
Page 1Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

1

Advanced WAVES Topics
RASSP Education & Facilitation

Module 62

Version 3.00

Copyright 1998 University of Virginia
This module was created under Air Force Contract #95-C-0220.

Copyright  1995-1999 SCRA

All rights reserved. This information is copyrighted by the SCRA, through its Advanced Technology Institute, and may
only be used for non-commercial educational purposes. Any other use of this information without the express written
permission of the ATI is prohibited. Certain parts of this work belong to other copyright holders and are used with their
permission. All information contained herein may be duplicated for non-commercial educational use provided this
copyright notice is included. No warranty of any kind is provided or implied, nor is any liability accepted regardless of
use.

The United States Government holds “Unlimited Rights” in all data contained herein under Contract F33615-94-C-
1457. Such data may be liberally reproduced and disseminated by the Government, in whole or in part, without
restriction except as follows: Certain parts of this work belong to other copyright holders and are used with their
permission;This information contained herein may be duplicated only for non-commercial educational use. Any
vehicle, in which part or all of this data is incorporated into, shall carry this legend.

Page 2Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The goal of this module is to demonstrate some of the advanced
features of WAVES. Many of the topics involve modifying the
waveform generator to perform additional operations within the test set.
After completing this module, the student should be able to create a
WAVES test set using one or more of the advanced features described
in this module. It is assumed that the student is familiar with the details
of the VHDL language. Since WAVES is a subset of VHDL, the
student should be able to follow the syntax and examples presented in
this module.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

2

Module Goals

l Review Basic WAVES Topics
l Discuss Advanced WAVES Topics

mDescribe Match and Handshake Functionality
mDescribe Advanced Types Of Waveform Generators
mSeveral Advanced WAVES Examples

Page 3Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

3

Module Outline

l Introduction
l Match Functionality
l Handshake Functionality
l Multiple Waveform Generators
l Multiple Timing Sets And Bidirectional Test Pins

Page 4Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Most EDA tool developers are using VHDL as the underlying engine
beneath their tool suite. Using VHDL, a design can be simulated at any
level, from concept to implementation. However, the unification of the
EDA tools around VHDL has created a requirement. The designer
needs to be able to stimulate the simulations at the various stages of
development and to collect the results of these simulations. In other
words, the designer needs test vector generation and results collection
and comparison for the simulated development descriptions at all
stages. WAVES was created to meet this need. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

4

Introduction

l Top Down Electronic Design Automation (EDA)

Test
Vector
System

Hardware
Tester

VHDL

Concept
Modeling

Simulatable
Specification

Simulated
Designs

Synthesized
Implementation

Test Vectors

Results

Test Vectors

Results

Test Vectors

Results

Test Signals

Results

Tools

Tools

Tools

Tools

Graphical
User
Interface
(GUI)

USER

Support Environment (file exchange, libraries, etc.)

Page 5Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

WAVES was designed to be the unified testing and results collection
system to complement the unified development systems based on
VHDL. Its purpose is to provide the means to define test stimuli, in the
form of digital waveforms (or test vectors), to define the results to be
collected, and to manage the insertion of the stimuli and the collection
and comparison of the results as the VHDL description is simulated. It
is also designed for compatibility with hardware testers, such that the
same test stimuli and collection paradigm may be automatically
communicated to hardware test systems. This ensures identical testing
of the hardware and pre-implementation simulation. The testing and
collection entity of WAVES, called the WAVES testbench, is written in
VHDL and attached to the VHDL description. The testbench is
analyzed, compiled and executed along with the rest of the VHDL
under simulation. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

5

Introduction (cont.)

l The Role Of WAVES In Top Down EDA

WAVES
Testbench

Hardware
Tester

VHDL

Concept
Modeling

Simulatable
Specification

Simulated
Designs

Synthesized
Implementation

Test Vectors

Results

Test Vectors

Results

Test Vectors

Results

Test Signals

Results

Tools

Tools

Tools

Tools

GUI
USER

Support Environment (file exchange, libraries, etc.)

changes
with level
of design

Page 6Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The WAVES testbench is described using the standard Entity and
Architecture format for a VHDL description. The testbench entity has
no ports, since all testing operations occur within the testbench. The
component under test is instantiated using structural VHDL. The test
vector file is referenced using a VHDL File statement. The waveform
generator is referenced as a VHDL Procedure within the testbench
architecture. The comparison signals are declared within the
architecture of the testbench. These signals are used within the
monitor processes contained in the testbench architecture. The
WAVES testbench is similar to real hardware testers for the reasons
shown. One advantage to the WAVES testbench is that different test
vector sets can be used without any modification to the testbench.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

6

Introduction (cont.)

l Details Of A WAVES Testbench
mA VHDL Entity With No Ports
mA VHDL Architecture That Uses Structural And

Behavioral VHDL Descriptions
mArchitecture of Testbench Contains Instantiation Of

Component Under Test, Test Vector File, Waveform
Generator, Monitor Processes

mExpected Output Signals Are Declared
mExpected Outputs Compared To Actual Output Signals
m Testbench Provides Environment Similar To Real

Hardware Testers (Input Stimulus, Comparison Of
Output Values)

mDifferent Test Vector Sets Can Be Used Without
Modifying Testbench

Page 7Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram shows a complete WAVES test set. The waveform
generator reads test vectors from a file and generates inputs for the
component and the expected output values from that component. The
component under test receives the input stimulus from the waveform
generator and produces output values based on its VHDL description.
These output values are then compared to the expected responses by
monitor processes within the testbench. If the two responses do not
match, then an error message is produced. The testbench creates a
complete testing environment around the VHDL model. In some of the
advanced applications described in this module, the waveform
generator may interact with the testbench in order to control the
application of each test vector.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

7

Introduction (cont.)

l WAVES Testbench Diagram

VHDL
Model

Instantiation

Monitor
Processes

WAVES
Waveform
Generator

Input Stimulus

Error
MessagesActual Response

Expected
Response WAVES

Test Vector Set

Testbench

Page 8Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

8

Module Outline

l Introduction

l Match Functionality
l Handshake Functionality
l Multiple Waveform Generators
l Multiple Timing Sets And Bidirectional Test Pins

Page 9Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The WAVES Match function allows the designer to perform testing of
uninitialized devices. If a hardware component powers up into an
unknown state and has no reset capability, it is difficult to find a valid
starting point for testing. It may be necessary to cycle the device
through an unknown number of clock cycles to reach a known state.
The Match functionality allows the designer to match a known value
with the output of the model. This allows the designer to start testing
after the behavior of the component is well established. The Match
function allows the waveform to have an arbitrary number of clock
pulses until the UUT reaches the desired state.

