european space agency
european space research
and technology centre

WSM/SH/010
Issue 1
February 1996

VHDL Models for
Board-level Simulation

Prepared by S. Habinc

Spacecraft Control and Data Systems Division (WS)
Keplerlaan 1 - Noordwijk - The Netherlands
Mail address: Postbus 299 - 2200 AG Noordwijk - The Netherlands
Tel: +31-71-565 4722 - Telex: 39098 - E-mail: sandi@ws.estec.esa.nl - Fax: +31-71-565 4295

WSM/SH/010 Issue 1 2 european space agency

Page intentionally left blank

Copyright © 1995 European Space Agency. All rights reserved.
This document may be used and distributed without restrictions provided that this copyright statement is
retained and that any derivative work acknowledges the origin of the information.

WSM/SH/010 Issue 1 3 european space agency

Table of contents

1 INTRODUGCTIONcoiiiiieiesiesie sttt sttt sae e see e 5
11 PUrPOSE AN SCOPEveeeiecie ettt ettt r e e nre e 5
12 DOCUMENt OrQaNISLION.cvevevirieseieieeeeee et 5
13 REFEIENCES ... 6
14 (000101775 11 0] 0 TSRS 6
2 BOARD-LEVEL SIMULATIONcoiiiieiceesese e 7
2.1 Definition of board-level SImulation ... 7
2.2 Benefits of board-level SImulation ... 8
2.3 Board-level smulation uSiNg VHDLcccooiiiiiiiienceeeeeeeee e 9
3 MODELS FOR BOARD-LEVEL SIMULATIONcccooiiininirieiene e 10
31 HIGIAICNY ..ttt 11
3.2 Functional MOdelling...........ooeiiiiiiniee e 13
3.21 Modelling for functional @CCUraCyccceveeieeiieiieesieie e e se e 13
3.2.2 Modelling for simulation performancCe...........ccoeeveeeneerenieeneese e 14
3.23 Evaluation of smulation performance............ccooeverereneneneseeieesesee e 21
3.24 Outline of entity and architecture declarations for functional cores.............. 22
3.3 Interface MOAElliNG.......cooiiiieeee e e 24
331 TimiNg MOTEIINGcoeriiiiieierese e 24
3.3.2 Management of UnKNOWN iNPUL VAIUEScccouvriieieesiieie e 36
3.3.3 Reporting MOdel MESSAGES.ccceririeiiieeiisiesiee et 39
3.3.4 Outline of entity and architecture declarations for models............ccccevueenee.. 39
4 VERIFICATION OF MODELS FOR BOARD-LEVEL SIMULATION..... 42
4.1 TESEDEINCN.....ce s 43
4.2 TESE ODJECT .. 45
4.3 Test generator and result Checker ..o, 46
431 Verification of fuNCONAITYcoeeriiriiiieeeee e 48
432 Verfication Of INEITACES........cccvieereeee e 51
4.3.3 Verification result COMPreSSION.........ccvieeirieiieeieseeiesee e eree e sre e sreesre e 52
4.4 Evaluation of verificalion COVEIrageccouverrierirreenie e 54
5 MODELLING AND SIMULATING BOARD DESIGNS..........cccoveveuennene. 55
51 Board desSigNS iNn VHDLooooiieeceee e 55
52 Verification of board eSIgNS.........coeeieriiieeieeee s 60
6 DESIGN DOCUMENTATIONooiiiiceeeeeerte ettt s 62
6.1 USEI SIMANUELeiiiiieiieiceeee ettt ettt s srenne s 62
6.2 SUPPIEIMENT ...ttt st et sreenae e e 63
APPENDIX A: OUTLINE OF USER'SMANUALcoeieeeeeeceeeeeeeeee e 64
APPENDIX B: MULTIPLE-INPUT SIGNATURE REGISTER..........cocvvvrinnnne 65
APPENDIX C: TIMING PARAMETER TYPES......cooooeeere e 69

APPENDIX D: ABBREVIATIONS........ooiiiiiiereeie et 70

WSM/SH/010 Issue 1 4 european space agency

Page intentionally left blank

WSM/SH/010 Issue 1 5 european space agency

1 INTRODUCTION

11 Purpose and scope

This document provides recommendations for development and usage of VHDL models
intended for board-level simulation. This document is intended to be read together with
the VHDL Modelling Guidelines, RD1. It could be used in ESA developments of models
for board-level simulation and for simulation of board designs comprising such models.

The information herein is not to be considered as requirements, although sometimes
expressed as such, but merely as useful hints and recommendations.

The purpose of these recommendations is to define modelling criteria that will produce
models for board-level simulation that are highly accurate in both functionality and
timing, and that will provide sufficient simulation performance to facilitate long
simulation runs. The document also provides sufficient information to alow someone
with little VHDL knowledge to perform a simulation of a board design using models for
board-level simulation.

