displays specific processor utilization as a
moving horizontal bar graph.

Page 167Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 167

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of Results in
eArchitect

Utilization (Hot Spots)

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

Here is another eArchitect post-simulation data display tool. In this case,
its a “hot spot” display which show module utilization in color codes.
Modules that appear towards the red side of the spectrum are highly
utilized and may represent a bottleneck in the computation. If however,
all modules are towards the blue side of the spectrum, the overall
system may be over designed resulting in wasted resources.

Page 168Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 168

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of Results in
eArchitect

Activity Time Lines

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

This is a screen shot of the activity time line display available in
eArchitect. It is fairly standard.

Page 169Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 169

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Analysis of Results in
eArchitect
Throughput

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

Here is the throughput display from eArchitect.

Page 170Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 170

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
eArchitect Design Flow

VHDL
Compiler/
Simulator

Complete
VHDL
Model

AutomaticallyAutomatically
GenerateGenerate

ModelModel
SoftwareSoftware

ModelModel
HardwareHardware

MapMap
SoftwareSoftware
ontoonto
HardwareHardware

Construct Model Simulate Analyze

[[ViewlogicViewlogic]]Copyright 1999, Viewlogic Systems, Inc. All Rights Reserved.

This slide shows the overall design flow in eArchitect. Again, the
hardware architecture is modeled using the PML library modules
configured to model the chosen hardware architecture. This includes
specifying the ISA of the chosen processors and their execution rates,
and the network configuration and its communication rates. The
software is modeled as a set of tasks that communicate in a specific
way and take a certain amount of resources in terms of computation and
communication. Finally, the mapping of software tasks to processors is
specified. The eArchitect tools then generate a VHDL model of the
complete system which is then compiled and simulated on the chosen
commercial VHDL simulator. The data that results from that simulation
can then be displayed graphically by the eArchitect post-simulation
analysis tools.

Page 171Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 171

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Lockheed Martin ATL
Performance Modeling

Modules
l LM ATL’s modules were designed for maximum simulation

efficiency in hardware/software performance modeling of a DSP
application executing on a Mercury Raceway Multicomputer

Network Hardware Model: processor, memory, switch level

Application Software Model: primitive tasks and their data dependencies - Data Flow Graph (DFG)

Gen FIR

FIR

FIR

FIR

FFT

FFT

FFT

FFT

VMUL

VMUL

VMUL

VMUL

DOT

DOT

DOT

DOT

SinkThresh

Thresh

Thresh

Thresh

P

M S

P

S

P

MS

P

S

P

M S

P

S

P

MS

P

P

M S

P

S

P

MS

P

P

M S

P

S

P

MS

P

S

[Lockheed Martin]

As part of the RASSP program, ATL was tasked to use performance
modeling in the design of several benchmark embedded DSP systems.
Their efforts to use PML and ADEPT at an early point in the program
were hindered by the long simulation times of both ADEPT and PML
models and by the unavailability, at that time, of the eArchitect tool and
a suitable PMS level modeling library in ADEPT. In response, they
developed a very lightweight PMS level modeling environment for
Mercury Raceway systems with an emphasis on reduced simulation
times.

Note that both ADEPT and PML have since addressed the simulation
time problem with good results.

Page 172Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 172

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ATL Performance Modeling
Modules

l The library includes two basic modules:
mA simple processing element (PE)
mA network switch element intended to model the Mercury

Cross bar switch (Xbar)

l The emphasis in creation of the library was the
reduction of simulation time for the resulting
performance models
mNo VHDL bus resolution function was used to implement the

token passing mechanism - each interconnection consists
of two one-way interconnections

mShared variables were used within modules to pass data
between processes

mA minimum size token was defined
mA simpler 4-event mechanism was devised to model the

passing of data between PEs over the network

The ATL library consists of two components, a processor model (which
includes a network interface), and a switch model. The switch is
intended to model the Mercury Raceway crossbar switch.

Much emphasis was placed on reducing simulation times and the
results were very good in that regard - ATL VHDL performance models
of the Raceway system simulate in an equivalent time to models written
in C. However, the disadvantage of this more ad hoc approach over
ADEPT or PML is the limited library of components available (which had
to be written specifically for this network model) and a less general
applicability.

Page 173Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 173

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Processing Element (PE)
Model

SW
Program

Data

Computation Agent

Communications Agent

l Contains local memory for
storage of local data and
software programs

l Consists of two concurrent
processes:
m Computation agent

interprets application
software

m Communications agent
handles asynchronous
transmission and reception
of messages through
network

Network
(Raceway Xbars)

[Lockheed Martin]

The ATL processing element (PE) consists of two parts; the
computation agent that reads CPU instruction from a file and executes
them, and a communications agent that interfaces to the network model
and handles message sends and receives.

Page 174Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 174

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Software Applications Program
for PE Model

l Six instructions for performance model:

RECVMESSG(message_ID, Message_length)
SENDMESSG(message_ID, destination_PE, message_length, priority)
CECOMPUTE(time_delay, task_name)
MONOTONIC (time_delay)
STARTOVER
PROGMDONE

RECVMESSG(message_ID, Message_length)
SENDMESSG(message_ID, destination_PE, message_length, priority)
CECOMPUTE(time_delay, task_name)
MONOTONIC (time_delay)
STARTOVER
PROGMDONE

l Example program: recvmessg 2 4096
sendmessg 1 2 4096 3
cecompute 5160 P1R1___________
recvmessg 2 8192
sendmessg 1 2 8192 3
recvmessg 3 8192
sendmessg 1 3 8192 3
cecompute 5160 P1C1___________
recvmessg 3 8192
sendmessg 1 3 8192 3
progmdone
startover

recvmessg 2 4096
sendmessg 1 2 4096 3
cecompute 5160 P1R1___________
recvmessg 2 8192
sendmessg 1 2 8192 3
recvmessg 3 8192
sendmessg 1 3 8192 3
cecompute 5160 P1C1___________
recvmessg 3 8192
sendmessg 1 3 8192 3
progmdone
startover

l Additional instructions can be added for “virtual prototype”
which includes functionality

[Lockheed Martin]

The ATL CPU model has 6 instructions that fall into three basic modes,
compute, send and receive. Additional instructions that perform actual
data translations (complex multiply, matrix operations, etc.) can be
added in the first “virtual prototype” stage when some functionality is
added to the model.

Page 175Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 175

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Switch Element (Xbar) Model

PORT1
 Status: Idle
 Dir: --
 ConnPrt: --
 Priority: --

PORT4
 Status: Connected
 Dir: OUT
 ConnPrt: 3
 Priority: 1

PORT2
 Status: Connected
 Dir: OUT
 ConnPrt: 6
 Priority: 3

PORT5
 Status: Idle
 Dir: --
 ConnPrt: --
 Priority: --

PORT3
 Status: Connected
 Dir: IN
 ConnPrt: 4
 Priority: 1

PORT6
 Status: Connected
 Dir: IN
 ConnPrt: 2
 Priority: 3

l N port component that
routes data

l Forms network when
connected to other SEs
and PEs

l N concurrent VHDL
processes - one per port
handle circuit
connection, message
transfer, and reallocation
(preemption) operations

[Lockheed Martin]

The switch element in the ATL library models a 6 port Mercury Raceway
crossbar switch. This crossbar is circuit switched and can handle up to
three simultaneous connections. It is modeled in VHDL using 6
concurrent VHDL processes, one to handle each port on the crossbar.
The crossbar functions of circuit setup, teardown and preemption are
handled.

Page 176Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 176

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simplified Message Passing
Protocol

PE1 PE2Xbar
REQ

PE1 PE2Xbar
REQ

PE1 PE2Xbar
ACK

PE1 PE2Xbar
ACK

PE1 PE2Xbar
DATA

DATA
PE2Xbar

PE2Xbar
DONE

PE1 PE2Xbar
DONE

T0o

T01

T02

T03

T05

T04

T1o

T11

Previous Approach: Four Token Protocol

PE1 PE2Xbar
REQ

PE1 PE2Xbar
REQ

PE1 PE2Xbar
DONE

PE1 PE2Xbar

T0o

1

T1

T11

T1 = T0 + size * rate + fixed_latency

Simulation accounted for correct
transfer time, but half the number

of token events were used

Simulation accounted for correct
transfer time, but half the number

of token events were used

[Lockheed Martin]

This is an illustration of how the normal message passing protocol, as
modeled in a performance modeling environment, was simplified to
reduce the number of tokens needed. Note that this token passing
mechanism is a modeling artifact, it is not how the Raceway actually
passes data, so changing it does not affect the model fidelity as long as
care is taken to keep the timing the same.

Also note that the ATL module do not use bus resolution functions to
pass tokens - they use two unidirectional signals - further decreasing the
execution time of the simulation.

Page 177Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 177

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Simplified Message Passing
Protocol (Cont.)

PE1 PE2Xbar
REQ

PE1 PE2Xbar
REQ

PE1 PE2Xbar
Preempt

PE1 PE2Xbar
DONE

DONE
PE1 PE2Xbar

T0o

T01

T20

T21

T22

Preemption

PE1 PE2Xbar
REQ

PE1 PE2Xbar
NACK

T0o

T01

Contention

[Lockheed Martin]

These figures illustrate how preemption and contention (requesting a
busy path) are handled in the simplified ATL protocol.

