
Page 1Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

1

VHDL Testbenches And
 Basic WAVES Topics

RASSP Education & Facilitation
Module 61

Version 3.00
 Copyright 1998 University of Virginia

This module was created under Air Force Contract #95-C-0220.

Copyright  1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute, and may
only be used for non-commercial educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their
permission. All information contained herein may be duplicated for non-commercial educational use provided this
copyright notice is included. No warranty of any kind is provided or implied, nor is any liability accepted regardless of
use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-
1457. Such data may be liberally reproduced and disseminated by the Government, in whole or in part, without
restriction except as follows: Certain parts of this work belong to other copyright holders and are used with their
permission;This information contained herein may be duplicated only for non-commercial educational use. Any
vehicle, in which part or all of this data is incorporated into, shall carry this legend.

Page 2Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The goals of this module are to first introduce VHDL testbenches and
explain their use during the testing process. Then, WAVES is
described through basic concepts, waveform functions, and examples.
It is expected that the student gain an appreciation for WAVES without
having to review many of the implementation details that support
WAVES. After completing this module, the student should be able to
create a VHDL testbench, write a WAVES waveform generator file,
write a WAVES external test vector file, and complete a successful
simulation of a WAVES test set. It is assumed that the student is
familiar with the details of the VHDL language. Since WAVES is a
subset of VHDL, the student should be able to follow the syntax and
examples presented in this module.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

2

Module Goals

l Introduce VHDL Testbenches
mUsed To Verify And Test VHDL Designs

l Introduce WAVES
mBasic Concepts

mWAVES Library And Functions

mWAVES Test Set

mBasic WAVES Examples

Page 3Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

3

Module Outline

l Introduction
l Testbench Development
l Design Verification Challenges
l WAVES Concepts
l WAVES Constructor Library and Built-Ins
l WAVES External File
l WAVES Test Set
l Decoder Example
l Algorithmic Waveform Generator Example

Page 4Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Most EDA tool developers are using VHDL as the underlying engine
beneath their tool suite. Using VHDL, a design can be simulated at any
level, from concept to implementation. However, the unification of the
EDA tools around VHDL has created a requirement. The designer
needs to be able to stimulate the simulations at the various stages of
development and to collect the results of these simulations. In other
words, the designer needs test vector generation and results collection
and comparison for the simulated development descriptions at all
stages. WAVES was created to meet this need. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

4

Introduction

l Top Down Electronic Design Automation (EDA)

Test
Vector
System

Hardware
Tester

VHDL

Concept
Modeling

Simulatable
Specification

Simulated
Designs

Synthesized
Implementation

Test Vectors

Results

Test Vectors

Results

Test Vectors

Results

Test Signals

Results

Tools

Tools

Tools

Tools

Graphical
User
Interface
(GUI)

USER

Support Environment (file exchange, libraries, etc.)

Page 5Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

WAVES was designed to be the unified testing and results collection
system to complement the unified development systems based on
VHDL. Its purpose is to provide the means to define test stimuli, in the
form of digital waveforms (or test vectors), to define the results to be
collected, and to manage the insertion of the stimuli and the collection
and comparison of the results as the VHDL description is simulated. It
is also designed for compatibility with hardware testers, such that the
same test stimuli and collection paradigm may be automatically
communicated to hardware test systems. This ensures identical testing
of the hardware and pre-implementation simulation. The testing and
collection entity of WAVES, called the WAVES testbench, is written in
VHDL and attached to the VHDL description. The testbench is
analyzed, compiled and executed along with the rest of the VHDL under
simulation. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

5

Introduction (cont.)

l The Role Of WAVES In Top Down EDA

WAVES
Testbench

Hardware
Tester

VHDL

Concept
Modeling

Simulatable
Specification

Simulated
Designs

Synthesized
Implementation

Results

Test Vectors

Results

Test Vectors

Results

Test Signals

Results

Tools

Tools

Tools

Tools

GUI
USER

Support Environment (file exchange, libraries, etc.)

changes
with level
of design

Test Vectors

Page 6Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

WAVES is the industry standard representation and exchange format
for digital stimulus and response data. It provides a powerful support
mechanism for concurrent engineering practices by allowing digital
stimulus and response information to be freely exchanged between
multiple simulation and test platforms. WAVES is defined as a syntactic
subset of VHDL. Therefore, it can be simulated against a VHDL model
during the design process to verify the functionality and timing of the
design as it progresses. Also, when devices are fabricated, the same
WAVES test vector set can be used in the electrical test process to
assure that the same stimulus used during design is used during
electrical test. [Flynn94], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

6

Introduction (cont.)

l WAVES History
mOriginal Standard IEEE 1029.1 - 1991

qWaveform And Vector Exchange Specification
ØFocus On Exchange Between Multiple Environments
ØFocus On Automatic Test Equipment (ATE) Support
ØFocus On Documentation/Archive

q Subset Of VHDL Language
ØPoor Interface For VHDL Modeling & Simulation
ØPrototype Package Implementation Inefficient, Overly

Complex

Page 7Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

WAVES has been modified and improved since the initial 1991 release.
A re-ballot on WAVES will result in a new IEEE standard in mid-1997.
There are several improvements included in WAVES ‘97. The interface
between WAVES and VHDL has been enhanced by using the 1164
logic values. The 1164 logic values are a base for many of the
functions and libraries that WAVES requires. WAVES testbenches can
be used at any level of abstraction for verification and test purposes.
WAVES has also been aligned with the most recent version of the
VHDL language (VHDL ‘93). This allows WAVES to be used with the
latest features of the VHDL language. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

7

Introduction (cont.)

l WAVES ‘97 Scope
mRe-ballot Standard IEEE 1029.1 - 1996

q Standard For VHDL Waveform And Vector Exchange
(WAVES) to Support Design And Test Verification
ØFocus On Improved Interface Between WAVES And

VHDL (1164 Support Libraries)
ØFocus On Supporting Design Verification For All Levels

Of Modeling Abstraction
ØFocus On Improved Storage & Simulation Efficiency
ØFocus On Alignment With VHDL ‘93

Page 8Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

8

Module Outline

l Introduction

l Testbench Development
l Design Verification Challenges
l WAVES Concepts
l WAVES Constructor Library and Built-Ins
l WAVES External File
l WAVES Test Set
l Decoder Example
l Algorithmic Waveform Generator Example

Page 9Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A quality testbench is essential for adequate design verification. A
testbench allows verification to proceed in a consistent and repeatable
manner. In the past, testbenches were developed with no standards or
guidelines. As a result, testbenches were often complex and difficult to
produce. A hardware component under test could yield several
testbenches used for verification purposes. Each testbench would
require specific test inputs which were often incompatible with the other
testbenches. Output results which were proven correct on one
particular testbench could not be verified using the other testbenches.
Therefore, the ability to repeat the same testing procedures was not
often supported in previous testbenches.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

9

Testbench Development

l Quality Testbench Is Essential For Adequate
Design Verification

l Testbench
mMethodologies Are Ad Hoc

q 100 Designers => 100 Approaches

mComplex And Difficult To Develop

q Typically On The Order Of The Model To Be Tested
mCorrect Model Behavior Verified “By-Observation”

Page 10Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The fundamental notion of using WAVES and VHDL together is implicit
within their common VHDL foundation. However, the actual
implementation of an effective WAVES integrated application is
embedded within an entity called the WAVES testbench. The testbench
is created to manage the insertion of test waveforms and vectors into,
and the examination of results data from, the VHDL design description
we wish to test. The WAVES testbench is more consistent and easier
to create than previous testbenches. Automated tools and simulators
can easily manipulate the WAVES testbench. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

10

Testbench Development (cont.)

l WAVES Testbench
mConsistent, Structured, Standard Testbench

Methodology

mDevelopment Of Testbench Is Automated

mCorrect Model Behavior Verified Automatically By
Simulator

mWell Documented Test Set

mWell Documented Testing Methodology

Page 11Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The WAVES testbench is described using the standard Entity and
Architecture format for a VHDL description. The testbench entity has
no ports, since all testing operations occur within the testbench. The
component under test is instantiated using structural VHDL. The test
vector file is referenced using a VHDL File statement. The waveform
generator is referenced as a VHDL Procedure within the testbench
architecture. The comparison signals are declared within the
architecture of the testbench. These signals are used within the
monitor processes contained in the testbench architecture. The
WAVES testbench is similar to real hardware testers for the reasons
shown. One advantage to the WAVES testbench is that different test
vector sets can be used without any modification to the testbench.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

11

Testbench Development (cont.)

l Details Of A WAVES Testbench
mA VHDL Entity With No Ports

mA VHDL Architecture That Uses Structural And
Behavioral VHDL Descriptions

mArchitecture of Testbench Contains Instantiation Of
Component Under Test, Test Vector File, Waveform
Generator, Monitor Processes

mExpected Output Signals Are Declared

mExpected Outputs Compared To Actual Output Signals

m Testbench Provides Environment Similar To Real
Hardware Testers (Input Stimulus, Comparison Of
Output Values)

mDifferent Test Vector Sets Can Be Used Without
Modifying Testbench

Page 12Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram shows a complete WAVES test set. The waveform
generator reads test vectors from a file and generates inputs for the
component and the expected output values from that component. The
component under test receives the input stimulus from the waveform
generator and produces output values based on its VHDL description.
These output values are then compared to the expected responses by
monitor processes within the testbench. If the two responses do not
match, then an error message is produced. The testbench creates a
complete testing environment around the VHDL model.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

12

Testbench
Development (cont.)

l WAVES Testbench Diagram

VHDL
Model

Instantiation

Monitor
Processes

WAVES
Waveform
Generator

Input Stimulus

Error
MessagesActual Response

Expected
Response WAVES

Test Vector Set

Testbench

Page 13Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

13

Module Outline

l Introduction
l Testbench Development

l Design Verification Challenges
l WAVES Concepts
l WAVES Constructor Library and Built-Ins
l WAVES External File
l WAVES Test Set
l Decoder Example
l Algorithmic Waveform Generator Example

Page 14Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The WAVES Match function allows the designer to perform testing of
uninitialized devices. If a hardware component powers up into an
unknown state and has no reset capability, it is difficult to find a valid
starting point for testing. The Match functionality allows the designer to
match a known value with the output of the model. This allows the
designer to start testing when the behavior of the component is well
established after its unpredictable initial state. In the example shown
above, a counter powers up into an unknown state and has no reset.
Therefore, the testing approach uses the Match functionality to
establish a valid starting point to apply test vectors. In this case, the
counter is clocked until it responds will all zeros on its output. The
Match function compares the counter output with the desired starting
value of all zeros. If they do not match, then the counter is clocked, and
the output is compared again during the next time interval. If they do
match, then the test vectors will be applied to the counter.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

14

l Testing Uninitialized Devices
mDevice Powers up in an unknown state, has no reset

(example: Counter)

l WAVES Match Mode Test

Design Verification
Challenges

Clock the device until
its outputs respond
with all zeros, then
apply the test vectors
to verify correct
functionality

Model To Test Test method

Clock

C
O
U
N
T

Counter with
no reset or
clear

Page 15Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The WAVES Handshake function allows the designer to perform testing
of asynchronous devices. The Handshake functionality is designed to
synchronize the application of each test vector with an asynchronous
signal. In a system without a synchronous clock, the communications
between component and tester is established using request and
acknowledge signals. Both signals are asynchronous in nature. The
tester makes a request to begin testing and the component
acknowledges the request. For consistent testing, each test vector
cannot be applied until the component has received the proper
asynchronous acknowledgment. This insures that the test vector is
applied at the proper time to perform verification. In the example shown
above, the tester makes a request on the REQ line to the component.
The component responds on an acknowledge (ACK) line to the tester.
On the rising edge of the ACK line, the tester applies a test vector to the
component. The application of the test vector has been synchronized
to the asynchronous acknowledge signal.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

15

l Testing Asynchronous Devices
mSynchronize With External Signal Before Applying Each

Test Vector

l WAVES Handshake Mode Test

Design Verification
Challenges (cont.)

Test method

DMA
Controller

Apply each test
vector on the rising
edge of the external
acknowledge to verify
correct functionality

Model To Test

ACK

B
U
S

REQ

Page 16Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

It is possible to create multiple waveform generators in WAVES which
allow for multiple, simultaneous tests of a component in a system. Each
waveform generator is designed to perform one type of testing for the
particular component. The two waveform generators can perform their
actions in parallel within the same testbench. However, each test pin
can be driven only by one waveform generator. In other words, both
waveform generators cannot drive the same test pins on the
component. In the example shown above, the top waveform generator
provides only serial data to the model under test. The bottom waveform
generator drives the output enable (OE) line to allow the component to
place data on the bus. When the component places the data on the
bus and raises the Data Ready line, the waveform generator verifies the
data on the bus. Therefore, two waveform generators are providing two
separate testing operations on the same component.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

16

l Testing Devices With Multiple Asynchronous
Functionality

l Multiple WAVES Processes

Design Verification
Challenges (cont.)