Parts of the document, such as the discussion on model verification, can also be used for
ASIC developments. Requirements on models for board-level simulation and VHDL
models used for synthesis are dissimilar and therefore are no synthesis aspects discussed
in this document. The document does not address distribution of models for board-level
simulation nor the protection of design information, issues which are discussed in “The
Usage of VHDL in the European Space Agency”, RD6.

This document is not intended to be aguide to the VHDL language itself. On the contrary
Is the reader expected to have previous VHDL knowledge before developing a model
intended for board-level simulation.

1.2 Document or ganisation

This document is divided in five mgjor parts, the first one covering the definition and
benefits of board-level simulation, followed by guidelines for developing models for
board-level simulation. The third part covers the verification of these model, and is
followed by a description on how to model and verify a board design. The final part
specifies requirements on model documentation.

For each requirement or suggestion stated in the document there is normally an
accompanying explanation and often a code example or afigure. All code examplesinthe
document have been taken from a complete model for board-level simulation, although
the VHDL code may sometimes have been reduced to highlight the essential parts. The
code examples are therefore not always possible to be analysed by aVHDL simulator as
presented. A complete model is not included in the document due to the prohibitive size
of the source code, but is made available viaftp as described in section 1.3.

european space agency 6 WSM/SH/010 Issue 1

1.3 References

This document is available from ESA in the PostScript format viaftp at URL
ftp://ftp.estec.esa.nl/pub/vhdl/doc/BoardL evel.ps.

Additional information on board-level simulation, including a complete example, is
available at URL http://www.estec.esa.nl/wsmwwwi/vhdl/boardlevel .html.

The following documents are being referenced:

RD1 VHDL Modeling Guidelines,
P. Sinander, ESA ASIC/001, European Space Agency, The Netherlands, 1994,
URL ftp://ftp.estec.esa.nl/pub/vhdl/doc/M odel Guide.ps
RD2 |EEE Standard VHDL L anguage Reference Manual,
|EEE Std 1076-1993, |EEE, New York, USA, 1994
RD3 |EEE Standard Multivalue Logic System for VHDL Model I nteroper ability
(Std_logic_1164), |IEEE Std 1164-1993, |IEEE, New York, USA, 1993
RD4 |EEE Standard VITAL ASIC Modelling Specification, Version 3.0,
IEEE, New York, USA, URL http://vhdl.org/vi/vital
RD5 Built-In Test for VL SI: Pseudorandom Techniques,
P. H. Bardell et a., John Wiley & Sons, New York, USA, 1987
RD6 TheUsage of VHDL in the European Space Agency,
P. Sinander, European Space Agency, The Netherlands, 1995,
URL ftp://ftp.estec.esa.nl/pub/vhdl/doc/UseOfVHDL .ps
RD7 VHDL Coding Stylesand Methodologies: an In-Depth Tutorial,
B. Cohen, Kluwer Academic Publishers, USA, 1995

14 Conventions

A component model in this document is a gate level netlist or a synthesisable Register
Transfer level, RTL, description, in VHDL or any other notation, representing the logic
design from which the component has been manufactured and being suitable for
simulation.

The types and subprograms declared in the packages ESA.Smulation defined in RD1,
Sd.Sandard and Sd. Textl O defined in RD2, IEEE.Sd_Logic 1164 defined in RD3, and
|[EEE.Mtal_Timing and |EEE.Mital _Primitives defined in RD4, will be addressed in this
document without necessarily further stating their origin or in which package they belong.

WSM/SH/010 Issue 1 7 european space agency

2 BOARD-LEVEL SIMULATION

This section defines board-level simulation and describes its benefits and limitations. By
knowing the purpose and characteristics of modelsintended for board-level smulation it
ismore likely that such asimulation will be successful. Knowing what can and cannot be
achieved using board-level simulation can reduce unprofitable efforts in advance.

2.1 Definition of board-level smulation

Board-level simulation can be defined as simulating the functionality of one or severd
printed circuit boards built with standard components, possibly incorporating Application
Specific Integrated Circuits, ASIC, and Application Specific Standard Products, ASSP.
Board-level smulation is also known under the names rapid or virtual prototyping and
sometimes system simulation. The purpose of board-level simulation is to verify the
behaviour of the board design, e.g. that the components operate correctly in the selected
operating modes.

When board designs contain processors it is also possible to perform verification of the
hardware-software interaction, such as verifying that ASIC registers can be programmed
and software drivers work properly etc. In addition, the performance of the processor
board could be evaluated. Board-level simulation will also give some information about
timing correctness, though it can probably not replace worst-case timing analysis.