Page 178Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 178

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
PE Protocol State Diagram

Trnsmitting

RecvingRecvr and
Trnsmttr

Idle

Out-going message
queue not
empty | Send Req Nack | Try again

or Req

Done (incomplete) | Resume again

Done | Cancel out-going message

Preempt | Send Done (incomplete)

Req | Set T1-delay

T=T1 | Send Done
 Register receipt of
 message ID

l State diagram of PE’s Communications Agent process
implemented in VHDL

[Lockheed Martin]

The communications agent and how it handles the various network
functions such as requesting a path for a message, sending the
message, and responding to preemption, is fairly complex, so it was
designed as a state machine. This state machine was then implemented
in VHDL to perform the required function. Note that within the PE VHDL
code, the communications agent and computation agent pass data back
and forth using shared variable instead of signals, further reducing
simulation execution time.

Page 179Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 179

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
SE Port Process State Diagram

Connected

Pending
Preempt

Idle

Nack | Relay back Nack
or Req and reallocate ports

l State diagram of VHDL process for each port of the SE

Req and Avail | Allocate ports
 and forward Req

Done on Output | relay back Preempt
 and reallocate ports

Preempt on Output | relay back Preempt
 and reallocate ports

Req_priority > Port_priority | Launch Preempt

Preempt | Relay Preempt

Preempt on input | Forward Preempt

[Lockheed Martin]

This is the state diagram for the VHDL process that implements the
procedures of the port in the switch element (crossbar).

Page 180Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 180

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Performance Metrics from ATL
Performance Models

l Statistics are recorded using shared variables
l Simulation output includes:

m Link and PE utilization
m Resource and link contentions
m Processor and communications time-lines

VHDL
Simulation

Time_line

XY-Plotter

Time_line
Event File

X-Y Plot
File

[Lockheed Martin]

A simple set of tools for collecting and analyzing performance metrics
from the ATL modules was devised. The main tool is a time line
utilization analysis tool that is capable of displaying both the times when
the PEs are busy computing and when the communications network is
busy.

Page 181Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 181

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Expanding Performance Model
into Virtual Prototype

Function

+

Performance Model
(Timing, Structure Only)

Performance Model
(Timing, Structure Only)

Level 0 Virtual Prototype
Full-Behavioral Model
(Timing, Structure & Function)

Level 0 Virtual Prototype
Full-Behavioral Model
(Timing, Structure & Function)

l Add data fields to tokens
l Add data transformations to Computation Agent of PE
l Add File I/O for data input and output

[Lockheed Martin]

After a high level performance model (with timing, but no functional
information) is developed and analyzed, function can be added in terms
of data values and data transformations. This forms what is termed in
the Virtual Prototyping module as a level 0 virtual prototype (high level
function plus timing).

Page 182Copyright
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 182

Methodology

Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction
l Performance Modeling Theory
l Non VHDL-Based Performance Modeling Tools
l Techniques for Performance Modeling using VHDL
l VHDL-Based Performance Modeling Tools

l VHDL Performance Modeling Examples

l Mixed Level Modeling
l Module Summary

Module Outline

Page 183Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 183

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Performance Modeling
Examples

l ADEPT models of Queuing systems
msingle M/M/1 queue
msinge M/M/3 queue

l High-level ADEPT model of a task graph
mabstract system model used to determine performance

bottleneck and number of processors necessary to meet
throughput requirements

There are several examples of VHDL based performance models
included in this module. Most are based on the ADEPT system, but on
uses the ATL performance modeling modules. However, there are many
more examples available in the documentation for eArchitect and
ADEPT and in the applications notes and case studies prepared as part
of the RASSP program.

Page 184Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 184

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Model of an M/M/1
Queue

ADEPT Schematic

l Uses modules from Task Level Modeling library to model queue and server
and monitor module to gather performance statistics

InitNegExp(1000.0)

SINK

Data_Sink

mm1_Delay

random

mm1_Monitor

MONITOR

1 1

J J

M: N:1 2

delay

server

data_in data_out

mm1_in
mm1_outserver_in1 nsunit_step:

0.0threshold:

RANDOM_TIMED_SOURCE

Data_Source

dist:

delay_indelay_out
100length:

mm1_queue

queue_mod0_fifo

server_Monitor

MONITOR

1 1

J J

M: N:1 2

dist: InitNegExp(150.0)

threshold: 0.0

field: tag1

This is a simple model of the M/M/1 queuing system presented and
analyzed earlier, using the ADEPT system. The modules used to
construct this model come from the ADEPT Task Level Modeling and
Module Builder’s libraries.

The random_timed_source module generates a token with a random
exponential arrival rate with a mean of 1000 ns (this example is
modeled on a ns time scale instead of the ms time scale of the
analytical example - the results are the same however). The delay
module is connected to a random module such that it has a random,
exponential service rate with a mean of 150 ns.

The monitor modules are standard ADEPT modules that are place in an
ADEPT model to measure standard performance metrics. They record
tokens as the pass by their inputs and outputs and write the information
into files that are then interpreted and displayed by the ADEPT post-
simulation analysis tools.

Page 185Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 185

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Model of an M/M/1
Queue Results

0.0 199948.8 399897.6 599846.4 799795.2 999744.0

Time(ns)

0.000

3.000

6.001

9.001

12.001

15.002

U
til

iz
a

tio
n(

%
)

Performance Metrics
Utilization

server_monitor

0.0 199948.8 399897.6 599846.4 799795.2 999744.0
Time(ns)

0.000

155.600

311.200

466.800

622.400

778.000

La
te

nc
y(

ns
)

Performance Metrics
Inter-signal Latency

mm1_monitor

Ave. Latency = 173.126 ns

These are the results of the simulation of the M/M/1 ADEPT model.
Note that the average latency of jobs (tokens) within the system is
173.126 ns as reported by the ADEPT analysis tools and that the
average utilization of the server is 15%.

Recall that the analytical results for this model were 176.5 ns and 15%
respectively.

Page 186Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 186

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Model of an M/M/3
Queue

dist:

random

Server2_delay

server1

delay

data_in

server2

delay

data_in data_out

delay_indelay_out
queue_mod0_fifo

mm3_queue

length: 100

tag1field:

0.0threshold:

InitNegExp(45.0)

Data_Sink

SINK

fanin_3

job_fanin

delay

server3

data_in data_out

delay_indelay_out

server3_delay

random

dist: InitNegExp(45.0)

threshold: 0.0

field: tag1

mm3_scheduler

data_in

data_out_1

data_out_2

data_out_3

21 N:M:

JJ

data_out

delay_indelay_out

tag1field:

0.0threshold:

InitNegExp(45.0)dist:

random

Server1_delay

11

MONITOR

server_monitor

21 N:M:

JJ

11

MONITOR

mm3_monitor

InitNegExp(20.0)dist:

Data_Source

RANDOM_TIMED_SOURCE

threshold: 0.0

unit_step: 1 ns

pro_3

ADEPT Schematic

This an ADEPT model of an M/M/3 queue. It is similar to the M/M/1
model except that it obviously has three servers (delay/random module
combinations). The pro_3 module is from the Task Level Modeling
library and it routes tokens on its input, from the queue, to any output
that is free (I.e. any server that is not busy). Note that it has a built-in
priority that if more than one server is free, then it routes the token (job)
to the lowest numbered output first, but that is immaterial to this model.

Page 187Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 187

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Model of an M/M/3
Queue Results

0.0 1999.8 3999.6 5999.4 7999.2 9999.0

Time(ns)

0.000

19.327

38.653

57.980

77.306

96.633

U
til

iz
a

tio
n(

%
)

Performance Metrics
Utilization

server_monitor

0.0 1999.8 3999.6 5999.4 7999.2 9999.0

Time(ns)

0.000

52.800

105.600

158.400

211.200

264.000

La
te

nc
y(

n
s)

Performance Metrics
Inter-signal Latency

mm3_monitor

Ave. Utilization = 75 %

Here are the results of the ADEPT M/M/3 model. Note that the average
utilization for the servers is 75% which agrees with the analytical results
and the average latency seems to be close to the analytical result of 81
ns (again, this simulation was on a ns scale as opposed to the ms scale
of the analytical analysis).

Page 188Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 188

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Task Graph Problem

l Jobs arrive at a regular rate (50 ns)

l Jobs do not have to remain time
correlated during processing

l All tasks have input queues

l Task 1: Preprocessing and
classification (30% of inputs classified
as noisy) - estimated processing time ≈
20 ns

l Task 2: Processing of non-noisy inputs
- estimated processing time ≈ 20 ns

l Task 3: Processing of noisy inputs -
estimated processing time ≈ 290 ns

l Task 4: Postprocessing - estimated time
≈ 20 ns

Task 1

Task 2 Task 3

Task 4

30%30%

≈≈ 20 ns 20 ns

≈≈ 290 ns 290 ns≈≈ 20 ns 20 ns

≈≈ 20 ns 20 ns

This is a simple task graph problem that further illustrates the ADEPT
performance modeling environment. In this problem, there is a set of
jobs (say images to process) that arrive from a sensor at a regular rate.
The first task is to classify the images as to their clarity - noisy or non-
noisy. An average of 30% of the images are classified as noisy and
must be filtered. The remaining non-noisy images must be formatted,
but that takes much less time than the filtering operation. Finally, all
images must be compressed for storage. Images do not need to remain
correlated in the time that they arrived as they pass through the system,
I.e., non-noisy images may move ahead of noisy images during
processing.