In the example shown above, a counter powers up into an unknown
state and has no reset capability. Therefore, the testing approach uses
the Match functionality to establish a valid starting point for applying
test vectors. In this case, the counter is clocked until it responds will all
zeros on its output. The Match function compares the counter output
with the desired starting value of all zeros during every slice. If they
match, then the test vectors will be applied to the counter. If they do
not match, then the counter is clocked, and the output is compared
again during the next slice. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

9

l Testing Uninitialized Devices
mDevice Powers up in an unknown state, has no reset

(example: Counter)

l WAVES Match Mode Test

Design Verification
Challenges

Clock the device until
its outputs respond
with all zeros, then
apply the test vectors
to verify correct
functionality

Model To Test Test method

Clock

C
O
U
N
T

Counter with
no reset or
clear

Page 10Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Match procedure is used to initiate a matching operation in the
WAVES test set. The Match procedure specifies which test pins are
compared to a known initial value. The Match operation is terminated
when the value on the test pins matches the initial value. The Match
functionality is included in WAVES in order to facilitate interactions with
Automatic Test Equipment (ATE). ATE commonly includes some kind
of matching mode which could interface with a WAVES testbench.
[Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

10

Match Functionality

l The Match Procedure
m Initiates A Match Request To The Testbench

q Provides Coarse (Value Level) Synchronization
mCan Be Used In Conjunction With Match Modes

Commonly Found In Automated Test Equipment (ATE)

Page 11Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The first example in this module demonstrates the Match functionality
with a 4-bit counter as the UUT.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

11

Counter With Match Example

Counter
Instantiation

Monitor
Processes

WAVES
Waveform
Generator

CLK input

Error
MessagesData_out(3:0) output

Expected
Data_out(3:0) WAVES

Test Vector Set

Testbench

Page 12Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Match functionality requires the designer to make extra
modifications to the waveform generator and testbench. Since these
changes are unique to the Match function, it is important to note the
modifications made to the test set seen in this example. The required
changes in the WAVES test set is summarized over the next several
slides.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

12

Counter With Match Example

l This WAVES Example Consists Of 6 Files:
mHeader File
mBehavioral VHDL Description Of 4-Bit Counter
m Test Pins File
mExternal Test Vector File
mWaveform Generator File
m Testbench File

l Match Functionality Requires Extra Modifications
To Waveform Generator And Testbench

Page 13Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the external test vector file for the 4-bit counter. It cannot be
created using the WAVES tool set. The first pin code is applied to the
clock input pin (called CLK), while the other four pin codes are for the
4-bit output (called Data_out). The first test vector shows an output
value of “0000”. Using the Match functionality, this initial test vector will
be applied repeatedly until the UUT responds with “0000” as its output
value. Once, the initial output values are matched, then each
subsequent test vector in this file is applied to the UUT. The slice
duration is 20ns for every vector in this file.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

13

Counter With Match
 Test Vector File

% Initial vector is applied until UUT
% responds with all Zero's
1 0000 : 20 ns;
%
% Begin testing UUT.
1 0001 ;
1 0010 ;
1 0011 ;
1 0100 ;
1 0101 ;
1 0110 ;
1 0111 ;
1 1000 ;
1 1001 ;
1 1010 ;
1 1011 ;
1 1100 ;
1 1101 ;
1 1110 ;
1 1111 ;
1 0000 ;
1 0001 ;
1 0010 ;
1 0011 ;

Page 14Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The waveform generator can be generated using the WAVES tool set.
However, modifications to the waveform generator are necessary. In
this example, two new signals are declared in the procedure Waveform:
WMR and ACK. These signals are used to coordinate the Matching
operation on the output of the counter. The signal WMR is used to
initiate a Match request to the testing environment. The signal WMR is
actually a record which stores the test pins involved in the Match,
timing information, and a Boolean flag. The signal ACK is a signal set
by the test environment when the previously issued Match request has
been satisfied. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

14

Counter With Match
Waveform Generator File

PACKAGE WGP_counter is

 PROCEDURE waveform(SIGNAL WPL : inout WAVES_PORT_LIST;

 SIGNAL WMR : inout WAVES_MATCH_REQUEST;

 SIGNAL ACK : in WAVES_MATCH_ACK);

END WGP_counter;

Page 15Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Since this example uses the Match functionality, two LOOP statements
must be included in the waveform generator. In the first loop, the initial
test vector is read from the external file. Then, the Match function is
called using the request signal WMR. The pinset Data_out is specified
as the signals which are involved in the Match operation. The timing
information in Match is used to specify at what time during the current
slice the signals are to be compared. In this case, the Data_out signals
from the counter are to be sampled 12ns from the start of each slice.
Next, the Apply procedure generates events on the test pins using the
pin code and timing information. If the UUT output matches the initial
vector, then the ACK signal is set to ‘1’ and the second loop is entered.
Otherwise, ACK stays at ‘0’ and the simulation remains in the first loop.
In the second loop shown above, the test vectors from the external file
are applied in the standard fashion. In summary, the use of the Match
operation requires two loops in the waveform generator to control the
various operations with the test vectors. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

15

Counter With Match
Waveform Generator File

(cont.)
 BEGIN

 READ_FILE_SLICE (vector_file, Vector); -- get first vector

 if not vector.end_of_file then

 while not ACK loop

 Match(WMR, Data_out, 12 ns);

 apply(wpl, vector.codes.all, FSA);

 DELAY(vector.fs_time);

 end loop;

 loop

 READ_FILE_SLICE (vector_file, Vector);

 -- apply rest of vectors

 exit when vector.end_of_file;

 apply(wpl, vector.codes.all, FSA);

 DELAY(vector.fs_time);

 end loop;

 end if;

 END waveform;

END WGP_counter;

