
1

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

1

Synthesis Using VHDL
RASSP Education & Facilitation

Module 60

Version 3.00

Copyright 1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute (ATI), and may only
be used for non-commercial educational purposes. Any other use of this information without the express written permission of the
ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their permission. All information
contained, may be duplicated for non-commercial educational use only provided this copyright notice and the copyright
acknowledgements herein are included. No warranty of any kind is provided or implied, nor is any liability accepted regardless
of use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-1457. Such data
may be liberally reproduced and disseminated by the Government, in whole or in part, without restriction except as follows:
Certain parts of this work to other copyright holders and are used with their permission; This information contained herein may be
duplicated only for non-commercial educational use. Any vehicle, in which part or all of this data is incorporated into, shall carry
this notice .

This module describes how one can synthesize digital systems using VHDL.
It does not teach VHDL, nor does it teach synthesis. The former is the task of
earlier modules, while the latter is the task of various synthesis tools that can
take in an input specification in VHDL and process it .

2

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

2

RASSP Roadmap

Synthesis Using VHDLSynthesis Using VHDL

SYSTEM
DEF.

FUNCTION
DESIGN

HW &
SW

PART.

HW
DESIGN

SW
DESIGN

HW
FAB

SW
CODE

INTEG.
& TEST

VIRTUAL PROTOTYPE

RASSP DESIGN LIBRARIES AND DATABASE

Primarily
software

Primarily
hardware

HW & SW
CODESIGN

In this module, we describe how VHDL can be used to specify digital circuits
in a form that is synthesizable. The basic premise is that the entire VHDL
Language Reference Manual (LRM) recommendations for VHDL 1993 cannot
be synthesized by commercial tools, and hence the synthesizable subset of
VHDL is one that constrains the VHDL 1993 standard to those features that
are supported by synthesis tools.

This would have been a very difficult task, given the large number of synthesis
tools (non standard) and the variety of target technologies (FPGA, ASIC, etc)
available to the designer (which impact the way they design using VHDL),
however, the recent proposal for standardization of the so-called RTL subset
of VHDL has given us confidence that the material covered in this module is
not tool-specific or technology-specific to a large degree, and will be
supported by a large number of vendors once the synthesis standard is ratified
in 1999.

3

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

3

Module Outline

l Introduction to Synthesis
¡What is synthesis ?

¡ Steps in the synthesis process

l VHDL-Based Synthesis
¡ Introduction

¡ Behavioral synthesis

¡ RTL synthesis
¡ Logic synthesis

¡ Summary

l IEEE Synthesis Packages for VHDL
l IEEE VHDL RTL (Synthesis) Subset

In this module, we describe how VHDL can be used to specify digital circuits
in a form that is synthesizable. The basic premise is that the entire VHDL
Language Reference Manual (LRM) recommendations for VHDL 1993 cannot
be synthesized by commercial tools, and hence the synthesizable subset of
VHDL is one that constrains the VHDL 1993 standard to those features that
are supported by synthesis tools.

In the fist section we define the synthesis process and various metrics and
objectives that characterize it.

Originally, synthesis tools could only synthesis structural descriptions at the
logic and gate levels of description. Currently, synthesis tools can support
synthesis at higher levels of abstraction in VHDL, promising a greater
productivity and efficiency. The second section describes this migration of the
synthesis process to higher levels of abstraction.

The third section describes packages, ratified by IEEE, that support the
synthesis process.

The fourth section describes a recent effort by the Synthesis Interoperability

4

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

4

Module Outline (Cont.)

l Synthesis with the IEEE RTL Subset
¡ Combinational systems

¡ Registers and clock related behavior
¡ Expressions, operators, types

¡ Sequential circuits

l Optimizations Used in Synthesis
¡ Behavioral level optimizations
¡ RTL level optimizations

¡ Logic level optimizations

Working Group (SIWG, http://www.vhdl.org/siwg/) that proposed a subset of
VHDL as a candidate for a IEEE Synthesis standard. Clearly, the entire
VHDL language cannot be synthesized, thus the proposal represented a giant
step forward in the development of portable and efficient synthesis capabilities
for digital design using VHDL.

We then describe, with some examples, the use of the IEEE VHDL RTL
Subset. It must be noted that the reader is assumed to understand VHDL well,
as the focus of the module is not on teaching VHDL, but on the synthesis
support for VHDL. Furthermore, this module should also not be considered a
tutorial on the synthesis process itself.

Synthesis optimizations can occur at various levels of abstraction, and the
section on optimizations provides a brief introduction to these topics.

5

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

5

Module Outline (Cont.)

l VHDL Coding Guidelines Supporting Optimization
¡ Technology independent guidelines

¡ Technology dependent guidelines
q FPGAs

q ASICs/Gate arrays

l Summary

VHDL can be written in a manner that allows the user to take benefit of the
optimizations provided and supported by various synthesis tools and target
technologies. The section on Coding Guidelines provides this insight via a
few well-chosen examples.

6

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

6

Module Outline

l Introduction to Synthesis
l VHDL-Based Synthesis

l IEEE Synthesis Packages for VHDL

l IEEE RTL (Synthesis) Subset for VHDL

l Synthesis with IEEE RTL Subset

l Optimizations Used in Synthesis

l VHDL Coding Guidelines Supporting Optimization

l Summary

7

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

7

What is Synthesis ?

l Synthesis is a general term that describes the
process of transformation of the model of a
design, usually described in a hardware
description language (HDL), from one level of
behavioral abstraction to a lower, more detailed
behavioral level.

l These transformations try to improve upon a set
of objective metrics (e.g., area, speed, power
dissipation) of a design, while satisfying a set of
constraints (e.g., I/O rates, MIPS, sample period)
imposed on it.

Synthesis in its most generic form simply refers to the incorporation of
additional lower level implementation details into a digital design, however,
most current tools expect the output to be a net list of gates that are optimized
for area, power, or latency.

8

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

8

l Synthesis to the gate-level of abstraction
consists of three major steps -
¡ Design specification (in a machine-readable form)
¡ Design implementation

¡ Design validation and verification

l Design specification implies a description of the
design where functional, performance, and cost
constraints (area, power, speed) are captured in
a form that facilitates processing (I.e.,
executable) in a CAD environment. Two common
methods for capturing the specification are:
¡ Graphical methods

¡ Language-based methods

Steps in the
Synthesis Process

Many consider graphical methods and language methods to be
indistinguishable, in that one can be quickly converted to another. It is often
the designer’s choice as to which mechanism they find convenient when
specifying a complex digital design

9

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

9

Graphical Methods

l These include:
¡ Block diagrams, state diagrams, schematics, data flow

graphs, timing diagrams, truth tables, etc.

l Advantages:
¡ Faster learning curve,

¡ Intuitive documentation, and

¡ Reusability of design.

l Disadvantages:
¡ Limited support for functional and timing hierarchy in

complex digital systems

¡ Limited support for multiple views (e.g., simulation
versus hardware generation).

A number of vendors are providing for mixed graphical and language support,
where certain blocks are pieces of VHDL code, while others are graphical
descriptions of controllers, etc. The “best choice” appears to depend again on
the designer and the domain application.

10

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

10

Language-based Methods

l These methods include:
¡ Hardware description languages (HDLs), high level

algorithmic macro descriptors (such as Matlab), or
application-specific languages (such as Silage and
DSP/C for signal processing).

l Advantages:
¡ Ability to serve as a standard medium of

communication between the algorithm developer and
the synthesis expert

¡ Robustness through well-defined semantics

¡ Ability for representing complex behavior and data
structures

Current popular language-based synthesis methods include the use of VHDL
and Verilog, with the market evenly split. Verilog is a concise and restrictive
HDL that appears to be a bit more convenient at lower levels of abstraction for
some designers, while VHDL appears to be more flexible and powerful at all
levels of abstraction. Mixed co-simulation environments exist for mixed
Verilog and VHDL designs (the co- in co-simulation refers to the ability to
simulate a design description written using a mixture of VHDL and Verilog).

11

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

11

Language-based Methods
(Cont.)

¡ Support for synthesis and its verification in the same
environment,

¡ Their system-independent nature that facilitates design
documentation.

l Disadvantages:
¡ Specification is harder to visualize, and requires a

longer learning curve.

Language-based methods and graphical methods have been studied in other
contexts (e.g., software) and their relative merits are still discussed within the
community.

Suffice it to say that translators exist from one domain to another.

12

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

12

Language-based Specification Methods
(Cont.)

l These methods include:
¡ Hardware description languages (HDLs), high level algorithmic

macro descriptors (such as Matlab), or application-specific
languages (such as Silage and DSP/C for signal processing).

l Advantages:
¡ Ability to serve as a standard medium of communication

between the algorithm developer and the synthesis expert,

¡Well defined semantics,

¡ Ability for representing complex behavior and data structures,
¡ Support for synthesis and verification.

l Disadvantages:
¡ Specification is harder to visualize, and requires a longer

learning curve.

Current popular language-based synthesis methods include the use of VHDL
and Verilog, with the market evenly split. Verilog is a concise and restrictive
HDL that appears to be a bit more convenient at lower levels of abstraction for
some designers, while VHDL appears to be more flexible and powerful at all
levels of abstraction. Mixed co-simulation environments exist for mixed
Verilog and VHDL designs.

13

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

13

Steps in the
Synthesis Process (Cont.)

l Design Implementation consists of a number of
intermediate steps:
¡ Algorithm design:

q Evaluates the performance of the algorithm being
implemented in terms of:

í The precision of the word length,

í The number of iterations, and

í The quality of the results obtained with respect to the
design requirements.

¡ Behavioral simulations:

q Done after the algorithm design is complete to
verify the detailed functional behavior of the
system.

Here we describe the general process of digital design. The top down design
process is described, and most VHDL synthesis tools support design entry at
one of the steps in the top down design process.

Behavior implies both functional and timing characteristics of a digital system.

14

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

14

Steps in the
Synthesis Process (Cont.)

¡ Data and control flow graph generation:

q Derives an intermediate representation of the
behavioral specification where the data flow,
input/output, control dependencies and
synchronization signals are documented.

¡ The result of the previous steps in synthesis is
sometimes called a behavioral-level model of the
circuit.

After the behavioral design is completed at the top level, the data and control
flow design allows us to capture the concurrent aspects of the specification
that drive the implementation aspects of the resource allocation and
assignment steps.

15

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

15

Steps in the
Synthesis Process (Cont.)

¡ The next steps involve a knowledge of the hardware
and software modules available in the design library. At
this stage of the synthesis process, based on the
control/data flow graph, the steps are:

q Module selection (determining which modules are
used in design),

q Estimation and allocation of the number of modules
to be used, and

q Transformations that optimize the control/data flow
graph without changing the input/output functional
properties, but improve on its synthesis metrics
(such as area, power, or speed).

The steps of assignment, allocation, and scheduling should be clearly
distinguished. However, the order in which they are done is implementation
and constraint dependent, and changing the allocation can result in a change in
the assignment and the scheduling steps. The steps of scheduling, allocation,
and assignment are interrelated and several iterative algorithms are utilized by
CAD environments that attempt to meet the user objectives subject to design
constraints.

16

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

16

Steps in the
Synthesis Process (Cont.)

¡ Scheduling determines when a certain operation will be
executed, and assignment determines the module on
which the operand will be executed (e.g., an addition on
an adder module).

¡ At the completion of this stage of the synthesis the
result is called a register-transfer level (RTL) model of
the circuit

¡ The RTL description or model is then converted to a
logic level implementation through a process called
logic synthesis, and after further technology level
optimization a gate-level model of the circuit results,
which must be verified for both timing and function.

Note that Validation and Verification differ from each other. The difference is
captured in the next slide.

17

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

17

Steps in the
Synthesis Process (Cont.)

l Validation at each stage of the design is a
feature of the top-down structured design
process, and can proceed in a bottom-up or top-
down manner
¡ E.g., in a bottom-up process each selected module is

tested to ensure correct functional behavior. After all
the constituent modules are validated the entire design
is validated at the RTL level.

¡ After completion of the logic synthesis, the verification
process is carried out at the gate level.

Verification and validation differ from each other in some respects.
Validation ensures that the implementation matches the design
requirements from the customer (i.e., the right system is synthesized),
Verification ensures that the implementation is consistent with the
specification (i.e., the system is designed right).

18

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

18

Module Outline

l Introduction to Synthesis

l VHDL-Based Synthesis
l IEEE Synthesis Packages for VHDL

l IEEE RTL (Synthesis) Subset for VHDL

l Synthesis with IEEE RTL Subset

l Optimizations Used in Synthesis

l VHDL Coding Guidelines Supporting Optimization

l Summary

Now that we have introduced the process of synthesis, we will now study how
VHDL supports this process. It should be noted that VHDL supports this
process and does not define the synthesis process.

19

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

19

VHDL Support for Synthesis

Design
Capture

Design
Simulation

&
Verification

Design
Specification

Design
Documentation

VHDL-Based
Synthesis

Synthesis is a process that is independent of VHDL. However, VHDL assists
synthesis through its four major roles listed in the slide.

In Design Capture, one already has a digital design in mind, and this design is
translated to VHDL so that it can be processed directly by a synthesis tools.

In Design Simulation & Verification, a test bench and a captured design are
simulated to ensure that the design works correctly.

In Design Specification, arguably the most powerful use of VHDL, the design
can be specified at a very high level of abstraction, and the synthesis tool can
then take this description and translate it to lower levels of design abstraction
subject to the enforced constraints.

In Design Documentation one can use VHDL as an executable version of the
system that has been designed or is under design.

Most of the digital designers (>90%) use VHDL for design capture, while
other users (especially for complex applications in telecommunications and
military) rely on VHDL for the other three functions it supports.

20

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

20

Design Capture

l VHDL allows designer to capture the details of a
digital design in a form that is machine-readable,
that is, the design can be entered into a CAD
system.

l VHDL can be used as an alternative to, or in
conjunction, with schematic-based design entry
methods.

l Typical logic synthesis and RTL synthesis tools
are primarily design capture environments. Over
90% of designers use VHDL for this purpose (EE
Times, 1996).

Design Capture, as mentioned earlier, is the most common use of VHDL in the
synthesis process.

21

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

21

Design Specification

l Within a structured design flow, VHDL can be
used to capture the behavioral, interface and
performance-related aspects of the design.

l The VHDL representation can then be
synthesized to an implementation through
several consecutive stages, each incrementally
adding more detail to it.

l Behavioral synthesis and advanced RTL
synthesis tools are representative of
environments performing this function.

The terms, behavioral synthesis and RTL synthesis will be explained in the
following slides, and refer to a design captured in VHDL at a higher level of
abstraction (compared to the gate-level) where the synthesis tools offers some
additional assistance in generating a optimized design.

22

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

22

Design Simulation and
Verification

l VHDL used to simulate key properties of a
design prior to and after synthesis.

l VHDL can verify those properties at various
levels of the synthesis process.

l Various levels of functional and timing
simulation can include both technology
dependent and independent aspects of the
design under synthesis

VHDL plays a useful role in providing a verification environment within the
design process. Most of the synthesis process is in verifying constraints,
functionality, timing, and form, fit and function capabilities of the resulting
design.

23

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

23

Design Documentation

l A design represented in VHDL is a well-
documented design, and is accepted as such by
the US Department of Defense.

l VHDL, an IEEE standard, allows designs to be
represented in a non-proprietary, technology -
independent manner.

l VHDL is capable of representing both the design
and its test environment in a tool-environment,
technology-neutral manner, adding greatly to
design productivity, reuse, and capability for its
rapid upgrade.

The IEEE Standard 1076-1993 provides the description of the VHDL
language.

Current practice designs are document using methods that are both technology
dependent and tool dependent. For instance, using ABEL one can synthesize
a digital design and target it towards a family of FPGAs, but the design
documentation (which includes the digital system, its test benches, associated
packages) is not portable to other environments. VHDL provides an easy and
effective mechanism to document the design at various levels of abstraction in
a technology and tool independent manner.

24

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

24

Levels of Synthesis

l Commonly used synthesis tools support
¡ Behavioral Synthesis

¡ RTL Synthesis
¡ Logic Synthesis

We will now distinguish between each of these levels/categories of synthesis
environments that support VHDL.

25

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

25[Parker84]

Synthesis Categories

l Algorithm Synthesis - (also called Behavioral
Synthesis) - synthesis of abstract behavior or
control-flow behavior from a high level algorithm
description
¡ Involves high-level scheduling and assignment

l Register-Transfer Synthesis - synthesis of
register-transfer structure from abstract, control-
flow, or register-transfer behavior

l Logic Synthesis - synthesis of gate-level logic
(an implementation) from register-transfer
structure or Boolean equations

© IEEE 1984

Behavioral synthesis is a relatively new area, where only a small subset of
VHDL is supported for synthesis. Register Transfer (Level) Synthesis, also
called RTL synthesis, is more common in commercial avenues and will be the
main focus of this module.

26

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

26

Levels of VHDL-Based
Synthesis

Algorithmic
Level

Combinational logic,
clocked registers, state
machines, memories

Boolean equations

Structural gate
net lists, technology
libraries

VHDL Descriptions at:
Behavioral
Synthesis

RTL
Synthesis

Logic
Synthesis

input

output

[Madisetti95]© IEEE 1995

The arrows indicate the starting and end points for each type of synthesis. The
tools to the left of the figure would need support from tools towards to the
right to ensure continuity of the synthesis to the gate/transistor level
implementation.

System-level synthesis is an advanced step that includes both hardware and software
codesign and synthesis, and is covered in other RASSP modules.

27

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

27

+

*

+

*

E(7:0) A(7:0) B(7:0)

G(15:0)F(15:0)

D(7:0)C(7:0)

+

*

+

*

E(7:0) A(7:0) B(7:0)

G(15:0)F(15:0)

D(7:0)C(7:0) t1

t2

t3

[Parker84]

f <= (a + b) * e;
g <= (a + b) * (c + d);

f <= (a + b) * e;
g <= (a + b) * (c + d);

Behavioral Synthesis

© IEEE 1984

In the graph on the left, there is no notion of time, and the computation is
assumed to flow in a data-flow type manner. In the figure on the right, a
notion of time is introduced, wherein the operations scheduled in time slot t1
are shown distinct from those scheduled in t2 and t3.

28

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

28

+

*

+

*

E(7:0) A(7:0) B(7:0)

G(15:0)F(15:0)

D(7:0)C(7:0) t1

t2

t3 Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

Register
R1

Register
R2

Register
R3

Register
R4

+

*
Register

R3
Register

R4

E(7:0)

A(7:0) B(7:0) D(7:0)C(7:0)

G(15:0)F(15:0)

Data Path Behavior Control Flow
(not all shown)

[Parker84]

Behavioral Synthesis (Cont.)

© IEEE 1984

The timing annotated flow graph is now mapped to an RTL structure with an
associated data path (the computational portion) and a control flow graph (the
controller) that is shown on the right. The exact structure of the computation
is not important at this point in the presentation, but it is clear that lower level
implementation details have been inserted into the design representation.