An ADEPT model will be constructed to explore the issue of how many
processors are required to perform the noisy image filtering to meet
throughput requirements. A more detailed version of this model, with
links to lower levels of hardware/software codesign and mixed level
modeling, is available in the standard ADEPT deliverable.

Page 189Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 189

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Initial
ADEPT Task Graph Model

Data_sink

SINK

100

queue_delay

Task3

data_in data_out

delay_indelay_out

length: 100

queue_delay

Task4

data_in data_out

delay_indelay_out

length:

fn1

fanin_2
100

queue_delay

Task1

data_in data_out

delay_indelay_out

50 nsstep:

SOURCE

Data_source

0 nstimebase:

length: 100

queue_delay

Task2

data_in

length:

threshold: 0.0

field:

data_out

delay_indelay_out

statistical_router_2

rt1

percent1: 70

Task2_delay

random

dist: InitUniform(15.0,25.0)

threshold: 0.0

field: tag1

Task1_delay

tag1

random

dist: InitUniform(15.0,25.0)

threshold: 0.0

field: tag1

Task3_delay

random

dist: InitUniform(275.0,300.0)

threshold: 0.0

field: tag1

Task4_delay

random

dist: InitUniform(15.0,25.0)

ADEPT Schematic

l Queuing network model constructed using Task Level Modeling library
modules

This is the initial ADEPT performance model of the task graph problem.
It is a high-level queuing network model with only one processor
performing the noisy image filtering process.

Page 190Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 190

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Initial
ADEPT Task Graph Model

Results

0.0 2000.0 4000.0 6000.0 8000.0 10000.0
Time

0.000

5.200

10.400

15.600

20.800

26.000

T
ok

en
s

Performance Metrics
Queue Length

task2_queue_in
task1_queue_in
task4_queue_in
task3_queue_in

This is a plot of the number of items in the input queues to each task.
Note that the number of items in the input queue to task 3 is increasing.
Despite the slight decrease in the number of images in the queue
towards the end of the simulation, it is clear that one processor is not
enough to keep up with the number of filtering requests and that at least
one more processor performing that task will be necessary.

Page 191Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 191

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Revised
ADEPT Task Graph Model

0.0

field: tag1

length: 100

queue_delay

Task4

Task3_sched

pro_2

data_in data_out

delay_indelay_out

50 nsstep:

SOURCE

Data_source

0 nstimebase:

data_in

data_out_1

data_out_2

Data_sink

SINK

Task4_delay

random

dist: InitUniform(15.0,25.0)

threshold:

data_out

delay_indelay_out

statistical_router_2

rt1

percent1: 70

Task2_delay

random

dist: InitUniform(15.0,25.0)

data_in data_out

delay_indelay_out

length: 100

queue_delay

Task1

Task1_delay

random

dist: InitUniform(15.0,25.0)

threshold: 0.0

field: tag1

fanin_3

task_fanin

length: 100

queue_delay

Task2

data_in

0.0

field: tag1

tag1field:

0.0threshold:

InitUniform(275.0,300.0)dist:

random

Task3B_delay

delay

Task3A

threshold: 0.0

field: tag1

data_in data_out

delay_indelay_out

delay

TASK3B

data_in data_out

delay_indelay_out

100length:

Task3

queue_mod0_fifo

Task3A_delay

random

dist: InitUniform(275.0,300.0)

threshold:

ADEPT Schematic

Here is a model with two processors for task 3. Again, a pro_2 module
is used to schedule jobs from the task 3 queue onto idle task 3
processors.

Again, a more detailed model of this scenario, where task 3 is taken
down one more level to model actual software algorithms executing on a
Digital Signal Processor, and task 4 is taken down to a behavioral model
of an ALU using mixed level modeling, is included in the ADEPT
package.

Page 192Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 192

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Revised
ADEPT Task Graph Model

Results

0.0 2000.0 4000.0 6000.0 8000.0 10000.0
Time

0.000

1.200

2.400

3.600

4.800

6.000

Performance Metrics
Queue Length

task3_queue_1
task2_queue_in
task1_queue_in
task4_queue_in

Here is the plot of queue depths for the two task 3 processor model and
it shows that the depth of the task 3 queue is bounded, so two
processors for that task should be enough. However, more detail should
be added to the model to further prove this conclusion as the results
show that the task 3 queue still may fill up if the estimate of the time
required to perform the filtering is optimistic.

Page 193Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 193

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP VHDL Performance Modeling
Examples (Cont.)

l Hardware performance model of a CPU executing
with various memory architectures
mVarious traces of CPU memory accesses
mPerformance model developed using UVa’s ADEPT

tools and library
mArchitectural alternatives involve various memory

system configurations

l Task level hardware/software performance model
m2D FFT executing in parallel on a 4 processor Mercury

MCV6 type multicomputer
mPerformance model developed using ATL library

elements
mArchitecture alternatives involve different I/O strategies

Next will be presented two more performance modeling example. One,
a performance model of a CPU and memory modeled with ADEPT, and
another, a hardware/software task level performance model done with
the ATL performance modeling modules.

Page 194Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 194

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP CPU/Memory Performance
Model

l Objective is to determine the performance of
memory systems for various access patterns

l Access patterns are supplied in the form of
address traces

l Performance metrics are average memory
latency or percentage of peak memory bandwidth

l High level VHDL performance model constructed
using UVa ADEPT performance modeling
environment

l Two memory architectures tested:
mSimple memory - uniform access time of 80 ns/word
mPage Mode memory - page hit access time of 40 ns,

page miss access time of 120 ns

The CPU/memory performance model is a simple example of a
“hardware only” type of performance model. The objective of the
performance model is to be able to determine the performance of
various memory system architectures on typical memory traces.

At this point, only two different memory architectures were tested:

- a simple memory model in which each access takes a uniform time
(based on the size of the access) of 80 ns per word.

- a page mode dram memory model where the memory system is
divided up into “pages” of a specified size. If an access is made to a
memory location that is on the same page as the one immediately
preceding in, the “page hit access time” is 40 ns. If the access is on a
different page, then the current page has to be closed and a new one
opened which results in a “page miss access time” of 120 ns. Therefore,
grouping accesses into groups that hit the same page (as will be seen in
the DAXPY example trace) can result in significantly decreased access
time.

Page 195Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 195

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Performance Model
CPU Model

ter1

TERMINATOR

stop_after:

src_sig

CPU_OUT

fr_sig

term_sig

dd_sig

rc_sig

CPU_IN

timebase: 0 ns

src1

SOURCE

step: 1 ns

tag1 field:

(inst_delay) unit_step:

DATA_DELAY
RC

rc1

true release?

dd1

SINK

snk1

sw1

SWITCH

pass_cond: 1

1

(program_file)

filename2:

tags2read.dat

filename1:

fr1

FILE_READ

FEEDBACK

fdbk1

CPU_OUT
out

CPU_IN
in

XXX

CPU

program_file: program.dat

inst_delay: 40 ns

ADEPT Schematic ADEPT Symbol

l CPU reads trace information from a file, sends access request to memory,
and simulates instruction execution time when access is granted

This is the simple CPU model. At the start of simulation time, the Source
module generates a token which passes through the File_read module
and picks up the first set of trace information. The token then weights at
the Switch module until it is released by it. Also at time zero, the
Feedback module generates an initial token (once at time 0 only) which
enters the Data_delay module. The Data_delay module models the
actual execution of instructions by the CPU and delays the CPU’s
instruction time (10 ns) times the number of instructions the current
memory access allows to execute (contained on tag1 of the token). The
initial token from the feedback module delays for one instruction (10 ns)
and then passes through the RC module. The RC module produces a
“control” token on its output which is connected to the Switch module
which causes the Switch to release the next token to the memory
system. The token from the RC module is then consumed by the Sink
module. After the token leaves the switch module and is passed to the
memory system model (through the CPU_OUT port), the Source
module produces another token which passes through the File_Read
module and waits at the Switch module until it is released by the token
returning from the memory model (through the CPU_IN port). When the
File_read module reaches the end of the address trace file, it sends a
“control” token to the terminator module which terminates the simulation.

Page 196Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 196

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Performance Model
Simple Memory Model

mem_in mem_out

BUFFER

buf1 dd1

DATA_DELAY

unit_step: (memory_delay)

field: tag2

out
mem_out

in
mem_in

XXX

MEMORY

20 nsmemory_delay:

ADEPT Schematic

ADEPT Symbol

l Simple memory models uniform access times to all memory locations

This is the simple memory system model. When the token arrives from
the CPU (through the MEM_IN port), it is buffered by the buffer module
and then waits at the data delay module for a time determined by the
number of words the access is for (determined by tag2 of the incoming
token). Notice that the access time is independent of the actual address
that is addresses (specified by tag3 of the token). Also note that the
default delay time is 20 ns per word, but that is overwritten by the 80 ns
specified on the top level schematic (as seen in the coming slide).