Page 16Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The testbench can be automatically generated using the WAVES tool
set. In this slide, a signal WPL of type Waves_Port_List is declared.
This signal is used to communicate signal and timing information to the
UUT. The signal WMR is used within the Match function to request a
Matching operation. The signal ACK is used to signify when the UUT
output signals matches the desired value. The waveform generator
procedure is called using the signals WPL, WMR, and ACK. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

16

Counter With Match
Testbench

 --***
 -- WAVES signals OUTPUTing each slice of the waves port list

 --***

 SIGNAL wpl : WAVES_port_list;

 SIGNAL wmr : WAVES_match_REQUEST;

 signal ACK : WAVES_MATCH_ACK;

BEGIN

 --

 --***

 -- process that generates the WAVES waveform

 --***

 WAVES: waveform(wpl, wmr, ack);

Page 17Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Since this example is a VHDL simulation only, the user must add a
process to control the Match ACK signal. Normally, if ATE were being
used, the ACK signal would be controlled by the ATE interface.
However, in this example, an extra process is required within the
testbench. This process performs the actual comparison of signal
values. When an event occurs on the signal WMR and the Boolean
within WMR is true, then this process becomes active. The WAIT
statement uses the timing information from WMR in order to sample the
UUT output correctly. The FOR statement compares the UUT
response with the expected response, which is the Match value. If the
values agree, then ACK will be set to ‘1’. Otherwise, ACK will remain
at logic ‘0’. Once the Match operation is completed, this process will
not be used again unless another Match operation is requested.
[Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

17

Counter With Match
Testbench (cont.)

Match_Data_out : process

 variable RESULT : Boolean;

 begin

 wait until WMR.REQUEST'event and WMR.REQUEST = TRUE;

 ACK <= FALSE;

 RESULT := TRUE;

 wait for WMR.SAMPLE;

 for I in WAV_EXPECT_Data_out'range loop

 RESULT := RESULT and (ACTUAL_Data_out(I) =

 WAV_EXPECT_Data_out(I));

 end loop;

 ACK <= RESULT;

 end process;

END counter_test;

Page 18Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

18

l Introduction
l Match Functionality

l Handshake Functionality
l Multiple Waveform Generators
l Multiple Timing Sets And Bidirectional Test Pins

Module Outline

Page 19Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The WAVES Handshake function allows the designer to perform testing
of asynchronous devices. The Handshake functionality is designed to
control the application of each test vector with an asynchronous signal.
In a system without a synchronous clock, the communications between
component and tester is established using request and acknowledge
signals. Both signals are asynchronous in nature. The tester makes a
request to begin testing and the component acknowledges the request.
However, the delay between a request and its acknowledgment may
vary from one operation to the next. For consistency, each test vector
cannot be applied until the tester has received the proper
asynchronous acknowledgment. This insures that the test vector is
applied at the proper time to perform its intended verification.

In the example shown above, the tester makes a request on the REQ
line to the component. The component responds on a acknowledge
(ACK) line to the tester. On the rising edge of the ACK line, the tester
applies a test vector to the component. The application of the test
vector has been synchronized to the asynchronous acknowledge
signal. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

19

l Testing Asynchronous Devices
mSynchronize With External Signal Before Applying Each

Test Vector

l WAVES Handshake Mode Test

Design Verification
Challenges (cont.)

DMA
Controller

Apply each test
vector on the rising
edge of the external
acknowledge to verify
correct functionality

Model To Test Test method

ACK

B
U
S

REQ

Page 20Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Handshake procedure is used to achieve synchronization between
asynchronous signals and the application of a test vector. This
procedure specifies which signals the system will perform the
Handshaking operation. This functionality will not apply a new test
vector to the UUT until it is synchronized through the Handshaking
process. WAVES includes Handshaking capability in order to facilitate
communication with ATE. If a WAVES testbench were interfacing with
ATE, then the ATE interface should generate the necessary signals for
the Handshaking. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

20

Handshake Functionality

l The Handshake Procedure
m Initiates A Handshake Request To The Testbench

q Provides Event Level Synchronization
q Suspends Execution Of The WAVES Process Until

The Handshake Request Is Satisfied
mCould Be Used In Conjunction With Handshake Modes

Commonly Found In Automated Test Equipment (ATE)

Page 21Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This example demonstrates the Handshake functionality with a 4-bit
counter as the UUT. This example is actually an extension of the
previous example since the Match functionality is also demonstrated.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

21

Counter With Handshake
Example

Counter
Instantiation

Monitor
Processes

WAVES
Waveform
Generator

CLK input

Error
MessagesData_out(3:0) output

Expected
Data_out(3:0) WAVES

Test Vector Set

Testbench

Page 22Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The Handshake functionality requires the designer to make extra
modifications to the waveform generator and testbench. Since these
changes are unique to the Handshake function, it is important to note
the modifications made to the test set seen in this example.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

22

Counter With Handshake
Example

l This WAVES Example Consists Of 6 Files:
mHeader File
mBehavioral VHDL Description Of 4-Bit Counter
m Test Pins File
mExternal Test Vector File
mWaveform Generator File
m Testbench File

l Handshake Functionality Requires Extra
Modifications To Waveform Generator, External
File, And Testbench

Page 23Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This test vector file is different than the file shown in the Counter With
Match example. Since the clock input signal (called CLK) is involved in
the asynchronous Handshaking, it does not require pin codes from the
external file. The clock signal will be controlled by the testbench itself.
Therefore, this external file only contains pin codes for the 4-bit output
signal (called Data_out). No slice timing information is included
because the slice timing is determined by the Handshaking operation
within the testbench. The first file slice shown is actually the initial
value for the state of the counter. This example is using the Match
functionality to establish a valid starting point for applying test vectors.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

23

Counter With Handshake
Test Vector File

% Initial vector is applied until UUT
% responds with all Zero's
0000 ;
%
% Begin testing UUT.
0001 ;
0010 ;
0011 ;
0100 ;
0101 ;
0110 ;
0111 ;
1000 ;
1001 ;
1010 ;
1011 ;
1100 ;
1101 ;
1110 ;
1111 ;
0000 ;
0001 ;
0010 ;
0011 ;

Page 24Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In the waveform generator, the procedure Waveform now includes five
signals. The signal WPL, which has been seen before, communicates
signal and event information to the UUT. The WMR and MATCH_ACK
signals are used to handle the Match functionality described in the last
section. The Handshake functionality is controlled by two new signals.
The signal WHR is used as a request to begin a Handshaking
operation. WHR is actually a record which will store a test pin and the
logic value required to satisfy the request. The signal HNDSHK_ACK
is used as the asynchronous acknowledgment by the test environment
for a given Handshake request. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