29

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

29

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

Register
R1

Register
R2

Register
R3

Register
R4

+

*
Register

R3
Register

R4

E(7:0)

A(7:0) B(7:0) D(7:0)C(7:0)

G(15:0)F(15:0)

Data Path Behavior Control Flow
(not all shown)

R1 R2

A(7:0) B(7:0) D(7:0)C(7:0)

ALU

RTL Structure
(not all shown)

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

RTL Control Flow
(not all shown)

[Parker84]

RTL Level Synthesis

© IEEE 1984

At the RTL level the control/data flow graph is mapped to a computational
structure (that consists of one ALU as shown) together with two registers and
multiplexors plus some control flow determining the sequence of operations
(the scheduling).

30

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

30

R1 R2

A(7:0) B(7:0) D(7:0)C(7:0)

ALU

RTL Structure
(not all shown)

Select B;
Load R2;

Select A;
Load R1;

Add;
Load R4;

RTL Control Flow
(not all shown)

[Parker84]

Logic Synthesis

© IEEE 1984

The RTL description is then synthesized to a gate level description shown
above to unambiguously describes one possible implementation of the original
behavioral algorithm specified as a flow graph.

31

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

31

Behavioral
Synthesis

Dataflow
Input/Outputs
Memory accesses
Constraints

Datapath
Memory
Controller
(State
machine)

Behavioral Synthesis

l The input to a behavioral synthesis system describes the
dataflow, input/output constraints, memory accesses, and
user defined constraints (sample period, latency…).

l The output of the behavioral synthesis system provides
the datapath, registers, memories, I/O structures, and a
state machine-based controller that satisfies the same test
bench as the input.

We now describe the term behavioral synthesis in some detail. We have used
the Behavioral Compiler  from Synopsys as a reference tool for this
description in terms of the scope of behavioral synthesis.

32

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

32

Complex Multiplication: Z = (a + b j) * (c + d j).
Input Data: Available serially a, b, c, d.
Real { Z } = Real part of Z = a*c - b*d
Im { Z } = Imaginary part of Z = a*d + b*c
Output Constraints: Real { Z } and Im { Z } to be available
 on separate ports
Find Best Design (Area, Latency, Throughput, …)Data flow

I/O Constraints

User Constraints Algorithmic level description

Behavioral Synthesis Example
(Cont.)

l Design Specification:

We use a language-based (VHDL) description of the input specification. Note
that these tools do not support the entire subset of the language. This is a
pseudo-code description of the input specification.

33

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

33

Data flow Graph Representation

x

x

x

x

-

+

a

b

c

d

Re{Z}

Im{Z}

Cycle I/O, Memory

2

3

4

..

 N

1 Input B

Input C

Input D

Compute Re(Z),Im(Z)

Output Results

0

Input to Behavioral Synthesis

The data flow graph and I/O schedule are
captured in a VHDL input description

Input A
5 bits 10 bits

We also have to capture the constraints on the input and the output timing and
input it together with the algorithmic description of the previous slide. For
simplicity, we assume the input is fed in serially, while the output results occur
in parallel.

A dataflow graph is one way of representing the behavior described in VHDL.
Neither Behavioral Synthesis or VHDL are limited to what can be expressed in
a “simple” dataflow graph, and often an expression of control flow is
necessary as well.

34

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

34

Input in Behavioral VHDL

Library IEEE
Use IEEE.Numeric_STD.all
Entity complexb_nty is
 port (datain_p: in unsigned (4 downto 0);
 output_re, output_im :
 out unsigned (9 downto 0));
 end complexb_nty;

Architecture complexb_a of complexb_nty is
begin
behave: process
variable a, b, c, d : unsigned (4 downto 0);
begin
calc: loop
wait until clk’event and clk =‘1’;
a := datain_p;
wait until clk’event and clk =‘1’;

b := datain_p;
wait until clk’event and clk =‘1’;
c := datain_p;
wait until clk’event and clk = ‘1’;
d := datain_p;

-- Computation begins

Output_re <= a*c - b*d ;
Output_im <= a*d - b*c ;

end loop;

end process;

end complexb_a; Single process architecture

IEEE Synthesis Package

User specifies
arithmetic ops
independent of
clock (clk) event.

I/O Constraints

Dataflow

The “English/pictorial” specification of the previous slide is captured in an
executable form in the specification shown above that can be input to (read by)
a behavioral synthesis tool.

35

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

35

Results from Behavioral
Synthesis

READ A B C D

MULT_1 A*C A*D

MULT_2 B*C B*D

ADD_1 AC*-B*D

ADD_2 A*D+B*C

Cycles 0 1 2 3 4

Metric Value

Area 1700 gates

Latency 250 ns

Multipliers Two

Adders Two

Design Objective 1: Fast Implementation
Clock cycle: 50 ns

Fast Small Power

Design Objective
Area = 1700 gates
Latency = 5*50 = 250 ns
Multipliers = Two
Adder = Two

The user has the option of choosing the design objective --- fast design, small
area design, or a low power design. When the “fast” design option is chosen,
as in this slide, two multipliers and two adders are allocated by the synthesis
tools and the algorithm is mapped to this structure resulting in the schedule
shown in the figure.

While the output is in gates format (as actually produced by the Synopsys
Behavioral Compiler) the metrics are represented on the right corner. The
interconnect area is not considered.

36

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

36

Results from Behavioral
Synthesis (Cont.)

Design Objective

Fast Small Power

Design Objective 2: Small Area
Clock period: 50 ns

Cycles 0 1 2 3 4 5 6 7

READ A B C D

MULT_1 A*C A*D B*C B*D

ADD1 A*D+B*C A*C+B*D

Area = 1250 gates
Latency = 7*50 = 350 ns
Multipliers = One
Adder = One

When the same design is input to the behavioral synthesis tool and “small”
option is chosen, the synthesis tool attempts to minimize the area by choosing
only one multiplier and adder. This results in a small design, albeit a slower
one. This exploration is performed by the tool and not by the user, though the
user makes a choice of the constraints

These are actual figures obtained from Synopsys Behavioral Compiler tutorial
documentation.

[Synopsys97]

37

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

37

Characteristics of Behavioral
Synthesis

l Pros
¡ User inputs behavioral-level

VHDL code that is short,
easy to write, and verify,
leading to increased
productivity

¡ The synthesis tools perform
the tasks of resource
allocation, assignment,
scheduling, and optimize
area, latency, and power
dissipation based on user
input

¡ Output from a behavioral
synthesis tool can be
starting point for RTL
synthesis tools for further
optimization.

l Cons
¡ Supports a very small

subset of VHDL (e.g., single
process architectures).

¡ Non-standard
implementations depending
on tool vendors

¡ Currently supports
application specific areas
(such as DSP) with primarily
loop-dominated
computational flow graphs

¡ Ability to handle larger
graphs (more than a few
dozen operations) limited

¡ Needs supporting high level
libraries of components

We have listed our view of the pros and cons of using a behavioral synthesis
tools. Clearly they have the advantage of reducing the burden on the designer
when dealing with a domain specific design that has a sufficient number of
constraints to provide a limit on the number of implementation choices.

38

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

38

Datapath
Controller
(State machine)
Clock-edge
timing

RTL Synthesis

Random logic
Datapath blocks
Registers
Inferred memories
Clock-edge timing

RTL Synthesis

l Input to the RTL synthesis environment includes the number of
data path components (adders, multipliers,…), the mapping of
operations to data path components, and a controller (finite state
machine) that contains the detailed schedule (related to clock
edge) of computational, I/O, and memory operations.

l Output of the RTL synthesis provides logic level implementations
that can be evaluated through the optimization of the data path,
memory, and controller components, individually or in a unified
manner, through mapping to gate-level component libraries and
limited resource sharing.

RTL synthesis requires an input description that is more detailed with respect
to scheduling and clock-edge related behavior. The number of data path
components and the scheduling is performed prior to input to the synthesis
tool. This highly constrained design is then converted to lower levels by the
synthesis tools.

RTL synthesis tools, typically, operate more like tools that permit capture of
the design specification at the RTL level, as opposed to performing extensive
optimizations in the quality of the architecture, latency, or area.

Their primary merit is that they raise the design entry abstraction level from
the logic/gate-level to the RTL arena.

RTL synthesizers allow the user to benefit from mapping RTL level
components directly to optimized RTL components from vendor libraries
resulting in faster synthesis.

Most RTL synthesizers allow push-button optimizations for finite state
machines (FSM) if they follow one of the allowed templates.

39

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

39

RTL Synthesis Example

l Design Specification

Multiply Accumulate (MAC): Z = A*B + C
Input data: Available serially
Computation: Z = A*B + C
Available Hardware: 1 Multiplier, 1 Adder
Output: Z available at end of computation.

REG1REG2

MULT

ADD

A

B

C

Z

Finite State
Machine (FSM)

Clock

REG3

REG4

Le_add

Le_mult

Le_Z

REG5

Data path

We now describe in “English/pictorial form” the design input specification
required by an RTL synthesis tool. Note the requirement for additional detail
beyond what is needed for behavioral synthesis in terms of the number of data
path units, and the initial scheduling that must be specified up front.

What’s in the blue box above would not be input into an RTL synthesis tool,
rather the states are defined and what occurs at those states is defined so an
RTL description is what is input e.g.,

 C1: load A->Reg1, b->Reg2

C2: mult(Reg1, Reg2)

C3: store mult_out->Reg4

c3: load C->Reg3

C4: add(reg4, reg3)

c5: store add_out-reg5

40

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

40

RTL VHDL Input

The architecture consists of a datapath and two finite state machine (FSM) processes

Datapath: process
variable reg_1, reg2 : unsigned (4 downto 0);
variable reg_3, reg_4, reg_5: unsigned (9 downto 0);
begin
wait until clk’event and clk’event=‘1’;
if le_reg1 = ‘1’ then reg1 := a;
end if;
if le_reg2 = ‘1’ then reg2 := b;
end if;
if le_reg3 = ‘1’ then reg3 := c ;
end if;
if le_mult = ‘1’ then reg4 := reg1 * reg2;
end if ;
if le_add = ‘1’ then reg5 := reg4 + reg3;
end if
if le_z = ‘1’ then output <= reg5 ;
end if;
end process;

Fsm: process(clk, reset);
begin
if clk’event and clk =‘1’ then
ir reset = ‘1’ then cur_state <= s0;
else cur_state <= next_state;
end if; end process;
state_machine:
process (cur_state, reset)
begin
case cur_state is
 when s0 => next_state <= s1;
 le_reg1 <= ‘1’;
when s1 => next_state <= s2;
 le_reg2 <= ‘1’;
when s2 => next_state <= s3;
 le_reg3 <= ‘1’;
when s3 => next_state <= s4;
 le_mult <= ‘1’;
when s4 => next_state <= s5;
 le_add <=‘1’;
when s5 => next_state <= s0;
 le_z <= ‘1’; end case; end process;

Behavior at each clock edge is specified

Area = 1400 gates, Latency = 300ns

This is a typical input to a RTL synthesis tool (such as Mentor’s Autologic or
Synopsys’ Design Compiler) showing both the control flow and the detailed
clock-related timing (data flow).

41

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

41

Characteristics of RTL
Synthesis

l Pros
¡ Allows capture of a digital

design at the RTL level in
VHDL - improving
productivity over logic
synthesis tools

¡ Allows manual mapping to
libraries of high-level
components (multipliers,
adders)

¡ More control over the
synthesis process in terms
of final architecture

¡ Provide several templates
for VHDL semantics for state
machine optimization

¡ IEEE RTL VHDL standard, ‘97

¡ Supports a large subset of
VHDL

l Cons
¡ Up until 1997, each vendor

supported a different RTL
subset of VHDL

¡ Requires specification of the
datapath, registers,
controller, and cycle-by-
cycle behavior

¡ Resource sharing, resource
allocation, scheduling, and
mapping tasks have to be
carried out by the designer
prior to coding at the RTL
level, limiting architectural
exploration.

¡ Allows no architectural
exploration, and the
synthesizer optimizes at the
level of the components and
states

These are viewpoints of this module developer (Madisetti) and do not reflect
the views of DARPA or the RASSP program.

42

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

42

Logic Synthesis

l Logic synthesis optimizes the Boolean equations
generated by RTL synthesizers and maps them to
technology specific gate-level implementations utilizing
detailed functional and timing information from technology
libraries.

l The operations in the logic synthesis process include
multilevel minimization, factorization, and equation
flattening so that area, power, and timing metrics are
optimized in some manner.

l Few EDA vendors, such as Synopsys, do not distinguish
clearly between the tasks of RTL synthesis and logic
synthesis.

l The techniques for logic synthesis are well understood
within the design community, and usually taught at
universities in the first digital design course.

Several undergraduate texts cover the area of logic synthesis in some detail.

See for instance: [Brayton84]

43

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

43

Summary of VHDL-Based
Synthesis

Behavioral Synthesis

RTL Synthesis

Logic Synthesis

VHDL Specification

Test Insertion/Gate-level
Timing/Optimization

Floor plan, place & route

RTL Simulation

Gate-level Simulation

Verification

To
Vendor

We have briefly shown the primary plusses and minuses of the three main
types of synthesis tools - behavioral, RTL and logic synthesis. The above
flow chart describes one way in which these different levels of abstraction can
be used within a top down design process. One of the benefits of VHDL is its
executable nature that permits validation and verification of the design at one
or more levels of abstraction. Note that the VHDL Specification can be fed
into one of the upper three levels on the right (Behavioral, RTL or Logic)
depending on the tool being used.

VHDL supports synthesis in many ways - design entry, specification,
documentation, simulation, and verification

Synthesis tools do not support all features described in VHDL LRM

VHDL provides an environment for both design and its test, unlike proprietary
languages for synthesis .

Synthesis at higher levels of abstraction, e.g., behavioral synthesis, improves
productivity for smaller (few thousand gates) application-specific domains
(e.g., DSP). Non-standard support for behavioral synthesis by EDA vendors
and less control over process is a problem

RTL synthesis provides a good compromise between raising the level of
abstraction and also providing control over the synthesis process and the
optimization of the result. In addition, RTL synthesis is now supported by
IEEE standardization efforts.

44

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

44

Module Outline

l Introduction to Synthesis

l VHDL-Based Synthesis

l IEEE Synthesis Packages for VHDL
l IEEE RTL (Synthesis) Subset for VHDL

l Synthesis with IEEE RTL Subset

l Optimizations Used in Synthesis

l VHDL Coding Guidelines Supporting Optimization

l Summary

We will now describe VHDL Packages standardized by IEEE standards
community. In the past, each vendor used (and supported) a different set of
packages for synthesis, leading to variety of migration problems.

45

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

45

These two standards will be introduced in
this synthesis module.

IEEE Support for Synthesis

l IEEE Std 1076-1993 VHDL
Language Reference
Manual (LRM)

l IEEE Std 1164-1993, IEEE
Standard Multivalue Logic
System for VHDL Model
Interoperability
(STD_LOGIC_1164)

l IEEE Std 1076.3-1997 IEEE
Standard Synthesis
Packages (NUMERIC_BIT
and NUMERIC_STD).

l IEEE Std 1076.6-1999 IEEE
VHDL Register Transfer
Level (RTL) Synthesis

Modules 10 through 13 introduce IEEE Std 1164-1993 and IEEE Std 1076-
1993 which is the VHDL LRM.

In the remainder of this module, we’ll cover the two developments shown on
the right - IEEE Std 1076.3-1997, a set of synthesis packages, and the other,
IEEE Std 1076.6-1999, a standard for standardization of the synthesis subset.

46

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

46

VHDL Packages for Synthesis
Arithmetic Packages

l All synthesis tools support some type of arithmetic
packages

l Synopsys developed packages based on std_logic_1164
package - supported by many other synthesis tools
¡ std_logic_arith

¡ std_logic_signed

¡ std_logic_unsigned

l Actel synthesis tools support their own package
¡ asyl.arith

l IEEE has developed standard packages for synthesis IEEE
Std. 1076.3
¡ Numeric_Bit

¡ Numeric_Std

All synthesis tools support some type of arithmetic package - that is, a package
that contains operators like addition, subtraction, multiplication, etc.

When synthesis tools began to appear, each tool vendor created their own
arithmetic package. Synopsis created packages for general arithmetic, and
signed and unsigned arithmetic called std_logic_arith, std_logic_unsigned, and
std_logic_signed. These became “de facto” standards and other tool vendors
began to support them. In 1997, the IEEE came out with a set of standard
packages for synthesis. These are defined in IEEE std. 1076.3-1997 IEEE
Standard VHDL Synthesis Packages.

These packages are called numeric_bit, for arithmetic operations on standard
VHDL BIT types, and numeric_std for arithmetic operations on std_logic
types.

47

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

47

IEEE Synthesis Packages

l IEEE Standard VHDL Synthesis Packages (1076.3 NUMERIC_STD
and 1076.3 NUMERIC_BIT) define numeric types and

arithmetic/logic functions for use by synthesis tools. Vendors

may not change the specified interfaces or simulation

descriptions of the package declarations. Interestingly, IEEE

1076.6 Synthesis RTL subset does not support some operations,

e.g., sra specified in IEEE 1076.3.

l NUMERIC_BIT replaces STD_LOGIC in NUMERIC_STD with BIT

and BIT_VECTOR (so the following declarations are similar).

Two primary “vector” data types defined by IEEE 1076.3 NUMERIC_STD:
type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
type SIGNED is array (NATURAL range <>) of STD_LOGIC;
Signed numbers are represented in two’s complement form

We now list the package (and not the package body) in the slides that ensure.
One motivation for this module is to teach the reader how to write
synthesizable VHDL, and the availability of the functions in the package is
necessary (admittedly, dry reading). The beginner reader may skip the next
few slides.

48

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

48

 TYPE std_ulogic IS ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);

 TYPE std_ulogic IS ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);

¡std_logic type - resolved std_ulogic type

USE IEEE.std_logic_1164.ALL;USE IEEE.std_logic_1164.ALL;

VHDL Packages for Synthesis
Base Types

l Standard bit types may be used

l Typically IEEE Std. 1164 types are used
¡ std_ulogic type

q Values ‘U’, ‘X’, ‘W’, and ‘-’ are called metalogical
values for synthesis

Not all types are supported in synthesis, and thus the Synthesis Packages
ensure that designers use data types that can be synthesized. For instance,
floating point support has not been standardized.

49

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

49

FUNCTION “and” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “nand” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “or” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “nor” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “xor” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “xnor” (l,r : std_ulogic;) return ux01;
FUNCTION "not" (l,r : std_ulogic) RETURN UX01;

FUNCTION “and” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “nand” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “or” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “nor” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “xor” (l,r : std_ulogic;) RETURN UX01;
FUNCTION “xnor” (l,r : std_ulogic;) return ux01;
FUNCTION "not" (l,r : std_ulogic) RETURN UX01;

¡Conversion functions

FUNCTION To_bit(s:std_ulogic) RETURN bit;
FUNCTION To_bitvector(s:std_ulogic_vector) RETURN bit_vector;
FUNCTION To_StdULogic(b:bit) RETURN std_ulogic;

FUNCTION To_bit(s:std_ulogic) RETURN bit;
FUNCTION To_bitvector(s:std_ulogic_vector) RETURN bit_vector;
FUNCTION To_StdULogic(b:bit) RETURN std_ulogic;

VHDL Packages for Synthesis
Base Types (Cont.)

l The std_logic_1164 package also contains:
¡ Vectors of std_ulogic and std_logic

¡ Subtypes of std_logic - X01, X01Z, UX01, UX10Z
¡ Logic functions with various arguments - std_ulogic,

std_logic, std_logic_vector

We continue with a description of supported types.