Model Under Test Serial Data

Serial
communication
interface Every 200 ns pulse OE

for 20 ns and on the
rising edge of data
ready verify the state
of the parallel output
bus

Parallel DataData Ready

B
U
S

OE

Drive the clock at
50 MHz and supply
two channels of serial
data into the model

Clock

Page 17Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram shows a boundary scan implementation for a device under
test. All elements except for the internal logic and some instruction
decoding have RTL VHDL descriptions that were automatically
developed. Since the boundary scan has been implemented in VHDL,
WAVES can be used to assist in the testing process for this device.
Specifically, WAVES can be used to provide both serial and parallel test
vectors for a boundary-scan architecture. WAVES could also be used
for testing devices with Built-In Test (BIT) or Built-In Self-Test (BIST).
[Pronobis95], [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

17

Design Verification
Challenges (cont.)

l Testing Devices With Boundary Scan And/Or
BIT/BIST

TDI

TMS

TCK

TRST

TD0
Reset*
ClockDR
ShiftDR
UpdateDR Reset*

ClockIR
ShiftIR
UpdateIR

Select
TCK

Shift (enable)

M
U
X

MUX FF

TAP
Controller

Instruction Register

Instruction Decode

Shift Register

RTG Sig
Anal

Boundary
Register

Internal Scan

Bypass Register

Internal Logic

Device ID Register

Test Data Register

Device Inputs Device Outputs

Page 18Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

18

Module Outline

l Introduction
l Testbench Development
l Design Verification Challenges

l WAVES Concepts
l WAVES Constructor Library and Built-Ins
l WAVES External File
l WAVES Test Set
l Decoder Example
l Algorithmic Waveform Generator Example

Page 19Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

WAVES ‘97 is basically sequential VHDL plus new data types, functions
and constructors. The data types, functions, and procedures allow
waveforms to be constructed for use in testing a component. The
external file format is involved in the construction of waveforms as well.
The standard constructor library supports the IEEE 1164 Logic Values,
which are used as the logic system throughout this module. WAVES
‘97 provides a self-contained and consistent method to specify and
verify the intended behavior of a VHDL component description.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

19

What Is WAVES ‘97?

l Essentially Sequential VHDL, PLUS
mBuilt-in Data Types, Functions, Procedures

mExternal Pattern File Format

mStandard Library Of Constructors To Support 1164
Model Verification

l Standard, Self-contained, Unambiguous
Simulatable Specification Of The Intended
Behavior Of A VHDL Model/Physical Hardware

Page 20Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The IEEE Standard Logic Values (from IEEE Standard 1164-1993) are
used throughout this module. The 1164 Logic Values are declared as
an enumerated type of all legal logical values that can be used to
generate events on a waveform. The WAVES libraries and constructor
functions are based on the 1164 Logic Values. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

20

WAVES Concepts (cont.)

l WAVES Libraries Based On 1164 Logic Levels

Page 21Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The most basic concepts in WAVES are the terms shown above. The
waveform is constructed using the other concepts listed above. Each
term will be reviewed in detail throughout this section. These terms
provide the basic background to understanding the relationship between
the waveform generator, test vector file, and component under test for a
particular WAVES test set.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

21

WAVES Concepts

l Only A Handful Of Basic Concepts Must Be
Learned
mWaveform

mSlice

mEvents/Logic Values

m Frame

m Frame Sets/Pin Codes

m Frame Set Array

Page 22Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In WAVES, a waveform is simply a collection of time-dependent, logic-
level transitions, or events, which have some significance in the context
of the test pins of some Unit Under Test (UUT). Each series of events
at a given test pin represents the time-ordered sequence of logic level
changes which occur over some time duration. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

22

WAVES Concepts (cont.)

l Waveform
m The Set Of All Events Across All Signals For The Entire

Simulation

q Like Timing Diagram In A Data Book

Page 23Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A slice is a division of a waveform and its integral signals into segments
of time. The slice intervals apply uniformly across all signals in the
waveform. This constraint insures a consistent view of the waveform.
[Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

23

WAVES Concepts (cont.)

l Slice
mA Time Partition Of The Waveform

q Like A Tester Cycle Or Period

Page 24Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Signals in WAVES are the same as signals in VHDL. WAVES signals
are used to convey sequences of logic levels for stimulating the UUT
and for asserting the response that we expect from it. Signals are
essentially sequences of events (not to be confused with a VHDL
event). A WAVES event is a time-logic value pair. The WAVES event
time is used to describe the placement, or scheduling, of the WAVES
event on a signal with respect to the beginning of the current slice. The
logic value component describes the discrete value of the WAVES
event. Therefore, a waveform is constructed by scheduling WAVES
events on the signals of a waveform on a per-slice basis. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

24

WAVES Concepts (cont.)

l Events/Logic Values
m The Scheduling Of A Logic Value On A Signal Of The

Waveform

Page 25Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Frames are the fundamental building blocks of WAVES. A frame is
defined as a segment of a signal between slice boundaries, which
contains the events of the signal in the slice. In other words, a frame
defines a particular, time-ordered sequence of logic-level transition
events. However, a frame is flexible since the designer can specify the
event times and logic values for the signal within a particular frame.
Therefore, the designer can develop waveforms and signals by
manipulating the waveform dimensions within the frames. All frames are
bounded by waveform slice boundaries which specify the time
references. Therefore, frames are temporally consistent across all
waveform signals. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

25

WAVES Concepts (cont.)

l Frames
mGrouping Of Events Into Common Reusable Waveform

Shapes

q The Sequence Of Events On A Given Signal For A
Given Slice

q Like A Tester Format

Page 26Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A frame set is a collection of frames used to create a particular signal or
group of signals. Pin codes are single-character identifiers used to
select specific frames from the frame set. The same set of pin codes
must be used for all frame sets for a particular test. The frame set
defines a set of frames for all possible legal pattern values (WAVES pin
codes) that can be used on a signal. A frame set can be generated
using the various frame format functions in the WAVES constructor
library. The test pins in a pinset can be described using the same
frame set (in other words, the same waveform shape). [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

26

WAVES Concepts (cont.)

l Frame Sets/Pin Codes
mA Set Of Frames, One For Each Legal Pin Code

q Defines The Events That Are Scheduled When The
Given Pin Code Is Applied To A Given Signal

q Pin Codes Appear In The External Pattern File

mPinsets Are Used To Group Pin Codes Together
q Pinsets Declared In Waveform Generator File

q Used To Form A Bus of Signals Having The Same
Waveform Shape

Page 27Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram shows two different frame sets. A sequence of pin codes
from the external pattern file selects the frames needed to construct a
signal in the waveform. Note that for the same pin code, two different
frames are chosen from the frame sets. Therefore, even though the set
of pin codes is the same for all frame sets, the constructed signals can
be different from each other. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

27

WAVES Concepts (cont.)

l Frame Sets/Pin Codes (cont.)

Page 28Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows the code which declares the 1164 logic levels that are
used throughout the WAVES files. The types of characters that are
valid pin codes are declared in the first line. These pin codes are
contained within the external test vector file.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

28

 -- Declare the character codes that are legal in the external file.
 --
 constant PIN_CODES : String := "X01ZWLH-";

 --
 -- This is the maximum number of events that may comprise a frame.
 -- A frame is a sequence of events for a given signal for a given
 -- slice of the waveform. Set this constant appropriately for
 -- your application.
 --
 constant MAX_FRAME_EVENTS : positive := 3;

 --
 -- Declare the logic values system that will be used to place
 -- events on the waveform.
 --
 subtype LOGIC_VALUE is Std_Ulogic;

 --
 -- Declare a vector of logic values that will be used to as the
 -- signal of vectors for the WAVES port list.
 --
 subtype WAVES_LOGIC_VECTOR is Std_Ulogic_vector;

WAVES 1164 Declarations

Page 29Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

A frame set array serves three purposes. First, it captures all the frame
sets required for the signals within a particular waveform. Second, it
associates the frame sets with the particular pins of the UUT. Finally, it
applies the specific time values to the event time designators within the
frames. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

29

WAVES Concepts (cont.)

l Frame Set Array
mAssociates Frame Sets With Each Signal On The

Waveform

mSpecifies The Actual Timing For Event Scheduling

m Like A Tester Timing Set

Page 30Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The figure shown above summarizes the contributions of the various
elements to a completely defined WAVES waveform. The waveform is
composed of signals associated with UUT pins. Each signal is
composed of frames defined by slice duration times. Within each
frame, event times define transitions between logic levels. The frame
set array provides the logic level and event timing for the signals. The
array includes frame sets and event time values. The information in the
array is indexed by the pins and pin codes. The pin code implies the
logic level as well. A pin and pin code combination in the frame set
array defines a unique combination of shape, logic levels, and event
times. The external file provides the slice sequencing and slice timing
information, which are indexed using the same pin and pin code
combinations as the frame set array.

In the figure, a particular frame is required for pin 2 of the UUT in a
particular slice of time. The pin designation is 2 and the pin code is 1.
Using standard logic convention, the pin code indicates that the logic
level of the pulse will be a 1 during the active portion of the frame. In
the frame set for pin 2, pin code 1 must designate a pulse shape,
indicating two event times (t1 and t2). In the frame set array, two
specific times with respect to the slice starting time must exist for the
pin 2, pin code 1 combination (70ns and 140ns). The external file
includes slice duration times for the frames associated with each pin.
For the pin 2, pin code 1 combination, the slice duration is 200ns.
[Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

30

Composition Of A WAVES
Waveform

Waveform

Pins Signals

1

2

3

signal #1

signal #2

signal #3

Slices

External File

Pin & Pin Code Combinations

Slice Duration Times

Frame Set Array

Pin & Pin Code Combinations

Event Time Values

Frame Set(s)

Frame(s)

Event Time Designators
Logic Levels

Framet1 t2
1

0
 70ns 140ns

200ns

Page 31Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram shows the relationship between the pin codes and a
constructed waveform. A slice, which is a segment of time across all
signals, can be specified simply as a list of pin codes. Each pin code
character is intended for a specific test pin. Recall that each test pin
has an associated frame set. The pin code characters act as an index
to the frame set. The pin code selects a frame in order to construct a
particular test signal. A complete waveform, which consists of many
sequential slices of time across all test signals, can be represented as a
set of lists of pin codes, one after the other in time-slice sequence.
Each pin code list specifies the frames required to define the waveform
during each slice. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

31

List of Pin Codes:
l a Pattern
l a Vector
l one line in an
External File (File Slice)

WAVES Waveform As A Set Of
Pin Code Lists

UUT
Pins

Slice

Sequence of Slices

Set of Lists of Pin Codes = A Waveform

Pin Code

(Each pin
code refers
to a frame
selected
from a
particular
frame set)

Page 32Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

32

Module Outline

l Introduction
l Testbench Development
l Design Verification Challenges
l WAVES Concepts

l WAVES Constructor Library and Built-Ins
l WAVES External File
l WAVES Test Set
l Decoder Example
l Algorithmic Waveform Generator Example

Page 33Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section of the module describes the WAVES constructor library
and built-in functions which are used within the waveform generator to
create the input stimulus and expected responses. The library is based
on the 1164 Logic Levels shown earlier. The waveform generator
generates slices of the waveform utilizing the WAVES frame and frame
set building blocks and the pin codes. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

33

WAVES Waveform Generator

VHDL
Model

Instantiation

Monitor
Processes

WAVES
Waveform
Generator

Input Stimulus

Error
MessagesActual Response

Expected
Response WAVES

Test Vector Set

Testbench

Page 34Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The format of a WAVES waveform is defined using the set of functions
shown above. There are two types of frame formats: drive format for
input signals and expected format for the expected signals. These
formats provide great flexibility in constructing waveforms. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

34

WAVES ‘97 Constructor
Library

l Provides Common Frame Shapes
mDrive Format (Input Signals)

q Non Return

q Return High/Low

q Surround By Complement

q Pulse Low/High

mExpected Format (Output Signals)

qWindow (Compare)

Page 35Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Non Return format is the simplest way to represent device
behavior. A WAVES slice is defined from one t0 to the next t0. This
example shows two slices in the Non Return format. At t0, the drive
level is whatever the data of the previous slice had been. At t1, it drives
the logic level of the present slice to the designated value, where it
remains until the t1 of the next slice. In this example, the signal initially
starts in the undefined state (the gray area). Then, at t1, since the data
from the pattern file is ‘0’, the signal is driven to a logic value ‘0’ until the
t1 in the next slice. Since the pattern data is ‘1’ at the second t1, the
signal is driven to a logic value ‘1’. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