24

Counter With Handshake
Waveform Generator File

PACKAGE WGP_counter is

 PROCEDURE waveform(SIGNAL WPL : inout WAVES_PORT_LIST;

 SIGNAL WMR : inout WAVES_MATCH_REQUEST;

 SIGNAL MATCH_ACK : in WAVES_MATCH_ACK;

 SIGNAL WHR : inout WAVES_HANDSHAKE_REQUEST;

 SIGNAL HNDSHK_ACK : in WAVES_HANDSHAKE_ACK);

END WGP_counter;

Page 25Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In a fashion similar to the Match example, this waveform generator has
two LOOP statements. As stated before, this example is actually
demonstrating both the Match and Handshake functionality. The two
LOOP statements are almost identical the the waveform generator for
the Counter With Match example. The first loop controls the Match
operation, while the second controls the application of the remaining
test vectors. However, the Handshake procedure appears where the
DELAY procedure has normally appeared. The Handshake procedure
requests a handshaking process from the testing environment by
setting a Boolean flag in WHR. The WAVES test set is suspended until
HNDSHK_ACK goes high and then low. Once the testing environment
sees a Handshake request, it sets the acknowledge signal high and
waits for the specified UUT signal to achieve the specified value. Once
the desired value appears on the signal, the environment sets
HNDSHK_ACK low which completes the Handshaking cycle. In this
example, the environment waits until the signal CLK goes to a logic ‘1’.
When it does, then the Handshaking cycle is complete. [Hanna97],
[STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

25

Counter With Handshake
Waveform Generator File

(cont.)
BEGIN

 READ_FILE_SLICE(vector_file, Vector, Data_out);

 if not vector.end_of_file then

 while not MATCH_ACK loop

 Match(WMR, Data_out, 12 ns);

 apply(wpl, vector.codes.all, FSA, Data_out);

 HANDSHAKE(WHR, HNDSHK_ACK, CLK, '1');

 end loop;

 loop

 READ_FILE_SLICE(vector_file, Vector, Data_out);

 exit when vector.end_of_file;

 apply(wpl, vector.codes.all, FSA, Data_out);

 HANDSHAKE(WHR, HNDSHK_ACK, CLK, '1');

 end loop;

 end if;

 END waveform;

END WGP_counter;

Page 26Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The five signals controlling the testing of the counter are formally
declared in the testbench. The Match and Handshake functions require
their own request and acknowledge signals.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

26

Counter With Handshake
Testbench

 --***

 -- WAVES signals OUTPUTing each slice of the waves port list

 --***

 SIGNAL wpl : WAVES_port_list;

 SIGNAL wmr : WAVES_match_request;

 signal MATCH_ACK : WAVES_MATCH_ACK;

 signal WHR : WAVES_HANDSHAKE_REQUEST;

 signal HNDSHK_ACK : WAVES_HANDSHAKE_ACK;

BEGIN

 --

 --***

 -- process that generates the WAVES waveform

 --***

 WAVES: waveform(wpl, wmr, match_ack, whr, hndshk_ack);

Page 27Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This process must be added to the testbench by the designer.
Normally, if this WAVES testbench were interfacing with ATE, then the
ATE interface would drive the Handshake acknowledge signal.
However, since this example is only a VHDL simulation, an extra
process must be included within the testbench. Once this process
sees a valid Handshake request through WHR, then HNDSHK_ACK is
set to TRUE. Next, the process waits until the clock signal becomes
‘1’. This is the signal and desired value that was specified in the
waveform generator. Once the UUT has responded correctly, the
acknowledge signal is set to FALSE which will terminate the
Handshaking cycle. Therefore, this process mimics the behavior of
ATE performing a Handshaking operation. [Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

27

Counter With Handshake
Testbench (cont.)

Handshake : Process

 begin

 wait until WHR.REQUEST'transaction'event and WHR.REQUEST = TRUE;

 HNDSHK_ACK <= TRUE;

 wait until clock'event and clock = '1';

 HNDSHK_ACK <= FALSE;

 end process;

Page 28Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This process performs the Matching operation which was described in
the previous example.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

28

Counter With Handshake
Testbench (cont.)

Match_Data_out : process

 variable RESULT : Boolean;

 begin

 wait until WMR.REQUEST'event and WMR.REQUEST = TRUE;

 MATCH_ACK <= FALSE;

 RESULT := TRUE;

 wait for WMR.SAMPLE;

 for I in WAV_EXPECT_Data_out'range loop

 RESULT := RESULT and ACTUAL_Data_out(I) =

 WAV_EXPECT_Data_out(I);

 end loop;

 MATCH_ACK <= RESULT;

 end process;

END counter_test;

Page 29Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

29

Module Outline

l Introduction
l Match Functionality
l Handshake Functionality

l Multiple Waveform Generators
l Multiple Timing Sets And Bidirectional Test Pins

Page 30Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

It is possible to create multiple waveform generators in WAVES which
allows for multiple simultaneous tests of a component. Each waveform
generator is designed to perform one type of testing for a particular
component. The two waveform generators can perform their actions in
parallel within the same testbench. However, each test pin can be
driven only by one waveform generator. In other words, both waveform
generators cannot drive the same test pins on the component under
test.

In the example shown above, the top waveform generator provides only
serial data to the model under test. The bottom waveform generator
drives the output enable (OE) line to allow the component to place data
on the bus. When the component places the data on the bus and
raises the Data Ready line, the waveform generator verifies the data on
the bus. Therefore, two waveform generators are providing two
separate testing operations on the same component under test.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

30

l Testing Devices With Multiple Asynchronous
Functionality

l Multiple WAVES Processes

Design Verification
Challenges (cont.)