Board-level simulation does not comprise verification of individual ASICs during their
development. It does not comprise system performance simulation including aspects such
as throughput, latency, buffer allocation and utilisation, where neither accurate data nor
clock behaviour is considered being essential.

LD RO, R3, OEFFH
LD R1, R2
OR RO, R1, 01BCH

ST RO, R3, OEFFH | 1 1

Entering state Sl
Entering state S3
Entering state S5
Entering state SO

nterrupt
nt errupt
nt errupt
nterrupt

=

NN

SW C2H=11000010B
RO 34H=00110100B
Rl F3H=11110011B
R2 ECH=11101100B

Figure1: The designers view of a board design when using board-level simulation.

european space agency 8 WSM/SH/010 Issue 1

2.2 Benefits of boar d-level simulation

Thefeasibility and benefits of board-level simulation have already been proven in several
projects. It supports a top-down methodology, allowing simulation of boards not fully
implemented, enabling the designer to work with incomplete specifications of the own
system or component and facilitates early verification of the design requirements. It also
alows the designer to explore different design solutions and to prototype manageable
parts of larger systems.

Product specifications can be verified before any manufacturing or breadboarding is
started. Thisisuseful when defining a system or component in aproposal or to ensure that
when a breadboard is built it does not contain functional errors.

When designing an ASIC, its operation in a board design can be verified before
manufacture. If models intended for board-level simulation are provided before the first
silicon, significant savings in schedule can be obtained.

Integration can be performed earlier and the first design and verification loop can be done
without any hardware manufacturing. The manufacturing can be postponed until all
specifications have settled and all interfaces have been verified. It permits full laboratory
integration without any available hardware, allowing the first integration to be done
earlier in the design. The designer can deliver a board design comprising models for
board-level simulation to the user for early system verification.

Special-built equipment for check-out and unit or system testing, which is nowadays as
complex asthe actual design, can be modelled aswell. Allowing the prototype and the test
equipment to be simulated together before any of them are built, which can reduce
interfacing problems, or even reduce the need for the test equipment being built.

Models for board-level simulation alow the test engineer to simulate situations that are
difficult to capturein real hardware due to timing synchronisation etc., resulting in amore
thorough verification of the board design. Board-level simulation provides the designer
with unlimited probing and acquisition points, not always possible to realise for the
hardware.

Models for board-level ssimulation provide limited simulation support during paralel
development of hardware and software, since this type of simulations usually take long
time to perform, but delivers high functional and timing accuracy. However, it has been
shown that by carefully selecting which software parts to simulate the time spent
simulating can be reduced to manageabl e lengths. It is perhaps not always feasible to boot
a complete operating system and launch applications, but all the firmware and hardware
drivers could be verified using board-level simulation.

Board-level simulation enables hardware and software designers to work together in an
early stage and to solve interfacing problems before committing the hardware for
manufacturing. This area of simulation will become more interesting with the
continuously increasing speed of simulators.

WSM/SH/010 Issue 1 9 european space agency

Board-level simulation should be carefully planned. Time spent modelling and simulating
hasto be weighted against what can be gained or lost compared to the replaced or reduced
non-simulation activities. Efficient use of board-level simulation can lead to the reduction
of other design activities.

It isimportant to establish by whom the board design model development and simulation
should be performed while planning the activity to prevent unnecessary educational costs
induced by assigning engineers to the task with no VHDL experience, even though only
little experience is actually needed.

2.3 Board-level ssmulation using VHDL

A major issue for board-level simulation is the availability of smulation models of the
components used in the board design. Despite commercial models being available for
many standard components, increasingly often ASSPs, ASICs and other unusua
components are used. Hardware modellers can solve this problem, though they are
expensive, complicated to use and have limitations in the number of components that can
be used simultaneously.

Using VHDL models is therefore an interesting alternative when no other models are
available, which is the typical case for amost all components used on board spacecraft.
By using VHDL the effort to support several platforms and simulatorsis greatly reduced,
since VHDL models require no or only minor modifications for each new simulator.

It has been demonstrated that VHDL models of components can be integrated together to
design and debug embedded systems in their entirety using hardware-less design
methodology. Due to VHDL simulator performance reasons board-level simulation is
normally limited to the digital domain.

Using VHDL for board-level simulation enablesthe user to aso perform true mixed-level
simulation, since detailed models are mostly written in VHDL and the number of ASIC
libraries written in VHDL israpidly increasing. Still, al different models have to follow
some guidelinesto ensure interoperability. Thisdocument and RD1 form such guidelines.
The board design simulation can also contain non-VHDL representations such as netlists
or schematics, being useful when verifying a board design containing an ASIC for which
no VHDL library exists.