35

WAVES ‘97 Constructor
Library

l Non Return (user specifies t1 only)

logic
high

logic
low

t1 t2 t1 t2t0 t0 t0

data = 0 data = 1

l Function format: Non_Return (t1)

Page 36Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows an example of the Non Return format. In the figure
shown above, each slice is 50ns in length. During the first slice (from
0ns to 50ns), the signal is initially in the undefined state. At time 20ns,
the signal is driven to a logic ‘0’ since the pattern data is a logic ‘0’.
This value is held into the second slice (from 50ns to 100ns). At time
70ns (or 20ns from the start of the second slice), the signal is driven to
a logic ‘1’ since the pattern data is logic ‘1’. This value is held for the
rest of the second slice as shown.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

36

WAVES ‘97 Constructor
Library

l Non Return example

logic
high

logic
low

20ns 70ns0ns 50ns 100ns

data = 0 data = 1

l Function format: Non_Return (20 ns)

Page 37Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Return High format drives the level high from t0 to t1 and from t2 to
the following t0. Therefore, the waveform will only transition at t1 if the
pattern data is a logic ‘0’. The dashed line on the signal represents the
drive level present due to the definition of the function and not from the
pattern data. In the Return High function, this default value is a logic ‘1’.
In this example, the signal starts at the the default logic value. At t1, the
pattern data is found to be a logic ‘0’, so the signal transitions to ‘0’ from
t1 to t2. At t2, the signal returns to the default logic value. At the
second t1, the pattern data is a logic ‘1’, therefore the signal is driven to
a logic ‘1’ (shown by the solid line). At the second t2, the signal is
driven back to the “default” value until the next slice. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

37

WAVES ‘97 Constructor
Library

l Return High (user specifies t1 and t2)

logic
high

logic
low

t1 t2 t1 t2t0 t0 t0

data = 0 data = 1

l Function format: Return_High (t1, t2)

Page 38Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows an example of the Return High format. Each slice is
50ns in length. At 0ns, the signal is a logic ‘1’ which is the default value
for the Return High format. At 15ns, since the pattern data is a ‘0’, the
signal is driven to a logic ‘0’. This value is held until 35ns, when the
signal returns to a logic ‘1’. In the second slice (from 50ns to 100ns),
the signal is driven to a logic ‘1’ throughout the entire slice since the
pattern data is ‘1’.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

38

WAVES ‘97 Constructor
Library

l Return High example

logic
high

logic
low

15ns 35ns 65ns 85ns0ns 50ns 100ns

data = 0 data = 1

l Function format: Return_High (15 ns, 35 ns)

Page 39Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Return Low format is the complement of the Return High format. It
drives the level low from t0 to t1 and from t2 to the following t0. The
level is driven high from t1 to t2 only if the pattern data is a logic ‘1’. In
this example, the default value is a logic ‘0’. Since the pattern data
during the first slice is ‘0’ the level is driven low from t1 to t2. At the
second t1, the pattern data is a logic ‘1’. Therefore, the level is driven
at a logic ‘1’ from t1 to t2 before returning to the default logic ‘0’ value.
[Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

39

WAVES ‘97 Constructor
Library

l Return Low (user specifies t1 and t2)

l Function format: Return_Low (t1, t2)

logic
high

logic
low

t1 t2 t1 t2t0 t0 t0

data = 0 data = 1

Page 40Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows an example for the Return Low format. Each slice is
defined to be 50ns in length. At 0ns, the signal is a logic ‘0’ since the
default value for the Return Low format is a logic ‘0’. At 15ns, the
pattern data is ‘0’ so the signal retains a value of ‘0’ for the entire first
slice. In the second slice, at 65ns, the pattern data is ‘1’. Therefore,
the signal takes on a logic ‘1’. At 85ns, the signal returns to the default
value of ‘0’ for the rest of the slice.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

40

WAVES ‘97 Constructor
Library

l Return Low example

logic
high

logic
low

15ns 35ns 65ns 85ns0ns 50ns 100ns

data = 0 data = 1

l Function format: Return_Low (15 ns, 35 ns)

Page 41Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Surround By Complement drives the complement of the pattern
data from t0 to t1 and from t2 to the following t0. The level is driven by
the pattern data from t1 to t2. In the first slice, the pattern data is ‘0’.
Therefore, the level is driven to logic ‘1’ from t0 to t1 and t2 to the next
t0. When the complement of a given frame in one slice is different than
the complement value in the next slice, a transition occurs at the
second t0, as shown above. This is an implied transition from the
definition of the function. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

41

WAVES ‘97 Constructor
Library

l Surround By Complement (user specifies t1 & t2)

logic
high

logic
low

t1 t2 t1 t2t0 t0 t0

data = 0 data = 1

l Function format: Surround_Complement (t1, t2)

Page 42Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows an example of the Surround By Complement format.
Each slice is defined as 50ns in length. During the first slice (from 0ns
to 50ns), the signal is driven to a logic ‘1’ from 0ns to 10ns and from
30ns to 50ns. The signal is driven to a logic ‘1’ for these intervals
because the pattern data for this slice is ‘0’. From 10ns to 30ns, the
signal is driven to a logic ‘0’. In the second slice (from 50ns to 100ns),
the pattern data is ‘1’. Therefore, from 50ns to 60ns and from 80ns to
100ns, the signal is driven to a logic ‘0’. However, from 60ns to 80ns,
the signal is driven to a logic ‘1’ to match the pattern data.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

42

WAVES ‘97 Constructor
Library

l Surround By Complement example

logic
high

logic
low

10ns 30ns 60ns 80ns0ns 50ns 100ns

data = 0 data = 1

l Function format: Surround_Complement (10 ns, 30 ns)

Page 43Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The pulse formats are used to specify periodic or regular waveforms for
input signals. For example, a clock signal is efficiently described using
pulse formats. In the Pulse Low format, if the vector pattern data
contains either an ‘L’ or a ‘0’, then the level will drive to ‘0’ on the first
edge (t1), and stay at ‘0’ until the second edge (t2). In other words, it
will transition from high-to-low at t1 and from low-to-high at t2. There is
also a Pulse Low Skew format which shifts the pulses in each slice
forward in time. In this case, the user specifies the shift amount as well
as t1 and t2. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

43

WAVES ‘97 Constructor
Library

l Pulse Low (user specifies t1 and t2)

logic
high

logic
low

t1 t2 t1 t2t0 t0 t0

data = 0 data = L

l Function format: Pulse_Low (t1, t2)

Page 44Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows an example of the Pulse Low format. The slices are
defined to be 20ns in length. During the first slice, the pattern data is ‘0’
which means that there will be a 1-to-0 transition at 5ns, and a 0-to-1
transition at 15ns. This is exactly what is shown in the figure above.
The signal is driven to a logic ‘0’ from 5ns to 15ns. The times specified
by the user define the rising and falling edges of the signal. In the
second frame, since the pattern data is ‘L’, the signal will transition from
1-to-0 at 25ns, and from 0-to-1 at 35ns. This is shown in the second
frame seen the figure above.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

44

WAVES ‘97 Constructor
Library

l Pulse Low example

logic
high

logic
low

5ns 15ns 25ns 35ns0ns 20ns 40ns

data = 0 data = L

l Function format: Pulse_Low (5 ns, 15 ns)

Page 45Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In the Pulse High format, if the pattern data contains either an ‘H’ or a
‘1’, then the level will be driven to ‘1’ on the first edge (t1), and stay at a
‘1’ until the second edge (t2). In other words, it will transition low-to-
high at t1, and high-to-low at t2. There is also a Pulse High Skew
format similar to the Pulse Low Skew format previously mentioned.
[Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

45

WAVES ‘97 Constructor
Library

l Pulse High (user specifies t1 and t2)

logic
high

logic
low

t1 t2 t1 t2t0 t0 t0

data = H data = 1

l Function format: Pulse_High (t1, t2)

Page 46Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows an example of the Pulse High format. The slices are
defined to be 20ns in length. During the first slice, the pattern data is
‘H’. This means that a 0-to-1 transition will occur at 5ns and a 1-to-0
transition will occur at 15ns. As shown, the signal will hold a logic ‘1’
value from 5ns to 15ns. In the second slice, the pattern data is ‘1’. The
behavior in the second slice will be identical to the behavior in the first
slice. The signal goes to a logic ‘1’ from 25ns to 35ns as expected.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

46

WAVES ‘97 Constructor
Library

l Pulse High example

logic
high

logic
low

5ns 15ns 25ns 35ns0ns 20ns 40ns

data = H data = 1

l Function format: Pulse_High (5 ns, 15 ns)

Page 47Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Window format is used to compare the actual UUT output with the
expected output at a specified time. This format starts the valid data
comparison at the t1 edge and disables the data comparison at the
subsequent t2 edge. If the expected data level is not detected for the
t1-to-t2 interval, or the signal changes to an invalid state, then a fail is
declared. Otherwise, if the correct value is maintained for the entire
interval, then the UUT output agrees with the expected output value.
There is also a Window Skew format which allows the user to shift the
window in each slice forward in time. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

47

WAVES ‘97 Constructor
Library

l Window (user specifies t1 and t2)

logic
high

logic
low

t1 t2 t1 t2t0 t0 t0

data = 0 data = 1

l Function format: Window (t1, t2)

Page 48Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows an example of the Window format. The slices are
defined to be 20ns in length. In the first slice, a comparison interval is
defined from 5ns to 15ns. The pattern data value ‘0’ and the value of
the signal should match for the entire interval. In the second slice, a
comparison interval from 25ns to 35ns is defined. The pattern value is
‘1’ and the signal value should also be a logic ‘1’ for the interval defined
above.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

48

WAVES ‘97 Constructor
Library

l Window example

logic
high

logic
low

5ns 15ns 25ns 35ns0ns 20ns 40ns

data = 0 data = 1

l Function format: Window (5 ns, 15 ns)

Page 49Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slides shows the definitions for all the functions used construct the
WAVES frames. All of the functions require timing values as inputs,
and all the functions return a frame set. In the waveform generator, one
of these functions is used to construct a waveform for a particular test
pin.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

49

 function Non_Return(T1 : EVENT_TIME) return Frame_set;

 function Return_Low(T1, T2 : EVENT_TIME) return Frame_set;

 function Return_High(T1, T2 : EVENT_TIME) return Frame_set;

 function Surround_Complement(T1, T2 : EVENT_TIME) return Frame_set;

 function Pulse_Low(T1, T2 : EVENT_TIME) return Frame_set;

 function Pulse_Low_Skew(T0, T1, T2 : EVENT_TIME) return Frame_set;

 function Pulse_High(T1, T2 : EVENT_TIME) return Frame_set;

 function Pulse_High_Skew(T0, T1, T2 : EVENT_TIME) return Frame_set;

 function Window(T1, T2 : EVENT_TIME) return Frame_Set;

 function Window_Skew(T0, T1, T2 : EVENT_TIME) return Frame_Set;

WAVES 1164 Frame Definitions

Page 50Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Apply, Delay, and Read_File_Slice are associated with the
application of test vectors from the external file. Interactive waveforms
can be generated using the Match and Handshake functions. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

50

WAVES ‘97 Built-ins

l Only A Handful of Built-in Functions
mApply

mDelay

mMatch

mHandshake

mRead_File_Slice

l Used In Waveform Generator File

Page 51Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Apply and Delay procedures are used in the waveform generator.
The Apply procedure takes the pattern data read from the external file
and schedules events on the test pins for the current slice. The timing
of the events is defined by the frame format functions shown earlier.
The Delay procedure uses the slice timing information to suspend the
WAVES process for a certain duration. After applying a test vector, the
simulation will have to advance time to finish the current slice. After the
Delay procedure is executed, the current time is incremented by the
value of the delay time. Then, a new test vector could be applied to the
current slice. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

51

WAVES ‘97 Built-ins

l The Apply Procedure
mSchedules Events For the Current Slice On The

Waveform

q Equivalent To VHDL Signal Assignment

l The Delay Procedure
mSuspends The Execution Of the WAVES Process For

The Given Time Duration

q Equivalent To VHDL “wait for”

Page 52Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Match procedure is used to initiate a Matching operation in the
WAVES test set. It could be used to test an uninitialized device that
has no reset capability. The Match procedure specifies which test pins
are compared to a known initial value. The Match operation is
terminated when the value on the test pins matches the initial value.
The Handshake procedure is used to achieve synchronization between
asynchronous signals and the application of a test vector. This
procedure specifies which signals are used to perform the Handshaking
operation. This functionality will not apply a new test vector to the UUT
until it is synchronized through the Handshaking process.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

52

WAVES ‘97 Built-ins

l The Match Procedure
m Initiates A Match Request To The Testbench

q Provides Coarse (Value Level) Synchronization

l The Handshake Procedure
m Initiates A Handshake Request To The Testbench

q Provides Event Level Synchronization

q Suspends Execution Of The WAVES Process Until
The Handshake Request Is Satisfied