50

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

50

VHDL Packages for Synthesis
Base Types (Cont.)

¡ Unknown functions

FUNCTION rising_edge (SIGNAL s:std_ulogic) RETURN boolean;
FUNCTION falling_edge (SIGNAL s:std_ulogic) RETURN boolean;

FUNCTION rising_edge (SIGNAL s:std_ulogic) RETURN boolean;
FUNCTION falling_edge (SIGNAL s:std_ulogic) RETURN boolean;

¡ Clock edge functions

FUNCTION Is_X (s:std_ulogic_vector) RETURN boolean;
FUNCTION Is_X (s:std_logic_vector) RETURN boolean;
FUNCTION Is_X (s:std_ulogic) RETURN boolean;

FUNCTION Is_X (s:std_ulogic_vector) RETURN boolean;
FUNCTION Is_X (s:std_logic_vector) RETURN boolean;
FUNCTION Is_X (s:std_ulogic) RETURN boolean;

A number of vendors used to support a variety of functions (defined within
packages) that were related to clock-edge behavior. The IEEE VHDL
package has defined the functions “rising_edge” and “falling_edge” that can
now ensure that RTL code is portable from one synthesis environment to
other.

51

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

51

Module Outline

l Introduction to Synthesis

l VHDL-Based Synthesis

l IEEE Synthesis Packages for VHDL

l IEEE RTL (Synthesis) Subset for VHDL
l Synthesis with IEEE RTL Subset

l Optimizations Used in Synthesis

l VHDL Coding Guidelines Supporting Optimization

l Summary

We have introduced the synthesis process, various types of synthesis, support
for synthesis using VHDL, and IEEE packages for synthesis. We are now
ready to understand the IEEE RTL Synthesis, IEEE 1076.6-1999, subset that
became an IEEE standard in 1999. We will describe the syntax and the
semantics of the IEEE VHDL RTL Synthesis Subset. We again assume that
the reader is familiar with VHDL.

52

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

52

IEEE RTL VHDL Subset

l The standard for VHDL Register Transfer Level Synthesis
is IEEE Std 1076.6-1999.

l The purpose of the standard is to define a syntax and
semantics for VHDL RTL synthesis. It defines a subset of
IEEE 1076 (VHDL) that is intended to be used in common
by all RTL synthesis tools. This will allow designers to
produce well-defined designs whose functional
characteristics are independent of any particular synthesis
environment.

l Compliant tools may have features above and beyond
those required by the standard.

The slide describes the history of the Synthesis Subset
(http://www.vhdl.org/siwg/)

53

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

53

IEEE 1076.6 Definitions

l Model Compliance - A VHDL model shall be defined to be compliant
to IEEE 1076.6 if the model:

¡ uses only constructs described as supported or ignored by IEEE
1076.6

¡ adheres to the semantics prescribed by this standard.

l Tool Compliance - A synthesis tool shall be defined as being
compliant with this standard if the tool:

¡ accepts all models that adhere to the model compliant definition
above

¡ supports language related pragmas defined by the standard

¡ conforms to the verification requirements (Clause 5) of the standard.
Note: Shall indicates that mandatory requirements are to be strictly followed in
order to be compliant with the standard with no deviation allowed.
Should indicates that a certain course of action is preferred but not
necessarily required. May indicates that a course of action is permissible within
the limits of the standard.

It is important to note the difference between “shall”, “should” and “may” at
this point in the module. One should proceed further only after noting the
importance of the distinction between these closely related terms and their
impact on the tools being developed that support the RTL Synthesis standard.

54

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

54

Terminology

l A synthesis tool interprets a VHDL construct if it produces
something that represents the construct. A synthesis tool accepts
a VHDL construct if it allows that construct to be a legal input. A
synthesis tool is not required to interpret every VHDL construct it
accepts, but only required to interpret those constructs required
by the IEEE Synthesis standard 1076.6.

l Constructs are classified into the following:

¡ Supported: RTL synthesis shall interpret a construct, i.e., map
it to hardware

¡ Ignored: RTL synthesis shall ignore the construct.
Encountering this construct shall not cause synthesis to fail,
but the synthesis results may not match the simulation
(verification) results. The RTL synthesis tool may inform the
user that the construct is not defined by the standard.

¡ Not Supported: RTL synthesis does not support the construct.
RTL synthesis does not expect to encounter the construct and
the failure mode shall be undefined.

This slide describes the context within which the IEEE RTL Synthesis subset
standard operates.

55

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

55

Predefined Synthesis Types

l A compliant synthesis tool shall support the following types:

¡ BIT, BOOLEAN and BIT_VECTOR (defined in IEEE VHDL LRM)

¡ INTEGER (defined in IEEE VHDL LRM)

¡ STD_LOGIC, STD_LOGIC_VECTOR, STD_ULOGIC,
STD_ULOGIC_VECTOR (defined in IEEE Std 1164-1993)

¡ SIGNED and UNSIGNED (defined in NUMERIC_STD in IEEE
1076.3)

¡ SIGNED and UNSIGNED (defined in NUMERIC_BIT IEEE
1076.3)

l In addition, the synthesis tool shall support user-defined types
and derived types according to a set of rules.

l If a type with a metalogical value (U, W, X, ..) is used in a VHDL
model, it will have an ancestor type that belongs to IEEE 1164-
1993.

l If a VHDL construct is struck out (e.g., file) it is not supported by
synthesis tools, and if underscored (e.g., assert) it is ignored.

Information on the IEEE Synthesis Standard draft document can be obtained
from http://vhdl.org/siwg.

56

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

56

Verification Methodology

l General IEEE 1076.6 Verification Methodology

VHDL Model

Synthesized
Circuit

Output
ports

Are A and B are equivalent
when outputs are sampled at
certain predefined times ?

Input ports

Input ports

A

B

The IEEE standard requires that the VHDL model and the resultant
synthesized circuit be equivalent as described by the slide.

57

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

57

Verification (Cont.)

l Combinational circuits
¡ apply inputs

¡ wait for settling time

¡ compute outputs

¡ wait for transients to
settle

¡ sample and measure
outputs

¡ oscillatory behavior is
disallowed.

l Sequential circuits
¡ same procedure as

combinational circuits,
except that checking
should be done just
before the active clock
edge. Sufficient time
must be allowed for all
transients to settle down.

¡ For level-sensitive
models other methods
may be followed.

Note: Input data shall not contain unknowns or metalogical values, and must
take into account set up and hold times. The input stimulus may also need to
reset internal storage elements to specific logical values before comparison.

The “equivalence” relation of the previous slide is interpreted for
combinational and sequential circuits differently, as noted above.

58

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

58

VHDL RTL Keywords

abs
access
after
alias
all
and
architecture
array
assert
attribute

begin
block
body

Buffer
bus

case
component
configuration
constant

disconnect
downto
else
elsif
end
entity

Exit

file
for
function

generate
generic
group
guarded

if
impure
in

Inertial
inout
is

label
library
linkage
literal
loop

map
mod

nand
new

Next
nor
not
null

of
on
open
or
others
out

package
port
postponed

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

All the keywords used in VHDL are depicted in this slide and the following
slide. The supported keywords for synthesis (1076.6) are show in normal font,
while the ignored keywords are shown underlined. The keywords that are not
supported are in bold italics.

59

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

59

VHDL RTL Keywords
(cont.)

procedure
process
pure

range
record
register
reject
rem
report
return
rot
ror

select
severity

shared
signal
sla
sll
sra, srl

subtype

then
to
transport
type

unaffected
units
until

use

variable

wait
when

while (in loop)
with

xnor
xor

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

60

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

60

VHDL RTL Syntax Key

Concurrent Statements
process
block
concurrent procedure call
concurrent assertion
concurrent signal assignment
component instantiation
generate statement

Design Entities
Entities &
Architectures
Packages
Package body
Configuration
Subprograms

Types
scalar
composite
access
file

Declarations
Type & subtype
Objects
Attributes
Components
Group

Sequential Constructs
wait
report, assert
signal assignment
procedure
if, case, loop & next

Specifications
attributes
configurations
names

Expressions
arithmetic
logic
comparison
shift, resize

Note: many allowed features are
supported partially.

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

While many features of VHDL are supported, not all of them are supported
fully. Thus it is important to rely on the syntax descriptions to see which
features are supported, as trivial examples cannot convey these attributes in
detail.

While the following set of slides may appear formal and too detailed, the
reader would agree that this level of understanding is necessary for any serious
design exploration using VHDL.

61

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

61

 VHDL RTL Types

Scalar
Enumeration
Integer
Physical
Floating point

Composite
Array
Record

Access File

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

The reader may note that the physical and floating point types are ignored,
while the access and file types are not supported in synthesis.

62

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

62

Example: One-hot coding
attribute enum_encoding: string;
type snack is (donut, biscuit, idli, cake);
attribute enum_encoding of snack:
 type is “1000 0100 0010 0001” ;

Example: Integer range
integer range 8 to 10;
-- is synthesized the same way (4 bits) as
integer range 0 to 15;

VHDL RTL Synthesis
Scalar Type

l Enumeration
¡ Enumeration types shall be

supported, and BIT, BOOLEAN,
and STD_ULOGIC will be
mapped to single bits.
Severity_level is ignored

¡ The user may override default
mapping of enumerated types
through use of enum_encoding
attribute. File_open_kind,
file_open_status are not
supported.

l Integer
¡ integer types are supported and

subtypes NATURAL and
POSITIVE are supported

¡ Recommendation that tool
should convert integer type to
bit_vector during
implementation. If range has
only positive values, use
UNSIGNED, if negative/positive
use SIGNED representation in
NUMERIC_BIT.

¡ Integer ranges are synthesized
as if 0 is included in range.

We now describe how the scalar types that are supported in synthesis.

63

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

63

RTL Scalar Types

l Physical Types
¡ Physical types, other than

TIME, shall not be
supported.

¡ Declarations of objects
(signals and variables) of
type TIME shall be
ignored.

¡ Reference to objects of
type TIME may only occur
within constructs such as
the after clause in VHDL.

l Floating Point Types
¡ Floating point types

declarations shall be
ignored.

¡ Reference to objects of
type floating point may
only occur within
constructs such as the
after clause in VHDL

Continuation of the description of scalar types that are supported in VHDL .

64

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

64

Composite Types

l Array
¡ Array type definition is

supported

¡ constrained and
unconstrained arrays are
supported

¡ index of array shall contain
exactly one discrete range ---
bounds of the index range
shall be specified directly or
indirectly as static values of
integer type

¡ null ranges are not
supported, and range shall
return integer values

¡ predefined array types shall
be supported.

l Record
¡ Record type shall be

supported

We describe the composite types that are supported in Synthesis. Both array
(matrices) and record types are supported.

65

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

65

 RTL VHDL Declarations

l Type declarations
¡ Subtype declarations

l Object declarations
¡ Constant declarations

¡ Variable declarations

¡ Signal declarations

¡ File declarations

¡ Interface declarations

¡ Alias declarations

l Attribute declarations

l Component declarations

l Group template
declarations

l Group declarations

l Configuration declaration

l Package declaration
l Entity declaration

l Subprogram declaration

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

This slide describes the supported and unsupported (and ignored) declaration
constructs in the RTL Synthesis Subset.

The following sections describe each of the declarations in further detail.

66

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

66

Type Declarations

l Declarations of type and
subtype shall be
supported

l Incomplete type
declarations shall not be
supported

l User-defined resolution
functions shall be ignored.

l Full access type
declarations or file type
definition shall not be
supported.

We describe in detail which features of the type declaration are supported.

67

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

67

Object Declarations

l Constant declarations
¡ Constant declaration shall be

supported
¡ Deferred constant declaration

shall not be supported

l Signal declarations
¡ Signal declarations shall be

supported
¡ signal_kind (register, bus) shall

not be supported

¡ initial value expressions shall be
ignored

¡ if signal is declared in package, it
must have an initial value

¡ assignment to signal declared in
package shall not be supported

l Variable declarations
¡ Variable declaration shall be

supported
¡ initial values shall be ignored
¡ shared variables shall not be

supported

l Interface (port) declarations
¡ interface signal, constant and

variable declarations supported

¡ interface file declarations
ignored

¡ linkage and bus modes not
supported

l Alias declarations
¡ the following attribute

declarations will be supported

Object declarations include constant, signal, variable and port declarations.
Some features of these declarations are supported and some are not as shown
above.

68

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

68

Supported Attribute
Declarations

l Supported pre-defined attribute designators

‘BASE, ‘LEFT, ‘RIGHT, ‘RANGE, ‘HIGH, ‘LOW, ‘REVERSE_RANGE,
‘LENGTH, ‘EVENT, ‘STABLE

‘EVENT and ‘STABLE shall only be used in the context of clock
edge sensitive statements in VHDL

Attributed
signal’LENGTH [(n)] is not supported, but signal’LENGTH is supported.

User defined attributes shall not be supported.

‘Event is preferred over ‘Stable, as the latter is active all the time in both
simulation and synthesis.

69

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

69

Component identifier is
 [local_generic_clause]
 [local_port_clause]
end component [component_simple_name];

Component Declarations

l Component declarations shall be supported with
the exception of the reserved word “is” as
follows:

The component statement (without the “is”) is supported in Synthesis.

70

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

70

RTL VHDL Expressions &
Operators

l Operators
¡ Logical Operators: and, or, nand, nor, xor, xnor

¡ Relational Operators: =, /=, < , <= , > , >=
¡ Shift Operators: sll , srl , sla , sra , rol , ror

¡ Adding Operators: + , - , &

¡ Sign Operators: + , -

¡Multiplying Operators: * , / , mod , rem
¡Miscellaneous Operators: ** , abs , not

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

The division (/), mod and rem operators are only supported when both
operands are static or when the right operand is a static power of 2.

The exponentiation (**) operand is supported when both operands are
static or when the left operand is a static power of 2.

Element and array aggregates shall be permitted, record aggregates
are not supported.

Precision is limited to 32 bits, and floating point expressions shall not be
supported.

71

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

71

l Generally, if the numeric_bit and numeric_std packages are
supported, the operators within them are supported
¡ Arithmetic operators - “abs”, “+”, “-”, “*”, “/”, “rem”, “mod”

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

ENTITY divider is
 PORT(divisor : IN unsigned(1 DOWNTO 0);
 dividend : IN unsigned(1 DOWNTO 0);
 quotient : OUT unsigned(1 DOWNTO 0));
END divider;

ARCHITECTURE behavior OF divider IS
 BEGIN
 quotient <= dividend / divisor;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

ENTITY divider is
 PORT(divisor : IN unsigned(1 DOWNTO 0);
 dividend : IN unsigned(1 DOWNTO 0);
 quotient : OUT unsigned(1 DOWNTO 0));
END divider;

ARCHITECTURE behavior OF divider IS
 BEGIN
 quotient <= dividend / divisor;
END behavior;

Operators

We show the synthesis of various operators in VHDL. These results are
outputs of Mentor’s Autologic Synthesis tool.

72

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

72

l Comparison operators - “>”, “<“, “<=“, “>=“, “=“, “/=“

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

ENTITY compare is
 PORT(a : IN unsigned(3 DOWNTO 0);
 b : IN unsigned(3 DOWNTO 0);
 aleb : OUT boolean);
END compare;

ARCHITECTURE behavior OF compare IS
 BEGIN
 aleb <= (a <= b);
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

ENTITY compare is
 PORT(a : IN unsigned(3 DOWNTO 0);
 b : IN unsigned(3 DOWNTO 0);
 aleb : OUT boolean);
END compare;

ARCHITECTURE behavior OF compare IS
 BEGIN
 aleb <= (a <= b);
END behavior;

Operators (Cont.)

The VHDL code describes how a comparison operator is synthesized.

73

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

73

l Shift and conversion operators - “shift_left”, “shift_right”,
“rotate_left”, “rotate_right”, “resize”, “to_integer”, “to_unsigned”

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

ENTITY shift_4 is
 PORT(a : IN unsigned(3 DOWNTO 0);
 b : IN unsigned(1 DOWNTO 0);
 y : OUT unsigned(3 DOWNTO 0));
END shift_4;

ARCHITECTURE behavior OF shift_4 IS
 BEGIN
 y <= shift_left(a,to_integer(b));
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

ENTITY shift_4 is
 PORT(a : IN unsigned(3 DOWNTO 0);
 b : IN unsigned(1 DOWNTO 0);
 y : OUT unsigned(3 DOWNTO 0));
END shift_4;

ARCHITECTURE behavior OF shift_4 IS
 BEGIN
 y <= shift_left(a,to_integer(b));
END behavior;

Operators (Cont.)

This slide describes the input VHDL code for the synthesis of the shift
operator.

74

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

74

Sequential Wait Statement

wait on signal_name ;

wait until boolean_condition ;

wait for time_expression;

label: wait until boolean_condition;

The wait statement

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note that only one wait per process is supported in synthesis. Thus we may
not be able to support asynchronous set/reset inputs if a process is also
sensitive to the clock. Wait for time_expression is ignored by the synthesis
tools.

75

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

75

Sequential Assert/Report

Label: assert condition [report expression] [severity expression]

Label: report expression [severity expression]

Assert statement is ignored, and the label statement is not supported.
The report statement is not supported.

Assert and Report Statements

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

76

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

76

Sequential Signal Assignments

Syntax of the signal assignment statement

 label: target <= [delay_mechanism] waveform ;

 delay_mechanism :: = transport |
 [reject time expression] inertial
 waveform :: = waveform_element (, waveform_element) |
 unaffected

 Supported: target, waveform
 Ignored: delay_mechanism, reserved word after
 Not supported: label, reject, inertial, unaffected, time_expression,
 multiple waveform_elements, null.

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

77

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

77

 Signal Assignment Examples

Examples of signal assignments in synthesis

 label: process -- label is supported for process
 begin
 wait until clk’event and clk= ‘1’; -- only one wait statement
 s1_s <= 10;
 s2_s <= 1 after 4 ns; -- “after” is ignored
 s3_s <= 1 after 5 ns, 25 after 54 ns25 after 54 ns; -- two expressions
 -- not allowed
 s4_s <= transport 10 ; -- transport is ignored
 s5_s <= transport 5 after 4 ns, 24 after 10 ns;
 -- inertial and reject not supported
 s6_s <= reject 10 ns inertial 10 after 5 ns;
 end process label;

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

78

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

78

Variable Assignment

Variable_assignment_statement ::= [label :] target := expression;

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: Labels are not supported. Array variable assignments are supported.

79

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

79

 If Statement in Synthesis

If_statement :: = [if_label:]
 if condition then
 sequence_of_statements
 { elsif condition then
 sequence_of_statements }
 [elsif
 sequence_of_statements]
 end if [if_label] ;

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: If a signal or variable is assigned under some values of the

conditional expressions in the if statement, but not for all values,

level-sensitive logic (latches) may result in the synthesis result.

Latches may also be synthesized if signal or variable is assigned

in all conditional expressions, especially if the variable is read

before it is written.

80

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

80

Case Statement in Synthesis

Case_statement :: = [case_label :]
 case expression is
 case_statement_alternative
 { case_statement_alternative }
 end case [case_label] ;

 case_statement_alternative ::=
 when choices => sequence_of_statements

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: If a signal or variable is assigned in some branches of the

case statement, but not in all, level-sensitive sequential logic may

result.