It isimportant to establish by whom the simulation models should be provided, which can
become acritical issueif thereis no model for board-level smulation available. A survey
of existing models has therefore to be performed well before the smulation begins,
allowing for the development of missing models.

european space agency 10 WSM/SH/010 Issue 1

3 MODELSFOR BOARD-LEVEL SIMULATION

A model for board-level simulation is characterised by its accurate modelling of the
component behaviour, ssmulation performance, and ease of use for board designers. All
such models delivered to ESA should be developed in accordance with RD1, and their
implementation could benefit from following the suggestions made in this document.

The behaviour of the model as seen from the outside should be the same as for the
modelled component and should include the full functionality, though specific test modes
only used for manufacturing test need not be implemented. The interface signals of the
model should have the exact waveform behaviour as observed for the component. Since
the internal structure and state of the model do not need to reflect the modelled
component, internal signals should not be used during the analysis of acquired simulation
results since they could provide information not being fully correct.

A model for board-level simulation should be verified against a component model when
possible, which could bein VHDL or any other representation suitablefor simulation. The
purpose of the verification should be to ensure the correctness of the model w.r.t. the
component behaviour. When no other representation of the component is available for
simulation, the model verification should be based on the information found in a Data
Sheet or similar. Each model intended for board-level simulation should be provided with
atest bench verifying its behaviour, which is described further in section 4.

Bus functiona models, sometimes called bus interface models, are considered being
reduced models for board-level simulation, modelling only the timing and behaviour of
the interfaces. The timing and format of output driversfor data/control/addresses etc. are
modelled as accurately as possible, while the internal functionality of the component is
not necessarily modelled at all. Using bus functional models does not provide the full
potential of board-level simulation since they simulate only a portion of the component.
Nevertheless, the development of such models should follow the suggestions made herein
since they should be possible to use together with models for board-level ssmulation.

The simulation performance should be assessed when transforming amodel written on the
Register Transfer level, RTL, to a model intended for board-level simulation. The
assessment can be supported by comparing the source code with the requirementsin this
document. RTL models do normally not have sufficient simulation performance and will
need to be modified since they are normally written for synthesis which imposes
conflicting requirements on the VHDL code w.r.t. models for board-level simulation. The
main development effort would then be to optimise the code accordingly, and to
implement the model interfaces and develop the verification test bench.

Experience has shown that a proper review of the requirements in RD1 should be
performed before a development begins and each model should be reviewed thoroughly
before being released.

The source code header of the model entity should contain al information necessary for
the user to simulate the model in a board design, and is also allowing distribution of
analysed models containing no source code. A User’s Manual should be delivered with
every model intended for board-level simulation, as specified in section 6.1.

WSM/SH/010 Issue 1 11 european space agency

31 Hierarchy

Hierarchy for modelsisintroduced to obtain good source code readability and to separate
different modelling aspects. The outlined hierarchy scheme below isbased on two of these
aspects, namely timing and functionality. Since these usualy stem from two different
lines of documentation and representation, the Data Sheet and the component model, the
model intended for board-level simulation should be partitioned taking this into account.
A partitioning also enables separate verification of the two domains of the model.

The model should be divided in two hierarchical levels; the top-level architecture and its
functional core, to clearly separate the timing and checking for unknown input values
from the functionality aspect of the model, as shown in figure 2. It is recommended that
there are no other than these two hierarchical levels in the model, since multiple levels
could reduce the code readability if not carefully used. The top-level architecture should
be independent of the functional core where possible to reduce the need for changing it if
only the functionality needs to be modified.

The two-level hierarchy could be flattened for improving simulation performance by
reducing the number of signals interconnecting the hierarchy, athough it is not
recommended. This approach should only be used in extreme cases or for small models,
and isshown in figure 3.

|entity of model for board-level simulation|

|entity of model for board-level simulation|

architecture BoardLevel

architecture BoardLevel

(Timing checkers) (Timing checkers)
(X-checkers) (X-checkers)
(Output delays) (Output delays)

functional core functional core functional core

Single entity comprising a functional core Multiple entities comprising a functional core

Figure 2: Preferred two-level hierarchies (squares with rounded corners are
processes or concurrent procedures, regular squares are subcomponents).

The functionality of the component should be modelled in the functional core, excluding
any timing aspects and without internal delays. A functional core could comprise more
than one entity for larger designs, each functional block would then be a component
instantiated in the top-level architecture. There should not be more components for the
functional core than there are blocks in the architectural block diagram. In the functional
core comprises many modules, which could be the case when amodel isbased onan RTL
model, an additional hierarchy level could be considered, as shown in figure 3. These
modelling aspects will be further referenced as functional modelling.

european space agency

WSM/SH/010 Issue 1

|entity of model for board-level simulation |

|entity of model for board-level simulation|

architecture BoardLevel

(Timing checkers)

(X-checkers)

functional core

architecture BoardLevel

(Timing checkers)
(X-checkers)
(Output delays)

functional core

NN RENN

(Output delays)

Process comprising a functional core in

Sub-entities comprising a functional core
a one-level hierarchy

in a three-level hierarchy

Figure3: Optional one- and three-level hierarchies.