Page 53Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Read_File_Slice is used to read data from the external file and
store it in a temporary variable within the waveform generator. The
Apply and Delay functions will use certain parts of the stored test vector
to perform their operations. The predefined file format will be discussed
in the next section.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

53

WAVES ‘97 Built-ins

l The Read_File_Slice Procedure
mReads A Vector (Slice) From A WAVES External Pattern

File

mPredefined File Format

Page 54Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

54

Module Outline

l Introduction
l Testbench Development
l Design Verification Challenges
l WAVES Concepts
l WAVES Constructor Library and Built-Ins

l WAVES External File
l WAVES Test Set
l Decoder Example
l Algorithmic Waveform Generator Example

Page 55Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This sections describes the format for the WAVES test vector file. The
data within the file must strictly adhere to the WAVES format for the
waveform generator to correctly read and process the file slices. The
waveform generator reads pin codes and slice information one line at a
time from the external file, and constructs a corresponding slice of the
waveform. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

55

WAVES External
Test Vector File

VHDL
Model

Instantiation

Monitor
Processes

WAVES
Waveform
Generator

Input Stimulus

Error
MessagesActual Response

Expected
Response WAVES

Test Vector Set

Testbench

Page 56Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

An external file contains pin codes and slice timing information
necessary to build a complete waveform. Each line in an external file
represents a time slice in a waveform across all signals. Each pin code
for a particular file slice is intended for a particular test pin. The
patterns can be binary or hexadecimal in format as shown in the next
few slides. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

56

WAVES ‘97 External File

l Separates Test Pattern Data From Functional
WAVES Code

l Organized Into File Slices
mOne “Pin Code” Character Per Device Pin

l Patterns May Be Specified As Binary Bit Level
Patterns Or In Hexadecimal
mMay Freely Mix Binary And Hexadecimal Fields

l Could Algorithmically Generate Test Vectors
Within Waveform Generator File (an external
pattern file would not be required in this case)

Page 57Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

File slices contain two types of tokens: data tokens and control tokens.
The data tokens are specified in binary or hexadecimal format. The
control tokens specify slice timing and other operations. Many of the
specific types of tokens are identified in the external file by special
characters, which are described later in this section.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

57

WAVES External File (cont.)

l File Slices Contain Two “Token” Types
mData Tokens Specify Pattern Data

q Binary Pin Code Tokens

q Hexadecimal Tokens

mControl Tokens Specify Processing

q Timing Specifier

q Skip Command
q Repeat Command

q Hexadecimal Template

Page 58Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The format of each file slice must obey the requirements shown above.
There can be any number of data tokens and control tokens in a given
file slice. The data tokens are terminated by a space or tab. A file slice
is not limited to one line in the file. It could span several lines in the file
as needed for a particular test vector set. The semicolon character is
used to terminate a file slice within the external file. [Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

58

WAVES External File (cont.)

l File Slice Structure
mAny Mixture Of Data And Control Tokens

mSpaces And Tabs Are Permitted

mData Tokens Must Be Terminated By Space Or Tab

mSlice May Span Several Lines Of The File

mSemicolon ‘;’ Is The Slice Terminator

Page 59Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The special characters in the external file are used to specify the types
of tokens and operations included in a particular file slice. The ‘%’
character is used to declare a comment line in the external file. The ‘=‘
character is used to introduce a skip command. A skip command
allows the data tokens to applied to specific columns in the file slice.
Each column in a line of data tokens is assigned to a specific test pin.
The first test pin (test pin #1) is the leftmost data token in the slice. The
skip command could be used when most of the data tokens in the
current file slice are the same as the tokens in the previous file slice. In
the example shown above, the “=32” term indicates which pin number
the tokens “1010” should be applied to. Therefore, the data tokens for
pins 1 through 31 remain the same as the previous file slice, while pins
32 through 35 receive the data tokens shown above. Pin #32 receives
‘1’, Pin #33 receives ‘0’, and so forth. The ‘+’ character is used to signal
a repeat command. If a repeat command is included in a file slice, then
that file slice will be applied the number of times specified. In the
example shown, the “+200” means that the current file slice will be
applied 200 times. After 200 applications, the next file slice is read and
processed. [Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

59

WAVES External File (cont.)

l Special Characters
m ‘%’ Introduces A Comment

q Comments Span To The End Of The Line

m ‘=‘ Introduces A Skip Command

q Applies The Next Data Token Beginning At Column
n (example: =32 1010)

m ‘+’ Introduces A Repeat Command

q Repeat Vector n Times (example: +200)

Page 60Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows some examples which use data tokens, control tokens,
and the special characters. The first example shows test vectors for a
device with 8 test pins. As a result, there are 8 data tokens shown in
binary format. The timing specifier indicates that the duration of the first
slice is 20ns, the second slice is 15ns, and the third slice is 10ns.

The second example shows the skip and repeat commands. Again, the
UUT has 8 test pins, so each file slice must produce 8 data tokens. The
time duration of 20ns is the same for all vectors in this example. The
first vector declares a timing specifier of 20ns. Since the other two
vectors do not have a timing specifier, the previous slice duration of
20ns must be used. The second vector shows 4 tokens which we want
to apply to pins 5 through 8 only. The data tokens for pins 1 through 4
are the same as the first vector. The third vector shows the repeat
command as shown.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

60

WAVES External File Example

% In this example, the data tokens are in binary format only.

% The control tokens are timing specifiers which indicate the slice

% duration.

00010010 : 20 ns;

% data tokens => 00010010 control token => : 20ns

01110111 : 15 ns;

01111100 : 10 ns;

% In this example, the skip and repeat commands are shown below.

% The first test vector is in binary format and has a 20ns duration:

00010010 : 20 ns;

% The second test vector uses the skip command to apply the data

% tokens at column #5. In this case, the resultant vector is

% 00010111 with a 20ns duration.

=5 0111 ;

% The third test vector will be repeated 20 times with a 20ns

% duration during each application.

+20 01111100 ;

Page 61Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The ‘^’ character is used to signify data tokens in the standard
hexadecimal format. In this example “^A5” corresponds to the binary
data tokens of “10100101”. The “#” character is used to create a user-
defined hexadecimal template. The user defines which pin codes are
used to translate a user-defined hexadecimal field into a pin code bit
pattern. The first pin code after the # sign is used as the “zero”
character. The second pin code is used as the “one” character. When
a user-defined template is used, the hexadecimal data field is translated
into a series of data tokens. The data tokens must be one of the pin
codes specified in the template. In the example shown, the pin code ‘L’
will be used like a ‘0’ in binary format. The pin code ‘H’ will be used like
a ‘1’ in binary format. After a user-defined hexadecimal template is
declared, the ‘~’ character must be used to signify a user-defined
hexadecimal data field. In the example, “~A5” signifies a user-defined
hexadecimal template. If the template “#LH” was declared, then “~A5”
would correspond to “HLHLLHLH”. Note that instead of using ones and
zeros, we used the pin codes ‘H’ and ‘L’ to represent a translation of the
hexadecimal data. [Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

61

WAVES External File (cont.)

l Special Characters (cont.)
m ‘^’ Introduces Standard Hex Field

q example: ^A5 => 10100101

m ‘#’ Introduces User Defined Hex Template

q Used To Define The Binary Pin Code String
Generated By The Hex Field (example: #LH)

m ‘~’ Introduces User Hex Field

q example: ~A5 => HLHLLHLH

Page 62Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slides shows some example for the hexadecimal format. In the
first example, the data tokens are in standard hexadecimal format with
time duration specified. In the second example, a user-defined
hexadecimal template has been declared using the ‘L’ and ‘H’ pin
codes. The data tokens and control tokens for each vector are shown.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

62

WAVES External File
 Example (cont.)

% In this example, the data tokens are in standard hex format only.

% The control tokens are timing specifiers which indicate the slice

% duration.

^12 : 20 ns;

^77 : 15 ns;

^7C : 10 ns;

% In this example, the data tokens are in user-defined hex format.

% The control tokens are timing specifiers which indicate the slice

% duration.

#LH ~12 : 20 ns;

% data tokens => LLLHLLHL control tokens => #LH, : 20ns

~77 : 15 ns;

% data tokens => LHHHLHHH control token => : 15ns

% This vector uses the standard hex format

^77 : 15 ns;

% data tokens => 01110111 control token => : 15ns

Page 63Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The colon character ‘:’ is used to specify timing information. If a period
of time is specified after the ‘:’ character, then the slice duration is
specified. If an integer is specified after the ‘:’ character, then the
integer indicates which frame set array in the waveform generator is to
be used to apply the current file slice. In many applications, multiple
timing sets in the waveform generator are required to create the
necessary waveforms. For example, a component may have bi-
directional pins. Therefore, one timing set would be used for input
mode on the pin, while the other would be used for output mode on the
pin. The integer after the colon serves as an index to the proper timing
set for a particular file slice. The semicolon character ‘;’ is used to
terminate a file slice. [Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

63

WAVES External File (cont.)

l Special Characters (cont.)
m ‘:’ Introduces A Timing Specifier

qMay Be An Integer Or A Time
ØTime Indicates Duration Of Vector (example: 20 ns)
ØInteger Indicates Timing Set Selection

m ‘;’ Indicates The End Of The File Slice

Page 64Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In this example, the timing command using integers is shown. The
integer selects which timing set in the waveform generator that is used
for each file slice. In this example, there are two timing sets in the
waveform generator, indexed as ‘1’ or ‘2’.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

64

WAVES External File
 Example (cont.)

% In this example, the data tokens are in binary format only.

% The control tokens are timing specifiers which indicate the timing

% set selection.

00010010 : 2;

% data tokens => 00010010 control token => : 2

% this vector is using timing set 2

01110111 : 1;

% this vector is using timing set 1

01111100 : 2;

Page 65Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

When a ‘:’ character is included in a hexadecimal data field, the width of
the pin code token has been specified. This allows the user to truncate
characters from the tokens or to add characters to the tokens.
Normally, a single hexadecimal character are converted into four pin
codes. If the specified width is less than the normal hexadecimal
conversion, then the leftmost characters are removed. In the example
shown, ^FF08:14 signifies that the resultant pin codes from this
hexadecimal data is to be 14 characters wide. Normally, ^FF08 would
result in 16 data tokens. In this example, the two leftmost characters
are removed, which results in a translation from “^FF08” to
“11111100001000”. If the specified width is larger than the normal
hexadecimal conversion, then extra zeros are added to the data tokens.
In the second example, ^AA:16 requires 16 data tokens after
conversion. However, the hexadecimal number AA is only 8 tokens
wide. Therefore, 8 extra zeros are added to produce the data token
string of “0000000010101010”. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

65

WAVES External File (cont.)

l Hexadecimal Data Field Format
m Field Width Specifier Allowed (^XX:n)

q Narrower Than Hex Field Specified
ØTruncate Left Most Characters
Øexample: ^FF08:14 => 11111100001000

qWider Than Hex Field Specified
ØFill With “Zeros” On The Left
Øexample: ^AA:16
ØGenerates: 0000000010101010

Page 66Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

There are two rules which all standard and user-defined hexadecimal
data fields must follow. The first rule is that hexadecimal fields
generate contiguous pin codes. Therefore, when a hexadecimal field is
translated into pin codes, then all the resultant pin codes must be next
to each other within the file slice. In the example, if we specified that a
converted 8-character hexadecimal field would start at column 10. This
means that 32 pin codes would be placed from column 10 to column 41.
The other rule sets a limit on the maximum width of pin codes in a file
slice. If the user specifies a width for a hexadecimal translation, then
this width must be less than the number of test pins on the UUT. If the
specified width is greater than the number of test pins, an error will
result. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

66

WAVES External File (cont.)

l Hexadecimal Data Field Format (cont.)
mRules For Field Expansion

q Hexadecimal Fields Generate Contiguous Character
Patterns (example: 32 Bits Wide Starting In Column
10)

q Total Generated Width Of The Entire Pattern May
Not Exceed The Number Of Device Pins

mApplies To Both Standard Hex Fields And User Defined
Hex Fields

Page 67Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

67

Module Outline

l Introduction
l Testbench Development
l Design Verification Challenges
l WAVES Concepts
l WAVES Constructor Library and Built-Ins
l WAVES External File

l WAVES Test Set
l Decoder Example
l Algorithmic Waveform Generator Example

Page 68Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slides shows the structure of a complete WAVES test set. It
includes a test pin file, waveform generator, testbench, external pattern
file, and the WAVES 1164 libraries and standard packages.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