If a metalogical value occurs as a choice, or as an element of a choice,
the synthesis tool may interpret it as a choice that may never occur. If
only a certain metalogical value occurs in a case statement, the others
choice must cover the missing values.

81

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

81

Loop Statement in Synthesis

Loop_statement ::= [loop_label:]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_label] ;

 iteration_scheme ::= while condition
 | for loop_parameter_specification

 parameter_specification ::= identifier is discrete_range

 discrete_range ::= discrete_subtype_indication | range

word (black bold italic) implies that the keyword is not supported in synthesis
underlined word implies the construct is ignored during synthesis

Note: Bounds of the discrete shall be specified directly or indirectly as static
values belonging to the integer type.

82

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

82

Loop Examples in Synthesis

-- following errors are examples of correct VHDL code
-- that is not supported for RTL synthesis (IEEE 1076.6)
Type states_typ is (idle, busy, waiting);
process:
variable count v : natural := 0;
begin
 -- loop counter is implicitly defined of states_typ ;
 -- implicit definition is not supported for synthesis
 for states_i in states_typ loop
 -- loop statements here
 end loop;
 -- max_v is example of dynamic range - not supported
 for count_I in 1 to max_v loop
 -- loop statements here
 -- loop parameters should be of integer type
 end loop;
end process;

Errors

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

The errors are produced due to incorrect specification in the synthesis subset
(even though the simulation may work correctly). The reasons for the errors
are described in the comments within the code.

83

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

83

l Only For loops with integer range are supported
library IEEE;
use IEEE.std_logic_1164.all;

ENTITY shift4 is
 PORT(mode : IN std_logic;
 shift_in : IN std_logic;
 a : IN std_logic_vector(4 DOWNTO 1);
 y : OUT std_logic_vector(4 DOWNTO 1);
 shift_out : OUT std_logic);
END shift4;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY shift4 is
 PORT(mode : IN std_logic;
 shift_in : IN std_logic;
 a : IN std_logic_vector(4 DOWNTO 1);
 y : OUT std_logic_vector(4 DOWNTO 1);
 shift_out : OUT std_logic);
END shift4;

ARCHITECTURE behavior OF shift4 IS
 SIGNAL in_temp : std_logic_vector(5 DOWNTO 0);
 SIGNAL out_temp : std_logic_vector(5 DOWNTO 1);
 BEGIN
 in_temp(0) <= shift_in;
 in_temp(4 DOWNTO 1) <= a;
 in_temp(5) <= '0';
 comb : PROCESS(mode,in_temp,a)
 BEGIN
 FOR i IN 1 TO 5 LOOP
 IF(mode = '0') THEN
 out_temp(i) <= in_temp(i-1);
 ELSE
 out_temp(i) <= in_temp(i);
 END IF;
 END LOOP;
 END PROCESS comb;
 y <= out_temp(4 DOWNTO 1);
 shift_out <= out_temp(5);
END behavior;

ARCHITECTURE behavior OF shift4 IS
 SIGNAL in_temp : std_logic_vector(5 DOWNTO 0);
 SIGNAL out_temp : std_logic_vector(5 DOWNTO 1);
 BEGIN
 in_temp(0) <= shift_in;
 in_temp(4 DOWNTO 1) <= a;
 in_temp(5) <= '0';
 comb : PROCESS(mode,in_temp,a)
 BEGIN
 FOR i IN 1 TO 5 LOOP
 IF(mode = '0') THEN
 out_temp(i) <= in_temp(i-1);
 ELSE
 out_temp(i) <= in_temp(i);
 END IF;
 END LOOP;
 END PROCESS comb;
 y <= out_temp(4 DOWNTO 1);
 shift_out <= out_temp(5);
END behavior;

Sequential Loop Statements

A loop conforming to the IEEE VHDL RTL syntax is synthesized using
Mentor’s Autologic tool as shown above.

84

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

84

Miscellaneous Sequential RTL
Statements

l Next
¡ next_statement ::= [label:]

next [loop_label] [when
condition];

l Exit
¡ exit_statement ::= [label:] exit [

loop_label] [when condition] ;

l Null
¡ null_statement ::= [label:] null ;

l Return
¡ return_statement ::= [label]

return [expression] ;

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

85

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

85

Concurrent Statements

l Block statement

l Process statement

l Concurrent procedure call

l Concurrent assertion

l Concurrent signal assignment
statement

l Component instantiation
statement

l Generate statement

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

All the concurrent statements in VHDL are supported, though some of them
are only supported partially. This is the reason why we have to study the
syntax diagrams in detail, or our knowledge of the synthesis subset will be
superficial at best.

86

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

86

Block Statement in Synthesis

Block_statement ::= block_label: block [(guard_expression)] [is]
 block_header
 block_declarative_part
 begin
 block_statement_part
 end block [block_label];

block_header ::= [generic_clause [generic_map_clause;]]
 [port_clause [port_map_clause;]]
block_declarative_part ::= { block_declarative_item}
block_statement_part ::= { concurrent_statement }

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: the component instantiation statement is more powerful and useful than
the block statement.

87

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

87

Process Statement in
Synthesis

Process_statement::=
 [process_label:] [postponed] process [(sensitivity_list)] [is]
 process_declarative_part
 begin
 process_statement_part;
 end process [process_label];
process_declarative_part ::= { process_declarative_item }
process_declarative_item ::=
 | subprogram_declaration
 | subprogram_body
 | type_declaration | subtype_declaration | constant_declaration
 | variable_declaration | file_declaration | alias_declaration
 | attributed_declaration | attribute_specification | use_clause
 | group_template_declaration | group_declaration
 process_statement_part ::=
 { sequential_statement }

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

As can be observed, most features of the process statement are supported
including sensitivity lists.

88

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

88

Process Examples

The use of the process statement in the synthesis subset follows the
template below

Example: Process with clock and asynchronous set-reset
 process (<clock_signal> , <asynchronous_signals>)
 <declarations>
 if <condition1> then <sequential_statements>
 elsif <condition2> then <sequential_statements>
 else if <clock_edge> then <sequential_statements>
 end if ;
 end process;

Note: the sensitivity_list must include those signals that are read by the
process, except for those signals read only under the control of a clock edge .
The sensitivity_list usually contains the clock and the asynchronous signals
read by the process.

Note: asynchronous signals have higher priority and are level sensitive. A
clock edge appears only in the last else if statement. The sequential statements
cannot contain any if statement sensitive to the clock, or any wait statement.

89

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

89

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY aoi_process is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 y : OUT std_logic);
END aoi_process;

ARCHITECTURE behavior OF aoi_process IS
 SIGNAL zg1 : std_logic;
 BEGIN
 comb : PROCESS(a,b,c,zg1)
 BEGIN
 zg1 <= a AND b;
 y <= not(zg1 or c);
 END PROCESS comb;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY aoi_process is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 y : OUT std_logic);
END aoi_process;

ARCHITECTURE behavior OF aoi_process IS
 SIGNAL zg1 : std_logic;
 BEGIN
 comb : PROCESS(a,b,c,zg1)
 BEGIN
 zg1 <= a AND b;
 y <= not(zg1 or c);
 END PROCESS comb;
END behavior;

Process Statements
Example

This example shows the code containing a sythesizable process statement and
the result of the synthesis process (in this case a combinational circuit).

90

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

90

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY aoi_process is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 y : OUT std_logic);
END aoi_process;

ARCHITECTURE behavior OF aoi_process IS
 SIGNAL sig1 : std_logic;
 BEGIN
 comb : PROCESS(a,b,c)
 BEGIN
 sig1 <= a AND b;
 y <= not(sig1 or c);
 END PROCESS comb;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY aoi_process is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 y : OUT std_logic);
END aoi_process;

ARCHITECTURE behavior OF aoi_process IS
 SIGNAL sig1 : std_logic;
 BEGIN
 comb : PROCESS(a,b,c)
 BEGIN
 sig1 <= a AND b;
 y <= not(sig1 or c);
 END PROCESS comb;
END behavior;

a

y

 0 5 10 15 20

b

c

sig1

0

U

Process Statements
Incomplete Sensitivity List

Note that the sensitivity list did not contain sig1, and is thus incomplete,
resulting in possible difference between the synthesis and its simulation in
VHDL.

91

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

91

Sequential Signal Assignment
Statements

l Various types of signal assignment statements
inside a process statement (sequential signal
assignment statements) are supported
¡ IF statements

¡ Case statements

¡ Loop statement
q Only For loops supported

q Bounds must be specified as static values of an
integer type

qExit and Next statements supported (without
labels)

We describe a few sequential assignment statements with examples in this and
the following slides.

92

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

92

Concurrent Signal Assignment

Concurrent signal assignments shall be supported with the following
restrictions. Any after clauses shall be ignored. Multiple waveforms are
not supported, and clock-related edge specifications shall not be
allowed in concurrent signal assignments. Unaffected is not supported.
Transport, guarded and other delay_mechanisms are ignored. Two types
of concurrent assignments are allowed with some restrictions: conditional
and selected. A conditional select is equivalent to a “if process”, while a
selected signal assignment is equivalent to a “case process”.

Example: Signal assignments
architecture sig_a of sig_nty is
 begin
 B(6) <= A(4);
 B(2 downto 0) <= A(8 downto 6);
 B(8) <= A(0) after 10 ns;
 end sig_a;

The “after” keyword is ignored in synthesis. Concurrent signal assignments
are fully supported.

93

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

93

 Signal Assignment Examples

l Conditional assignment l Selected assignment

Conditional waveforms should not reference
elements of target signal, and the last when

condition is not supported.

Example: “Last when” statement
architecture examp_a of examp_nty is
 begin
 siga_s <= B when A(0) = ‘1’ else
 <= not B when A(1) = ‘1’ else
 “0000” when A(2) = ‘1’ and reset = ‘1’ else
 (others =>(‘1’));
 end examp_a;

Selected signal assignments allow
a last when, but the other restrictions
are similar to conditional assignment.

Example: “selected signal”
architecture examp_a of examp_nty is
begin
with A select
 siga_s <= B when “000000”,
 not B when “101010”,
 (others => (‘1’)) when “111111”,
 not A when others;
 end examp_a;

Note the presence and absence, respectively, of the “when” keyword in the
above examples.

94

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

94

Concurrent Signal Assignment
Statements

l Simple concurrent signal assignment statements are
supported
¡ Multiple waveform elements are not allowed

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY csa is
 PORT(a : IN std_logic;
 b : IN std_logic;
 y : OUT std_logic);
END csa;

ARCHITECTURE behavior OF csa IS
 BEGIN
 y <= a NOR b;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY csa is
 PORT(a : IN std_logic;
 b : IN std_logic;
 y : OUT std_logic);
END csa;

ARCHITECTURE behavior OF csa IS
 BEGIN
 y <= a NOR b;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY aoi_csa is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 y : OUT std_logic);
END aoi_csa;

ARCHITECTURE behavior OF aoi_csa IS
 SIGNAL sig1,sig2 : std_logic;
 BEGIN
 sig1 <= a AND b;
 sig2 <= c OR sig1;
 y <= NOT sig2;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY aoi_csa is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 y : OUT std_logic);
END aoi_csa;

ARCHITECTURE behavior OF aoi_csa IS
 SIGNAL sig1,sig2 : std_logic;
 BEGIN
 sig1 <= a AND b;
 sig2 <= c OR sig1;
 y <= NOT sig2;
END behavior;

Two examples of combinational synthesis without the use of processes are
illustrated in this slide.

95

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

95

l Concurrent conditional signal assignment
statements are supported - must end in else clause

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY mux2 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 sel : IN std_logic;
 y : OUT std_logic);
END mux2;

ARCHITECTURE behavior OF mux2 IS

 BEGIN
 y <= a WHEN (sel = '0') ELSE
 b WHEN (sel = '1') ELSE
 'X';
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY mux2 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 sel : IN std_logic;
 y : OUT std_logic);
END mux2;

ARCHITECTURE behavior OF mux2 IS

 BEGIN
 y <= a WHEN (sel = '0') ELSE
 b WHEN (sel = '1') ELSE
 'X';
END behavior;

Conditional Signal Assignment
Statements

The conditional if statement results in a multiplexor as shown in the example
above.

96

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

96

l Concurrent selected signal assignment statements
are supported

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY mux4 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 d : IN std_logic;
 sel : IN std_logic_vector(1 DOWNTO 0);
 y : OUT std_logic);
END mux4;

ARCHITECTURE behavior OF mux4 IS
 BEGIN
 WITH sel SELECT
 y <= a WHEN "00",
 b WHEN "01",
 c WHEN "10",
 d WHEN "11",
 'X' WHEN OTHERS;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY mux4 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 d : IN std_logic;
 sel : IN std_logic_vector(1 DOWNTO 0);
 y : OUT std_logic);
END mux4;

ARCHITECTURE behavior OF mux4 IS
 BEGIN
 WITH sel SELECT
 y <= a WHEN "00",
 b WHEN "01",
 c WHEN "10",
 d WHEN "11",
 'X' WHEN OTHERS;
END behavior;

Selected Signal Assignment
Statements

The selected signal assignment is an alternative realization of a multiplexor.

97

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

97

Concurrent Procedure Call

Concurrent procedure call statement ::=
 [label:] [postponed] procedure call;

word (black bold italic) implies that the keyword is not supported in synthesis
underlined word implies the construct is ignored during synthesis

Note: Different instantiations of the concurrent procedure call make different
associations between actual and formal parameters, but it is important for the
calling architecture to have visibility over the variables, signals being
associated. Files parameters are not supported by the RTL synthesis subset.

98

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

98

Structural VHDL

l Structural VHDL is supported
¡ Component declarations

¡ Binding Indications
¡ Component instantiations

l Lower level components must be made of
synthesizable constructs

Structural VHDL is used to describe netlists and interconnection of
components within VHDL, and is very useful within the digital design process.
A number of examples will illustrate VHDL’s support for structural synthesis.

99

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

99

Component Instantiation

Component_instantiation_statement ::=
 instantiation_label: [component] component_name
 [generic_map_aspect]
 [port_map_aspect] ;

Example: Use of components in synthesis

architecture version_a of version_nty is
component counter_nty
generic
 (mod_g : integer;
 countdly_g : integer);
 port (reset_p : in bit;
 clock : in bit) ;
 end component;
signal clock, reset_p: bit;

Begin
c1_counter: counter_nty
generic map
(mod_g => 4, countdly_g =>
6);
port map
(reset_p => reset_p,
 clock => clock);
end version_a;

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: only constants can have an initial value (of integer subtype), other

initial values (of signals and variables in generics) are ignored.

100

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

100

Structural VHDL
And-Or-Invert Example

l And gate, Or gate, and Inverter leaf cells

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY and2 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : OUT std_logic);
END and2;

ARCHITECTURE behav OF and2 IS
 BEGIN
 c <= a and b;
END behav;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY and2 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : OUT std_logic);
END and2;

ARCHITECTURE behav OF and2 IS
 BEGIN
 c <= a and b;
END behav;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY or2 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : OUT std_logic);
END or2;

ARCHITECTURE behav OF or2 IS
 BEGIN
 c <= a or b;
END behav;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY or2 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : OUT std_logic);
END or2;

ARCHITECTURE behav OF or2 IS
 BEGIN
 c <= a or b;
END behav;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY inv is
 PORT(a : IN std_logic;
 b : OUT std_logic);
END inv;

ARCHITECTURE behav OF inv IS
 BEGIN
 b <= not a;
END behav;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY inv is
 PORT(a : IN std_logic;
 b : OUT std_logic);
END inv;

ARCHITECTURE behav OF inv IS
 BEGIN
 b <= not a;
END behav;

This slide describes the components used as entity/architecture pairs.

101

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

101

Structural VHDL
And-Or-Invert Example

l And-Or-Invert structural
description
¡ Entity

¡ Architecture - component
declarations

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY aoi2_str is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 d : OUT std_logic);
END aoi2_str;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY aoi2_str is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 d : OUT std_logic);
END aoi2_str;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY aoi2_str is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 d : OUT std_logic);
END aoi2_str;

ARCHITECTURE structural OF aoi2_str IS

 COMPONENT and2
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : OUT std_logic);
 END COMPONENT;

 COMPONENT or2
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : OUT std_logic);
 END COMPONENT;

 COMPONENT inv
 PORT(a : IN std_logic;
 b : OUT std_logic);
 END COMPONENT;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY aoi2_str is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 d : OUT std_logic);
END aoi2_str;

ARCHITECTURE structural OF aoi2_str IS

 COMPONENT and2
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : OUT std_logic);
 END COMPONENT;

 COMPONENT or2
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : OUT std_logic);
 END COMPONENT;

 COMPONENT inv
 PORT(a : IN std_logic;
 b : OUT std_logic);
 END COMPONENT;

The components described in the previous slide are used in this slide as an
example of structural VHDL.

102

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

102

Structural VHDL
And-Or-Invert Example

l Architecture - binding indications, signal declarations,
component instantiations

 FOR ALL : and2 USE ENTITY work.and2(behav);
 FOR ALL : or2 USE ENTITY work.or2(behav);
 FOR ALL : inv USE ENTITY work.inv(behav);

 SIGNAL and_out : std_logic; -- signal for output of and gate
 SIGNAL or_out : std_logic; -- signal for output of or gate

 BEGIN
 AND_1 : and2 PORT MAP(a => a, b => b, c => and_out);

 OR_1 : or2 PORT MAP(a => and_out, b => c, c => or_out);

 INV_1 : inv PORT MAP(a => or_out, b => d);
END structural;

 FOR ALL : and2 USE ENTITY work.and2(behav);
 FOR ALL : or2 USE ENTITY work.or2(behav);
 FOR ALL : inv USE ENTITY work.inv(behav);

 SIGNAL and_out : std_logic; -- signal for output of and gate
 SIGNAL or_out : std_logic; -- signal for output of or gate

 BEGIN
 AND_1 : and2 PORT MAP(a => a, b => b, c => and_out);

 OR_1 : or2 PORT MAP(a => and_out, b => c, c => or_out);

 INV_1 : inv PORT MAP(a => or_out, b => d);
END structural;

Port map declarations are supported as shown in this slide.

103

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

103

Flatten and Optimize

Structural VHDL
AOI Results

The structural description is optimized and flattened further by logic synthesis
tools and results in the final implementation depicted in the bottom half of the
slide.

104

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

104

Generate Statement

Both the if-generate and for-generate forms shall be supported.

Example: generate in synthesis
…
begin
G1: for J in 0 to 3 generate
 G2: if J = 0 generate
 J1: d_ff port map (clear, count, ct(j));
 end generate G2;
G3: if J > 0 generate
 J2: d_ff port map (clear, ct(j-1), ct(j));
 end generate G3;
 q(j) <= ct(j);
 end generate G1;

Generate parameter should
be statically computable.

The generate statement is very useful in the construction of regular structures
consisting of a number of lower - level building blocks.

105

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

105

Design Entities in Synthesis

l Entity

l Architecture

l Configuration

l Component configuration

l Subprograms

l Package

l Package body

106

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

106

Entity Syntax in Synthesis

Entity_declaration ::=
 entity identifier is
 entity_header
 entity_declarative_part
 [begin entity_statement_part] end [entity]
 entity_simple_name;

Note: entity_header includes generic and port declarations without provision
for initial values for ports and certain restriction on types for generics
(e.g., integer for constants)

Entity_statement_part includes concurrent assertions and passive processes
etc., describing passive behavior for simulation monitoring purposes,
and is ignored by synthesis.