The external timing of the model should be contained in the top-level architecture,
including setup and hold time checking, clock-to-output and propagation delay
scheduling. It could be modelled in the functional core when simulation performance is
critical and when source code readability is not reduced. Management of unknown input
values can be divided between the two hierarchical levels as described section 3.3.2.
These modelling aspects will be further referenced as interface modelling.

When a model has more than one hierarchical level the subcomponents should be
explicitly bound using a configuration declaration, never relying on default binding. The
generics of the subcomponents should be associated to the corresponding generics of the
preceding entity as shown for InstancePath in example 1. Each component declaration
should have the same name, generic and port declarations as the corresponding entity.
Configuration specifications in the architecture should be avoided, permitting the usage
of the more flexible configuration declarations outside the model.

l'ibrary BitMd_Lib;

configuration BitMd_Configuration of BitMd is
for BoardLevel
for Functional Core: BitMd_Core
use entity BitMd_Lib. Bi t Mod_Cor e(Behavi oural)
generi c map(lnstancePath => | nstancePath);
end for;
end for;
end Bi t Mod_Confi gurati on;

Example1l: Configuration declaration for a model for board-level simulation.

WSM/SH/010 Issue 1 13 european space agency

3.2 Functional modelling

Functional modelling comprises in this context the part of the model representing the
logical functions of the modelled component. The following sections will describe how
to develop a model with high functional accuracy and good simulation performance,
being two important characteristics of models for board-level simulation.

The functionality of the component should be contained in the functional core of the
model for board-level ssmulation. It should be independent of the top-level architecture,
although some functions normally implemented with tristate buffersin acomponent could
be modelled outside the functional core, as shown in figure 4. The functional core should
be modelled with zero delay on outputs and without internal signal delaysif possible.

| entity of model for board-level simulation A |

architecture BoardLevel

(Timing checkers) (X-checkers)

functional core Output delays
D_NoTime | D
L DEnable I/[/ j

Figure4: Implementation of tristate buffer in the top-level architecture.

321 Modelling for functional accuracy

Modelsfor board-level simulation have to reflect the functional behaviour of components
accurately enough to allow board designs to be verified for functionality and timing.
Simulating boards using models with high functional accuracy will reduce the number of
errors found on the manufactured board. Errors not found in the simulation, located in the
models or in the board design itself, will eventually be discovered in the real hardware.

There are two major approaches to modelling for board-level simulation; independently
develop the model from a Functional Specification or Data Sheet, or enhance the RTL
model. Thefirst approach isnecessary when no RTL model isavailable to the devel opers.
It can also be the case when the model for board-level smulation is developed in paralel
with the component. The component development could then benefit from the
independent interpretation of the specification. The two models should be compared to
each other, first visually and later automatically when both mature. In the second
approach, when a RTL model isto be revised to fulfil the requirements posed on models
for board-level simulation, the protection of the design should be addressed since the
resulting model could possibly be synthesised. Many of the suggestions in section 3.2.2
describing how to model for simulation performance will often reduce the probability that
a component could be reverse engineered.

european space agency 14 WSM/SH/010 Issue 1

Care should be taken when a model is developed using only a Data Sheet as input, since
the component is not always described in aData Sheet as actually being implemented. The
information in the Data Sheet could have been simplified, e.g. the description of an
interface protocol may be more constrained than the actual design requirements. The
source describing the functionality from which the modelling is performed should be
identified. Any unresolved issues should be submitted to the foundry or company
supporting the component and be documented.

It is not aways obvious whether to model the behaviour that is described by the
component model or the Data Sheet when there are inconsi stencies between them. It may
be that some functionality of the component model has been simplified or omitted in the
Data Sheet, e.g. proprietary design features. In such a case it is recommended to model
thefull functionality and issue awarning when used, instead of excluding the function and
consequently have an incorrect simulation.

The inclusion of unsupported or undocumented functionality of the component in the
model for board-level simulation could simplify its comparison versus the component
model, using the same set of stimuli. The model should therefore always reflect the
component behaviour when there are inconsistencies or differences between the Data
Sheet and the component model, otherwise the deviationswill possibly turn up asfailures
when breadboarding.

Independently of how the model is developed, the full functionality should be modelled
and verified versus the component model when available, as per section 4.

3.22 Moddling for smulation performance

The performance of present workstations and VHDL simulators provides a means for
simulating board designs comprising several complex components such as
microprocessors and ASICs. However, to be able to tap this simulation performance the
simulation models have to be efficiently coded for simulation. An absolute requirement
on simulation performance for models intended for board-level simulation cannot easily
be defined, although unnecessarily slow or cumbersome implementations should be
avoided.