68

WAVES Test Set

l Structure Of A WAVES 1164 Test Set
mUUT Test Pins Package

q Enumerated Type Declaration (Test_pins)

mWaveform Generator Package

q Contains One Or More WAVES Waveform Generator
Procedures (WAVES Processes)

m Testbench File

mOptional External Pattern File

mPredefined WAVES 1164 Constructor Library And
WAVES Standard Packages

Page 69Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The WAVES header file is used for documentation purposes and does
not need to be compiled with the rest of the WAVES test set. The
WAVES header file identifies the WAVES data set and describes how
the data set is to be assembled. It also identifies the external file which
contains the pin codes to be used as part of the data set and specifies
the name of the waveform generator procedures. WAVES was created
as an exchange specification for waveforms and test vectors between
different organizations. Therefore, the documentation and identification
information in the header file is important for understanding various test
sets. [Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

69

WAVES Test Set (cont.)

l The WAVES Header File
mData Set Identification

q Author, Revision Level, Device Name, and so forth

mWAVES File Identification

q Compilation Order

q File Dependencies

mExternal File Identification

q Identifies Test Vector File
mWaveform Identification

q Specifies The Waveform Generator Procedures

Page 70Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This example shows a generic header file for a “component_x”. The
Data set identification section shows the author, device name, and
other information. If this data set was modified in the future by another
design team, then further information may be included in this section.
The WAVES files are identified in the second section. The name of the
component VHDL description is shown along with the working library it
is compiled into. The file name for the test pin file is shown next. The
IEEE library is declared and various WAVES packages are identified.
These libraries and packages are used when the WAVES test set is
compiled. The filenames for the waveform generator, the testbench,
and the external file are shown next. Finally, the name of the waveform
generator procedure is shown at the bottom. The library and package
where the waveform generator procedure is declared are shown above.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

70

WAVES Header File Example

-- ******** Generic Header File

-- Data Set Identification Information

TITLE WAVES Test Set for Component X

DEVICE_ID component_x

DATE Wed July 16 16:03:05 1997

ORIGIN Component X Design Team

AUTHOR The Company of X, Y, and Z

OTHER comments relating to the data set

-- Data Set Construction Information

VHDL_FILENAME component_x.vhd WORK

WAVES_FILENAME test_pins.vhd WORK

library IEEE;

use IEEE.WAVES_1164_Declarations.all;

use IEEE.WAVES_Interface.all;

use WORK.UUT_Test_pins.all;

WAVES_UNIT WAVES_OBJECTS WORK

WAVES_FILENAME component_x_wgp.vhd WORK

VHDL_FILENAME component_x_tstbench.vhd WORK

EXTERNAL_FILENAME component_x_vect.txt VECTORS

WGEN_PROCEDURE WORK.wgp_component_x.waveform

Page 71Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

71

Module Outline

l Introduction
l Testbench Development
l Design Verification Challenges
l WAVES Concepts
l WAVES Constructor Library and Built-Ins
l WAVES External File
l WAVES Test Set

l Decoder Example
l Algorithmic Waveform Generator Example

Page 72Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This WAVES example uses a decoder circuit as the component under
test. This decoder is designed to accept a 7-bit binary coded value as
the input. The outputs of the decoder are intended to drive a two digit,
7-segment LED display. The LED display should show the correct
decimal display for the binary input value. The figure above
summarizes the WAVES test set for the decoder. The VHDL for the
entire WAVES test set is shown on the next several slides. It is
important to recognize what changes must be made to each WAVES
file in order to produce a simulatable WAVES test set.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

72

Decoder Example

Decoder
Instantiation

Monitor
Processes

WAVES
Waveform
Generator

Data(6:0) input

Error
Messages

WAVES
Test Vector Set

Testbench

expected A1..G1

A1..G1 output

A0..G0 output

expected A0..G0

Page 73Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

73

Decoder Example

l This WAVES Example Consists Of 6 Files:
mHeader File

mBehavioral VHDL Description Of Decoder

m Test Pins File

mExternal Test Vector File

mWaveform Generator File

m Testbench File

Page 74Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As stated before, the WAVES header file provides documentation about
a particular WAVES test set. The data set identification section gives
the name of the component under test, date, and origin information.
The data set construction information shows the various filenames in
the WAVES test set. The WAVES library dependencies are shown, as
well as the filenames for the component, test pin file, testbench,
waveform generator, and external pattern file.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

74

Header File: Decoder Example

-- ******** Header File for Entity: display_driver

-- Data Set Identification Information

TITLE WAVES Decoder Test set example

DEVICE_ID display_driver

DATE Tue Mar 17 16:25:14 1998

ORIGIN RASSP E&F and UVA

AUTHOR UVA EE Dept

DATE Tue Mar 17 16:25:14 1998

OTHER This example demonstrates a complete WAVES test

OTHER set for a decoder device.

-- Data Set Construction Information

VHDL_FILENAME bcd_decoder.vhd WORK

WAVES_FILENAME bcd_decoder_pins.vhd WORK

library IEEE;

use IEEE.WAVES_1164_Declarations.all;

use IEEE.WAVES_Interface.all;

use WORK.UUT_Test_pins.all;

WAVES_UNIT WAVES_OBJECTS WORK

WAVES_FILENAME bcd_decoder_wgen.vhd WORK

VHDL_FILENAME bcd_decoder_tstbench.vhd WORK

EXTERNAL_FILENAME bcd_decoder_vectors.txt VECTORS

WAVEFORM_GENERATOR_PROCEDURE WORK.wgp_display_driver.waveform

Page 75Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is a standard entity VHDL description for the decoder. It has a
total of 21 ports. The 7-bit bus data is the input signal to this circuit.
The fourteen output signals are the result of the decoding operation.
The ports A0 through G0 are meant to drive the lower digit in the 7-
segment display. The ports A1 through G1 are meant to drive the
upper digit in the 7-segment display.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

75

Decoder VHDL Description

ENTITY display_driver IS

 PORT (data : IN std_logic_vector(6 DOWNTO 0);-- binary data input

 A0 : OUT std_logic; -- segments for digit 0

 B0 : OUT std_logic;

 C0 : OUT std_logic;

 D0 : OUT std_logic;

 E0 : OUT std_logic;

 F0 : OUT std_logic;

 G0 : OUT std_logic;

 A1 : OUT std_logic; -- segments for digit 1

 B1 : OUT std_logic;

 C1 : OUT std_logic;

 D1 : OUT std_logic;

 E1 : OUT std_logic;

 F1 : OUT std_logic;

 G1 : OUT std_logic);

END display_driver;

Page 76Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the behavioral architecture for the decoder. The main process is
sensitive only to the data signal. Three integer variables are declared in
order to process the binary input. Two signals are declared to store the
output values for each digit of the 7-segment display.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

76

Decoder VHDL Description
(cont.)

ARCHITECTURE default OF display_driver IS

SIGNAL display1 : std_logic_vector(6 DOWNTO 0);

SIGNAL display0 : std_logic_vector(6 DOWNTO 0);

BEGIN

decode_process : PROCESS(data)

 VARIABLE int_data : INTEGER := 0;

 VARIABLE tens_place : INTEGER := 0;

VARIABLE ones_place : INTEGER := 0;

BEGIN

-- Convert the input data to an integer

 int_data := to_integer(data);

Page 77Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The binary input is converted into an integer. This integer
representation is used to select the values for the variables ones_place
and tens_places.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

77

Decoder VHDL Description
(cont.)

-- Next, determine the values for the ten's place digit and

-- the one's place digit

IF (int_data > 99)THEN

-- Error - assign both values = -1

ones_place := -1;

tens_place := -1;

 ELSIF (int_data >= 90) THEN

ones_place := int_data - 90;

tens_place := 9;

 ELSIF (int_data >= 80) THEN

ones_place := int_data - 80;

tens_place := 8;

 ELSIF (int_data >= 70) THEN

ones_place := int_data - 70;

tens_place := 7;

 ELSIF (int_data >= 60) THEN

ones_place := int_data - 60;

tens_place := 6;

Page 78Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

78

Decoder VHDL Description
(cont.)

 ELSIF (int_data >= 50) THEN

ones_place := int_data - 50;

tens_place := 5;

 ELSIF (int_data >= 40) THEN

ones_place := int_data - 40;

tens_place := 4;

 ELSIF (int_data >= 30) THEN

ones_place := int_data - 30;

tens_place := 3;

 ELSIF (int_data >= 20) THEN

ones_place := int_data - 20;

tens_place := 2;

 ELSIF (int_data >= 10) THEN

ones_place := int_data - 10;

tens_place := 1;

 ELSE

ones_place := int_data;

tens_place := 0;

END IF;

Page 79Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The variables ones_place is used to control the lower digit in the 7-
segment display. The output ports A0, B0, C0, D0, E0, F0, G0 are set
using the signal display0.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

79

Decoder VHDL Description
(cont.)

-- Finally, set the values of the output variables that drive

-- the 7-segment displays according to the values of

-- tens_place and ones_place

-- abcdefg

CASE ones_place IS

WHEN 0 => display0 <= "1111110"; -- zero

WHEN 1 => display0 <= "0110000"; -- one

WHEN 2 => display0 <= "1101101"; -- two

WHEN 3 => display0 <= "1111001"; -- three

WHEN 4 => display0 <= "0110011"; -- four

WHEN 5 => display0 <= "1011011"; -- five

WHEN 6 => display0 <= "1011111"; -- six

WHEN 7 => display0 <= "1110000"; -- seven

WHEN 8 => display0 <= "1111111"; -- eight

WHEN 9 => display0 <= "1110011"; -- nine

WHEN OTHERS => display0 <= "1001111"; -- error

END CASE;

Page 80Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The variables tens_place is used to control the upper digit in the 7-
segment display. The outputs A1, B1, C1, D1, E1, F1, G1 are set using
the signal display1.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

80

Decoder VHDL Description
(cont.)

CASE tens_place IS

WHEN 0 => display1 <= "1111110"; -- zero

WHEN 1 => display1 <= "0110000"; -- one

WHEN 2 => display1 <= "1101101"; -- two

WHEN 3 => display1 <= "1111001"; -- three

WHEN 4 => display1 <= "0110011"; -- four

WHEN 5 => display1 <= "1011011"; -- five

WHEN 6 => display1 <= "1011111"; -- six

WHEN 7 => display1 <= "1110000"; -- seven

WHEN 8 => display1 <= "1111111"; -- eight

WHEN 9 => display1 <= "1110011"; -- nine

WHEN OTHERS => display1 <= "1001111"; -- error

END CASE;

END PROCESS;

Page 81Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The output of the CASE statement selections are mapped to the output
signals. The variable ones_place has been used to set signals A0
through G0. The variable tens_place has been used to set signals A1
through G1.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

81

Decoder VHDL Description
(cont.)

a0 <= display0(6);

b0 <= display0(5);

c0 <= display0(4);

d0 <= display0(3);

e0 <= display0(2);

f0 <= display0(1);

g0 <= display0(0);

a1 <= display1(6);

b1 <= display1(5);

c1 <= display1(4);

d1 <= display1(3);

e1 <= display1(2);

f1 <= display1(1);

g1 <= display1(0);

END default;

Page 82Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The test pin file can be automatically generated by the WAVES tool set.
No changes need to be made here if the WAVES tools are used. The
test pins are declared as a new type, and a new VHDL package
“uut_test_pins” is created. The values of test_pins are the names of
pins used to test or exercise the UUT.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

82

Decoder Test Pin File

-- ******** This File Was Automatically Generated ********
-- ******** By The WAVES96-VHDL Tool Set ********
-- ******** Generated for Entity: display_driver
-- ******** This File Was Generated on: Fri Jan 30 16:43:40 1998
--
--
PACKAGE uut_test_pins IS
TYPE test_pins IS (data_6, data_5, data_4, data_3, data_2, data_1,

 data_0, A0, B0, C0, D0, E0, F0, G0, A1, B1, C1,
 D1, E1, F1, G1);

END uut_test_pins;

l A new TYPE is declared for the external pins of the
decoder.

Page 83Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is an excerpt from the test vector file for the decoder. The lines
beginning with “%” are comments. Each file slice contains 21 pin code
characters. The first 7 pin codes are used to drive the input bus data.
The next 7 pin codes represent the expected outputs on signals A1
through F1. The last 7 pin codes are used to drive the expected output
signals for A0 through F0. The external test vector file cannot be
created by the WAVES tools, so the designer must create this file.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

83

Decoder Test Vector File
(excerpt)

% DATA ABCDEFG ABCDEFG
% 1111111 0000000
0000000 1111110 1111110 : 500 ns ;
0000001 1111110 0110000 : 500 ns ;
0000010 1111110 1101101 : 500 ns ;
0000011 1111110 1111001 : 500 ns ;
0000100 1111110 0110011 : 500 ns ;
0000101 1111110 1011011 : 500 ns ;
0000110 1111110 1011111 : 500 ns ;
0000111 1111110 1110000 : 500 ns ;
0001000 1111110 1111111 : 500 ns ;
0001001 1111110 1110011 : 500 ns ;
0001010 0110000 1111110 : 500 ns ;
0001011 0110000 0110000 : 500 ns ;
0001100 0110000 1101101 : 500 ns ;
0001101 0110000 1111001 : 500 ns ;
0001110 0110000 0110011 : 500 ns ;
0001111 0110000 1011011 : 500 ns ;

l Each file slice contains data tokens for
every test pin on the decoder. The duration
for each slice is 500 ns.