Page 197Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 197

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Performance Model
Page Mode Memory Model

CONST_SOURCE

step:0 ns

(page_size)

op1_sig

mem_in

opres_sig

op2_sig

mem_out

tag_sig

comp1_sig

decid_sig

hit_sig

miss_sig

dec1_sig dec2_sig

tag2field:

(hit_delay)unit_step:

DATA_DELAY

dd_miss

op1OPERATOR

comp2_sig

seq1

SEQUENCE2

1

2

0 ns timebase:

const_src1

21

eqop:

tag4field:

COMPARATOR comp1

decr1

DECREMENTER

dec1

DECIDER

field: status

base: 1

1

2 dd_hit

DATA_DELAY

unit_step: (hit_delay)

field: tag3

op: div

1 2

fi1

FANIN_2

IN1

IN2

OUT1

scd1

SC_D

source:

dest:

tag1

tag4

field: tag2

step: 1

IN_1 OUT_1

seq2

SEQUENCE2

1

2

FEEDBACK

fdb1

field: tag2

1

2

WYE2

wy1

in_1

out_1

out_2

(miss_delay)delay:

FIXED_DELAY

fd_miss

out
mem_out

in
mem_in

64

120 ns

40 ns

page_size:

miss_delay:

hit_delay:

XXX

PAGE_MODE_DRAM

ADEPT Schematic

ADEPT Symbol

l Page Mode DRAM models memory with faster access times to memory
locations on the same “page” as previous accesses

This is the model of the page mode dram which is more complex than
the simple memory model, but still very straight froward. When a token
enters the model (through the MEM_IN port), the Sequence module
creates a copy of it and send it to the Operator module. The address of
that token (on tag3) is divided by the specified page size (provided on
tag3 of the other token input to the Operator by the Constant Source
module and the Page_size generic on the overall symbol) to generate
the resulting page number on tag1 of the output at the bottom of the
Operator module. Once this process is complete, the first Sequence
module passes the original token to the SC_D module where the page
number is written onto tag4 for the token. It then passes to the second
Sequence module which creates a copy of the token and send it to the
Comparator module. The comparator module compares the page
number on tag4 of the token to the previous page number stored on its
other input token. If they are equal, the Comparator signals the Decider
module to send the original token through the Data_delay that has the
hit_delay. If they are not equal, the Decider sends the token though the
lower path. In the lower path, the token is delayed for one miss_delay
time to simulate the opening of the new page and the accessing of the
first word of the request. Then the number of words requested is
decremented by one and the token is delayed for the remaining number
of words times the hit_delay. Finally the token passes through the Wye
module which sends one copy of the token, containing the new current
page number on its tag4, to the Comparator module and another copy
out of the memory back to the CPU.

Page 198Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 198

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Performance Model
CPU and Simple Memory

CPU_OUT

memory_delay: 80 ns

MEMORY

mem1

mem_in mem_out

to_mem from_mem

mon1

MONITOR

1 1

J J

M: N:1 2

cpu1

CPU

program_file: program.dat

inst_delay: 10 ns CPU_IN

ADEPT Schematic

This is the ADEPT schematic of the overall model with the simple
memory. Notice that the memory access time on the memory model has
been changed to 80 ns which will override the 20 ns default as
explained before.

Page 199Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 199

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ADEPT Performance Model
CPU and Page Mode Memory

ADEPT Schematic

J

11

MONITOR

mon1

PAGE_MODE_DRAM

mem1

hit_delay:

miss_delay:

page_size:

40 ns

120 ns

64
mem_in mem_out

to_mem from_mem

10 nsinst_delay:

program.datprogram_file:

CPU

cpu1

CPU_IN

CPU_OUT

21 N:M:

J

This is the ADEPT schematic of the CPU with the page mode memory
model.

Page 200Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 200

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Memory Access Traces

l Three traces were analyzed:
m Uniform access
m Random access
m DAXPY algorithm access

1 1 1000
1 1 1001
1 1 1002
1 1 1003
1 1 1004
1 1 1005
1 1 1006
1 1 1007
1 1 1008
1 1 1009

1 1 1000
1 1 1001
1 1 1002
1 1 1003
1 1 1004
1 1 1005
1 1 1006
1 1 1007
1 1 1008
1 1 1009

2 2 63443
3 4 4373
4 8 31344
3 4 59607
4 8 23048
2 2 61114
3 4 42889
4 8 1380
4 8 33567
3 4 13239

2 2 63443
3 4 4373
4 8 31344
3 4 59607
4 8 23048
2 2 61114
3 4 42889
4 8 1380
4 8 33567
3 4 13239

Uniform Access - a linear
addressing of memory by
single words with one
CPU instruction per word

l Trace format:
m Number of CPU instructions
m Number of words accessed
m Memory address

Random Access - a random
addressing of memory for 1,2,4,
or 8 words with 1-4 CPU
instructions per word

Three traces were run through the two memory system models, a
simple uniform access, a random access, and a DAXPY algorithm
access with loop unrolling. The traces were in the following format:

<number of instructions> <number of words> <memory address>

where number of instructions is the number of CPU instruction (time 10
ns) that the CPU will delay for after the access is granted, number of
words is the number (times the access time) that the memory will delay
in returning the access, and memory address is just that.

The uniform access is a single instruction, single word access where the
address starts at a specify point (1000 in this example) and increments
by 1 for each successive access.

The random access is an access where the number of instruction is
random uniformly distribute between 1 and 4, the number of words is
random uniformly distributed over the values of 1,2,4, and 8, and the
address is a uniform randomly distributed number.

Page 201Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 201

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Memory Access Traces
DAXPY Algorithm

DAXPY Algorithm Access - a read of two vectors
(contiguous blocks of memory) followed by a write
to a third vector

1 2 1000
1 2 1001
1 2 1010
1 2 1011
2 2 1020
2 2 1021
1 2 1002
1 2 1003
1 2 1012
1 2 1013
2 2 1022
2 2 1023
1 2 1004
1 2 1005
1 2 1014
1 2 1015
2 2 1024
2 2 1025
1 2 1006
1 2 1007
1 2 1016
1 2 1017
2 2 1026
2 2 1027
1 2 1008
1 2 1009
1 2 1018
1 2 1019
2 2 1028
2 2 1029

1 2 1000
1 2 1001
1 2 1010
1 2 1011
2 2 1020
2 2 1021
1 2 1002
1 2 1003
1 2 1012
1 2 1013
2 2 1022
2 2 1023
1 2 1004
1 2 1005
1 2 1014
1 2 1015
2 2 1024
2 2 1025
1 2 1006
1 2 1007
1 2 1016
1 2 1017
2 2 1026
2 2 1027
1 2 1008
1 2 1009
1 2 1018
1 2 1019
2 2 1028
2 2 1029

for(i=1;i<length;i++) {
 z(i) = a*x(i) + y(i);
 }

for(i=1;i<length;i++) {
 z(i) = a*x(i) + y(i);
 }

Normal access pattern:
 read x(1)
 read y(1)
 perform arithmetic
 write z(1)
 read x(2)
 read y(2)
 perform arithmetic
 write z(2)
 ...

Normal access pattern:
 read x(1)
 read y(1)
 perform arithmetic
 write z(1)
 read x(2)
 read y(2)
 perform arithmetic
 write z(2)
 ...

Unrolled access pattern:
 read x(1)
 read x(2)
 read y(1)
 read y(2)
 perform arithmetic
 perform arithmetic
 write z(1)
 write z(2)
 ...

Unrolled access pattern:
 read x(1)
 read x(2)
 read y(1)
 read y(2)
 perform arithmetic
 perform arithmetic
 write z(1)
 write z(2)
 ...

X vector

Y vector

Z vector

Memory Map

The DAXPY algorithm access is the simulation of the accesses that
would happen if the CPU was running the algorithm to add two vectors
(one times a constant), resulting in a third vector as shown. The vectors
are stored in contiguous areas of memory as arrays that are typically on
different memory pages.

If the DAXPY algorithm is executed in its native form, it will result in the
pattern: read first X value, read first Y value, write first Z value, read
second X value, etc. The problem with this is that if the vectors are
indeed on different pages, each memory access will result in a page
miss.

One solution to this is to “unroll” the loop so as to group accesses to the
same page together. For example, in a twice unrolled case (loop
unrolling factor of 2) the access pattern would be: read first X (and store
in register) read second X, read first Y, read second Y, perform two
multiply/adds, write first Z, write second Z. In this case, the first read or
write would be a page miss, and the second would be a page hit.
Obviously, the ideal would be to unroll the loop many times, but in
reality, the amount of unrolling that can be done is limited by the size of
the processor’s register file.