The guidelines presented below are based on experiences with modelling and using
models for board-level simulation. Thisis not an exhaustive list of issues to be addressed
when a model is tuned for simulation performance. It should also be remembered that
each suggestion might not be true for all situations and simulators. The best advice on
simulation performance modelling isto use common sensein case of uncertainty. A good
way to choose between two approaches is to simulate both and to select the one being
most efficient. The stimuli used for such comparative simulations should be based on
possible and probable input to the model. Different simulators have different performance
characteristics, for obtaining the complete picture simulations should be performed on all
foreseen simulators to be used.

WSM/SH/010 Issue 1 15 european space agency

Many rules and techniques that apply to writing optimised software, such as loop
unrolling, code in-lining etc., also apply to models with good simulation performance
since VHDL has many characteristics of a programming language. Some VHDL
simulators have less built-in optimisation capabilities than state of the art optimising
compilers for software, it is therefore often beneficial to manually perform optimisation
at the source code level.

Standard packages, such as the IEEE.Sd Logic 1164 and IEEE.Vital Timing
|[EEE.Mital_Primitives, are sometimes accelerated for simulation performance. But since
this is not always the case, it could be necessary to assess whether to use other types or
subprograms when simulation performance is an issue.

3.2.2.1 Processes

Each process invocation has a cost in terms of simulation performance and in principle
the number of processes should therefore be kept small. Each concurrent assignment is
treated as a process, and should be avoided where possible. Note that block and generate-
statements can incur the same cost as processes.

Processes should use sensitivity lists that can be statically allocated and have therefore
potentially better simulation performance than when using wait-statements that are
allocated dynamically. Process invocation should be minimised, only essential signals
should beincluded in the sensitivity list. Functions sensitive to the same signals should be
grouped in the same process, reducing the number of processes to invoke for each signal
event. Following the approach above, al functions related to the same clock should be
grouped together. One process per clock region could be used when multiple clocks exist
for the component. Functions related to different clock regions should be placed in
different processes, not to invoke the process for each event on theirrelevant clocks. This
approach has been found efficient when clocks have dissimilar switching frequencies.

It should be decided whether to use single or multiple processes and which signals to
include in the sensitivity lists when modelling combinational and asynchronous logic,
based on comparative simulations. Combinational logic only related to a single clock
signal should be included in the process modelling that clock region.

Code blocks, such as checkers and autonomous functions that can be disabled by means
of generics or mode pins, could benefit from being placed in separate processes using
generate-statements to prevent them from executing in modes when not needed. It is not
sufficient to place such functions in a process and protect them with a conditional
statement, since the process will still be invoked each time thereis an event on signalsin
the sensitivity list. The generate-statement around the process will exclude the process
from the simulation when disabled, eliminating al invocation costs when not used.

The outline of the functional core architecture shown in example 8 represents such
structuring. The architecture in the example is divided in two processes, representing the
synchronous and the asynchronous regions of the component. The sensitivity lists of the
processes have been kept short to avoid unnecessary invocations.

european space agency 16 WSM/SH/010 Issue 1

The synchronous region in the example is clocked by the Clk input and is reset by the
Reset_N input. The ClkRegion processimplementing thisregion is made sensitive only to
these two signals. The first part of the process handles the asynchronous reset of the
region. The succeeding two parts model the functionality related to the rising and falling
Clk edges. An edge on the Clk input is detected using the functions Rising_Edge and
Falling_Edge, which also handle unknown input values.

Thelast part of the ClkRegion processis only invoked when no reset has been issued and
neither of the clock edges have been detected. It is used for detecting and reporting
unknown values on the Clk input as described in section 3.3.2. This method for checking
for unknown input values will only negligibly contribute to the performance penalty,
compared to checking the clock input at each signal event which occurs frequently.

The process AsynchronousRegion implementing the asynchronous region is made
sensitive only to those inputs directly affecting its behaviour. TheinputsCS Nand RW_N
control the asynchronous write accesses to internal registers and are therefore included in
the sensitivity list. The data and address buses are latched on the rising CS N edge as
shown in example 3, and do not affect the process when changing values. They need
therefore not be sensed by the process and are not included in the sensitivity list, allowing
for better ssimulation performance than if they were included. This modelling is inexact
since the accessing scheme has been somewhat simplified.

3.2.2.2 Signals

Variables should be used instead of signals wherever possible, since each signal requires
one or several drivers, specific handling (event scheduling,) and memory storage, which
takes more instructions to execute (and likely decreases the cache hit ratio). Signals
should preferably be used only for communication between processes. VHDL ’93 shared
variables could potentially be used instead of signals, but should be used with precaution
since potentially introducing indeterministic behaviour in the ssmulation. Another reason
for merging processes is that the number of signals used for the communication between
them is consequently reduced.