Page 84Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The waveform generator can be automatically generated using the
WAVES tool set. However, it must be modified by the designer before
it can be simulated. The designer must insure that the library
references for the waveform generator are correct. In this example, the
WAVES library is used for the standard WAVES packages. The
package “uut_test_pins” is from the test pin file and was compiled to the
“work” directory. A package “WGP_display_driver” is declared which
contains the actual waveform generator. A signal “WPL” of type
Waves_Port_List is used to communicate the waveform information
with the UUT during simulation. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

84

Decoder Waveform
Generator File

--
-- ******** This File Was Automatically Generated ********
-- ******** By The WAVES96-VHDL Tool Set ********
-- ******** Generated for VHDL entity: ********
-- ******** display_driver ********
-- ******** Generation date and time: ********
-- ******** Fri Jan 30 16:43:40 1998 ********
--

use STD.TEXTIO.all;
library IEEE;
use IEEE.WAVES_1164_Frames.all;
use IEEE.WAVES_1164_Declarations.all;
use IEEE.WAVES_Interface.all;
use WORK.WAVES_Objects.all;
use WORK.UUT_Test_Pins.all;

package WGP_display_driver is

 procedure WAVEFORM(signal WPL : inout WAVES_PORT_LIST);

end WGP_display_driver;

Page 85Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The designer must modify the FILE statement in the waveform
generator to include the name of the external test vector file (In this
example, it was called “bcd_decoder_vectors.txt”). The FILE statement
is in the format of VHDL ‘93. However, if needed, the FILE statement
could be written in the VHDL ‘87 format. A variable called VECTOR is
used to store a file slice read from the external file. A pinset data is
declared for the 7-bit binary input signal. A pinset OUT_PINS is
declared for all the decoder output signals. A pinset DISP1 is declared
for the signals used to drive the upper digit of the display. A pinset
DISP0 is declared for the signals used the drive the lower digit of the
display. Finally, pinsets INPUTS and OUTPUTS are declared.
[Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

85

Decoder Waveform
Generator File (cont.)

package body WGP_display_driver is

 procedure WAVEFORM(signal WPL : inout WAVES_PORT_LIST) is

 file VECTOR_FILE : text open READ_MODE is "bcd_decoder_vectors.txt";

 variable VECTOR : FILE_SLICE := NEW_FILE_SLICE;

 constant data : PINSET := data_6 + data_5 + data_4 + data_3 +
 data_2 + data_1 + data_0;

 constant OUT_PINS : PINSET := A0 + B0 + C0 + D0 + E0 + F0 +
 G0 + A1 + B1 + C1 + D1 + E1 + F1 + G1;

 constant DISP1 : PINSET := A1 + B1 + C1 + D1 + E1 + F1 + G1;
 constant DISP0 : PINSET := A0 + B0 + C0 + D0 + E0 + F0 + G0;

 constant INPUTS : PINSET := data;
 constant OUTPUTS : PINSET := OUT_PINS;

l Test vector filename declared in FILE statement.

Page 86Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows the most important changes that the user must make
to the waveform generator. In this section, the frame sets are created,
and the test vectors are read and applied. The designer specifies how
the frames are to be built using the various constructor functions (used
in the function “Build_Frame_Data” above). The WAVES built-in
functions are used to read and apply the various test vectors in the loop
statement. This code will be examined in more detail in the next few
slides.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

86

Decoder Waveform
Generator File (cont.)

variable TIMING : FRAME_DATA :=
 BUILD_FRAME_DATA(
 (
 (INPUTS, NON_RETURN(0 ns)),
 (DISP1, WINDOW(400 ns, 500 ns)),
 (DISP0, WINDOW(400 ns, 500 ns))
)
);

 begin -- waveform generator procedure

 loop
 READ_FILE_SLICE(VECTOR_FILE, VECTOR);
 exit when VECTOR.END_OF_FILE;
 APPLY(WPL, VECTOR.CODES.all, TIMING);
 DELAY(VECTOR.FS_TIME);
 end loop;

 end WAVEFORM;

END WGP_display_driver;

Page 87Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The variable “TIMING” will store all the frame set information needed for
the test pins on the decoder. “TIMING” is of type Frame_Data, which is
a record of frame set arrays and test pin mapping information. The
information for the variable “TIMING” is produced by the function
Build_Frame_Data. The format Non_Return is used on the pinset
INPUTS, which represents the 7 input pins. The Window format is used
on the pinsets DISP1 and DISP0. A 100ns comparison interval has
been declared. The constructor functions (Non_return and Window),
along with their timing information, are used to create a data structure
that is stored in the variable “TIMING”. The structure in “TIMING” will
allow a frame to be selected and applied to a given test pin. The
information in “TIMING” is indexed by a pin and pin code combination.
[STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

87

Decoder Waveform
Generator File (cont.)

l The user specifies the frame constructor
functions and the appropriate timing values as
shown below:

variable TIMING : FRAME_DATA :=
 BUILD_FRAME_DATA(
 (
 (INPUTS, NON_RETURN(0 ns)),
 (DISP1, WINDOW(400 ns, 500 ns)),
 (DISP0, WINDOW(400 ns, 500 ns))
)
);

Page 88Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram shows the impact of the constructor functions used in this
waveform generator. The first two slices of the waveform are shown
above. The test vectors shown are the excerpts from the first two test
vectors from the external file. In reality, the entire test vector is 21 pin
codes long. In the test vectors shown, the 7 pin codes for Data(6:0) are
shown first. Then, the pin codes for A0 and A1 are shown. In the first
frame (from 0ns to 500ns), the vector is “0000000 1 1”. The test vector
causes the signal Data to take a value of “0000000” for the entire first
slice as expected with the Non_return format. On the outputs A0 and
A1, a 100ns comparison window is established. In the first slice, both
expected output pin codes are ‘1’. This causes A0 and A1 to change to
‘1’ at 400ns. In the second frame (from 500ns to 1000ns), the vector is
“0000001 1 0”. Since the pin codes for Data is “0000001”, the signal
will remain at “0000001” for the entire slice. The pin code for A0 is ‘1’,
but pin code for A1 is ‘0’. At 900 ns, A0 changes to ‘1’ while A1
changes to ‘0’. In summary, the constructor functions and timing values
specified in the waveform generator create the format for each
waveform that is applied to the test pins.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

88

Decoder Waveform
Generator File (cont.)

400ns 500ns 900ns 1000ns0ns

Data(6:0)

A0

A1

test vector = 0000000 1 1 test vector = 0000001 1 0

0000000 0000001

Page 89Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The LOOP statement shown above controls the reading and application
of test vectors from the external file. The READ_FILE_SLICE
procedure reads a file slice from the external file (specified in
“vector_file”) and stores it in a variable “Vector”, which is actually a
record of several fields. The information read from each file slice is
stored in a specific field of “Vector”. An example of the various fields of
“Vector” will be shown on the next slide. The APPLY procedure uses
the pin code information from “Vector”, and the frame set structure in
“TIMING” to schedule events on the test pins. The DELAY function
uses the slice timing information contained in “Vector” to suspend
execution of the WAVES test set. After this procedure is executed, the
current time is effectively incremented by the value of the delay time.
The loop is terminated when the Boolean end-of-file field in “Vector” is
set. This flag will be set by READ_FILE_SLICE when it reaches the
end of the external file. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

89

Decoder Waveform
 Generator File (cont.)

l In the loop, a slice is read from the external file
and applied to the corresponding signals as
shown below:

 loop
 READ_FILE_SLICE(VECTOR_FILE, VECTOR);
 exit when VECTOR.END_OF_FILE;
 APPLY(WPL, VECTOR.CODES.all, TIMING);
 DELAY(VECTOR.FS_TIME);
 end loop;

Page 90Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram shows the basic fields that make up the record “Vector”.
The information contained within each field is stored by the procedure
READ_FILE_SLICE. The field “codes” is used to store the pin code
information from a file slice. The “codes” field is used in the APPLY
procedure shown on the previous slide. The slice timing information is
stored in the “fs_time” field. The “fs_time” field is accessed by the
DELAY procedure shown on the previous slide. If the procedure
READ_FILE_SLICE encounters the end of the external file, then the
“end_of_file” field is set in “Vector”. This field is essentially a Boolean
flag that is set to True when the end of the external file has been
reached. The “end_of_file” field is used by the EXIT statement seen on
the previous slide. There are other fields in “Vector” that are not shown
above. These fields would be used to support the Skip command,
Repeat command, and hexadecimal formatting discussed in the
External File section of this module. In summary, the information in a
file slice is stored over several fields of “Vector”. Each field will be
accessed by different WAVES functions sequence and construct the
signals on the waveform. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

90

Decoder Waveform
 Generator File (cont.)

0000000 1111110 1111110 : 500 ns;

500 ns

VECTOR

File Slice
From External File

codes fs_time end_of_file

0000000 1..0 1..0 false

End Of
External File

Page 91Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The testbench can be automatically generated by the WAVES tools.
However, the testbench must be modified before it can be simulated.
The designer must insure that the library references for the testbench
are correct. The designer must include the component library
references. The testbench above uses the WAVES library, the test pin
file, and the waveform generator file. An entity “test_bench” is declared
with no ports in the entity declaration.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

91

-- ******** This File Was Automatically Generated ********
-- ******** By The WAVES96-VHDL Tool Set ********
-- ******** Generated for Entity: display_driver
-- ******** This File Was Generated on: Fri Jan 30 16:43:42 1998
--
--

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.WAVES_1164_utilities.all;
USE IEEE.WAVES_interface.all;

USE WORK.UUT_test_pins.all;
USE work.waves_objects.all;
USE work.WGP_display_driver.all;

-- Include component library references here
-- User Must Modify And ADD component library references here
-- Include component library references here

ENTITY test_bench IS
END test_bench;
ARCHITECTURE display_driver_test OF test_bench IS

Decoder Testbench

Page 92Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The component under test, display_driver, is formally declared in the
testbench. The user modifies the entity “use” statement to include the
architecture name for the component (called “default” in this example).

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

92

COMPONENT display_driver
 PORT (data : IN std_logic_vector(6 downto 0);
 A0 : OUT std_logic;
 B0 : OUT std_logic;
 C0 : OUT std_logic;
 D0 : OUT std_logic;
 E0 : OUT std_logic;
 F0 : OUT std_logic;
 G0 : OUT std_logic;
 A1 : OUT std_logic;
 B1 : OUT std_logic;
 C1 : OUT std_logic;
 D1 : OUT std_logic;
 E1 : OUT std_logic;
 F1 : OUT std_logic;
 G1 : OUT std_logic);
 END COMPONENT;

 -- User Must Modify modify and declare correct
 -- .. Architecture, Library, Component ..
 -- Modify entity use statement
FOR ALL:display_driver USE ENTITY work.display_driver(default);

Decoder Testbench (cont.)

Page 93Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Various signals are declared within the testbench to provide stimulus to
the input signals and to monitor the output signals. The signal
FAIL_SIGNAL is used to depict the status of the test in the monitor
processes. In this example, there are 14 expected output signals
declared for the decoder. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

93

 --**
 -- stimulus signals for the waveforms mapped into UUT INPUTS
 --**
 SIGNAL WAV_STIM_data :std_logic_vector(6 downto 0);

 --**
 -- Expected signals used in monitoring the UUT OUTPUTS
 --**
 SIGNAL FAIL_SIGNAL :std_logic;
 SIGNAL WAV_EXPECT_A0 :std_ulogic;
 SIGNAL WAV_EXPECT_B0 :std_ulogic;
 SIGNAL WAV_EXPECT_C0 :std_ulogic;
 SIGNAL WAV_EXPECT_D0 :std_ulogic;
 SIGNAL WAV_EXPECT_E0 :std_ulogic;
 SIGNAL WAV_EXPECT_F0 :std_ulogic;
 SIGNAL WAV_EXPECT_G0 :std_ulogic;
 SIGNAL WAV_EXPECT_A1 :std_ulogic;
 SIGNAL WAV_EXPECT_B1 :std_ulogic;
 SIGNAL WAV_EXPECT_C1 :std_ulogic;
 SIGNAL WAV_EXPECT_D1 :std_ulogic;
 SIGNAL WAV_EXPECT_E1 :std_ulogic;
 SIGNAL WAV_EXPECT_F1 :std_ulogic;
 SIGNAL WAV_EXPECT_G1 :std_ulogic;

Decoder Testbench (cont.)