Page 202Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 202

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Uniform Access Results

0.0 1782.0 3564.0 5346.0 7128.0 8910.0
Time(ns)

0.000

16.000

32.000

48.000

64.000

80.000

La
te

n
cy

(n
s)

Uniform Accesses
Inter-signal Latency

mon1

Average Latency = 80 ns Average Latency = 42.4 ns

0.0 1048.0 2096.0 3144.0 4192.0 5240.0
Time(ns)

0.000

24.000

48.000

72.000

96.000

120.000

La
te

n
cy

(n
s)

Uniform Accesses
Inter-signal Latency

mon1

Simple Memory Page Mode Memory

Here are the results for the uniform access trace for both the simple
memory and the page mode DRAM. The simple memory has a uniform
access time of 80 ns for each request (of one word size). The page
mode DRAM has an initial access time of 120 ns, but then subsequent
accesses have times of only 40 ns until the address jumps to the next
page. Note that the pages in this example are 64 words long and the
addresses start in the middle of a page, that’s why the second miss
comes earlier than the third.

Page 203Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 203

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Random Access Results

Average Latency = 243.6 ns

0.0 5380.0 10760.0 16140.0 21520.0 26900.0
Time(ns)

0.000

80.000

160.000

240.000

320.000

400.000

La
te

n
cy

(n
s)

Random Accesses
Inter-signal Latency

mon1

0.0 6790.0 13580.0 20370.0 27160.0 33950.0
Time(ns)

0.000

128.000

256.000

384.000

512.000

640.000

La
te

n
cy

(n
s)

Random Accesses
Inter-signal Latency

mon1

Average Latency = 327.3 ns

Simple Memory Page Mode Memory

These are the results for the random access traces. The page mode
DRAM is somewhat better than the simple memory here in spite of the
fact that the addresses are random because many of the accesses are
for multiple words and the page mode DRAM has a lower overall access
time for them.

Page 204Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 204

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP DAXPY Access Results
Latency

Average Latency = 160 ns

0.0 10364.0 20728.0 31092.0 41456.0 51820.0
Time(ns)

0.000

32.000

64.000

96.000

128.000

160.000

La
te

n
cy

(n
s)

DAXPY Results
Inter-signal Latency

mon1

Simple Memory

Page Mode Memory

0.0 6798.0 13596.0 20394.0 27192.0 33990.0
Time(ns)

0.000

32.000

64.000

96.000

128.000

160.000

La
te

n
cy

(n
s)

DAXPY Results - Loop Unrolling of 4
Inter-signal Latency

mon1

0.0 6654.0 13308.0 19962.0 26616.0 33270.0
Time(ns)

0.000

32.000

64.000

96.000

128.000

160.000

La
te

n
cy

(n
s)

DAXPY Results - Loop Unrolling of 16
Inter-signal Latency

mon1

Unrolling Average
 Factor Latency

 1 160 ns
 4 100 ns
 8 90.25 ns
 16 85.71 ns

Here are the results for the DAXPY accesses. The time for the simple
memory is fixed because the access size is fixed. However, for the page
mode DRAM, the results vary with the unrolling factor - more unrolling,
lower average latency as the page misses are amortized over more
page hits.

Page 205Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 205

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP DAXPY Access Results
Average Memory Bandwidth

0.0 5.0 10.0 15.0
Unrolling Factor

6.0

8.0

10.0

12.0

14.0

M
em

o
ry

 B
a

nd
w

id
th

 (
M

w
or

d
s/

se
c.

)

DAXPY Results
Memory Bandwidth vs. Unrolling Factor

Maximum

Simple Memory
Page Model Dram

Here are the results graphed as memory bandwidth (1/average latency).
Note that as the unrolling factor goes up, the average latency for the
page mode DRAM approaches the theoretical maximum (1/page hit
time).

Page 206Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 206

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Task Level Hardware/Software
Performance Model

l Performance model of a parallelized software
algorithm running on a multiprocessor system

l The objective is to determine of the design of the
software system, the selection of the hardware
architecture, and the mapping of software tasks
to hardware resources, meets the performance
goals

l The performance goal is usually stated in terms
of throughput - jobs/second

This section describes an example of a hardware/software performance
model constructed using the ATL model elements.

Page 207Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 207

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Task Level Hardware/Software
Performance Model (Cont.)

Target Hardware

PROCESSOR 1

PROCESSOR 2

PROCESSOR 3

PROCESSOR 4

COMMUNICATIONI/O PROCESSOR(S)

Application Software
2D FFT Algorithm Executed on a Mercury MCV6 Multicomputer

Pre Post

100 µs

NOP

NOP

NOP

NOP

0 µs

FFT

FFT

FFT

FFT

5160 µs

FFT

FFT

FFT

FFT

5160 µs

NOP

NOP

NOP

NOP

0 µs 10000 µs

16384 bytes8192 bytes 4096 bytes 8192 bytes 8192 bytes

P P

I/O I/O

P PRACEWAY
SWITCH

NOP

NOP

NOP

NOP

0 µs

8192 bytes

The upper part of the figure shows the overall structure of the software
algorithm in terms of tasks, how long they require for computation (on
the bottom in blue), and communications between them and the
amounts of communication (in black above). The algorithm is a 2D Fast
Fourier Transform (FFT). The NOPs in the algorithm are simply place
holders to make the figure more clear. For example, after receiving the
initial data from the pre-processing task, all of the processors, without
doing any computation, exchange data with each other to perform the
row FFT. This is shown in more detail on the next page.

The lower part of the figure show the hardware architecture. A 4
processor Mercury Race Multicomputer (called an MCV6), with either
one or two I/O processors.

Page 208Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 208

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP 2D FFT Algorithm Distributed
Across Four Processors

Processors exchange adjacent
rows

Each processor has N/4
complete rows

• Perform row FFT

After row FFT processors
exchange rows back

Each processor has N/4
complete columns

• Perform column FFT

After column FFT processors
exchange columns back

PROCESSOR 1

PROCESSOR 2

PROCESSOR 3

PROCESSOR 4

COMMUNICATION

N COLUMNS

N
 R

O
W

S

Image preprocessed
and distributed to
all the processors

Processors exchange adjacent
columns

Image collected from
processors and
postprocessed

PRE

POST

I/O PROCESSOR(S)

This is more detail on how the image data is allocated to the processors
and how it is exchanged during the processing of the algorithm.

Page 209Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 209

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Alternate System Architectures

Single I/O Board Parallel Input and Output Board

TWO THREE

ONE FOUR

I/O

RACEWAY
SWITCH

PROCESSORS

TWO THREE

ONE FOUR

Source

RACEWAY
SWITCH

PROCESSORS

SINK

l Single channel for input and output
l Pre and Post processing performed

serially on a single processor

l Two channels available for
simultaneous input and output

l Pre and Post processing performed
in parallel on two processors

These are the two alternate systems architectures that are investigated
using the performance model. Both architectures have 4 processors and
a Raceway crossbar switch, but the first architecture has a single I/O
board which must perform both the pre and post-processing tasks and
sending and receiving images to/from the other processors must be
serialized.

In the second architecture, there is a separate source and sink
processor to perform the pre and post-processing task respectively, and
sending and receiving images to/from the 4 processors can occur in
parallel.

Note that in the ATL performance model, regular processing elements
(PEs) are used to model the I/O, Source and Sink processors.

Page 210Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 210

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ATL Performance Model of
Alternate System Architectures

Main
Processor

PRE (SOURCE) PROCESSOR POST (SINK) PROCESSOR

SOFTWARESOFTWARE

COMM_PROC

MAIN_PROC MAIN_PROC

COMM_PROC

cecompute 100 PRE_P1_________
sendmessg 1 1 81920 3
sendmessg 2 2 81920 3
sendmessg 3 3 81920 3
sendmessg 4 4 81920 3
startover

Main
Processor

Main
Processor

Main
Processor

recvmessg 5 163840 3
recvmessg 6 163840 3
recvmessg 7 163840 3
recvmessg 8 163840 3
cecompute 10000 POST_P1________
startover

This slide shows more detail on the ATL performance model and how
the PE modules (for the Source and Sink modules) read their programs
out of a file.

Notice that the programs end in a “startover” command which makes
them run the program in an endless loop. This way, the performance
model can be simulated for some fixed amount of time and the number
of loops which the model executes can be observed as a performance
measure.

Page 211Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 211

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ATL Performance Model
Results

Processing Time

Single I/O Board Case Parallel Input and Output Board Case

 /pe4_CARD1

 /pe3_CARD1

 /pe2_CARD1

 /pe1_CARD1

 /io_CARD1

Processing Time-Line Plot

Time (uS)

D
ev

ic
e

#

 /sink_CARD1

 /pe4_CARD1

 /pe3_CARD1

 /pe2_CARD1

 /pe1_CARD1

 /source_CARD1

Processing Time-Line Plot

Time (uS)
D

ev
ic

e
#

0 50000 100000 150000 2000000 50000 100000 150000 200000

Here are the results of the performance model from the STL time line
tool. These graphs show the compute times for the modules. Notice that
the second architectural alternative (with the Source and Sink
processors) has much better throughput in terms of the number of loop
iterations (> 20) than the first architectural alternative (<11).