Resolved types should be avoided internally in the model where possible, since the
calculation of the resulting value will need to call aresolution function for each event on
the driving signals. Using unresolved types instead could potentially increase the
simulation performance. Resolved types should therefore only be used when the
resolution function is needed. This does not apply to variables, since no resolution
function is needed and there should be no difference in simulation performance.

It has however been observed that there is no significant difference between using
Sd ULogicinstead of d_Logic, sincethelatter isaccelerated in some simulators. Some
simulators also ensure that the resolution function is not invoked for signalswith only one
driver. This can be seen as analogous to replacing such signals with their unresolved base
type, e.g. Sd_Logic signals with one driver becomes Sd_ULogic signals. An additional
benefit of using unresolved types is that unwanted short-circuit connection between
signalsis automatically detected at analysistime since asignal of an unresolved type can
only have one driver.

WSM/SH/010 Issue 1 17 european space agency

When moving a concurrent signal assignment into a process, it should be ensured that it
is not updated more often than it would had been as a concurrent assignment. Reassigning
asignal its current value should be avoided, since each such assignment requires that a
transaction is scheduled for that signal. One should also be careful not to recalculate a
signal value expression too often when moving the signal assignment into a process, e.g.
for each clock cycleinstead of each time one of the relevant input signals changes. In such
case the ssimulation performance will decrease due to the increase of unnecessary
calculation, even if the same calculated value is not reassigned to the signal. Similarly,
removing static signals that seldom change will not improve the simulation performance
significantly or will even decrease it.

Signal generating attributes such as ‘ Sable should be avoided since they result in the
creation of implicit signals which have to be handled in the scheduler. Instead should the
attribute * Event be used where possible.

3.2.2.3 Types

Numerical data types such as Integer normally result in better simulation performance
than arrays such as Sd_Logic_Mector and Bit_\ector, and could be used for extensive
calculations directly using the arithmetics of the processor on the host machine. However,
one should be careful when the bit field information is required in the simulation, e.g.
during instruction decoding in microprocessor models, since retrieving such information
from an Integer could potentially be more costly than using an array in thefirst place. A
trade-off should be performed between the cost for: performing type conversions between
Sd_Logic_\Vector and Integer, and subsequent calculations using Integer; or directly
performing calculationson Sd_Logic_\ector. Findingsindicate that the time required for
convertingaSd Logic \Vector signal to an Integer variable, adding two Integer variables,
and to convert the result back to a Sd_Logic_\ector variable is faster than to make an
addition between two Std_Logic_\ector signals.

The computations on data and address in example 3 are made using the type Integer
instead of Sd_Logic Vector (not shown). The conversion is made directly from
Sd Logic \ector to Integer with the custom made function To_Integer, which is only
called when the valueis needed. This function a so checks for unknown values and issues
assertion reports when detected, its declaration is shown in example 2.

- Converts unsigned Std Logic Vector to Integer, leftnost bit MSB
- Error nessage for unknowns (U, X, W Z, -) being converted to O
function To_Integer(
constant Vector: Std_Logi c_Vector;
constant VectorNane: String :
const ant Header Msg: String
constant MsgSeverity: Severity Level
return I nt eger;

"To_Integer:";
Wr ni ng)

Example2: Declaration of a Sd_Logic_\ector to Integer converter function taking
into account unknown values on the input.

european space agency 18 WSM/SH/010 Issue 1

Type conversions on input signals should be performed in the functional core where the
actual value is needed and only when necessary, and is described further in section 3.3.2.
To illustrate this, the conversion between Sd_Logic_\ector and Integer and the checking
for unknown values on the data and address buses in example 3 are only necessary when
the values are latched. No type conversion is therefore necessary in the top-level
architecture for the two buses. This scheme has better simulation performancethan if each
signal would be type converted each time there is an event. Unnecessary assertion reports
are also avoided since checking for unknown valuesis only done when the value is used.

It has been seen that enumerated types have better simulation performance than array
type, especiadly for coding of finite state machines using case-statements, where
Bit_ \Vectorsand Std_Logic Mectors are slower than enumerated types.