Page 94Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

There are 14 signals declared for the actual output signals from the
decoder.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

94

 --**
 -- UUT Output signals used In Monitoring ACTUAL Values
 --**
 SIGNAL ACTUAL_A0 :std_logic;
 SIGNAL ACTUAL_B0 :std_logic;
 SIGNAL ACTUAL_C0 :std_logic;
 SIGNAL ACTUAL_D0 :std_logic;
 SIGNAL ACTUAL_E0 :std_logic;
 SIGNAL ACTUAL_F0 :std_logic;
 SIGNAL ACTUAL_G0 :std_logic;
 SIGNAL ACTUAL_A1 :std_logic;
 SIGNAL ACTUAL_B1 :std_logic;
 SIGNAL ACTUAL_C1 :std_logic;
 SIGNAL ACTUAL_D1 :std_logic;
 SIGNAL ACTUAL_E1 :std_logic;
 SIGNAL ACTUAL_F1 :std_logic;
 SIGNAL ACTUAL_G1 :std_logic;

 --***
 -- WAVES signals OUTPUTing each slice of the waves port list
 --***

 SIGNAL wpl : WAVES_port_list;

Decoder Testbench (cont.)

Page 95Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The PROCEDURE defined in the waveform generator is used to
generate a WAVES process in the testbench (in this example, the
waveform generator procedure “waveform” is used). The waveform
generator sends both the stimulus and expected response to the
testbench through a Waves_Port_List signal type (called “wpl” in this
example). The values from the Waves_Port_List must be translated
into standard logic 1164 type. The assignment processes in this slide
accomplish this task. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

95

BEGIN
 --***
 -- process that generates the WAVES waveform
 --***
 WAVES: waveform(wpl);

 --***
 -- processes that assign the WPL values to testbench signals
 --***
 WAV_STIM_data <= To_StdLogicVector(wpl.signals(1 to 7));
 WAV_EXPECT_A1 <= wpl.signals(8);
 WAV_EXPECT_B1 <= wpl.signals(9);
 WAV_EXPECT_C1 <= wpl.signals(10);
 WAV_EXPECT_D1 <= wpl.signals(11);
 WAV_EXPECT_E1 <= wpl.signals(12);
 WAV_EXPECT_F1 <= wpl.signals(13);
 WAV_EXPECT_G1 <= wpl.signals(14);
 WAV_EXPECT_A0 <= wpl.signals(15);
 WAV_EXPECT_B0 <= wpl.signals(16);
 WAV_EXPECT_C0 <= wpl.signals(17);
 WAV_EXPECT_D0 <= wpl.signals(18);
 WAV_EXPECT_E0 <= wpl.signals(19);
 WAV_EXPECT_F0 <= wpl.signals(20);
 WAV_EXPECT_G0 <= wpl.signals(21);

Decoder Testbench (cont.)

Page 96Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The display driver component is formally instantiated using structural
VHDL. The testbench actual output signals are mapped to the outputs
of the display driver.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

96

 --***
 -- UUT Port Map - Name Semantics Denote Usage
 --***
 u1: display_driver
 PORT MAP(
 data => WAV_STIM_data,
 A0 => ACTUAL_A0,
 B0 => ACTUAL_B0,
 C0 => ACTUAL_C0,
 D0 => ACTUAL_D0,
 E0 => ACTUAL_E0,
 F0 => ACTUAL_F0,
 G0 => ACTUAL_G0,
 A1 => ACTUAL_A1,
 B1 => ACTUAL_B1,
 C1 => ACTUAL_C1,
 D1 => ACTUAL_D1,
 E1 => ACTUAL_E1,
 F1 => ACTUAL_F1,
 G1 => ACTUAL_G1);

Decoder Testbench (cont.)

Page 97Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

These processes monitor the value of the output signals by comparing
the expected value from the waveform generator and the value
produced by the VHDL component under test. There are 14 monitor
processes in the testbench, one for each output signal on the UUT.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

97

 --***
 -- Monitor Processes To Verify The UUT Operational Response
 --***
 Monitor_A0:
 PROCESS(ACTUAL_A0, WAV_expect_A0)
 BEGIN
 assert(Compatible (actual => ACTUAL_A0,
 expected => WAV_expect_A0))
 report "Error on A0 output" severity WARNING;
 END PROCESS;

 Monitor_B0:
 PROCESS(ACTUAL_B0, WAV_expect_B0)
 BEGIN
 assert(Compatible (actual => ACTUAL_B0,
 expected => WAV_expect_B0))
 report "Error on B0 output" severity WARNING;
 END PROCESS;

Decoder Testbench (cont.)

Page 98Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

98

Monitor_C0:
 PROCESS(ACTUAL_C0, WAV_expect_C0)
 BEGIN
 assert(Compatible (actual => ACTUAL_C0,
 expected => WAV_expect_C0))
 report "Error on C0 output" severity WARNING;
 END PROCESS;

 Monitor_D0:
 PROCESS(ACTUAL_D0, WAV_expect_D0)
 BEGIN
 assert(Compatible (actual => ACTUAL_D0,
 expected => WAV_expect_D0))
 report "Error on D0 output" severity WARNING;
 END PROCESS;

 Monitor_E0:
 PROCESS(ACTUAL_E0, WAV_expect_E0)
 BEGIN
 assert(Compatible (actual => ACTUAL_E0,
 expected => WAV_expect_E0))
 report "Error on E0 output" severity WARNING;
 END PROCESS;

Decoder Testbench (cont.)

Page 99Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

99

Monitor_F0:
 PROCESS(ACTUAL_F0, WAV_expect_F0)
 BEGIN
 assert(Compatible (actual => ACTUAL_F0,
 expected => WAV_expect_F0))
 report "Error on F0 output" severity WARNING;
 END PROCESS;

 Monitor_G0:
 PROCESS(ACTUAL_G0, WAV_expect_G0)
 BEGIN
 assert(Compatible (actual => ACTUAL_G0,
 expected => WAV_expect_G0))
 report "Error on G0 output" severity WARNING;
 END PROCESS;

 Monitor_A1:
 PROCESS(ACTUAL_A1, WAV_expect_A1)
 BEGIN
 assert(Compatible (actual => ACTUAL_A1,
 expected => WAV_expect_A1))
 report "Error on A1 output" severity WARNING;
 END PROCESS;

Decoder Testbench (cont.)

Page 100Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

100

Monitor_B1:
 PROCESS(ACTUAL_B1, WAV_expect_B1)
 BEGIN
 assert(Compatible (actual => ACTUAL_B1,
 expected => WAV_expect_B1))
 report "Error on B1 output" severity WARNING;
 END PROCESS;

 Monitor_C1:
 PROCESS(ACTUAL_C1, WAV_expect_C1)
 BEGIN
 assert(Compatible (actual => ACTUAL_C1,
 expected => WAV_expect_C1))
 report "Error on C1 output" severity WARNING;
 END PROCESS;

 Monitor_D1:
 PROCESS(ACTUAL_D1, WAV_expect_D1)
 BEGIN
 assert(Compatible (actual => ACTUAL_D1,
 expected => WAV_expect_D1))
 report "Error on D1 output" severity WARNING;
 END PROCESS;

Decoder Testbench (cont.)

Page 101Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

101

 Monitor_E1:
 PROCESS(ACTUAL_E1, WAV_expect_E1)
 BEGIN
 assert(Compatible (actual => ACTUAL_E1,
 expected => WAV_expect_E1))
 report "Error on E1 output" severity WARNING;
 END PROCESS;

 Monitor_F1:
 PROCESS(ACTUAL_F1, WAV_expect_F1)
 BEGIN
 assert(Compatible (actual => ACTUAL_F1,
 expected => WAV_expect_F1))
 report "Error on F1 output" severity WARNING;
 END PROCESS;

 Monitor_G1:
 PROCESS(ACTUAL_G1, WAV_expect_G1)
 BEGIN
 assert(Compatible (actual => ACTUAL_G1,
 expected => WAV_expect_G1))
 report "Error on G1 output" severity WARNING;
 END PROCESS;
END display_driver_test;

Decoder Testbench (cont.)

Page 102Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

102

Module Outline

l Introduction
l Testbench Development
l Design Verification Challenges
l WAVES Concepts
l WAVES Constructor Library and Built-Ins
l WAVES External File
l WAVES Test Set
l Decoder Example

l Algorithmic Waveform Generator Example

Page 103Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

As stated earlier, the external pattern file is optional in the WAVES test
set. If the pin codes can be generated algorithmically within the
waveform generator, then the external file is not required. However, in
many applications, it is difficult to write an algorithm in VHDL that could
generate the appropriate test vectors. If such an algorithm can be
written, then all the pin code and timing information that was previously
contained within the test vectors must now be controlled within the
waveform generator.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

103

Algorithmic Waveform
Generators

l Test vectors can be created algorithmically in the
waveform generator

l External file not required in this case
l All information that was previously contained in

file slices is now generated in the waveform
generator procedure

Page 104Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This example demonstrates an algorithmic waveform generator for a
combinational AND circuit. The input stimulus and expected output
values are generated entirely within the waveform generator. The
algorithm for the test vectors is based on a Built-In Self Test (BIST)
technique using Linear Feedback Shift Registers (LFSR). The LFSR
will produce a psuedorandom sequence of bit values over several clock
cycles. If designed properly, the LFSR will traverse all the possible
logic states except for zero. In this example, the AND circuit has 4
inputs, which means the LFSR will generate a binary number between 1
and 15 every clock cycle. Once all 15 values have been produced, then
the sequence of logic values is repeated. The use of LFSR allows
certain portions of a hardware circuit to be tested using a known set of
input vectors. The LFSR is a common method of including extra
hardware components in order to support BIST. [Abramovici90]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

104

AND Circuit With Algorithmic
Waveform Generator

AND Circuit
Instantiation

Monitor
Processes

Algorithmic
WAVES

Waveform
Generator

x(3:0) input

Error
MessagesActual z(3:0) output

Expected z(3:0)

Testbench

Page 105Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The algorithmic waveform generator example includes the 5 files shown
above. There are several modifications required in an algorithmic
waveform generator that are not required in normal waveform
generators.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

105

AND Circuit With Algorithmic
Waveform Generator Example

l This WAVES Example Consists Of 5 Files:
mHeader File

mBehavioral VHDL Description Of AND Circuit

m Test Pins File

mWaveform Generator File

m Testbench File

l Algorithmic Waveform Generator Requires
Additional Functionality Compared To Normal
Waveform Generators

Page 106Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the header file for this example. The device under test is
identified along with the various filenames in the WAVES test set. Note
the absence of an external file.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

106

AND Circuit With Algorithmic
Waveform Generator

 Header File
-- ******** Header File for Entity: and_ckt

-- Data Set Identification Information

TITLE Algorithmic Waveform Generator Example

DEVICE_ID and_ckt

DATE Sun Sep 28 16:41:28 1997

ORIGIN Advanced WAVES Module

AUTHOR RASSP E&F and UVA

OTHER This example demonstrates an algorithmic waveform

OTHER generator which creates the test vectors without

OTHER using an external file.