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: entity_header includes generic and port declarations without provision
for initial values for ports and certain restriction on types for generics (e.g.,
integer for constants)

Entity_statement_part includes concurrent assertions and passive processes
etc., describing passive behavior for simulation monitoring purposes, and is
ignored by synthesis.

107

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

107

Architecture Syntax

Architecture_body ::= architecture identifier of entity_name is
 architecture_declarative _part
 begin
 [architecture_statement_part]
 end [architecture] [architecture_simple_name] ;

 Architecture_declarative_part ::= { block_declarative_item }
 block_declarative_item ::=
 subprogram_declaration | subprogram_body | type_declaration
 constant_declaration | signal_declaration | shared_variable_declaration
 file_declaration | alias_declaration | component_declaration | attribute_declaration
 configuration_specification | disconnect specification | group_template_declaration
 group_declaration

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: user-defined attributes are not supported. Multiple architectures are
supported.

108

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

108

Configuration Syntax

Configuration_declaration ::=
 configuration identifier of entity_name is
 configuration_declarative_part
 block_configuration
 end [configuration] [configuration_simple_name] ;

Note: configuration declaration is only supported to the
extent of specifying which architecture would be linked to
the top-level entity of the synthesized design

Use clauses, attribute specifications, and group declarations
are not supported as part of the configuration_declarative_part.

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: configuration declaration is only supported to the extent of specifying
which architecture would be linked to the top-level entity of the synthesized
design.

Use clauses, attribute specifications, and group declarations are not supported
as part of the configuration_declarative_part.

109

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

109

Subprograms

Subprogram_declaration ::=
 subprogram_specification ;
subprogram_specification ::=
 procedure designator [{ formal_parameter_list }]
 | [pure | impure] function designator [{formal_parameter_list}]
 return type_mark
 designator ::= identifier | operator_symbol
 operator_symbol :: = string_literal

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: constant, variable, and signal parameters shall be supported, subject to
earlier restrictions. File parameters are not supported. Alias declarations shall
be ignored, and group declarations are not supported.

Resolution functions are ignored, with the exception of RESOLVED in
subtype STD_LOGIC. Operator overloading shall also be supported.

110

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

110

l Procedures and Functions are supported - with
limitations to allowed statement types
¡ Procedures and functions may be in a package or in the

declarative part of the architecture

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

PACKAGE logic_package IS

 FUNCTION majority(in1, in2, in3 : std_logic) RETURN std_logic;

 PROCEDURE decode(SIGNAL input : IN std_logic_vector(1 DOWNTO 0);
 SIGNAL output : OUT std_logic_vector(3 DOWNTO 0));

END logic_package;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

PACKAGE logic_package IS

 FUNCTION majority(in1, in2, in3 : std_logic) RETURN std_logic;

 PROCEDURE decode(SIGNAL input : IN std_logic_vector(1 DOWNTO 0);
 SIGNAL output : OUT std_logic_vector(3 DOWNTO 0));

END logic_package;

Procedures and Functions

Procedures and functions have restrictions on the VHDL syntax they can use,
similar to the restriction placed on VHDL architectures.

111

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

111

PACKAGE BODY logic_package IS

 FUNCTION majority(in1, in2, in3 : std_logic) RETURN std_logic IS
 VARIABLE result : std_logic;
 BEGIN
 IF((in1 = '1' and in2 = '1') or (in2 = '1' and in3 = '1') or
 (in1 = '1' and in3 = '1')) THEN
 result := '1';
 ELSIF((in1 = '0' and in2 = '0') or (in2 = '0' and in3 = '0') or
 (in1 = '0' and in3 = '0')) THEN
 result := '0';
 ELSE
 result := 'X';
 END IF;
 RETURN result;
 END majority;

PACKAGE BODY logic_package IS

 FUNCTION majority(in1, in2, in3 : std_logic) RETURN std_logic IS
 VARIABLE result : std_logic;
 BEGIN
 IF((in1 = '1' and in2 = '1') or (in2 = '1' and in3 = '1') or
 (in1 = '1' and in3 = '1')) THEN
 result := '1';
 ELSIF((in1 = '0' and in2 = '0') or (in2 = '0' and in3 = '0') or
 (in1 = '0' and in3 = '0')) THEN
 result := '0';
 ELSE
 result := 'X';
 END IF;
 RETURN result;
 END majority;

Procedures and Functions
(Cont.)

Example of a majority function.

112

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

112

 PROCEDURE decode(SIGNAL input : IN std_logic_vector(1 DOWNTO 0);
 SIGNAL output : OUT std_logic_vector(3 DOWNTO 0)) IS
 BEGIN
 CASE input IS
 WHEN "00" =>
 output <= "0001";
 WHEN "01" =>
 output <= "0010";
 WHEN "10" =>
 output <= "0100";
 WHEN "11" =>
 output <= "1000";
 WHEN OTHERS =>
 output <= "XXXX";
 END CASE;
 END decode;

END logic_package;

 PROCEDURE decode(SIGNAL input : IN std_logic_vector(1 DOWNTO 0);
 SIGNAL output : OUT std_logic_vector(3 DOWNTO 0)) IS
 BEGIN
 CASE input IS
 WHEN "00" =>
 output <= "0001";
 WHEN "01" =>
 output <= "0010";
 WHEN "10" =>
 output <= "0100";
 WHEN "11" =>
 output <= "1000";
 WHEN OTHERS =>
 output <= "XXXX";
 END CASE;
 END decode;

END logic_package;

Procedures and Functions
(Cont.)

Example of a decode function within a package.

113

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

113

 LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
USE work.logic_package.all;

ENTITY voter IS
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 y : OUT std_logic);
END voter;

ARCHITECTURE maj OF voter IS
 BEGIN
 y <= majority(a,b,c);
END maj;

 LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
USE work.logic_package.all;

ENTITY voter IS
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 y : OUT std_logic);
END voter;

ARCHITECTURE maj OF voter IS
 BEGIN
 y <= majority(a,b,c);
END maj;

Using Procedures and
Functions

The architecture calls the majority function described in a package. The
resulting synthesis is shown in the right part of the slide.

114

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

114

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
USE work.logic_package.all;

ENTITY decoder IS
 PORT(y : IN std_logic_vector(1 DOWNTO 0);
 g : OUT std_logic_vector(3 DOWNTO 0));
END decoder;

ARCHITECTURE dec OF decoder IS
 BEGIN
 comb : PROCESS(y)
 BEGIN
 decode(y,g);
 END PROCESS comb;
END dec;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
USE work.logic_package.all;

ENTITY decoder IS
 PORT(y : IN std_logic_vector(1 DOWNTO 0);
 g : OUT std_logic_vector(3 DOWNTO 0));
END decoder;

ARCHITECTURE dec OF decoder IS
 BEGIN
 comb : PROCESS(y)
 BEGIN
 decode(y,g);
 END PROCESS comb;
END dec;

Using Procedures and
Functions (Cont.)

Similar example calling the decode functional block.

115

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

115

Package Syntax

Package declaration ::=
 package identifier is package_declarative_part
 end [package] [package_simple_name] ;

 package_declarative_part ::= { package_declarative_item }
 package_declarative_item ::=
subprogram declaration | type declaration | subtype declaration
constant declaration | signal declaration | shared variable declaration
file declaration | alias declaration | component declaration |
attribute declaration | attribute specification | disconnect specification
use clause | group declaration | group template declaration

• word (black bold italic) implies that the keyword is not supported in synthesis
• underlined word implies the construct is ignored during synthesis

Note: signal and constant declarations shall have an initial value expression.
Deferred constants are not allowed. Package bodies are similar with respect to
the features permitted for the package.

116

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

116

Module Outline

l Introduction to Synthesis

l VHDL-Based Synthesis

l IEEE Synthesis Packages for VHDL

l IEEE RTL (Synthesis) Subset for VHDL

l Synthesis with IEEE RTL Subset
l Optimizations Used in Synthesis

l VHDL Coding Guidelines Supporting Optimization

l Summary

We have learnt much about the RTL Synthesis subset syntax in the previous
section, and now we will explore its use through some detailed examples.

117

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

117

Combinational Circuits and
Logic

l This section describes the use of the RTL subset
in synthesis of

¡Combinational circuits and logic
¡Register definition and synchronous behavior

¡Expressions, operators, and types

¡Synchronous sequential circuits
¡State machines and controllers

¡Memories

We will describe some examples of synthesis for each of the above classes of
digital circuits.

118

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

118

Combinational Circuits

l Combinational circuits include
¡ logic/arithmetic

¡multiplexers and demultiplexers
¡ encoders and decoders

¡ comparators

¡ Arithmetic Logic Units (ALUs)

l Both concurrent statements and sequential
VHDL statements can be used to model
combinational circuits as following examples
demonstrate.

Combinational circuits can be realized in a number of ways in VHDL.

119

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

119

VHDL in Combinational
Circuits

l Concurrent constructs
¡ Selected signal

assignment

¡ Conditional signal
assignment

l Sequential constructs
¡ Process statement

¡ case statement

¡ if constructs

¡ loop (mainly for-loop)

¡ while (not common)

At the level of combinational logic there is little in the form of a logical
pattern or structure that assists a designer, so optimizers rely on other
techniques to optimize area, power, speed, etc. (e.g., Boolean optimizations,
flattening..).

120

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

120

Examples of Logic/Arithmetic

Architecture logic_a of logic_e is
signal s1_s, s2_s: std_logic;
begin
process (A_p, B_p) -- A_p and B_p are input ports of type unsigned
 variable v1_v: unsigned (1 downto 0);
begin
 v1_v := ((A_p(0) nor A_p(1), B_p(0) nor B_p(1));
 s1_s <= v1_v (0) nor v1_v(1);
end process;

process (A_p, B_p)
begin
 Y2 <= A_p + B_p + (A_p * B_p);
end process;
 Y1 <= s1_s;
end logic_a;

sensitivity list includes
all objects read in process

Arithmetic is inferred

Concurrent assignment

Note:

1. The absence of the clock signal.

2. The sensitivity list does not affect synthesis, but simulation will differ from
synthesis if sensitivity_list guidelines are not followed (verification tough!).

121

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

121

Multiplexer/Demultiplexer

l Using if statement l Using case statement

Process (sel_p, in1_p, in2_p)
begin
if (sel_p =“0”) then
 Y_p <= in1_p;
 elsif (sel_p =“1”) then
 Y_p <= in2_p;
 end if;
end process;

Process (sel_p, in1_p, in2_p)
 case sel_p is
 when 0 => Y_p <= in1_p;
 when 1 => Y_p <= in2_p;
end case;
end process;

Note: Case statement is usually more readable, though both can be
used within the context of the process.

122

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

122

Multiplexer/Demultiplexer
(Cont.)

l Using selected signal
assignment

l Using conditional signal
assignment

Architecture sel_a of mux_e is
begin
with sel_p select
 Y <= in1_p when 0,
 Y <= in2_p when 1;
end sel_a;

Architecture cond_a of mux_e is
begin
 Y <= in1_p when sel_p = “0” else
 in2_p when sel_p = “1” else
 (others => (‘1’));
end cond_a;

Last when statement is not supported, hence “others”
is used.

Note two equivalent realization of the mux/demux pairs.

123

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

123

Arithmetic Logic Units (ALU)

Architecture vjalu_a of vjalu_e is
begin
 process (sel_p, ain_p, bin_p, cin_p)
variable logic_v, arith_v: unsigned (4 downto 0);

begin
-- logic unit
case sel_p(1 downto 0) is
when “00” => logic_v := ain_p AND bin_p;
when “01” => logic_v := ain_p OR bin_p;
when others => logic_v := (others => ‘X’);
end case;
-- arithmetic unit
case sel_p (3 downto 2) is
when “00” => arith_v := ain_p + bin_p;
when “01” => arith_v := ain_p * bin_p;
when others => arith_v := (others => ‘X’);
end case;
end vjalu_a;

Both floating and integer data path examples are presented later in the module.

This ALU describes a simpler data path supporting a number of logical
operations.

124

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

124

Synthesis with RTL Subset
(Contd.)

l This section describes the use of the RTL subset
in synthesis of
¡Combinational circuits and logic

¡Register definition and synchronous behavior

¡Synchronous sequential circuits

¡State machines and controllers
¡ Sequential Datapath

Register definition and expressing synchronous behavior is a very important
function in the specification and design of digital circuits. We show how the
RTL subset can be used in this phase of synthesis.

125

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

125

Registers and Clocks

l Clock types: Allowed types for clock signals -- BIT,
STD_ULOGIC and their subtypes (STD_LOGIC), with a
minimum subset of ‘0’ and ‘1’, without the metalogical
values (U, X, W, or “-”).

l Scalar elements of vectors of above types are also allowed,
e.g., bus8(0), as clocks.

l Clock edges can be specified either using the VHDL
functions FALLING_EDGE and RISING_EDGE declared in
STD_LOGIC_1164 or by NUMERIC_BIT, or through the use
of if and wait statements (with some restrictions).

Clocks play an important role in synthesis, and the Synthesis subset has taken
special efforts to ensure their correct use and interpretation in the synthesis as
the following slides will show.

126

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

126

Clock Edge Specification

l Positive/negative edge clocks
¡ if statement can be used as follows

1. If RISING_EDGE (clk_signal_name)
2. If clk_signal_name’EVENT and clk_signal_name = ‘1’
3. If clk_signal_name = ‘1’ and clk_signal_name’EVENT
4. If not clk_signal_name’STABLE and clk_signal_name = ‘1’
5. If clk_signal_name = ‘1’ and not clk_signal_name’STABLE

Note: The negative clock edge can be modeled similarly using
FALLING_EDGE and clk_signal_name =‘0’ in the above
statements.

Clock edges (rising or falling) can be defined using the if-then-else construct
or the wait-until construct in VHDL. The former is described in this slide in
five different options. The if-then-else construct is preferred over the wait-
until construct as will be clear from the next slide.

127

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

127

Clock Edge Specification
(Cont.)

l Positive/negative clock edge specification (cont.).
¡ Using the wait until statement in VHDL, the following

statements are equivalent

1. Wait until RISING_EDGE (clk_signal_name)
2. Wait until Clk_signal_name = ‘1’
3. Wait until Clk_signal_name’EVENT and clk_signal_name =‘1’
4. Wait until clk_signal_name =‘1’ and clk_signal_name’EVENT
5. Wait until not clk_signal_name’STABLE and clk_signal_name =‘1’
6. Wait until clk_signal_name = ‘1’ and not clk_stable_name’STABLE

The wait statement should be the first statement in the process, which
can cause problems when the process is required to be sensitive to
other asynchronous inputs as well.

Note: Only one clock edge is allowed per process (though many processes can
exist in an architecture. This does not mean that we are restricted to one of
rising or falling edges, as both can be used, but only once in each process.

128

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

128

Synthesizing Flip Flops using
“if”

l Guidelines for modeling FFs using “if” statement

The template for modeling a positive-edge FF with an “if” statement is

Template: Example:

process (<clock signal>) process(clock)

 <declarations> <declarations>

if <clock edge> then if rising_edge(clock) then

 <sequential statements> Q <= D;

 end if; end if;

end process end process;

Only clock signal
in sensitivity list

Note: D is read before it is written to, so this infers storage required.

Note that flip flops and latches are usually inferred when an object is read
before it is written to, and also in cases when some memory is inferred.

129

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

129

Inferring FFs Using “if”

An edge sensitive FF is inferred under the following conditions.

1. Synchronous assignment is defined for both signals and variables.
However, a synchronous assignment to a signal should model one or
more edge-sensitive storage elements. While, for variables, a synchronous
assignment may (not shall or should) model an edge-sensitive FF. Typically, if
the value of the variable is read before write, then an edge sensitive FF
may be modeled. Note the distinction between should, shall, and may.

2. In case of the if statement, only the clock signal shall be specified in the
sensitivity list of the process. No other signals (except asynchronous signals)
shall be included in the sensitivity list (as shown in the preceding example).

3. No statements shall precede or succeed the “if” statement in the process.

Both signals and variables can result in flip flops depending on the VHDL
description of the function. Note that a synchronous process contains only
one “if” statement, and no other statement.

130

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

130

Inferring FFs Using“wait”

The wait until statement can be used with the following conditions:

1. Only one wait statement is allowed per process, and it shall be the
first statement in the process. This implies that asynchronous
conditions cannot be modeled in the same process using the wait
until construct.

 Label: Process -- note labels are allowed for processes
 begin
 wait until CLOCK = ‘0’;
 COUNT := COUNT + 1; -- COUNT may model edge-sensitive FF
 VAR := COUNT
 VAR := VAR + 1; -- VAR is written to before it is read - no FF
 Q <= D; -- Q also infers FF
 end process;

As mentioned earlier, the wait statement is restrictive when used for synthesis
purposes.

131

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

131

Edge Sensitive D Flip-Flop

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY d_ff is
 PORT(d : IN std_logic;
 clk : IN std_logic;
 q : INOUT std_logic;
 qn : OUT std_logic);
END d_ff;

ARCHITECTURE behavior OF d_ff IS
 BEGIN
 seq : PROCESS(clk)
 BEGIN
 IF(rising_edge(clk)) THEN
 q <= d;
 END IF;
 END PROCESS seq;
 qn <= not q;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY d_ff is
 PORT(d : IN std_logic;
 clk : IN std_logic;
 q : INOUT std_logic;
 qn : OUT std_logic);
END d_ff;

ARCHITECTURE behavior OF d_ff IS
 BEGIN
 seq : PROCESS(clk)
 BEGIN
 IF(rising_edge(clk)) THEN
 q <= d;
 END IF;
 END PROCESS seq;
 qn <= not q;
END behavior;

l Clocks must be of BIT or STD_LOGIC type - metalogical values
not allowed

l Rising_edge() and Falling_edge() functions can be used to
specify clock edge

Note the inferring of a Flip Flop because "d" is not assigned for all cases of
input. This implies that the previous value of "d" has to be stored (in a FF).

132

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

132

Edge Sensitive D Flip-Flop
(Cont.)

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY d_ff_w is
 PORT(d : IN std_logic;
 clk : IN std_logic;
 q : INOUT std_logic;
 qn : OUT std_logic);
END d_ff_w;

ARCHITECTURE behavior OF d_ff_w IS
 BEGIN
 seq : PROCESS
 BEGIN
 WAIT UNTIL rising_edge(clk);
 q <= d;
 END PROCESS seq;
 qn <= not q;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY d_ff_w is
 PORT(d : IN std_logic;
 clk : IN std_logic;
 q : INOUT std_logic;
 qn : OUT std_logic);
END d_ff_w;

ARCHITECTURE behavior OF d_ff_w IS
 BEGIN
 seq : PROCESS
 BEGIN
 WAIT UNTIL rising_edge(clk);
 q <= d;
 END PROCESS seq;
 qn <= not q;
END behavior;

l Wait statement can be used

ARCHITECTURE behavior OF d_ff_w IS
 BEGIN
 seq : PROCESS
 BEGIN
 WAIT UNTIL clk = ‘1’;
 q <= d;
 END PROCESS seq;
 qn <= not q;
END behavior;

ARCHITECTURE behavior OF d_ff_w IS
 BEGIN
 seq : PROCESS
 BEGIN
 WAIT UNTIL clk = ‘1’;
 q <= d;
 END PROCESS seq;
 qn <= not q;
END behavior;

This slide shows how a wait statement can be used to assert synchronous
behavior in a circuit.