Serial
communication
interface Every 200 ns pulse OE

for 20 ns and on the
rising edge of data
ready verify the state
of the parallel output
bus

Model Under Test

Parallel DataData Ready

B
U
S

Serial Data

OE

Drive the clock at
50 Mhz and supply
two channels of serial
data into the model

Clock

Page 31Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Multiple waveform generators can be used on a component which has
two different types of interfaces. Each waveform generator would be
designed to perform a unique testing operation on the component.
However, each test pin can only be driven by one waveform generator.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

31

Multiple Waveform
 Generators

l Used on component which have 2 types of
interfaces (serial and parallel, for example)

l Each test pin can only be driven by a waveform
generator procedure

l Each waveform generator applies stimulus to
subset of all test pins on the UUT

l Multiple waveform generators act in parallel
when testing the component

Page 32Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This example demonstrates the use of multiple waveform generators
within the testbench. Each waveform generator has a unique test
vector file. Also, each waveform generator interacts with a specific
subset of the test pins. In this example, the component under test is a
shift register. The test pins on the shift register are divided into two
categories: serial data and parallel data. Two waveform generators are
created in the test set. One generator will provide serial data to the
shift register, while the other will provide parallel data.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

32

Shift Register With Multiple
Waveform Generators

Shift Register
Instantiation

Monitor
Processes

Serial Data
Waveform
Generator

Serial
Test Vector Set

Testbench Parallel Data
Waveform
Generator

Error
Messages

Parallel
Test Vector Set

clk input
d(3:0) input

expected q(3:0)

actual scan_out

actual q(3:0)

expected scan_out

enable input
scan_in input
shift input

Page 33Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The use of multiple waveform generators requires additional
modifications to the various elements of the WAVES test set. The
changes specific to the use of multiple waveform generators will be
discussed throughout this example.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

33

Shift Register With Multiple
Waveform Generators (cont.)

l This WAVES Example Consists Of 8 Files:
mHeader File
mComponent VHDL Description For D Flip Flop
mComponent VHDL Description For Multiplexor
mStructural VHDL Description Of 4-Bit Shift Register
m Test Pins File
mExternal Test Vector File
mWaveform Generator File
m Testbench File

l Multiple Waveform Generators Require Extra
Modifications To Waveform Generator, External
Files, And Testbench

Page 34Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This diagram shows the structure of the shift register used in this
example. The four multiplexors choose the input for each d flip flop
every clock cycle. The common select line between the multiplexors is
the shift line. The signal scan_in acts acts an input to the lowest bit
position during shifting. The signal scan_out monitors the highest bit
during shifting.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

34

Structure Of The
 4-Bit Shift Register

clk and enable
(to all DFF’s)

scan_out

DFFDFF DFF DFF

shift
(to all MUX’s)

scan_in

q(0) q(1) q(2) q(3)

d(0) d(1)
q(0) q(1) q(2)

d(2) d(3)

Page 35Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the entity description for the 4-bit shift register. The enable
input controls when the input bus d is stored in the register. The shift
input controls whether the register is shifting or not. The scan_in input
is used to provide serial input data during shifting. The scan_out output
is used to monitor the results of the shifting operation.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

35

4-Bit Shift Register VHDL
Description

library ieee;

use ieee.std_logic_1164.all;

entity shift_register is

 port (clk : in std_logic;

 d : in std_logic_vector(3 downto 0);

 q : out std_logic_vector(3 downto 0);

 enable : in std_logic;

 scan_in : in std_logic;

 shift : in std_logic;

 scan_out : out std_logic

);

end shift_register;

Page 36Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The d flip flop and 2x1 multiplexor are formally declared as components
in the shift register description.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

36

4-Bit Shift Register VHDL
Description (cont.)

architecture structural of shift_register is

component d_flip_flop

 port (clock : in std_logic ;

 D : in std_logic ;

 enable : in std_logic ;

 Q : out std_logic ;

 Q_bar : out std_logic

);

end component;

component two_to_one_mux

 port (in0 : in std_logic;

 in1 : in std_logic;

 mux_select : in std_logic;

 mux_out : out std_logic

);

end component;

Page 37Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The shift register consists of 4 d flip flops and 4 multiplexors. The next
few slides show the port mapping of the various components.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

37

4-Bit Shift Register VHDL
Description (cont.)

for all : d_flip_flop use entity work.d_flip_flop(behavioral);

for all : two_to_one_mux use entity work.two_to_one_mux(behavioral);

signal mux_output : std_logic_vector(3 downto 0);

signal dff_out : std_logic_vector(3 downto 0);

begin

 m0: two_to_one_mux

 port map(

 in0 => d(0),

 in1 => scan_in,

 mux_select => shift,

 mux_out => mux_output(0));

 d0: d_flip_flop

 port map(

 clock => clk,

 D => mux_output(0),

 enable => enable,

 Q => dff_out(0));

Page 38Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

38

4-Bit Shift Register VHDL
Description (cont.)

 m1: two_to_one_mux

 port map(

 in0 => d(1),

 in1 => dff_out(0),

 mux_select => shift,

 mux_out => mux_output(1));

 d1: d_flip_flop

 port map(

 clock => clk,

 D => mux_output(1),

 enable => enable,

 Q => dff_out(1));

 m2: two_to_one_mux

 port map(

 in0 => d(2),

 in1 => dff_out(1),

 mux_select => shift,

 mux_out => mux_output(2));

Page 39Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

39

4-Bit Shift Register VHDL
Description (cont.)

 d2: d_flip_flop

 port map(

 clock => clk,

 D => mux_output(2),

 enable => enable,

 Q => dff_out(2));

 m3: two_to_one_mux

 port map(

 in0 => d(3),

 in1 => dff_out(2),

 mux_select => shift,

 mux_out => mux_output(3));

 d3: d_flip_flop

 port map(

 clock => clk,

 D => mux_output(3),

 enable => enable,

 Q => dff_out(3));

Page 40Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

40

4-Bit Shift Register VHDL
Description (cont.)

 scan_out <= dff_out(3);

 q(0) <= dff_out(0);

 q(1) <= dff_out(1);

 q(2) <= dff_out(2);

 q(3) <= dff_out(3);

end structural;

Page 41Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the test vector file for the parallel data waveform generator. Pin
codes are included for clk, the d input bus, and the q output bus. The
slice duration is defined as 20ns for each test vector.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

41

Shift Register Parallel Test
Vector File

% p_vect.txt

% clk d q

 1 0101 0101 : 20 ns;

 1 1010 1010 ;

 1 1010 1010 ;

 1 1010 1010 ;

 1 1010 0101 ;

 1 1010 1011 ;

 1 1010 0111 ;

 1 1010 1111 ;