Page 212Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 212

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP ATL Performance Model
Results

Communications Waiting Time

Single I/O Board Case Parallel Input and Output Board Case

 /pe4_CARD1

 /pe3_CARD1

 /pe2_CARD1

 /pe1_CARD1

 /io_CARD1

Communications Time-Line Plot

Time (uS)

D
ev

ic
e

#

 /sink_CARD1

 /pe4_CARD1

 /pe3_CARD1

 /pe2_CARD1

 /pe1_CARD1

Communications Time-Line Plot

Time (uS)
D

ev
ic

e
#

0 50000 100000 150000 200000 0 50000 100000 150000 200000

This is an activity time line plot of the communications (including waiting
time) in the two alternative architectures. Note that the second
architecture spends a great deal less time communicating or waiting for
communications resulting in the higher throughput.

Page 213Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 213

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction
l Performance Modeling Theory
l Non VHDL-Based Performance Modeling Tools
l Techniques for Performance Modeling using VHDL
l VHDL-Based Performance Modeling Tools
l VHDL Performance Modeling Examples

l Mixed Level Modeling
mMixed Level Modeling Objectives
mMixed Level Modeling Approaches
mMixed Level Modeling Examples

l Module Summary

Module Outline

Page 214Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 214

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Mixed Level Modeling

l Cosimulation of models containing uninterpreted
(performance) and interpreted (behavioral) level
components

l Interfaces between abstraction levels needed to
perform this cosimulation

l Interface must solve problems in two areas
caused by differences in levels of abstraction
mTiming abstractions - a single token event in a

performance model may represent thousands of events
in a behavioral model

mData abstractions - a token may not contain all of the
information needed to accurately drive a behavioral
model

This section explains the concept of mixed level modeling, the
cosimulation of performance and behavioral models, and how it is
implemented in ADEPT. ADEPT was chosen as the example for this
section as the theory and implementation of mixed level modeling is
more advanced in ADEPT than other performance modeling
environments as of this date. More information on this subject can be
obtained from the UVa Center For Semicustom Integrated Systems
web page:

http://csis.ee.virginia.edu/

eArchitect (through PML) includes the capability for constructing mixed
level models, but the facilities for developing methods to resolve timing
and data abstraction are less well developed and require more user
interaction.

Page 215Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 215

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Modeling
Taxonomy

Internal External

Temporal
Data Value
Functional
Structural

SW Programming Level

Internal External

Temporal

Data Value

Functional

Structural

SW Programming Level

µProc

M-Bus

Clock

Internal External

Temporal

Data Value

Functional

Structural

SW Programming Level

µProc D_Bus

Clock

A_Bus

R/#W

Token-Based
Performance Model

Abstract Behavioral Model

Symbol Key
Model resolves information at specific level

Model resolves information at any of the levels
spanned, case dependent

Model optionally resolves information at levels
spanned

Model resolves partial information at levels
spanned, such as control but not data values or
functionality

Model does not contain information on attribute

Detailed Behavioral Model

Interface

Interface

This figure illustrates where the components of mixed level models lie in
the RASSP taxonomy. It is clear from this description that token-based
performance models have abstract timing and little or no data values
(and data transformations - function) and that behavioral models have
more detailed timing and data values. Therefore, it is easy to see that an
interface(s) is needed between them when they are simulated in the
same model.

Page 216Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 216

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP General Mixed Level Model
Structure

U1

U3

U2

U5

U6

I4

Fixed_Delay DeciderRead_Color

Tokens

U
/I

In
te

rf
ac

e

I/U
 In

te
rf

ac
e

Entity …
 ……
Architecture
 ……
 Process(clk)
 ……
 A<=B after 5 ns;
…...

OR

[UVA]

This is the general structure of a mixed level model. Here a single
component in the performance model has been replaced with a
behavioral component. Interfaces are required on its input and output to
resolve the tokens to values and values to token conversion problem.

Page 217Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 217

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Modeling Interface
Taxonomy

SDE - Sequential Dataflow Element
SCE - Sequential Control Element

 Interfaces and methodology
available within ADEPT

Synchronous Asynchronoussystem

 interpreted
element Comb. SDE SCE Comb. SDE SCE

Mixed Level Models

model

ti
m

in
g

ve
ri

fi
ca

ti
o

n

fu
n

ct
io

n
al

ve
ri

fi
ca

ti
o

n

objective
 modeling

ti
m

in
g

ve
ri

fi
ca

ti
o

n

fu
n

ct
io

n
al

ve
ri

fi
ca

ti
o

n

ti
m

in
g

ve
ri

fi
ca

ti
o

n

fu
n

ct
io

n
al

ve
ri

fi
ca

ti
o

n

ti
m

in
g

ve
ri

fi
ca

ti
o

n

fu
n

ct
io

n
al

ve
ri

fi
ca

ti
o

n

ti
m

in
g

ve
ri

fi
ca

ti
o

n

fu
n

ct
io

n
al

ve
ri

fi
ca

ti
o

n

ti
m

in
g

ve
ri

fi
ca

ti
o

n

fu
n

ct
io

n
al

ve
ri

fi
ca

ti
o

n

 Interfaces can be
constructed within ADEPT

[UVA]

This figure shows the taxonomy of hybrid models that was developed
jointly between UVa and Honeywell Technology Center (their version is
slightly different) to classify the solutions. Note that most work thus far
has concentrated on the problem of timing verification.

Page 218Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 218

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Modeling
Interfaces

l Mixed level modeling hybrid interfaces are available
within PML for each of the library elements
mThe interface is code-based - generation of much of the

code is automated
mUser generated code must be inserted to make the final

uninterpreted to interpreted conversion

l ADEPT contains a library of elements for
constructing mixed level modeling interfaces
m Interfaces are available for interpreted components that are:

qCombinational components
q Finite State Machine with Data-Path (FSMD) components
qComplex sequential components (e.g. microprocessors)

mMethodologies for using these interfaces for timing
verification have been developed

[UVA]

As stated previously, PML has a mixed level modeling interface
capability, but it is mainly code based and the user must supply the
VHDL code that performs the tokens to values and values to tokens
conversion.

ADEPT has a library of standard “hybrid” elements out of which mixed
level modeling interfaces can be developed. For some classes of
models in the taxonomy, the interface can be generated with no user
coding, or new modules required. In other cases, some generation of
application specific modules by the user is required.

Page 219Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 219

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Combinational Interpreted

Elements
l Timing abstraction - settling-time problem - how to

determine the correct time to release token(s) from the
hybrid element

mSolution: time expansion technique

qExecute the hybrid element in the fast time domain

qExecute the remaining performance model in the slow
time domain

I outputs unstable

Final I outputs stable

du

Time

Ts maxTs min

Tf maxTf min

Token
Arrives

di

dU
a dI

´=

[UVA]

This figure illustrates the problem of timing in mixed level models when
the behavioral (or interpreted) element is combinational. A token arriving
at the interface to the hybrid element, which contains the interpreted
combinational component, triggers application of the new values to the
inputs of the combinational element. Then after some time, the
generation of the final outputs from the combinational element will
trigger the release of the token from the hybrid element. The problem is
the fact that the outputs of the combinational element take variable
times to settle to the final value and it is difficult to determine when that
has happened. The solution, called time expansion, is to run the
combinational element in “fast time” which is usually 10 times faster
than the performance model time scale, wait the maximum delay time of
the combinational element in fast time, observe when, in fast time, the
combinational element’s outputs settled to their final values, and then
scale this time up to slow time and release the token at the proper time
in slow time.

Page 220Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 220

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Combinational Interpreted

Elements (Cont.)
l Data abstraction - how to fill in the unknown inputs to the

interpreted element to achieve meaningful results
m Identify the statistically important inputs to the combinational

component (in terms of delay) - Delay Controlling Inputs (DCI)
mAssign values to DCIs to produce minimum or maximum delay
mTreat other inputs as “don’t cares”
mTypically, the number of DCIs decrease dramatically as other inputs

become known

0.0 20.0 40.0 60.0 80.0
Number of Delay Controlling Inputs

0.0

20.0

40.0

60.0

80.0
U

nk
no

w
n

D
el

ay
 C

on
tr

ol
lin

g
In

pu
ts

Circuit C2670 - Output 1098

Linear
Experiment: A
Experiment: B
Experiment: C

[UVA]

Another problem attacked in the mixed level area in ADEPT is the
problem of specifying the inputs to the combinational element, that could
not be derived from the incoming toke (called “unknown inputs”) in such
a way as to generate meaningful results, usually either minimum or
maximum delay.

A technique has been developed to determine the inputs that have the
most influence on the delay of the combinational element (called DCIs)
and setting them to the values that cause the best or worst case values.
In theory, this is an exponentially complex problem, but the results, as
shown here, have demonstrated that as a few inputs are known from the
performance model, the number of DCIs drops dramatically, resulting in
the problem quickly becoming tractable.

Page 221Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 221

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Combinational Interpreted

Elements (Cont.)
l Interface Structure

Tokens

Values

...

U1

U3

U2

U5

U6

I4

U4

ACTIVATOR

act1

U/I

EVALUATOR

eval1

...