133

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

133

Inferring Latches

l If signals or variables are not assigned values in some conditional expressions
of IF or Case statements, level-sensitive sequential logic might result

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY mux3_seq is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 sel : IN std_logic_vector(1 DOWNTO 0);
 y : OUT std_logic);
END mux3_seq;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY mux3_seq is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 sel : IN std_logic_vector(1 DOWNTO 0);
 y : OUT std_logic);
END mux3_seq;

ARCHITECTURE behavior OF mux3_seq IS
 BEGIN
 comb : PROCESS(a,b,c,sel)
 BEGIN
 CASE sel IS
 WHEN "00" => y <= a;
 WHEN "01" => y <= b;
 WHEN "10" => y <= c;
 WHEN OTHERS => --empty
 END CASE;
 END PROCESS comb;
END behavior;

ARCHITECTURE behavior OF mux3_seq IS
 BEGIN
 comb : PROCESS(a,b,c,sel)
 BEGIN
 CASE sel IS
 WHEN "00" => y <= a;
 WHEN "01" => y <= b;
 WHEN "10" => y <= c;
 WHEN OTHERS => --empty
 END CASE;
 END PROCESS comb;
END behavior;

No clock edge is included in the design resulting in a latch being inferred.
Storage is implied but no edge sensitivity is declared.

134

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

134

Avoiding Latches

l Assigning values of “don’t care” (‘X’ or ‘-’) in these
cases can avoid this

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY mux3 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 sel : IN std_logic_vector(1 DOWNTO 0);
 y : OUT std_logic);
END mux3;

ARCHITECTURE behavior OF mux3 IS

 BEGIN
 comb : PROCESS(a,b,c,sel)
 BEGIN
 CASE sel IS
 WHEN "00" => y <= a;
 WHEN "01" => y <= b;
 WHEN "10" => y <= c;
 WHEN OTHERS => y <= 'X';
 END CASE;
 END PROCESS comb;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY mux3 is
 PORT(a : IN std_logic;
 b : IN std_logic;
 c : IN std_logic;
 sel : IN std_logic_vector(1 DOWNTO 0);
 y : OUT std_logic);
END mux3;

ARCHITECTURE behavior OF mux3 IS

 BEGIN
 comb : PROCESS(a,b,c,sel)
 BEGIN
 CASE sel IS
 WHEN "00" => y <= a;
 WHEN "01" => y <= b;
 WHEN "10" => y <= c;
 WHEN OTHERS => y <= 'X';
 END CASE;
 END PROCESS comb;
END behavior;

We avoid a latch here (and substitute it with a mux) by enumerating all
possibilities for the CASE statement. No storage is necessary as a
consequence.

135

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

135

Inferring Latches in Complex
Behaviors

ARCHITECTURE rtl OF pc_comb IS
 SIGNAL pc : unsigned(3 DOWNTO 0);
 BEGIN
 one : PROCESS(data_in, cntrl, pc)
 BEGIN
 CASE cntrl IS
 WHEN "01" => pc <= (pc + "0001");
 WHEN "10" => pc <= pc;
 WHEN OTHERS => pc <= data_in;
 END CASE;
 END PROCESS one;
 DATA_OUT <= PC;
END rtl;

ARCHITECTURE rtl OF pc_comb IS
 SIGNAL pc : unsigned(3 DOWNTO 0);
 BEGIN
 one : PROCESS(data_in, cntrl, pc)
 BEGIN
 CASE cntrl IS
 WHEN "01" => pc <= (pc + "0001");
 WHEN "10" => pc <= pc;
 WHEN OTHERS => pc <= data_in;
 END CASE;
 END PROCESS one;
 DATA_OUT <= PC;
END rtl;

library IEEE;
use IEEE.std_logic_1164.ALL;
use IEEE.numeric_std.ALL;

ENTITY pc_comb IS
 PORT(data_in : IN unsigned(3 DOWNTO 0);
 cntrl : IN unsigned(1 DOWNTO 0);
 data_out : OUT unsigned(3 DOWNTO 0));
END pc_comb;

library IEEE;
use IEEE.std_logic_1164.ALL;
use IEEE.numeric_std.ALL;

ENTITY pc_comb IS
 PORT(data_in : IN unsigned(3 DOWNTO 0);
 cntrl : IN unsigned(1 DOWNTO 0);
 data_out : OUT unsigned(3 DOWNTO 0));
END pc_comb;

A latch is inferred as it is not clear to the synthesizer whether it has to store the
value of the PC. In general, synthesis tools are not very good and
understanding code behavior over a large number of statements.

136

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

136

Synthesizing Asynchronous
Signals

Asynchronous signals such as SET/RESET are frequently included in
synchronous circuits. The wait until construct does not support this
feature, however the if construct is useful in including these signals
in the following format.

Async_dff: process (clock, reset, set)
 begin
 if reset = ‘1’ then Q <= ‘0’;
 elsif set = ‘1’ then Q <= ‘1’;
 elsif clock’event and clock = ‘1’ then Q <= D;
 end if ;
end process;

Note:

1. It is difficult to include more than one wait statement in a process designed
for synthesis, so asynchronous inputs would require an if-then-else structure.

2. All the asynchronous signals and the clock signals are included in the
sensitivity list of the process. In the combinational process, even A would
have been included in the sensitivity list, and D would have been written
before being read. All asynchronous signals are level sensitive and cannot
contain clock expressions.

137

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

137

Inferring Level-Sensitive Logic

Level sensitive logic shall be synthesized
under the following conditions:

1. A signal or variable is assigned in a
 process that does not contain clock edges,
 and
2. There are executions of the process that
do not execute an explicit assignment to the
signal or variable (requiring it to store older
values), and
3. All signals and variables read by the
 process have well defined values.
Note: When the executions of the process
require reading before assignment, then
level sensitive logic may be synthesized.
The process sensitivity list will contain all
signals read within the process statement.

Lev_sen: process (en, D)

begin
 if en = ‘1’ then
 Q <= D;
 end if ;
end process;

Note: The code does not
specify what is to be done
if en is not ‘1’.

The example shows that some behavior is unspecified, and level-sensitive
logic (e.g., latches) are inferred.

138

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

138

Level Sensitive D Latch

l Use IF statement without Else clause

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY d_latch is
 PORT(d : IN std_logic;
 clk : IN std_logic;
 q : INOUT std_logic;
 qn : OUT std_logic);
END d_latch;

ARCHITECTURE behavior OF d_latch IS
 BEGIN
 seq : PROCESS(d,clk)
 BEGIN
 IF(clk = '1') THEN
 q <= d;
 END IF;
 END PROCESS seq;
 qn <= not q;
END behavior;

library IEEE;
use IEEE.std_logic_1164.all;

ENTITY d_latch is
 PORT(d : IN std_logic;
 clk : IN std_logic;
 q : INOUT std_logic;
 qn : OUT std_logic);
END d_latch;

ARCHITECTURE behavior OF d_latch IS
 BEGIN
 seq : PROCESS(d,clk)
 BEGIN
 IF(clk = '1') THEN
 q <= d;
 END IF;
 END PROCESS seq;
 qn <= not q;
END behavior;

The if statement without the else results in a latch because the complete
behavior is not specified, and storage is inferred.

139

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

139

Synthesis with RTL Subset
(Contd)

l This section describes the use of the RTL subset
in synthesis of
¡Combinational circuits and logic

¡Register definition and synchronous behavior

¡Synchronous sequential circuits

¡State machines and controllers
¡Sequential Datapath

We now describe an example of a synchronous sequential circuit and its
synthesis in VHDL.

140

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

140

Synchronous RTL Synthesis
Example

DFF

DFF

A

B

C

D

Clock

Int1

 Int2

Y

NAND

NOR

NAND

Process (clock)
 variable int1: std_logic
begin
if rising_edge (clock) then
int1 := A nand B;
int2 <= C nor D;
Y <= int2 nand int1 ;
end if ; end process;

Note:variable int1 does not infer FF (because it is
assigned to before being read, however
Y and int2 infer FFs. Sensitivity list only
contains the clock and asynchronous set/reset
(if present). A, B, C, are not included.

The FF’s are realized because the clock signal is included in the sensitivity list.
If we wanted to realize combinational logic, we should have included all
signals (A, B, C, D) in the sensitivity list and not mentioned the clock signals.

Note that variables can also result in flip-flops if they are read before they are
assigned. Thus, in the most general case, variables and signals may infer
latches.

141

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

141

Synthesis with RTL Subset
(Contd.)

l This section describes the use of the RTL subset
in synthesis of
¡Combinational circuits and logic

¡Register definition and synchronous behavior

¡Synchronous sequential circuits

¡State machines and controllers
¡ Sequential Datapath

We will now describe the use of the RTL subset in the synthesis of finite state
machines (controllers).

142

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

142

Synthesis of State Machines

l State machines require specification of the
following
¡ state of the machine
¡ a clock

¡ specification of state transitions

¡ inputs and outputs

¡ reset and set conditions (synchronous or
asynchronous)

Note: Many synthesis tools have optimized the synthesis of state machines
provided certain templates are followed. Examples of optimizations include
one-hot, random, gray, binary, Mustang, Spectral, and Nova to name just a
few. The IEEE RTL standard does not specify such a template, so we provide
an example of a popular coding style (Synopsys) for state machine synthesis
that is consistent with the IEEE RTL level 1 standard.

Finite State Machines (FSMs) are widely used to represent designs of
controllers, and avionics industry surveys have shown that FSMs with about
20 - 40 states are typical of the design complexities of ASICs

FSMs can be of the Moore (output depends on current state alone) and Mealy
(output depends on input and current state) types. State encoding is also used
to optimize FSM synthesis and has been incorporated into the IEEE RTL
standard.

143

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

143

Finite State Machine Synthesis

l State machines can be modeled as a combinational portion and
a sequential portion

l Both Mealy and Moore type state machines can be described

l Most synthesis tools employ special algorithms to minimize
state machines - thus standard procedures must be used to
enable the tool to recognize the state machine

Combinational

Logic
M

em
o

ry

Present
State

Next
State

Primary
Inputs

Primary
Outputs

Huffman FSM Model

Next, the description of synthesizable state machines will be covered.
Synthesis tools typically have special algorithms built in for state machine
minimization, so “templates” must be used to ensure that the tool recognizes
the state machine and the state variables. Synthesis tools can construct both
Mealy and Moore state machines.

Considering the traditional Huffman model, state machines are comprised of a
combinational portion and a memory portion.

144

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

144

Mealy and Moore State
Machine Models

Output
Combinational

Logic

M
em

o
ry

Present
State

Next
State

Primary
Inputs

Primary
Outputs

Mealy Machine Model

l A state machine has three basic parts

¡ Next State Logic

¡ Output Logic
¡Memory

l The most straight-forward way to code a synthesizable state
machine is to use one process per function

Next State
Combinational

Logic

Output
Combinational

Logic

M
em

o
ry

Present
State

Next
State

Primary
Inputs

Primary
Outputs

Moore Machine Model

Next State
Combinational

Logic

The memory portion of the state machine updates the present state of the state
machine with the next state on a clock edge.

The combinational portion of the state machine actually performs two
functions. First, it calculates the next state based on the present state and the
inputs to the state machine. Second it calculates the outputs of the state
machine based on the present state and the inputs (Mealy machine) or only on
the present state (Moore machine).

145

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

145

State Machine
State Encoding

l Use enumerated type to encode state variables

TYPE state_type IS (idle,init,test,add,shift);

SIGNAL present_state, next_state : state_type;

TYPE state_type IS (idle,init,test,add,shift);

SIGNAL present_state, next_state : state_type;

l User can choose state encoding type in synthesis tool
¡ Sequential
¡ One Hot
¡ Gray
¡ Transition Optimized
¡ Others

l enum_encoding attribute can be used to specify encoding
directly

ATTRIBUTE enum_encoding:STRING;
TYPE state_type IS (idle,init,test,add,shift);
ATTRIBUTE enum_encoding OF state_type:TYPE IS “000 100 110 001 011”;

ATTRIBUTE enum_encoding:STRING;
TYPE state_type IS (idle,init,test,add,shift);
ATTRIBUTE enum_encoding OF state_type:TYPE IS “000 100 110 001 011”;

Normally, the state variables, present state and next state, are defined to be of
some enumerated type. Using an enumerated type has two benefits, first, it
facilitates easier debugging in simulating the behavioral VHDL description
before synthesis as the value of the state variables are easily seen during
simulation. Second, the use of an enumerated type allows different encodings
for the state variable to be generated by the tool during synthesis.

Various possible encodings such as one hot, sequential or gray encoding can
be used. Several synthesis tools have the ability to to pick “optimum”
encodings based on minimizing the number of state variables that change
when transitioning to adjacent states.

In addition, the enum_encoding attribute can be defined for the state variable
as shown and the synthesis tool will use the specified encodings.

146

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

146

State Machine
Memory Process

l Use flip-flop type process with asynchronous or
synchronous reset
¡ State machine MUST have reset to function correctly

l Rising or falling edge may be used

clocked : PROCESS(clk, reset)
 BEGIN
 IF (reset = '0') THEN
 present_state <= idle;
 ELSIF (clk'EVENT AND clk = '1') THEN
 present_state <= next_state;
 END IF;
END PROCESS clocked;

clocked : PROCESS(clk, reset)
 BEGIN
 IF (reset = '0') THEN
 present_state <= idle;
 ELSIF (clk'EVENT AND clk = '1') THEN
 present_state <= next_state;
 END IF;
END PROCESS clocked;

For the memory process, a rising edge or falling edge flip flop should be used.
A reset function, either synchronous, or asynchronous MUST be included to
ensure that the state machine can be brought to a known state.

Note that during behavioral simulations before synthesis, the state machine
will appear to simulate correctly, even without a reset function, because the
state variable will default to the lowest value of the enumerated type (idle in
the present example). Post synthesis simulation will show however, that the
state variables will remain “unknown” unless a reset function is used.

147

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

147

State Machine
Next State Process

l Next state process forms
the heart of the state
machine

l Process is sensitive to
present state and any
necessary inputs

l Most tools prefer a
Case statement syntax
on which to run their
state machine
minimization algorithms

nextstate : PROCESS(present_state,start,q0)
 BEGIN
 CASE present_state IS
 WHEN idle =>
 IF(start='1') THEN
 next_state <= init;
 ELSE
 next_state <= idle;
 END IF;
 WHEN init =>
 next_state <= test;
 WHEN test =>
 IF(q0='1') THEN
 next_state <= add;
 ELSIF(q0='0') THEN
 next_state <= shift;
 ELSE
 next_state <= test;
 END IF;
 WHEN add =>
 next_state <= shift;
 WHEN shift =>
 next_state <= test;
 END CASE;
END PROCESS nextstate;

nextstate : PROCESS(present_state,start,q0)
 BEGIN
 CASE present_state IS
 WHEN idle =>
 IF(start='1') THEN
 next_state <= init;
 ELSE
 next_state <= idle;
 END IF;
 WHEN init =>
 next_state <= test;
 WHEN test =>
 IF(q0='1') THEN
 next_state <= add;
 ELSIF(q0='0') THEN
 next_state <= shift;
 ELSE
 next_state <= test;
 END IF;
 WHEN add =>
 next_state <= shift;
 WHEN shift =>
 next_state <= test;
 END CASE;
END PROCESS nextstate;

The next state process is the heart of the state machine and calculates the value
of the next state based on the present state and the inputs to the state machine.
The next state process should be sensitive to the present state and the state
machine’s inputs.

Most synthesis tools prefer that the next state calculation be based on a CASE
statement. Be sure that values of next state are calculated for all possible
values of the present state or latches will be inferred in the combinational next
state process.

When synthesizing a state machine, most tools will report that they have
recognized the state variables and will list the encodings, in terms of bits, that
have been given to each literal (state such as idle, add, shift, etc.) in the
enumerated type. These encodings should be noted as they are useful in
debugging the state machine after synthesis.

148

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

148

State Machine
Output Process

l Output process computes
output values based on the
present state and the inputs
(Mealy machine) on just on the
present state (Moore machine)

l IF or Case statement may be
used

output : PROCESS(present_state,start,q0)
 BEGIN
 -- Default Assignment
 a_enable <= '0' after delay;
 a_mode <= '0' after delay;
 c_enable <= '0' after delay;
 m_enable <= '0' after delay;
 -- State Actions
 CASE present_state IS
 WHEN init =>
 a_enable <= '1' after delay;
 c_enable <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN add =>
 a_enable <= '1' after delay;
 c_enable <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN shift =>
 a_enable <= '1' after delay;
 a_mode <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN OTHERS =>
 NULL;
 END CASE;
END PROCESS output;

output : PROCESS(present_state,start,q0)
 BEGIN
 -- Default Assignment
 a_enable <= '0' after delay;
 a_mode <= '0' after delay;
 c_enable <= '0' after delay;
 m_enable <= '0' after delay;
 -- State Actions
 CASE present_state IS
 WHEN init =>
 a_enable <= '1' after delay;
 c_enable <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN add =>
 a_enable <= '1' after delay;
 c_enable <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN shift =>
 a_enable <= '1' after delay;
 a_mode <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN OTHERS =>
 NULL;
 END CASE;
END PROCESS output;

The output process should be sensitive to the the present state only (Moore
machines) or the present state and the inputs (Mealy machines).

A CASE statement or an IF statement can be used to calculate the output
values.

Note here that there is a default assignment for the outputs that takes effect if
the outputs are not assigned a value in the CASE statement. Also note that the
“idle” state is not specifically listed as a condition clause in the case statement.
It is covered by the OTHERS condition and in that case, the default values will
be set for all outputs.

149

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

149

State Machine
Putting it all together

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY control_unit IS
 PORT(clk : IN std_logic;
 q0 : IN std_logic;
 reset : IN std_logic;
 start : IN std_logic;
 a_enable : OUT std_logic;
 a_mode : OUT std_logic;
 c_enable : OUT std_logic;
 m_enable : OUT std_logic);
END control_unit;

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY control_unit IS
 PORT(clk : IN std_logic;
 q0 : IN std_logic;
 reset : IN std_logic;
 start : IN std_logic;
 a_enable : OUT std_logic;
 a_mode : OUT std_logic;
 c_enable : OUT std_logic;
 m_enable : OUT std_logic);
END control_unit;

ARCHITECTURE fsm OF control_unit IS
 CONSTANT delay : time := 5 ns ;
 TYPE state_type IS (idle, init, test, add, shift);
 SIGNAL present_state, next_state : state_type ;
 BEGIN

 clocked : PROCESS(clk, reset)
 BEGIN
 IF (reset = '0') THEN
 present_state <= idle;
 ELSIF (clk'EVENT AND clk = '1') THEN
 present_state <= next_state;
 END IF;
 END PROCESS clocked;

ARCHITECTURE fsm OF control_unit IS
 CONSTANT delay : time := 5 ns ;
 TYPE state_type IS (idle, init, test, add, shift);
 SIGNAL present_state, next_state : state_type ;
 BEGIN

 clocked : PROCESS(clk, reset)
 BEGIN
 IF (reset = '0') THEN
 present_state <= idle;
 ELSIF (clk'EVENT AND clk = '1') THEN
 present_state <= next_state;
 END IF;
 END PROCESS clocked;

l Entity

l Architecture declarative part

l Memory process

Here we will show the entire synthesizable description of the state machine
and the results of synthesis. This slide shows the entity description, the
architecture declarative part, and the memory process. Notice that the
architecture declarative process includes the enumerated type declaration for
the state variables, the declaration of the present_state and next_state
variables, and a declaration of a constant delay of type time. The delay
constant will be used to delay the assignment of the outputs after the clock
cycle to make the simulation easier to interpret as previously discussed.