-- Data Set Construction Information

VHDL_FILENAME a_ckt.vhd WORK

WAVES_FILENAME a_ckt_pins.vhd WORK

library IEEE;

use IEEE.WAVES_1164_Declarations.all;

use IEEE.WAVES_Interface.all;

use WORK.UUT_Test_pins.all;

WAVES_UNIT WAVES_OBJECTS WORK

WAVES_FILENAME a_ckt_wgen.vhd WORK

VHDL_FILENAME a_ckt_tstbench.vhd WORK

WAVEFORM_GENERATOR_PROCEDURE WORK.wgp_and_ckt.waveform

Page 107Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the VHDL description for AND circuit used in this example.
Essentially, there are four AND gates in the circuit. Each AND gate
produces one of the four output values for the circuit.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

107

AND Circuit VHDL Description

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY and_ckt IS

PORT (x: in std_ulogic_vector(3 downto 0);

 z: out std_ulogic_vector(3 downto 0));

END and_ckt;

ARCHITECTURE behave OF and_ckt IS

BEGIN

 PROCESS (x)

 BEGIN

 z(0) <= NOT(x(0)) AND NOT(x(2));

 z(1) <= NOT(x(2)) AND x(1);

 z(2) <= NOT(x(0)) AND NOT(x(3)) AND x(1);

 z(3) <= NOT(x(1)) AND x(2) AND x(3);

 END PROCESS;

END behave;

Page 108Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the test pin file for this example. There are eight test pins in the
design: four input pins and four output pins.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

108

AND Circuit Test Pin File

-- ******** This File Was Automatically Generated ********

-- ******** By The WAVES96-VHDL Tool Set ********

-- ******** Generated for Entity: and_ckt

-- ******** This File Was Generated on: Sun Sep 28 16:41:28 1997

--

--

PACKAGE uut_test_pins IS

TYPE test_pins IS (x_3, x_2, x_1, x_0, z_3, z_2, z_1, z_0);

END uut_test_pins;

Page 109Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the algorithmic waveform generator for the AND circuit. In the
package definition statement, only the procedure Waveform appears.
The procedure Waveform is the only member of package
WGP_and_ckt that will be called by the testbench. Note that the 1164
logic extensions package has been included in this waveform generator.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

109

AND Circuit Algorithmic
Waveform Generator

-- ******** This File Was Automatically Generated ********

-- ******** By The WAVES96-VHDL Tool Set ********

-- ******** Generated for VHDL entity: ********

-- ******** and_ckt ********

-- ******** Generation date and time: ********

-- ******** Sun Sep 28 16:41:28 1997 ********

use STD.TEXTIO.all;

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_1164_extensions.all;

use IEEE.WAVES_1164_Frames.all;

use IEEE.WAVES_1164_Declarations.all;

use IEEE.WAVES_Interface.all;

use WORK.WAVES_Objects.all;

use WORK.UUT_Test_Pins.all;

package WGP_and_ckt is

 procedure WAVEFORM(signal WPL : inout WAVES_PORT_LIST);

end WGP_and_ckt;

Page 110Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In order to algorithmically produce the pin codes for the AND circuit,
several changes were made to the WGP_and_ckt package. The
function lfsr shown above implements the LFSR algorithm described
earlier. Basically, this function produces the next set of input values
based on the current input values. Waves_logic_vector is defined as
type in the WAVES 1164 packages. It is equivalent to
std_ulogic_vector. This slide also shows the beginning of procedure
Waveform. Two pinsets are declared for the input pins and output pins,
respectively. A variable lfsr_array is declared of type
waves_logic_vector. The length of this variable is defined by the
number of test pins on the UUT. In this example, lfsr_array contain 8
logic values. Lfsr_array will be used in the waveform generator to store
the logic values for each test pin. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

110

AND Circuit Algorithmic
Waveform Generator

package body WGP_and_ckt is

 FUNCTION lfsr (CONSTANT x : IN waves_logic_vector(3 DOWNTO 0))

 RETURN waves_logic_vector IS

 VARIABLE z: waves_logic_vector(3 DOWNTO 0);

 BEGIN

 z(3 downto 1) := x(2 downto 0);

 z(0) := x(3) xor x(0);

 RETURN z;

 END lfsr;

 procedure WAVEFORM(signal WPL : inout WAVES_PORT_LIST) is

 constant x : PINSET := x_3 + x_2 + x_1 + x_0;

 constant z : PINSET := z_3 + z_2 + z_1 + z_0;

 variable lfsr_array: waves_logic_vector

 ((test_pins'pos(test_pins'left) + 1)

 to (test_pins'pos(test_pins'right) + 1));

Page 111Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

An array type called lfsr_values is declared, followed by a constant
array called z_array. This constant array is used to store the expected
output values. The expected output values for the AND circuit were
generated through simulation of the design. The values in z_array are
ordered by their corresponding input value. For example, for the input
pattern “0010”, the corresponding output value “0111” is stored in array
position 2. This allows the expected output values to be retrieved
based on the current input values. Two integer variables are declared
next. These variables are used as loop indexes later in the procedure.
The variable x_count is used to store the number of test pins associated
with the pinset x. The variable pincode_values is declared of type
pin_code_string. The length of pincode_values is determined by the
number of test pins on the UUT. In this example, pincode_values will
be a string of 8 characters. The constant period is used to define the
slice timing information for this test set. Finally, the frame format
definition is shown for pinsets x and z. The Non Return format appears
on x, while the Window format appears on z. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

111

AND Circuit Algorithmic
Waveform Generator

 type lfsr_values is array(1 to 15) of

 waves_logic_vector(3 downto 0);

 constant z_array : lfsr_values :=

 (("0000"), ("0111"), ("0010"), ("0000"), ("0000"), ("0100"),

 ("0000"), ("0001"), ("0000"), ("0011"), ("0010"), ("1000"),

 ("1000"), ("0000"), ("0000"));

 variable i : positive := 1;

 variable j : integer := 0;

 variable x_count : integer := 0;

 variable pincode_values : pin_code_string;

 constant period : delay_time := 20 ns;

 variable TIMING : FRAME_DATA :=

 BUILD_FRAME_DATA(

 (

 (x, NON_RETURN(0 ns)),

 (z, WINDOW(10 ns, 15 ns))

)

);

Page 112Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slide shows the initialization of the waveform generator. First,
lfsr_array is set to an initial starting point for the LFSR algorithm. Since
the LFSR algorithm does not produce “0000” at any point, lfsr_array
must be initialized to a non-zero value. In this example, the first four
elements of lfsr_array are initialized “0110”. The first four elements
correspond to the logic values for the four input pins on the UUT. Next,
a loop statement is used to set x_count. In order the set the proper
limits on the array variables later on, it is necessary to find the number
of input pins in pinset x. The control loop for procedure Waveform is
shown next. First, the next set of input values is computed using
function lfsr. The current input values, stored in the first four positions
of lfsr_array, are passed to function lfsr. The new input values are then
stored in the first four positions of lfsr_array. Note how x_count is used
to set the upper bound on the array values. The next operation is to
convert the four input values into an integer. This is done using the
To_Integer function found in the 1164 extensions package. An extra ‘0’
is added to the logic values when calling To_Integer in order to assure a
positive result. Next, the integer is used to retrieve the expected output
values from z_array. These values are then stored in the last four
elements of lfsr_array. Note how x_count is used to set the limits on
the array elements. After this step, lfsr_array contains all the logic
values for each UUT test pin.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

112

AND Circuit Algorithmic
Waveform Generator

begin -- waveform generator procedure

 lfsr_array := "01100000"; -- initialize lfsr state

 for j in x'range loop

 if (x(test_pins(j)) = TRUE) then

 x_count := x_count + 1;

 end if;

 end loop;

 loop

 lfsr_array((test_pins'pos(test_pins'left)+ 1) to x_count):=

 lfsr(lfsr_array((test_pins'pos(test_pins'left) + 1) to

 x_count));

 lfsr_array(((test_pins'pos(test_pins'left) + 1) + x_count)

 to (test_pins'pos(test_pins'right) + 1)) :=

 z_array(To_Integer('0' &

 lfsr_array((test_pins'pos(test_pins'left) + 1) to

 x_count)));

Page 113Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The next step is to convert the logic values in lfsr_array into a string of
characters. Normally, this would be done by the function
Read_File_Slice when it reads test vectors from a file. However, an
explicit conversion is necessary in this example. Each logic value in
lfsr_array is converted to its equivalent string character in the loop
statement. The characters are defined as the legal pin code values in
the 1164 Waves packages. The string of pin code characters is stored
in pincode_values. Next, procedure Apply is called. Procedure Apply
schedules the appropriate events on the test pins. Finally, the Delay
procedure uses the constant period to define the slice duration of 20ns.
Each slice is defined by one pass through the main loop statement in
procedure Waveform. This waveform generator was written in a
generic way to support changes in the design. For example, if the
number of test pins changed, only the expected output value array and
initialization of lfsr_array would have to be modified. The main control
loop would not require any changes since the array bounds are
determined by the number of test pins. In summary, an algorithmic
waveform generator will probably require additional functions and
conversions in order to properly set up the pin codes for each slice. In
this case, the use of an LFSR algorithm greatly simplified the production
of inputs and expected outputs for the UUT. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

113

AND Circuit Algorithmic
Waveform Generator

 for i in (test_pins'pos(test_pins'left) + 1) to

 (test_pins'pos(test_pins'right) + 1) loop

 pincode_values(i) :=

 pin_codes(logic_value'pos(lfsr_array(i)));

 end loop;

 APPLY(WPL, pincode_values, TIMING);

 DELAY(period);

 end loop;

 end WAVEFORM;

END WGP_and_ckt;

Page 114Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The next several slides show the testbench for the AND circuit. In this
example, no extra modifications were required in the testbench to
support the algorithmic waveform generator.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

114

AND Circuit Testbench

-- ******** This File Was Automatically Generated ********

-- ******** By The WAVES96-VHDL Tool Set ********

-- ******** Generated for Entity: and_ckt

-- ******** This File Was Generated on: Sun Sep 28 16:41:29 1997

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.WAVES_1164_utilities.all;

USE IEEE.WAVES_interface.all;

USE WORK.UUT_test_pins.all;

USE work.waves_objects.all;

USE work.WGP_and_ckt.all;

-- Include component library references here

-- User Must Modify And ADD component library references here

-- Include component library references here

ENTITY test_bench IS

END test_bench;

ARCHITECTURE and_ckt_test OF test_bench IS

Page 115Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The component and_ckt is formally declared in the Component
statement seen above. The signal Wav_Stim_x is declared to stimulate
the input pins on the UUT.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

115

AND Circuit Testbench (cont.)

 --**

 --***********CONFIGURATION SPECIFICATION ***************

 --**

 COMPONENT and_ckt

 PORT (x : IN std_ulogic_vector(3 downto 0);

 z : OUT std_ulogic_vector(3 downto 0));

 END COMPONENT;

 -- Modify entity use statement

 -- User Must Modify modify and declare correct

 -- .. Architecture, Library, Component ..

 -- Modify entity use statement

FOR ALL:and_ckt USE ENTITY work.and_ckt(behave);

 --**

 -- stimulus signals for the waveforms mapped into UUT INPUTS

 --**

 SIGNAL WAV_STIM_x :std_ulogic_vector(3 downto 0);

Page 116Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The signal Wav_Expect_z and Actual_z are declared to capture the
expected and actual values on the UUT output.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

116

AND Circuit Testbench (cont.)

 --**

 -- Expected signals used in monitoring the UUT OUTPUTS

 --**

 SIGNAL FAIL_SIGNAL :std_logic;

 SIGNAL WAV_EXPECT_z :std_ulogic_vector(3 downto 0);

 --**

 -- UUT Output signals used In Monitoring ACTUAL Values

 --**

 SIGNAL ACTUAL_z :std_ulogic_vector(3 downto 0);

 --***

 -- WAVES signals OUTPUTing each slice of the waves port list

 --***

 SIGNAL wpl : WAVES_port_list;

Page 117Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The procedure Waveform is formally called in the testbench. This
procedure call will trigger the various LFSR functions within the
previously shown waveform generator package when Waveform is
executing.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

117

AND Circuit Testbench (cont.)

BEGIN

 --***

 -- process that generates the WAVES waveform

 --***

 WAVES: waveform(wpl);

 --***

 -- processes that assign the WPL values to testbench signals

 --***

 WAV_STIM_x <= wpl.signals(1 to 4);

 WAV_EXPECT_z <= wpl.signals(5 to 8);

 --***

 -- UUT Port Map - Name Semantics Denote Usage

 --***

 u1: and_ckt

 PORT MAP(

 x => WAV_STIM_x,

 z => ACTUAL_z);

Page 118Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This monitor process compares the expected and actual values on the
output bus z.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

118

AND Circuit Testbench (cont.)

 --***

 -- Monitor Processes To Verify The UUT Operational Response

 --***

 Monitor_z:

 PROCESS(ACTUAL_z, WAV_expect_z)

 BEGIN

 assert(Compatible (actual => ACTUAL_z,

 expected => WAV_expect_z))

 report "Error on z output" severity WARNING;

 IF (Compatible (ACTUAL_z, WAV_expect_z)) THEN

 FAIL_SIGNAL <='L'; ELSE FAIL_SIGNAL <='1';

 END IF;

 END PROCESS;

END and_ckt_test;

Page 119Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

119

References

[Abramovici90] Abramovici, Miron, Melvin A. Breuer, Arthur D. Friedman. Digital Systems Testing And
Testable Design. Computer Science Press, New York, 1990.

[Flynn94] Christopher J. Flynn, Frederick G. Hall, James P. Hanna, and Mark T. Pronobis. “Using
WAVES In A Top-Down Design Methodology,” VHDL International Users’ Forum, Nov. 1994.

[Hanna97] Hanna, James P., Robert G. Hillman, Herb L. Hirsch, Tim H. Noh, Ranga R. Vemuri. Using
WAVES And VHDL For Effective Design And Testing. Kluwer Academic Publishers, Boston, 1997.

[IEEE] All referenced IEEE material is used with permission.

[Pronobis95] Mark T. Pronobis, Robert Hillman, Christopher Flynn. “Test Insertion Without Being A
Test Expert,” VHDL International Users’ Forum, Oct. 1995.

[STD97] Draft IEEE Standard For VHDL Waveform And Vector Exchange (WAVES), IEEE Standard
1029.1-1996, IEEE Computer Society & IEEE Standards Coordinating Committee 20, May 1997.