Page 42Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the test vector file for the serial data waveform generator. Pin
codes are included for the serial input pins: enable, scan_in, shift, and
scan_out. The slice duration is defined as 20ns in this case, which is
consistent with the parallel test vector file. Therefore, in this example,
the two waveform generators will be operating in synchronization.
However, it is possible to have multiple waveform generators operating
asynchronous from each other. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

42

Shift Register Serial Test
Vector File

% s_vect.txt

% enable scan_in shift scan_out

 1 0 0 0 : 20 ns;

 1 0 0 1 ;

 0 0 0 1 ;

 0 1 1 1 ;

 1 1 1 0 ;

 1 1 1 1 ;

 1 1 1 0 ;

 1 1 1 1 ;

Page 43Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In the package declaration for WGP_shift_register, there are two
procedures declared: serial_data and parallel_data. When using
multiple waveform generators, the user must include the signals WLV
and WDV in the procedure declarations. This is a change from all the
previous examples described earlier. The signals WLV and WDV allow
specific test pins to be mapped to each waveform generator. WLV is
used to associate a logic value with each test pin on the shift register.
WDV is used to associate a direction for each test pin. [Hanna97],
[STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

43

Shift Register Waveform
Generator File

-- ******** This File Was Automatically Generated ********

-- ******** By The WAVES96-VHDL Tool Set ********

-- ******** Generated for VHDL entity: ********

-- ******** shift_register ********

-- ******** Generation date and time: ********

-- ******** Wed Aug 20 10:26:35 1997 ********

use STD.TEXTIO.all;

library IEEE;

use IEEE.WAVES_1164_Frames.all;

use IEEE.WAVES_1164_Declarations.all;

use IEEE.WAVES_Interface.all;

use WORK.WAVES_Objects.all;

use WORK.UUT_Test_Pins.all;

package WGP_shift_register is

 procedure serial_data (signal WLV : inout WAVES_LOGIC_VECTOR;

 signal WDV : inout WAVES_DIRECTION_VECTOR);

 procedure parallel_data (signal WLV : inout WAVES_LOGIC_VECTOR;

 signal WDV : inout WAVES_DIRECTION_VECTOR);

end WGP_shift_register;

Page 44Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the procedure description for the serial data waveform
generator. The serial test vector file is formally declared in the FILE
statement seen above. The variable s_Vector will be used to store file
slice information from the serial test vector file. A pinset is declared
which includes all the serial test pins on the shift register.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

44

Shift Register Waveform
Generator File (cont.)

package body WGP_shift_register is

 procedure serial_data (signal WLV : inout WAVES_LOGIC_VECTOR;

 signal WDV : inout WAVES_DIRECTION_VECTOR) is

 -- Declare external file

 file s_VECTOR_FILE : text open READ_MODE is "s_vect.txt";

 -- Declare file slice variable

 variable s_VECTOR : FILE_SLICE := NEW_FILE_SLICE;

 -- Pinset declaration section

 constant serial_pins : PINSET := enable + scan_in + shift + scan_out;

Page 45Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The frame sets for the serial waveform generator is declared. The
Non_Return format is used on the serial input pins enable, scan_in,
and shift. A 5ns Window format is used on the output pin scan_out.
There are some changes required in the loop statement as well. In the
call to the READ_FILE_SLICE procedure, the pinset serial_pins is
included as a parameter. This insures that s_Vector will only store pin
codes for the pinset serial_pins. In other words, s_Vector will only
store 4 pin codes instead of a pin code for every test pin on the shift
register. In the APPLY procedure, the signals WLV and WDV are
included as parameters. The pinset serial_pins is included as well
because this APPLY function will only schedule events on the pinset
serial_pins. [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

45

Shift Register Waveform
Generator File (cont.)

 -- Declare the frame sets

 variable s_TIMING : FRAME_DATA :=

 BUILD_FRAME_DATA(

 (

 (+enable, NON_RETURN(0 ns)),

 (+scan_in, NON_RETURN(0 ns)),

 (+shift, NON_RETURN(0 ns)),

 (+scan_out, WINDOW(10 ns, 15 ns))

)

);

 begin -- waveform generator procedure

 loop

 READ_FILE_SLICE(s_VECTOR_FILE, s_VECTOR, serial_pins);

 exit when s_VECTOR.END_OF_FILE;

 APPLY(WLV, WDV, s_VECTOR.CODES.all, s_TIMING, serial_pins);

 DELAY(s_VECTOR.FS_TIME);

 end loop;

 end serial_data;

Page 46Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the procedure description for the parallel data waveform
generator. The parallel test vector file is declared, along with the
variable p_Vector. Two pinsets are declared: one for the d input bus
and one for the q output bus. Another pinset parallel_pins is declared
which includes all the test pins that this waveform generator will
interface with.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

46

Shift Register Waveform
Generator File (cont.)

 procedure parallel_data (signal WLV : inout WAVES_LOGIC_VECTOR;

 signal WDV : inout WAVES_DIRECTION_VECTOR)is

 -- Declare external file

 file p_VECTOR_FILE : text open READ_MODE is "p_vect.txt";

 -- Declare file slice variable

 variable p_VECTOR : FILE_SLICE := NEW_FILE_SLICE;

 -- Pinset declaration section

 constant d : PINSET := d_3 + d_2 + d_1 + d_0;

 constant q : PINSET := q_3 + q_2 + q_1 + q_0;

 constant parallel_pins : PINSET := d + q + clk;

Page 47Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The frame sets are declared in the variable p_TIMING shown above.
The PULSE_HIGH format is used on the input clk, establishing a 20ns
clock period in this test set. The Non_Return format is used on the
pinset d, while a 5ns Window format is used on the pinset q. In a
manner similar to the serial waveform generator, the pinset
parallel_pins is used in the Read_File_Slice and Apply procedures
shown in the loop statement.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

47

Shift Register Waveform
Generator File (cont.)