ED_BIT

ed1

TVD_BIT

tvd1

Hybrid Element

 In
te

rp
re

te
d

C
om

po
ne

nt

ACT_TIME

ED_BIT

edn

TVD_BIT

tvdn

EB

eb1

RECORDER

rc1

RELEASER
rl1

EVALUATOR

ACT_TIME

Tmin:3 ns

Tmax:25 ns

Tmax:25 ns

[UVA]

This is the structure of the mixed level interface in ADEPT for
combinational interpreted elements that implements time expansion.
When a token arrives at the input to the hybrid element, the U/I
component converts values on the token to values on the combinational
element’s inputs and runs the DCI algorithm if need be. At the same
time, the activator records the token arrival time and passes it to the
evaluator. The evaluator waits the maximum combination delay time in
fast time, measures the actual combination delay in fast time, and
scales that up and releases the token at the proper time in slow time.

Page 222Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 222

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Combinational Interpreted
Element Results

0.0 2.0 4.0 6.0 8.0
Computer 3 Queue Depth

0.0140

0.0150

0.0160

0.0170

0.0180

0.0190

0.0200

T
h

ro
u

g
h

p
u

t
(T

o
ke

n
s/

N
S

)

uninterpreted results
hybrid results

Hybrid Model

Simulation
Results

ALU

pre-processing post-processing

FIXED_DELAY

fd2

delay:1 ns

QUEUE

que1

length:3

SINK

snk1

FIXED_DELAY

fd1

delay:1 ns

Here are some simple results from a mixed level model with a
combinational element. Note that the throughput achieved by the mixed
level model has the same shape as the original performance modeling
results (which is good), but it is shifted as a result of having actual delay
values from the behavioral component.

Page 223Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 223

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Sequential Finite State

Machine Elements
l Finite State Machine with Data Path (FSMD)

components
mComponent consists of a data path with an FSM controller

mComponent has some outputs (either from the data path or
controller) which signify the completion of data processing

mA behavioral description of the state machine exists from
which a State Transition Graph (STG) can be extracted

state reg.

next-state
function

output
function

datapath

datapath inputs

datapath
outputs

control outputs

datapath control

datapath status

FSMD

[UVA]

Another area of mixed level modeling investigated in ADEPT was that of
an interpreted component that was a finite state machine with datapath
(FSMD). This is an interpreted component who’s function can be
described by a state transition graph (STG). This is important because
it allows graph algorithms to be used to analyze the STG to determine
maximum and minimum delay. In addition, a requirement is that there
be some outputs, either from the state machine or datapath, the can be
used to determine the completion of processing for a given token arrival
event.

Examples of these types of elements include a dedicated FFT chip or a
floating point coprocessor.

Page 224Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 224

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Sequential Finite State

Machine Elements (Cont.)
l Timing abstraction - interface must be able to detect

the completion of data processing outputs and
release the token from the hybrid element

l Detection process is synchronized with the clock for
the FSMD component

qNo settling time problem - sample outputs on the proper
clock edge

qClock must be generated

l Data abstraction - how to fill in the unknown inputs to
the FSMD such that the outputs are valid in the
maximum (worst case) or minimum (best case)
number of clock cycles

[UVA]

The timing abstraction problem is easier with FSMD components as
there is no settling problem - everything is resolved on a clock edge.
However, the clock input to the FSMD must be generated, usually by
the mixed level interface elements.

The data abstraction problem is similar to the combinational element
one - how to specify the unknown inputs such that minimum or
maximum delay results.

Page 225Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 225

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Sequential Finite State

Machine Elements (Cont.)

Clock_
Generator

 Activator

Colorer

Output_
Condition_
Detector

Sequential_
Releaser

U/I Operator I/U OperatorInterpreted Element

(FSMD)

datapath
inputs

datapath
outputs

control
outputs

control
inputs

Tokens
from U
domain

extract
info. from
token

add/update
info. on
token

l Interface Structure

Driver

Tokens
to U
domain

...
... ...

...
Tokens

Values
[UVA]

This is the structure of the mixed level interface for FSMD components.
The driver and clock generator perform the U/I function and the activator
performs the same function as in the previous example. The Colorer,
output_condition_detector, and sequential_releaser perform the
functions of the evaluator, that is, determining when to release the token
from the hybrid element after the proper delay time according to the
interpreted component.

Page 226Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 226

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Solving the Data Abstraction
Problem for FSMD

Components
l Utilize the STG to search for the maximum (minimum) path

between the initial state and the ending state

Steps to the methodology:

l Determine the outputs and values that
signify the completion of processing

lMinimize the state transition graph
(STG) to remove non delay controlling
inputs

l Search the resulting STG for longest
(shortest) path from initial state to
final state

l Use the resulting delay to determine
the token release time

state reg.

next-state
function

output
function

datapath

datapath inputs

datapath
outputs

control outputs

datapath control

datapath status

FSMD

B C
E

D
A

STG
[UVA]

This figure outlines the methodology used to determine the minimum or
maximum delay, in terms of clock cycles, for the FSMD interpreted
component using the component’s STG. First, the outputs that do not
affect when the token is released are removed from the STG and the
resulting STG is simplified. Next, the resulting STG is searched to find
the shortest (minimum time) or longest (maximum time) path from the
initial state to the final state. Finally, the inputs necessary to drive the
FSMD along this path are applied to the interpreted component in the
simulation.

Page 227Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 227

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP FSMD Interpreted Element
Results

Fetch
Unit

Integer
Unit

Floating
Point
Unit

U
/I

I/U

Example Model

Performance Comparison

0
1
2
3

4
5
6

0 0.4 0.8 1

Fraction of known inputs
N

o
rm

al
iz

ed

P
er

fo
rm

an
ce Upper bound

Lower bound

Uniterpreted
model

Mixed Level Model
Results

Sequential FSM
Interpreted Element

Increasing Model
Refinement [UVA]

Here are some results from an example of applying the technique to an
FSMD mixed level model. In this case, it was a performance model of a
processor with a fetch unit, an integer unit and a floating point unit. The
floating point unit was replaced with its interpreted (behavioral)
representation. The results show how the upper and lower bounds
(minimum and maximum delay) on performance can be generated for
the model at various levels of refinement. As the model is refined, the
fraction of inputs for which the actual values are known from the
performance model increase, and the bounds get tighter and finally
converge. Also notice that, as is quite typical, the initial estimate of the
performance as used in the high level performance model, was
inaccurate.

Page 228Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 228

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Complex Sequential Elements

l Timing abstraction - interface must resolve the fact
that a single token event in a performance model may
resolve to hundreds or even thousands of events for a
complex interpreted element
mE.g. a packet of data, represented by a single token arriving

over a communications network, may take thousands of clock
cycles for an ISA level model of a CPU to process

l Data abstraction - in this case, the level of complexity
of the interpreted element is such that automatic
determination of the unknown input values is not
possible - user specification is required

mRead actual data information from a file
mGenerate data algorithmically
mAssign true “don’t cares” stochastically

[UVA]

Finally, mixed level interface elements were developed for “complex
sequential elements” which are sequential elements that are too
complex to describe as state machines. In this case, the interface is
more ad hoc, and is targeted at solving the timing abstraction problem.
The user must solve the data abstraction problem for interpreted
elements such as these.

Elements that fall into this category include microprocessors,
microcontrollers, and even entire computer systems.

Page 229Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 229

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Complex Sequential Elements

l “Watch-and-React” hybrid interface based on
principals of logic analyzers and pattern generators

l Consists of two main elements:
mTrigger - detects events on the outputs of the sequential

elements and produces the specified events in the
uninterpreted model

mDriver - detects the arrival of tokens from the uninterpreted
model and produces the specified series of events on the
inputs to the sequential element

m Interface elements are programmable via input files to provide
a general, and reusable, interface solution

[UVA]

The so called “watch and react” hybrid interface is build on the principals
of logic analyzers. The interface watches the outputs of the interpreted
element for certain “trigger” conditions, and when they occur, it takes the
appropriate action. Likewise, when the performance model dictates that
some new inputs be supplied to the interpreted component, a “program”
can be executed that generates a complex set of input sequences to the
interpreted component.

Page 230Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 230

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Mixed Level Interface for
Complex Sequential Elements

(Cont.)

Complex
Sequential
Interpreted

Element

U
n

in
te

rp
re

te
d

M
o

d
el

WAR Hybrid
Interface

Tokens

Values

l Interface Structure

TRIGGER

trg1

DRIVER

drv1

condition:tag1
probe_value:tag1

filename:f.dat
probe_size:4

delay_unit:1 ns

condition:tag1

filename:f.dat
probe_size:4

probe_value:tag1

delay_unit:1 ns

Driver
Event
File

Trigger
Event
File

[UVA]

Here is the general structure of the watch and react interface. Both the
trigger and driver element can be programmed by input files - which
keeps them general in nature and avoids having the user to generate
new VHDL code for a specific application.