The memory process includes an asynchronous reset function.

150

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

150

State Machine
Putting it all together (Cont.)

output : PROCESS(present_state,start,q0)
 BEGIN
 -- Default Assignment
 a_enable <= '0' after delay;
 a_mode <= '0' after delay;
 c_enable <= '0' after delay;
 m_enable <= '0' after delay;
 -- State Actions
 CASE present_state IS
 WHEN init =>
 a_enable <= '1' after delay;
 c_enable <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN add =>
 a_enable <= '1' after delay;
 c_enable <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN shift =>
 a_enable <= '1' after delay;
 a_mode <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN OTHERS =>
 NULL;
 END CASE;

 END PROCESS output;
END fsm;

output : PROCESS(present_state,start,q0)
 BEGIN
 -- Default Assignment
 a_enable <= '0' after delay;
 a_mode <= '0' after delay;
 c_enable <= '0' after delay;
 m_enable <= '0' after delay;
 -- State Actions
 CASE present_state IS
 WHEN init =>
 a_enable <= '1' after delay;
 c_enable <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN add =>
 a_enable <= '1' after delay;
 c_enable <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN shift =>
 a_enable <= '1' after delay;
 a_mode <= '1' after delay;
 m_enable <= '1' after delay;
 WHEN OTHERS =>
 NULL;
 END CASE;

 END PROCESS output;
END fsm;

nextstate : PROCESS(present_state,start,q0)
 BEGIN
 CASE present_state IS
 WHEN idle =>
 IF(start='1') THEN
 next_state <= init;
 ELSE
 next_state <= idle;
 END IF;
 WHEN init =>
 next_state <= test;
 WHEN test =>
 IF(q0='1') THEN
 next_state <= add;
 ELSIF(q0='0') THEN
 next_state <= shift;
 ELSE
 next_state <= test;
 END IF;
 WHEN add =>
 next_state <= shift;
 WHEN shift =>
 next_state <= test;
 END CASE;
END PROCESS nextstate;

nextstate : PROCESS(present_state,start,q0)
 BEGIN
 CASE present_state IS
 WHEN idle =>
 IF(start='1') THEN
 next_state <= init;
 ELSE
 next_state <= idle;
 END IF;
 WHEN init =>
 next_state <= test;
 WHEN test =>
 IF(q0='1') THEN
 next_state <= add;
 ELSIF(q0='0') THEN
 next_state <= shift;
 ELSE
 next_state <= test;
 END IF;
 WHEN add =>
 next_state <= shift;
 WHEN shift =>
 next_state <= test;
 END CASE;
END PROCESS nextstate;

l Next state process
l Output process

This is the next state process and output process.

151

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

151

State Machine
Results

This is the result of the state machine synthesis. The flip flops for the state
variables (3) can clearly be seen.

In the following, we will look at another example of FSM synthesis starting
with the state table specification.

152

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

152

VHDL Coding of an FSM:
Example

Input Present
State

Next State Output

0 Q_i Q_i 0

1 Q_i Q_i+1 1 (when
Q2) else 0

The state machine has four states, one input X, and one output Z

This is a simple transition diagram that we’ll code in VHDL as a synthesizable
template for a finite state machine.

153

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

153

Structure of the VHDL
Description

Architecture: fsm_a

Process: combinational Process: synchronous

Update
State and
Calculate
Output

Overwrite
Present State
with Next State
at Clock Edge

Clock

Input

Next state

Present State

Output

The architecture consists of two concurrent processes as shown

FSMs are best synthesized through the use of templates of the architecture,
such as shown in this slide, where a multi-process structure is followed. The
clock-related dependencies are captured in the synchronous process, while the
state update is calculated in the combinational process.

154

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

154

Example of an FSM in IEEE
RTL VHDL Subset

Package states is
type state_typ is (Q0,Q1,Q2,Q3)
end states;
use work.states.all;
entity fsm_nty is
 port (X, clock: in bit; Z: out bit);
end fsm_nty;
architecture fsm_a of fsm_nty is
signal present_state, next_state: state_typ;
begin
combinational: process (present_state, X)
 begin
 case present_state is
 when Q0 =>
 if X = ‘0’ then Z <= ‘0’; next_state <= Q0;
 else Z <= ‘0’; next_state <= Q1;
 end if;

 When Q1 =>
 if X =‘0’ then Z <= ‘0’; next_state <= Q1;
 else Z <= ‘0’; next_state <= Q2;
end if;
when Q2 =>
 if X = ‘0’ then Z <= ‘0’; next_state <= Q2;
 else Z <=‘1’; next_state <= Q3;
end if;
when Q3 =>
 if X = ‘0’ then Z <= ‘0’; next_state <= Q3;
 else Z <= ‘0’; next_state <= Q0;
end if; end case; end process;
synchronous: process
 begin
 wait until rising_edge(clock);
 present_state <= next_state;
 end process;
end fsm_a; ;

The reader may note the partitioning of the state calculation and the state
update. Reset/Set may also be included within the two processes.

155

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

155

State Machines
Variations

l It is possible to have additional state variables in
a synthesizable FSM
¡ E.g., a counter to count the number of cycles through a

certain state

l It is also possible to have more than one state
machine in a given architecture
¡ Separate enumerated state variables

¡ Separate or combined state transition, clock and output
processes

It is possible to have additional state variables in a state machine. An example
is a counter that will count the number of transitions through a given state.

It is also possible to have more than one state machine in a given architecture.

156

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

156

Synthesis with RTL Subset
(Contd.)

l This section describes the use of the RTL subset
in synthesis of
¡Combinational circuits and logic

¡Register definition and synchronous behavior

¡Synchronous sequential circuits

¡State machines and controllers
¡Sequential Datapath

Datpath elements, such as the multiplier, adder, divider, constitute an
important function in digital circuits, and we describe a synthesizable example
of a multiplier in the following slides.

157

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

157

Sequential Datapaths

l RTL descriptions that describe datapaths and
control units can be synthesized

l Individual VHDL processes are used to describe
combinational logic blocks, registers, and state
machines

l Layout of the datapath is “implied” by the
interconnection of the processes via signals

We will now describe a more complex example - a multiplier using some of
the VHDL syntax we have learned so far.

158

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

158

Sequential (RTL) Datapaths
Example - 8 Bit Multiplier

l Unsigned 8 bit multiplier - datapath and control unit are similar to
the example from the Structural and Behavioral VHDL modules

l Separate processes are used to model the M, A, Q, and C
registers, the adder, and the output, memory, and next state
portions of the control unit

Control
 Unit

Multiplicand
Mn-1 M0

An-1 A0

Multiplier
Qn-1 Q0C

n-Bit Adder

Product

Data Path

This slide describes the operation of an unsigned 8-bit multiplier.

159

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

159

l Entity

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY multiplier8 IS
 PORT(start : IN std_logic; -- input to indicate start
 start_ack : OUT std_logic; -- output to acknowledge data
 clk : IN std_logic;
 reset : IN std_logic;
 a_input : IN unsigned(7 DOWNTO 0);
 b_input : IN unsigned(7 DOWNTO 0);
 product : OUT unsigned(15 DOWNTO 0);
 data : OUT std_logic; -- data present on outputs
 data_ack : IN std_logic); -- data acknowledgement
END multiplier8;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY multiplier8 IS
 PORT(start : IN std_logic; -- input to indicate start
 start_ack : OUT std_logic; -- output to acknowledge data
 clk : IN std_logic;
 reset : IN std_logic;
 a_input : IN unsigned(7 DOWNTO 0);
 b_input : IN unsigned(7 DOWNTO 0);
 product : OUT unsigned(15 DOWNTO 0);
 data : OUT std_logic; -- data present on outputs
 data_ack : IN std_logic); -- data acknowledgement
END multiplier8;

Sequential RTL Datapaths
Example - 8 Bit Multiplier

The entity represents the input/output ports of the multiplier.

160

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

160

l Architecture
declarative part

l Concurrent signal
assignment
statements

ARCHITECTURE synthesizable_rtl OF multiplier8 IS

 SUBTYPE count_integer IS integer RANGE 0 to 8;
 TYPE states IS (idle,initialize,test,shift,add,stop);
 SIGNAL present_state : states := idle;
 SIGNAL next_state : states := idle;
 SIGNAL present_count : count_integer;
 SIGNAL next_count : count_integer;
 SIGNAL a_enable : std_logic;
 SIGNAL a_reset : std_logic;
 SIGNAL a_mode : std_logic;
 SIGNAL c_enable : std_logic;
 SIGNAL c_reset : std_logic;
 SIGNAL m_enable : std_logic;
 SIGNAL q_enable : std_logic;
 SIGNAL q_mode : std_logic;
 SIGNAL e_enable : std_logic;
 SIGNAL c : std_logic;
 SIGNAL c_out : std_logic;
 SIGNAL multiplier : unsigned(7 DOWNTO 0);
 SIGNAL multiplicand : unsigned(7 DOWNTO 0);
 SIGNAL accumulator : unsigned(7 DOWNTO 0);
 SIGNAL adder_result : unsigned(7 DOWNTO 0);

 BEGIN
 product(15 DOWNTO 8) <= accumulator;
 product(7 DOWNTO 0) <= multiplier;

ARCHITECTURE synthesizable_rtl OF multiplier8 IS

 SUBTYPE count_integer IS integer RANGE 0 to 8;
 TYPE states IS (idle,initialize,test,shift,add,stop);
 SIGNAL present_state : states := idle;
 SIGNAL next_state : states := idle;
 SIGNAL present_count : count_integer;
 SIGNAL next_count : count_integer;
 SIGNAL a_enable : std_logic;
 SIGNAL a_reset : std_logic;
 SIGNAL a_mode : std_logic;
 SIGNAL c_enable : std_logic;
 SIGNAL c_reset : std_logic;
 SIGNAL m_enable : std_logic;
 SIGNAL q_enable : std_logic;
 SIGNAL q_mode : std_logic;
 SIGNAL e_enable : std_logic;
 SIGNAL c : std_logic;
 SIGNAL c_out : std_logic;
 SIGNAL multiplier : unsigned(7 DOWNTO 0);
 SIGNAL multiplicand : unsigned(7 DOWNTO 0);
 SIGNAL accumulator : unsigned(7 DOWNTO 0);
 SIGNAL adder_result : unsigned(7 DOWNTO 0);

 BEGIN
 product(15 DOWNTO 8) <= accumulator;
 product(7 DOWNTO 0) <= multiplier;

Sequential RTL Datapaths
Example - 8 Bit Multiplier

The signals are declared in this slide.

161

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

161

l Multiplicand (M)
register process

l Multiplier (Q) shift
register process

m_reg : PROCESS(clk)
 BEGIN
 IF(clk'EVENT AND clk = '1') THEN
 IF(m_enable = '1') THEN
 multiplicand(7 DOWNTO 0) <= a_input;
 END IF;
 END IF;
END PROCESS m_reg;

q_reg : PROCESS(clk)
 BEGIN
 IF(clk'EVENT AND clk = '1') THEN
 IF(q_enable = '1') THEN
 IF(q_mode = '1') THEN
 multiplier(7 DOWNTO 0) <= b_input;
 ELSIF(q_mode = '0') THEN
 multiplier(6 DOWNTO 0) <= multiplier(7 DOWNTO 1);
 multiplier(7) <= accumulator(0);
 END IF;
 END IF;
 END IF;
END PROCESS q_reg;

m_reg : PROCESS(clk)
 BEGIN
 IF(clk'EVENT AND clk = '1') THEN
 IF(m_enable = '1') THEN
 multiplicand(7 DOWNTO 0) <= a_input;
 END IF;
 END IF;
END PROCESS m_reg;

q_reg : PROCESS(clk)
 BEGIN
 IF(clk'EVENT AND clk = '1') THEN
 IF(q_enable = '1') THEN
 IF(q_mode = '1') THEN
 multiplier(7 DOWNTO 0) <= b_input;
 ELSIF(q_mode = '0') THEN
 multiplier(6 DOWNTO 0) <= multiplier(7 DOWNTO 1);
 multiplier(7) <= accumulator(0);
 END IF;
 END IF;
 END IF;
END PROCESS q_reg;

Sequential RTL Datapaths
Example - 8 Bit Multiplier

The loading of the input registers (to the multiplier) is described in this slide.

162

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

162

l Accumulator (A)
shift register
process

l Carry (C) register
process

a_reg : PROCESS(clk)
 BEGIN
 IF(clk'EVENT AND clk = '1') THEN
 IF(a_reset = '0') THEN
 accumulator <= "00000000";
 ELSIF(a_enable = '1') THEN
 IF(a_mode = '1') THEN
 accumulator <= adder_result;
 ELSIF(q_mode = '0') THEN
 accumulator(6 DOWNTO 0) <= accumulator(7 DOWNTO 1);
 accumulator(7) <= c_out;
 END IF;
 END IF;
 END IF;
END PROCESS a_reg;

c_reg : PROCESS(clk)
 BEGIN
 IF(clk'EVENT AND clk = '1') THEN
 IF(c_reset = '0') THEN
 c_out <= '0';
 ELSIF(c_enable = '1') THEN
 c_out <= c;
 END IF;
 END IF;
END PROCESS c_reg;

a_reg : PROCESS(clk)
 BEGIN
 IF(clk'EVENT AND clk = '1') THEN
 IF(a_reset = '0') THEN
 accumulator <= "00000000";
 ELSIF(a_enable = '1') THEN
 IF(a_mode = '1') THEN
 accumulator <= adder_result;
 ELSIF(q_mode = '0') THEN
 accumulator(6 DOWNTO 0) <= accumulator(7 DOWNTO 1);
 accumulator(7) <= c_out;
 END IF;
 END IF;
 END IF;
END PROCESS a_reg;

c_reg : PROCESS(clk)
 BEGIN
 IF(clk'EVENT AND clk = '1') THEN
 IF(c_reset = '0') THEN
 c_out <= '0';
 ELSIF(c_enable = '1') THEN
 c_out <= c;
 END IF;
 END IF;
END PROCESS c_reg;

Sequential RTL Datapaths
Example - 8 Bit Multiplier

The accumulator and carry register processes are described in this slide.

163

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

163

l Adder
combinational
logic block

adder : PROCESS (multiplicand,accumulator)

 VARIABLE a_temp : unsigned(8 downto 0);
 VARIABLE b_temp : unsigned(8 downto 0);
 VARIABLE result : unsigned(8 downto 0);

 BEGIN
 a_temp(7 downto 0) := multiplicand;
 a_temp(8) := '0';
 b_temp(7 downto 0) := accumulator;
 b_temp(8) := '0';
 result := a_temp + b_temp;
 c <= result(8);
 adder_result <= result(7 downto 0);

END PROCESS adder;

adder : PROCESS (multiplicand,accumulator)

 VARIABLE a_temp : unsigned(8 downto 0);
 VARIABLE b_temp : unsigned(8 downto 0);
 VARIABLE result : unsigned(8 downto 0);

 BEGIN
 a_temp(7 downto 0) := multiplicand;
 a_temp(8) := '0';
 b_temp(7 downto 0) := accumulator;
 b_temp(8) := '0';
 result := a_temp + b_temp;
 c <= result(8);
 adder_result <= result(7 downto 0);

END PROCESS adder;

Sequential RTL Datapaths
Example - 8 Bit Multiplier

The combinational activity within the multiplier is described in this slide.

164

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

164

l Control unit memory process
l Control unit next state process

controller_state_reg : PROCESS(clk,reset)
 BEGIN
 IF(reset = '1') THEN
 present_state <= idle;
 present_count <= 0;
 ELSIF(clk'EVENT AND clk = '1') THEN
 present_state <= next_state;
 present_count <= next_count;
 END IF;
END PROCESS controller_state_reg;

controller_state_reg : PROCESS(clk,reset)
 BEGIN
 IF(reset = '1') THEN
 present_state <= idle;
 present_count <= 0;
 ELSIF(clk'EVENT AND clk = '1') THEN
 present_state <= next_state;
 present_count <= next_count;
 END IF;
END PROCESS controller_state_reg;

 WHEN test =>
 IF(present_count < 8) THEN
 IF(multiplier(0) = '0') THEN
 next_state <= shift;
 ELSE
 next_state <= add;
 END IF;
 ELSE
 next_state <= stop;
 END IF;
 next_count <= present_count;
 WHEN add =>
 next_state <= shift;
 next_count <= present_count;
 WHEN shift =>
 next_state <= test;
 next_count <= present_count+1;
 WHEN stop =>
 IF(data_ack = '1') THEN
 next_state <= idle;
 ELSE
 next_state <= stop;
 END IF;
 WHEN OTHERS =>
 next_state <= idle;
 next_count <= present_count;
 END CASE;
END PROCESS controller_state_trans;

 WHEN test =>
 IF(present_count < 8) THEN
 IF(multiplier(0) = '0') THEN
 next_state <= shift;
 ELSE
 next_state <= add;
 END IF;
 ELSE
 next_state <= stop;
 END IF;
 next_count <= present_count;
 WHEN add =>
 next_state <= shift;
 next_count <= present_count;
 WHEN shift =>
 next_state <= test;
 next_count <= present_count+1;
 WHEN stop =>
 IF(data_ack = '1') THEN
 next_state <= idle;
 ELSE
 next_state <= stop;
 END IF;
 WHEN OTHERS =>
 next_state <= idle;
 next_count <= present_count;
 END CASE;
END PROCESS controller_state_trans;

controller_state_trans : PROCESS(present_state,
 present_count,start,multiplier(0),data_ack)
 BEGIN
 next_state <= present_state; -- default case
 next_count <= present_count; -- default case
 CASE present_state IS
 WHEN idle =>
 IF(start = '1') THEN
 next_state <= initialize;
 ELSE
 next_state <= idle;
 END IF;
 next_count <= 0;
 WHEN initialize =>
 next_state <= test;
 next_count <= present_count;

controller_state_trans : PROCESS(present_state,
 present_count,start,multiplier(0),data_ack)
 BEGIN
 next_state <= present_state; -- default case
 next_count <= present_count; -- default case
 CASE present_state IS
 WHEN idle =>
 IF(start = '1') THEN
 next_state <= initialize;
 ELSE
 next_state <= idle;
 END IF;
 next_count <= 0;
 WHEN initialize =>
 next_state <= test;
 next_count <= present_count;

Sequential RTL Datapaths
Example - 8 Bit Multiplier

The multiplier sequencer and controller are described in this slide.