 -- Declare the frame sets

 variable p_TIMING : FRAME_DATA :=

 BUILD_FRAME_DATA(

 (

 (+clk, PULSE_HIGH(5 ns, 15 ns)),

 (d, NON_RETURN(0 ns)),

 (q, WINDOW(10 ns, 15 ns))

)

);

 begin -- waveform generator procedure

 loop

 READ_FILE_SLICE(p_VECTOR_FILE, p_VECTOR, parallel_pins);

 exit when p_VECTOR.END_OF_FILE;

 APPLY(WLV, WDV, p_VECTOR.CODES.all, p_TIMING, parallel_pins);

 DELAY(p_VECTOR.FS_TIME);

 end loop;

 end parallel_data;

END WGP_shift_register;

Page 48Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In the testbench, the processes serial_d and parallel_d are declared to
generate the waveform. Each process uses the information stored in
wlv and wdv for its intended test pins. The logic values in wlv are
mapped to the various test signals in the testbench. The indexing into
wlv and wdv obeys the order established in the test pin file.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

48

Shift Register Testbench

 --***

 -- process that generates the WAVES waveform

 --***

 serial_d : serial_data(wlv(10 to 13), wdv(10 to 13));

 parallel_d : parallel_data(wlv(1 to 9), wdv(1 to 9));

 --***

 -- processes that assign the WPL values to testbench signals

 --***

 WAV_STIM_clk <= wlv(1);

 WAV_STIM_d <= To_StdLogicVector(wlv(2 to 5));

 WAV_STIM_enable <= wlv(10);

 WAV_STIM_scan_in <= wlv(11);

 WAV_STIM_shift <= wlv(12);

 WAV_EXPECT_q <= wlv(6 to 9);

 WAV_EXPECT_scan_out <= wlv(13);

Page 49Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

49

Module Outline

l Introduction
l Match Functionality
l Handshake Functionality
l Multiple Waveform Generators

l Multiple Timing Sets And Bidirectional Test Pins

Page 50Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This section describes two advanced features of WAVES: multiple
timing sets and bidirectional test pins. Multiple timing sets allow the
frames to be constructed with different formats. During each slice, one
frame set is selected to form the desired segment of the waveform.
Bidirectional test pins can be included on the interface of the UUT. The
WAVES test set must be modified to address bidirectional test pins.
Bidirectional test pins are a good application of multiple timing sets
since the test pins typically require one format for input, and another
format for output. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

50

Multiple Timing Sets And
Bidirectional Test Pins

l Some testing situations may require multiple
timing sets in order to create the necessary test
signals

l Each frame is constructed using the formats
defined in one of the timing sets

l Multiple timing sets are declared in the waveform
generator

l One potential application is for bidirectional test
pins (one time set used when the pins behave
like inputs and another time set used when the
pins behave like outputs)

Page 51Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This example includes an 8-bit shift/storage register with bidirectional
pins on the I/O bus. The diagram above shows the various signals
produced by the waveform generator in this example. Note that the
bi_direct_io bus can either send data from the waveform generator to
the UUT or send data from the UUT to the monitor processes. This
shows the bidirectional operations on this particular bus.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

51

Register With Multiple Timing
Sets And Bidirectional Pins

Register
Instantiation

Monitor
Processes

WAVES
Waveform
Generator

actual
out_0

WAVES
Test Vector Set

Testbench
Error

Messages

actual
out_7

selection input
enable_out input
clock input
data_0 input
data_7 input
master_reset input

bi_direct_io(7:0)

expected
io(7:0)

expected out_0 & out_7

Page 52Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The WAVES test set for this example consists of 6 files shown above.
The use of multiple timing sets and bidirectional test pins require
unique modifications to the waveform generator, external file, and
testbench. The designer should take note of the changes in the
WAVES test set that are specific to these operations.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

52

Register With Multiple Timing
Sets (cont.)

l This WAVES Example Consists Of 6 Files:
mHeader File
mComponent VHDL Description For Register
m Test Pins File
mExternal Test Vector File
mWaveform Generator File
m Testbench File

l Multiple Timing Sets And Bidirectional Test Pins
Require Extra Modifications To Waveform
Generator, External File, And Testbench

Page 53Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This table summarizes the behavior of the shift/storage register used in
this example. This device can perform 5 unique operations as shown
above. Except for reset, the 2-bit selection bus determines the
operation that the register is to perform. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

53

Register Truth Table

RESPONSE
INPUTS

clocksel_0sel_1reset

L

H

H

H

H

H

H H

H

L

L

L

L

X X X

X

Asynchronous Reset: Q0 -Q7 = LOW

Parallel Load: I/On -> Qn

Shift Right: Data_0 -> Q0, Q0 -> Q1, etc.

Hold

Shift Left: Data_7 -> Q7, Q7 -> Q6, etc.

Page 54Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This is the test vector file for this example. The pin codes are
organized according to the order shown at the top of the file. This file
will perform several operations on the register during simulation. First,
the register is reset. Then, six shift right operations are performed,
followed by five shift left operations. The register then performs four
hold operations. The register is then loaded with data and the output is
disabled with the loaded information shifted left. The I/O pins are
tested for a tri-state condition and the last operation enables the
outputs and performs a final shift left operation. Note the integer at the
end of each file slice. Instead of specifying a slice duration time, a
timing set selection integer is specified. This integer identifies which
timing set is used with the pin codes to construct the current slice. In
this case, there are only two timing sets specified. [Hanna97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

54

Register Test Vector File

% ss ee c dd m iiiiiiii oo t

% ee oo l aa r oooooooo uu s

% ll 12 k tt s 01234567 tt e

% 01 07 t 07 t

% clear

 -- 00 - -- 0 00000000 00 : 1 ;

%shift right

 10 00 1 11 1 10000000 10 : 1 ;

 10 00 1 11 1 11000000 10 : 1 ;

 10 00 1 11 1 11100000 10 : 1 ;

 10 00 1 11 1 11110000 10 : 1 ;

 10 00 1 11 1 11111000 10 : 1 ;

 10 00 1 11 1 11111100 10 : 1 ;

Page 55Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

55

Register Test Vector File
(cont.)