Page 231Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 231

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Watch-and-React Interface
Example

35vee8

35vee8

Mem Ctrl

period:

Clock

Mem Image File:

RAM

35vee8

IO Ctrl

condition:

probe_value:

Trigger

probe_size:
filename:

delay_unit:

condition:

probe_value:

Trigger

probe_size:

filename:

delay_unit:

Driver

probe_size:

filename:

delay_unit:

condition:

probe_value:

condition:

probe_value:

Trigger

probe_size:
filename:

delay_unit:

Driver

probe_size:

filename:

delay_unit:

condition:

probe_value:

1

2

clk_std_logic

n_brdy_std_logic

w_r_std_logic

io_ctrl_std_logic(2:0)

address_std_logic(15:0)

m_io_std_logic

n_ads_std_logic

reset_std_logic

ram_cs_std_logic

ram_oe_std_logic
ram_we_std_logic

clk_std_logic

inrupt_std_logic

5

clk

m_io

0

3

1

100 ns

clk

data_std_logic(7:0)

clk_std_logic

7

10

4

2

3

6

address(0)

address(1)

address(10)

address(11)

address(12)

address(13)

address(14)

address(15)

n_ads

n_brdy

n_cs

n_oe

n_we

reset

w_r

address(8)

address(9)

clk

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)

data(6)

8

11

12

cpu

reset

w_r

1

0

release?false

I$1121

RC

address(2)

address(3)

address(4)

address(5)

address(6)

address(7)

I$
16

S
C

_D

so
ur

ce
:

de
st

:

ta
g1

ta
g2

data(7)

int

m_io

n_ads

n_brdy

I$
29

F
IX

E
D

_D
E

LA
Y

de
la

y:
5

us

tag1

tag2

1 ns

I$296

empty.trigger

8

out_color_token

out_event_token

probe(probe_size-1:0)

13

3

tag1

tag1

1 ns

I$499

io.trigger
3

out_color_token

out_event_token

probe(probe_size-1:0)

1

2

1

I$36

JUNCTION2

in_1

in_2

out_1

7

I$39

WYE2

2

1

in_1

out_1

out_2

4

21

addop:

7

release? false

I$38

RC

n_oe

n_we

reset

w_r

BUFFER

0

I$37rand

tag4

0.0

dist:

field:

threshold:

InitUniform(-8.0,7.0)

0

8

6

tag4field:

OPERATOR_I I$44

clk

m_io

n_ads

n_brdy

n_cs

address(14)

address(15)

address(2)

address(3)

address(4)

address(5)

address(6)

I$918

1

2

WYE2

I$1

in_1

out_1

out_2

data(6)

data(7)

n_cs

n_oe

n_we
13

mem_image.lmc

address(0)

address(1)

address(10)

address(11)

address(12)

address(13)

9

2

10

12

address(7)

address(8)

address(9)

data(0)

data(1)

data(2)

data(3)

data(4)

data(5)
6

I$909

SC_D

source:

dest:

tag2

tag4

I$910

FIXED_DELAY

delay: 15 ns

4

5

tag1

false

false

tl1-tl5:

tl6-tl10:

tl11-tl15:

bl1:

bl2:

bl3:

CONST_COLOR

I$908

30000

00000

0000

9

false

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

I$907

CONST_COLOR

bl3:

bl2:

bl1:

tl11-tl15:

tl6-tl10:

tl1-tl5:

false

dest:

source:

tag1

tag1

source:

dest:

con_col_incon_col_outI$905

UNION2
in_1

in_2

out_1

field: tag1

I$906

ROUTER_2

base0: 2

G

Y0

Y1

0

false

con_col_incon_col_out

tag1

tag2

8

I$93

data.driver

1 ns

clk

in_color_token

in_event_token

probe(probe_size-1:0)

I$903

SC_D

source:

dest:

tag2

tag3

1base0:

ROUTER_2

I$904

false

tag1

6

tag1field:

G

Y0

Y1

14

5

11

4

1

tag1

tag1

1 ns

I$295

empty.trigger
16

out_color_token

out_event_token

probe(probe_size-1:0)

2

5

2

1

0

tag1

tag1

1 ns

int.driver

I$297

1

clk

in_color_token

in_event_token

probe(probe_size-1:0)

BUFFER

I$919

14

15 15

Mechanical SystemHybrid Interface35vee8 System

7

2

3

[UVA]

Here is an example of the use of the watch and react interface. It is a
motor control system in which an actual behavioral model of a
microcontroller, along with its associated memory system has been
inserted. The motor control system and its feedback mechanism are
modeled at a system level using ADEPT modules.

Page 232Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 232

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP Watch-and-React Interface
Example Results

System Response - Motor Speed vs. Time

0.0 100000.0 200000.0 300000.0
Time (ns)

0.0

20.0

40.0

60.0

80.0

Sensor Output

CPU Response

M
ot

or
 S

pe
ed

 (
T

ic
ks

/S
am

pl
e

T
im

e)

[UVA]

Here are some results from the mixed level model illustrating the proper
control of the motor speed. Note that the behavioral model of the
microcontroller is executing an actual control program from a memory
model and responding to perturbations in the motor speed in the
performance model of the motor system.

Page 233Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 233

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Outline

l Performance Modeling Introduction
l Performance Modeling Theory
l Non VHDL-Based Performance Modeling Tools
l Techniques for Performance Modeling using VHDL
l VHDL-Based Performance Modeling Tools
l VHDL Performance Modeling Examples
l Mixed Level Modeling

l Module Summary

Module Outline

Page 234Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 234

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
Module Summary

l Performance modeling has a rich theoretical basis and has been
used for a number of years to analyze the performance of complex
computer systems

l Performance modeling can significantly improve the overall design
quality and time by allowing greater design space exploration early
in the design process

l Performance models can be analytical or simulation-based -
simulation-based models have greater applicability to complex
systems

l VHDL is an excellent language for implementing simulation-based
performance models
m Provides a single language approach for system hardware modeling

from concept to implementation in a language that many digital
designers are comfortable with

m Provides tight coupling to the lower levels of design through mixed
level modeling of performance and behavioral level components

Page 235Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 235

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP
References

[ADEPT_LR96] ADEPT A.1 Library Reference Manual, CSIS Technical Report No. 960625, Department
of Electrical Engineering, University of Virginia, December, 1996. See
http://www.ee.virginia.edu/research/CSIS/

[ADEPT_UM96] Unified Modeling Reference Manual (ADEPT Version A.1), CSIS Technical Report No.
960620.0, Department of Electrical Engineering, University of Virginia, December, 1996.

[Cassandras93] Cassandras, Christos G., Discrete Event Systems, Modeling and Performance Analysis,
Aksen Associates Incorporated Publishers, 1993.

[IEEE] All referenced IEEE material is used with permission.

[Hein96] Hein, C., T. Carpenter, “Tutorial: VHDL-Based Rapid Prototyping for Large DSP Systems,”
Presented at the Second Annual RASSP Conference, October 10th, 1996.

[Hein97] Hein, C., T. Carpenter, A. Gadient, R. Harr, P. Kalutkiewicz, V. Madisetti, “RASSP VHDL
Modeling Terminology and Taxonomy,” Revision 2.2, March 27, 1997.

[Honeywell] Honeywell, RASSP slide presentation. Used with permission.

[HTC97] RASSP VHDL Performance Modeling Interoperability Guideline, Version 3.0, Honeywell
Technology Center, March 31, 1997.

[Jain91] Jain, R., The Art of Computer Systems Performance Analysis, Techniques for Experimental
Design, Measurement, and Modeling, John Wiley & Sons, Inc., 1991.

[Kant92] Kant, K., Introduction to Computer System Performance Evaluation, McGraw-Hill, Inc., 1992.

Page 236Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA 236

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP References
(cont)

[LMC-Sanders] LMC - Sanders, RASSP slide presentation. This work was performed by Sanders, a
Lockheed Martin Company, as a part of the Sanders RASSP program under contract N00014-93-C-
2172 to the Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375-5326.
The Sponsoring Agency is: Defense Advanced Research Projects Agency, Electronic System
Technology Office, 3701 North Fairfax Drive, Arlington, VA 22203-1714. The Sanders RASSP team
consists of Sanders, Motorola, Hughes, and ISX.

[Lockheed Martin] Lockheed Martin ATL slide presentation.

[Murata89] Murata, T., “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, Vol.
77, No. 4, April 1989; © IEEE 1989

[Pauer97] Pauer, E. K., “High Performance Scalable Computing Performance Modeling Using Ptolemy,”
Proceedings of the IASTED International Conference on Modeling and Simulation, May 1997, pp. 452-
455.

[Ptolemy 96] Lee, E. A., et. al., The Almagest Volumes 1-4, - The Ptolemy Reference Manual, 1996. Used
with permission. See http://ptolemy.eecs.berkeley.edu/

[Richards97] Richards, M., Gadient, A., Frank, G., eds. Rapid Prototyping of Application Specific Signal
Processors, Kluwer Academic Publishers, Norwell, MA, 1997

[Sauer81] Sauer, C. H., K. M. Chandy, Computer Systems Performance Modeling, Prentice-Hall, Inc.,
1981.

[SES] Scientific and Engineering Software, Inc. Slide presentation. Used with permission. See
http://www.ses.com.

[Viewlogic] Viewlogic eArchitect slide presentation. Used with permission. See http://www.viewlogic.com.

[UVA] University of Virginia slide presentation based upon [ADEPT_LR96] & [ADEPT_UM96]. Used with
permission.