165

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

165

l Control unit output process

controller_output : PROCESS(present_state)
 BEGIN
 CASE present_state IS
 WHEN idle =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';
 WHEN initialize =>
 a_enable <= '1';
 a_reset <= '0';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '0';
 m_enable <= '1';
 q_enable <= '1';
 q_mode <= '1';
 e_enable <= '1';
 start_ack <= '1';
 data <= '0';

controller_output : PROCESS(present_state)
 BEGIN
 CASE present_state IS
 WHEN idle =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';
 WHEN initialize =>
 a_enable <= '1';
 a_reset <= '0';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '0';
 m_enable <= '1';
 q_enable <= '1';
 q_mode <= '1';
 e_enable <= '1';
 start_ack <= '1';
 data <= '0';

WHEN test =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';
WHEN add =>
 a_enable <= '1';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '1';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '0';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';

WHEN test =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';
WHEN add =>
 a_enable <= '1';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '1';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '0';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';

Sequential RTL Datapaths
Example - 8 Bit Multiplier

Continuation of the controller description.

166

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

166

l Control unit output process (Cont.)

WHEN shift =>
 a_enable <= '1';
 a_reset <= '1';
 a_mode <= '0';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '1';
 q_mode <= '0';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';
WHEN stop =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 e_enable <= '0';
 start_ack <= '0';
 data <= '1';

WHEN shift =>
 a_enable <= '1';
 a_reset <= '1';
 a_mode <= '0';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '1';
 q_mode <= '0';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';
WHEN stop =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 e_enable <= '0';
 start_ack <= '0';
 data <= '1';

 WHEN OTHERS =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';
 END CASE;
 END PROCESS controller_output;
END synthesizable_behavior;

 WHEN OTHERS =>
 a_enable <= '0';
 a_reset <= '1';
 a_mode <= '1';
 c_enable <= '0';
 c_reset <= '1';
 m_enable <= '0';
 q_enable <= '0';
 q_mode <= '1';
 e_enable <= '0';
 start_ack <= '0';
 data <= '0';
 END CASE;
 END PROCESS controller_output;
END synthesizable_behavior;

Sequential RTL Datapaths
Example - 8 Bit Multiplier

Continuation of the multiplier controller.

167

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

167

Sequential RTL Datapaths
8 Bit Multiplier - Results

The multiplier that is synthesized using the code in the previous slides is
shown here.

168

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

168

Module Outline

l Introduction to Synthesis

l VHDL-Based Synthesis

l IEEE Synthesis Packages for VHDL

l IEEE RTL (Synthesis) Subset for VHDL

l Synthesis with IEEE RTL Subset

l Optimizations Used in Synthesis
l VHDL Coding Guidelines Supporting Optimization

l Summary

While our focus is on using VHDL for synthesis, often understanding the
synthesis process/tools will help us write VHDL in a way to take advantage of
the synthesis process. This section provides some insight into how one may
write VHDL so that synthesis tools are able to exploit some the coding style to
optimize the synthesis result.

169

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

169

Optimizations Used in
Synthesis

l Synthesis optimizations can occur at
¡ the Behavioral Level

¡ the RTL Level
¡ the logic levels of VHDL descriptions

l Our focus will be on optimization at the
behavioral and the RTL levels.

Optimizations can result in higher payoffs at the higher levels of abstraction,
as opposed to optimizations at the gate level. Gains of around 10-40% in
metrics such as area and power are typical values that could be expected.

170

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

170

Optimization of Behavioral
VHDL

l Scheduling and Assignment
¡ Input/output scheduling

¡ Operation scheduling and assignment
¡ Register allocation

l Loop pipelining

l Memory and I/O inferencing
l Controller (FSM) generation

The optimizations are performed automatically by the synthesis tool and
usually are transparent to the user.

171

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

171

Input/Output Scheduling

Input/Output can be implicitly defined in VHDL, or the protocol for I/O
transfer can be explicitly defined by the user constraints.

The behavioral optimization (e.g., in Synopsys’ Behavioral Compiler)
tries to:

1. Delay READ operations as late as possible (to minimize registers
for storage) by
 Chaining the input ports directly to the arithmetic operations
 removing the need to register inputs, and
 Moving the read operation to a time where it is consumed immediately
 to ensure that other variables can share the register.

2. Pulling WRITE operations as early as possible by
 Chaining the write operations directly to the producer (no extra
 registers required to hold the result), and
 putting the write operation as close in time to the producer as possible,
 increasing the chance of sharing registers.

This slides presents guidelines on read and write operations within the
behavioral level of synthesis. Writing as per these guidelines assists the
synthesis tool in optimization of the implementation.

172

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

172

Operation Scheduling and
Assignment

The scheduling activity tries to assign operations to clock cycles so that:
 1. Data and control dependencies are satisfied,
 2. High level constraints are met (e.g., latency, throughput, clock period)
 3. Minimum resources are used by flattening the profile of operations
 across multiple cycles (subject to (1)).
 4. Minimizing the number of registers used in producing and consuming
 the variables through efficient register sharing.

The typical objective functions that are optimized during this step are
 - Functional cost
 - Interconnection cost (muxes, busses..)
 - Register costs

This optimization may require a coupling between the RTL and logic synthesis
phases to obtain the best accuracy on the cost information (in terms of
information fed back on exact costs in terms of area and power).

173

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

173

Scheduling Options During
Synthesis

++

x

-

Data flow graph

+ +

x

-

-

x

+

+

x

-

+ + ++

x

-

(a) (b)

(c) (d)

(2 adders)

(shared adder)

multicycling

(two slow adders)

Operator Chaining

(1 adder)

In multicycling an operation can stretch across multiple cycles, while in
operator chaining two operations or more operations are chained within the
same clock cycle, as in the multiply and subtract example above. Synopsys'
documentation on their Behavioral Compiler (1997) provides similar material
on their tool’s behavior.

174

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

174

Scheduling Options (Cont.)

x

-

+

+

2-stage pipelined
adder

Options (a) (b) (c) (d) (e)

Clock 50ns 50ns 50ns 100ns 50ns

Cycles 3 4 4 2 5

Adders 2 fast 1 fast 2 slow 2 slow 1 pipelined

(e)

Note: operator chaining (d) allows use of slower adders and fewer
cycles. Multicycling (c) allows use of slower adders but faster

clock rate. Sharing (b) reduces area, and pipelining (e)
reduces area and increases throughput, but
increases latency. Also, these optimizations are carried out
by the behavioral synthesis tool, without need for changing
VHDL input code (constraints need be changed).

In the pipelined data path scheduling, the arithmetic unit is partitioned into a
number of pipeline stages that can be used to operate on consecutive input
data. The latency may be increased, but the sample period improves with a
higher clock cycle. This is one possible optimization that can be done at this
level. Detailed guidelines from tool vendors provide other tips.

175

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

175

Register Allocation

Time in
cycles

Variable

In1_v

In2_v

Created Consumed

In1_v and in2_v are two variables that do not overlap in their
lifetimes, and hence can be mapped to a single register for
storage. Since a register is about a third the size of an adder, this
can lead to savings in area and power consumption.

Registers can be shared across multiple variables minimizing the area of the
synthesized circuit.

176

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

176

Loop Pipelining

In some loops, data required for the next loop iteration is available
before the current loop is completed. The loops can thus be pipelined
with the second loop initiated while the first loop is completing.

Pipelined_loop: loop
 I := mem_index(in1);
 dot_prod := a(I) * b(I);
 z(I) := dot_prod;
 out1 <= dot_prod;
 wait until clock
end loop;

Read a(I) and b(I)

Compute product

Write result and store

Stage 1

Stage 2

Stage 3Extract pipeline

The earliest time the second loop can begin depends on the dependencies
between the loop iterations and the availability of the resources to carry out the
concurrent computation.

177

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

177

Memory and I/O Inferencing

l Memory and I/O inferencing extracts the
scheduling of memory accesses and the
dependencies between memory accesses and
other operations automatically from the VHDL
code.

l The user can tradeoff between single port and
multiple port memories, and also the mapping of
several variables to the same RAM.

l Generation of addresses for multicycle
operations is also handled automatically.

Memory and I/O inferencing is critical in any behavioral synthesis tool, but not
essential for RTL level tools that would allow these structures to be specified
with reference to the clock cycle.

178

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

178

FSM (Controller) Generation

l The behavioral synthesis tool maps the VHDL
input to a controller/datapath/memory
architecture. Thus, after the data path
scheduling, assignment and allocation is
completed, a FSM is needed to :
¡ Control inputs and outputs to and from the data path

¡ Define state transitions
¡ Define actions needed at each cycle

¡ Generate control signals to control the data path
elements, memories, muxes, busses, and other
components of the synthesized architecture.

The FSM follows a template typical to one shown earlier in this module

179

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

179

RTL Level Optimization

l Expansion of subprograms by in-lining in the
main program and then optimization

l Constant folding to remove unnecessary
computation, e.g., out1 <= a + 3 + 2 becomes out1
<= a + 5.

l Dead code is removed
l Bit minimization by procedures such as state

encoding (using ENUM_ENCODING), etc.

These optimizations are very similar to those used in code optimization in
software.

180

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

180

Logic Level Optimizations

Common operations at this level include factorization and flattening,
to name a few. Extensive literature on optimization at this level exists.

Y = A.B.C
Y2 = Y + A.B.D
Y3 = A.B + C + D

Y2 = A.B.C + A.B.D
Y3 = A.B + C + D

M = A.B,
N = C + D, Y2 = M.N
Y3 = M + N

M = A.B
Y = M.C
Y2 = Y + M.D
Y3 = M + C + D

Original equation

Flatten

Factorize

Factorize

Six gates

Four gates

Logic level optimizations were subject of much interest in the early 1980s
where a number of algorithms for multilevel logic optimization were proposed
and implemented. Such optimizations are now routinely implemented by the
synthesis tool, and the VHDL based designer is not expected to have
familiarity with them.

181

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

181

Module Outline

l Introduction to Synthesis

l VHDL-Based Synthesis

l IEEE Synthesis Packages for VHDL

l IEEE RTL (Synthesis) Subset for VHDL

l Synthesis with IEEE RTL Subset

l Optimizations Used in Synthesis

l VHDL Coding Guidelines Supporting
Optimization

l Conclusions

Coding guidelines are not standards, but are prescriptions that allow the
designer to achieve a higher efficiency in coding, reduce the number of errors,
and also ensure greater productivity.

182

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

182

Coding Guidelines for
Synthesis

l Coding guidelines are organized as:
¡ Design process issues

¡ HDL modeling issues
¡ Simulation speed issues

¡ Synthesis modeling issues

¡ Technology dependent issues

Note that the recommendations that follow are general guidelines, and are
easier said than done.

183

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

183

Design Process Issues

l A top down design methodology, with a bottom
up verification methodology is preferred.

l The design specification is defined as clearly as
possible in form of an executable specification
that matches the executable requirement

l Global clock and reset signals are recommended
l Testability issues are to be considered early on

in the design process. Partial scan and Built-in-
Self-Test (BIST) are suitable options that tradeoff
between speed and area.

Reset signals are important, as synthesis ignores initial values on variables and
signals. Constants can be initialized with integers.

184

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

184

VHDL Modeling Issues

l Before coding, the RTL architecture should be
clearly defined with respect to controller,
datapath and memories,

l The HDL code should reflect the RTL
architecture, and the partitioning of the
architecture into blocks of approximately 5000
gates (2-3 arithmetic units plus logic) is carried
out to facilitate rapid synthesis. Most synthesis
tools work well in this range of complexity. The
process statement allows partitioning of the
design into concurrent structures

We are suggesting that “template” -based coding styles are useful both in
enhancing productivity, taking advantage of synthesis process, and also in
reducing errors in the coding process.

185

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

185

VHDL Modeling Guidelines
(Cont.)

l Models should be as generic as possible to
facilitate reuse

l Guidelines such as the use of meaningful signal
and variable names facilitate readability and
reduce errors, an active low signal may be called
control_n, for instance.

l Comments and the use of packages allow code
maintainability and modularity

l Simulation and synthesis should be considered
together to facilitate verification of the design
process

These are representative of good coding practice.

186

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

186

Simulation Speed Issues

l Process statements are favored over concurrent
signal assignments. This reduces the overhead
that results from a large number of signals that
may need monitoring

l The number of signals in the sensitivity list
should be minimized to improve simulation
speed

l Process statements should be of sufficient
granularity (e.g., a few thousand gates), as too
many processes overload the simulation

l Block statement is not recommended for
synthesis, and process can be used wherever a
block can.

These guidelines allow improvement on the speed of simulation.

187

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

187

Simulation Speed Issues

l Use variables instead of signals in a process,
wherever possible

l Vectored data types can be converted to integer
data type to improve simulation speed

l The ‘EVENT attribute is recommended over
‘STABLE, as the former is not always active. The
RISING_EDGE and FALLING_EDGE defined in
IEEE 1076.3 packages are preferred over
‘EVENT.

Continuation of mechanisms to improve simulation speed. Simulation is
important because of the synthesize-simulate-verify cycle used in the synthesis
process.

188

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

188

Synthesis Modeling Issues

l In modeling combinational logic, signals should
be assigned in all branches to prevent inferring
latches

l Objects assigned to in a for loop should be
assigned a default value prior to execution of the
loop

l Case statement is preferred over the if statement
for its readability, and sometimes efficient
synthesis

l Unbounded integer types are to be avoided since
they can default to the 32 bit integer type. This
can cause problems with the optimization stage

l IEEE standard packages should be used

These are general guidelines on the relative advantages of using one VHDL
construct over another.

189

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

189

Synthesis Modeling Issues

l The if statement is preferred over the wait statement, and the
former also allows the use of asynchronous signals, such as
RESET/SET.

l Using parentheses in arithmetic expressions facilitates
optimization through resource sharing, and specification of
concurrency, and improves critical path. The second statement
below has a shorter critical path, for instance,

Output <= a + b + c + d;
Output <= (a + b) + (c + d)

a

b c d

a

b

d

c

These optimizations are dependent on support from the synthesis tools.

190

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

190

Synthesis Modeling Issues
(Cont.)

l Ensuring compatibility between simulation and
synthesis. Both VHDL descriptions below
generate the same synthesis output, but differ in
their simulation.

Process (enable, in1, in2) Process (enable, in1, in2, in3)
begin begin
if (enable =‘0’) then if (enable =‘0’) then
 output <= (in1 and in2) or in3; output <= (in1 and in2) or in3;
end if ; end if;
end process; end process;

Full sensitivity list

Note: most synthesis tools ignore the sensitivity list, but IEEE RTL
standard recommends using a full sensitivity list to ensure compatibility
with the simulation.

It is safe to include all signals at the right hand side in the sensitivity list to

maintain compatibility between the simulation and synthesis.

191

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

191

Synthesis Modeling Issues
(Cont.)

l Order of signal assignments does not affect
synthesis and simulation as long as the
sensitivity list is complete. However, if using
signals and variables the order may affect
simulation and synthesis

Test1_v := Test2_v and B and C;
Sig_s <= not Test1_v;
Test2_v := D and E;

Swapping these statements
only affects simulation (not synthesis)

Var1_v := A and B;
Var1_v := B and C;

output <= Var1_v;

Swapping these staetemnts
affects synthesis and simulation

This addresses the problems of verification of the synthesis results via
simulation.

192

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

192

Technology Dependence in
Synthesis

l The VHDL coding should sometimes
(unfortunately) take into account whether the
target is a FPGA or an ASIC. For example, in FSM
coding, a one-hot coding method is area efficient
in FPGAs, but not for ASICs.

FSM
Encoding

FPGA
Area
(CLBs)

FPGA
Time
(ns)

ASIC
Area
(units)

ASIC
Time
(ns)

One-Hot Encoding 8 18 73 17

Binary
Encoding

13 43 54 12

This example is true for certain families of FPGAs, as not all FPGAs support
efficient synthesis of one hot encoding (especially if flip flops are not provided
in quantity).

193

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

193

Implementation Technology
Considerations

l The developer of a synthesizable behavioral VHDL
description MUST consider the implementation technology
when writing the code
¡ Implementability reasons

q Some FPGA families do not have internal tri-state devices
- behavioral descriptions that are based on internal tri-
state busses will fail in the technology mapping phase

q Many PLDs have flip flops only on the I/O pins - state
machines with too many I/O ports and state variables
simply won’t fit

¡ Efficiency reasons

q Some FPGA technologies do not have built-in flip-flops,
so registers or state variables are expensive

q In some ASIC technologies multiplexors may in fact be
faster that tri-states

These guidelines are only true for certain FPGA families. Data books for
FPGAs are the best sources of this information.

194

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

194

Signal Selection in VHDL
(for FPGAs)

l Signal selection in VHDL for some FPGA targets
could be different from that used for ASICs, as
shown below:

General signal selection in VHDL

if (sel =‘0’) then output <= signal_0;
else
 output <= signal_1;
end if;

Preferred signal selection for FPGAs
using tri-state busses

output <= signal_0 when (EnA = ‘1’) else ‘Z’;
output <= signal_1 when (EnB = ‘1) else ‘Z’;

Signal selection is implemented
here using muxes

In some FPGAs, muxes can be expensive,
and tri-state buffers are cheaper

This is true for some FPGA families (e.g., Xilinx), but not for all.

195

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

195

Memory Design for in VHDL
FPGAs

l The memory address decode should be implemented with tri-state
busses for some FPGA families, and

l The RAM itself should instantiate library cells provided, e.g.,
RAM16X1 in Xilinx XACT library, as shown below:

Architecture tech_depend_ram of scratch_pad is
…
component ram16x1
port (D, A3, A2, A1, A0, WE: in std_logic; O : out std_logic);
end;
begin
for I in 0 to width -1 generate
cell_ram16x1: ram16x1 port map (D => value_in(I),
A3 => addr(3), A2 => addr(2), A1 => addr(1), A0 => addr(0),
WE => write, O => value_out (I);
end generate;
end tech_depend_ram;

These recommendation only apply to Xilinx, for instance. Other FPGA or
ASIC families may have similar guidelines.

196

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

196

Module Outline

l Introduction to Synthesis

l VHDL-Based Synthesis

l IEEE Synthesis Packages for VHDL

l IEEE RTL (Synthesis) Subset for VHDL

l Synthesis with IEEE RTL Subset

l Optimizations Used in Synthesis

l VHDL Coding Guidelines Supporting Optimization

l Summary

197

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

197

Summary

l This module has introduced the use of VHDL in
the synthesis of digital circuits

l A discussion of relevant IEEE VHDL packages
and standards that support the synthesis
process has been provided

l Examples have been provided to illustrate the
synthesis process using VHDL

l Coding styles and optimizations and their effect
on the synthesis result are also discussed.

198

Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

198

References

[Brayton84] R. Brayton, et al, Logic Synthesis Algorithms for VLSI Synthesis, Kluwer Academic

Publishers, Boston, 1984.

[IEEE] All referenced IEEE material is used with permission.

[Madisetti95] Madisetti, Vijay K, VLSI Digital Signal Processors: An Introduction to Rapid Prototyping

and Design Synthesis, IEEE Press, 1995 ; © IEEE 1995

[Mentor97] Mentor QuickVHDL Simulator Tutorial and Autologic Synthesis Tools,

http://www.mentor.com.

[Parker84] Parker, Alice C., “Automated Synthesis of Digital Systems,” IEEE Design and Test of

Computers, November 1984, pp. 75-8; © IEEE 1984

[Synopsys97] Behavioral Compiler Tutorials, http://www.synopsys.com