%shift left

 01 00 1 11 1 11111001 11 : 1 ;

 01 00 1 11 1 11110011 11 : 1 ;

 01 00 1 11 1 11100111 11 : 1 ;

 01 00 1 11 1 11001111 11 : 1 ;

 01 00 1 10 1 10011110 10 : 1 ;

% hold

 00 00 1 10 1 10011110 10 : 1 ;

 00 00 1 10 1 10011110 10 : 1 ;

 00 00 1 10 1 10011110 10 : 1 ;

 00 00 1 10 1 10011110 10 : 1 ;

% load

 11 10 1 10 1 01010101 01 : 2 ;

% enable & shift

 01 01 1 01 1 ZZZZZZZZ 11 : 1 ;

 01 00 1 01 1 01010111 01 : 1 ;

Page 56Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

In this slide, the two timing sets are explicitly declared in the waveform
generator. The variable WTL is of type TIME_SET_LIST, which is an
array of time sets. Each element of TIME_SET_LIST will contain a
timing specifier Period and frame format information in FSA. In this
example, the only difference between the two timing sets is the format
for the bidirectional IO bus. In the first timing set, the Window format is
used on IO, which means that IO bus is acting like an output. This
timing set is intended for the shift and hold operations. In the second
timing set, the Non Return format is used on IO, which means that the
bus is acting like an input. This timing set is intended for the load
operation. [Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

56

Register Waveform
Generator File

 -- Declare The Frame Sets (timing sets)

 --

 Variable WTL : TIME_SET_LIST (1 to 2) := (

 -- Frame Set 1

 --

 (PERIOD => 100 ns,

 FSA => BUILD_FRAME_DATA(

 ((+Clock, Pulse_high(50 ns, 80 ns)),

 (IO, Window(85 ns, 95 ns)),

 (inputs, Non_return(5 ns)),

 (outputs, window(85 ns, 95 ns))))),

 -- Frame Set 2

 --

 (PERIOD => 100 ns,

 FSA => BUILD_FRAME_DATA(

 ((+Clock, Pulse_high(50 ns, 80 ns)),

 (IO, Non_return(5 ns)),

 (inputs, Non_return(5 ns)),

 (outputs, window(85 ns, 95 ns))))));

Page 57Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

This slides shows the loop statement which controls the reading of test
vectors and scheduling of events on the test pins. The variable Vector
has a field fs_integer which will store the timing set selection integer
found in the external file. In the Apply procedure, note that the variable
WTL is included as a parameter. The events will be scheduled using
the currently selected timing set specified by the fs_integer field of
Vector. For example, if fs_integer is ‘1’, then the first timing set
specified in the previous slide will be used. The Window format will be
used on the IO bus in this case. The Delay procedure also includes
WTL as parameter in order to read the timing information stored in
Period. In this example, both timing sets have a Period of 100ns,
which defines the slice duration for this test set. In summary, the use
of multiple timing sets requires an explicit TIME_SET_LIST to be
declared in the waveform generator. This list is indexed using the
timing set selection integer found in the external file. Then, the
corresponding formats are used to create the current slice of the
waveform. [Hanna97], [STD97]

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

57

Register Waveform Generator
File (cont.)

 BEGIN

 loop

 READ_FILE_SLICE (vector_file, Vector); -- get first vector

 exit when vector.end_of_file;

 apply(wpl, vector.codes.all, WTL(vector.fs_integer).FSA);

 delay(WTL(vector.fs_integer).PERIOD);

 end loop;

 END waveform;

END WGP_shift_register;

Page 58Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

The slide summarizes the specific parts of the testbench that address
the bidirectional signals. In the testbench, an expected output value
signal is declared for the IO bus (called Wav_Expect_IO). The
testbench also includes the signals Bi_Direc_IO and WPL. A
concurrent process is set up in the architecture of the testbench for the
Bi_Direc_IO signal. When the direction specified in WPL is stimulus,
then the IO bus is acting as an input. Therefore, the signal Bi_Direc_IO
will carry input stimuli from the waveform generator to the UUT test
pins. In the second process shown, the Wav_Expect_IO signal will
take a value when the IO bus direction is response. This means that
the IO bus is acting as an output, and an expected output signal must
be created by the waveform generator. In this case, the signal
Bi_Direc_IO is being driven by the UUT and not by the waveform
generator. In summary, the direction information in WPL is used to
drive the two IO signals to their desired values.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

58

Register Testbench

 ENTITY test_bench IS

 END test_bench;

 ARCHITECTURE shift_register_test OF test_bench IS

 ...

 SIGNAL WAV_EXPECT_IO :std_ulogic_vector(0 to 7);

 SIGNAL BI_DIREC_IO :std_logic_vector(0 to 7);

 SIGNAL wpl :WAVES_port_list;

 ...

 BEGIN

 ...

 BI_DIREC_IO <= To_StdLogicVector(wpl.signals(9 to 16))

 when wpl.direction(9) = STIMULUS

 else "ZZZZZZZZ";

 WAV_EXPECT_IO <= wpl.signals(9 to 16)

 when wpl.direction(9) = RESPONSE

 else "--------";

 -- component instantiation here

 ...

 END shift_register_test;

Page 59Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Note in the instantiation of the register that the signal Bi_Direc_IO is
mapped to the bidirectional test pins on the UUT. A monitor process is
included to monitor the IO bus when it acts as an output. The signals
Wav_Expect_IO and Bi_Direc_IO are used in this comparison.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

59

Register Testbench (cont.)

 --***

 -- UUT Port Map - Name Semantics Denote Usage

 --***

 u1: shift_register

 PORT MAP(

 selection => WAV_STIM_selection,

 enable_out => WAV_STIM_enable_out,

 Clock => WAV_STIM_Clock,

 Data_0 => WAV_STIM_Data_0,

 Data_7 => WAV_STIM_Data_7,

 Master_Reset => WAV_STIM_Master_Reset,

 IO => BI_DIREC_IO,

 OUT_0 => ACTUAL_OUT_0,

 OUT_7 => ACTUAL_OUT_7);

Page 60Copyright  1995-1999 SCRA
See first page for copyright notice, distribution
restrictions and disclaimer.

Copyright  1995-1999 SCRA

Methodology

Reinventing
Electronic

Design
Architecture Infrastructure

DARPA Tri-Service

RASSP

60

References

[Hanna97] Hanna, James P., Robert G. Hillman, Herb L. Hirsch, Tim H. Noh, Ranga R. Vemuri. Using
WAVES And VHDL For Effective Design And Testing. Kluwer Academic Publishers, Boston, 1997.

[IEEE] All referenced IEEE material is used with permission.

[STD97] Draft IEEE Standard For VHDL Waveform And Vector Exchange (WAVES), IEEE Standard
1029.1-1996, IEEE Computer Society & IEEE Standards Coordinating Committee 20, May 1997.