-- Inmplenmentation of all asynchronous functionality.
-- Latching of data to be witten into the internal registers.
-- Generation of external data bus enable. Checks for unknown
-- values are done for the input signals.
-- The nodelling is not fully correct wr.t. a typical
-- RAM I/F, since some relaxations have been introduced.
AsynchronousRegi on: process(CS_N, RWN, Reset_N)
begi n
if Reset_N="0" then
-- To_X01 on Reset N is done in the top-level architecture
-- Asynchronous reset of npdel
DEnabl e <= Fal se;
el sif Rising_Edge(CS_N then
-- End of access
if To_XO01(RWN, "RWN', InstancePath, Error)="0" then
-- Wite access to internal registers
-- Xon CS Nis treated as no event (no access)
-- Xon RWNis treated as 1 (no wite access)
-- Xon Aand DIn are treated as O
-- Aand DIn are converted to |Integer

AWite <= To_lnteger (A, "A", InstancePath, Error);
DWite <= To_lInteger(D_In, "D', InstancePath, Error);
end if;

DEnabl e <= Fal se;
elsif Now /= 0 ns then
-- Asynchronous behavi our
-- Enabl ed for read cycles after Reset
-- Xon RWNis treated as 0
-- Xon CS Nis treated as 1
DEnabl e <= (To_X01(RWN, "RWN', InstancePath, Error)="1") and
(To_X01(CS_N, "CS N', InstancePath, Error)="0") and
(Reset _N="1");
end if;
end process AsynchronousRegi on;

Example 3: Implementation of asynchronous write accessto internal registers.

WSM/SH/010 Issue 1 19 european space agency

When modelling large memory elements the memory actually used by the simulator on
the host machine should be taken into account, since the cache hit ratio will decrease with
larger memory usage, and as a consequence the simulation performance will be decreased
aswell. Note that it is not the size of the memory being alocated by the simulator that is
critical, but the size and the distribution of the memory which is being frequently
accessed. Since the alocation of the modelled memory into the actua memory differs
between simulators, operating systems and hardware, it isdifficult determine what impact
the method chosen will have on the simulation performance. But, as a general
recommendation the memory usage should be minimised as much as possible. Also from
a memory usage point of view signa declarations are more costly than variable
declarations.

For example, an eight bit wide register would at least require 48 bits of memory if
modelled asa Sd_Logic \Vector since each bit would be represented as 4 bitsin memory,
covering al nine Xd_Logic strengths. The same register contents could be represented as
an Integer and would then require 4 bytes in most simulators, which is less than the
Sd_Logic \Vector representation, but which cannot represent all the nine Sd _Logic
strengths. The memory usage should be measured for the two approaches and be used,
together with the requirements on the level of detail for the data representation, for
deciding on how to model such registers.

3.2.2.4 Subprograms

Passing large data structures as parameters to subprograms decreases the simulation
performance when the data structure size increases, which should be considered when
deciding whether to represent data as Sd_Logic_Mector or Integer. In addition, calls to
subprograms declared in packages are difficult to optimised by the analyser since the
package body can be reanalysed without necessitating that the code where the call ismade
from isreanalysed aswell. It istherefore necessary to manually replace subprogram calls
by in-line coding in the source code when optimising amodel for simulation performance.

3.2.25 Expressions

Globally static constants, such as deferred constants, cannot be evaluated at analysistime
by the analyser. A way to work around thisisto declare alocal constant that is computed
once during the elaboration from the deferred constant or constants, e.g. “constant
Local Tpd: Time := Global Tpd /2;” where Global Tpd is a deferred constant.

It is believed that some simulators do not optimise expressions for common terms and it
is therefore necessary to manually make the optimisation in the code, as in example 4.

- Original code: -- Optimsed code:
Result0 := A+B*C; TenpO = B*C
Resultl := D B*C, Result0 : = A+TenpO;

Resultl1 := D TenpO;

Example4: Common termin expressions being expressed as a temporary variable.

european space agency 20 WSM/SH/010 Issue 1

On the other hand, unnecessary usage of temporary expressions could potentially reduce
the simulation performance since each temporary variable assignment has a certain cost,
as shown in example 5. Needless to say is that when performing calculations with
temporary signalsinstead of variables, the penalty isworse.

- Original code: -- Optimsed code:
Tenpl = A+B; Result2 := (A*B)/(C*D)*(E nod F);
Tenp2 = CD
Tenp3 = E nod F;
Resul t2 : = Tenpl/ Tenp2* Tenp3;

Example5: Unnecessary temporary expressions merged into one.

Since VHDL specifies short-circuit boolean evaluation, terms that would short-circuit an
expression eval uation should be placed as early as possiblein the expression. Short-circuit
evaluation is specified for the types Boolean and Bit. The logical operators (and, or, etc.)
do not evaluate short-circuit for Sd_Logic, but can be exploited asin example 6. The two
signals A and B are of type Sd _Logic, but each expression within the parenthesis will
result in a Boolean value, and the or-operator could thus benefit from short-circuit
evaluation in case the first parenthesis result is True.

signal A B: Std_Logic;
if (A1) or (B="0") then
end if;

Example 6: Expression with potential short-circuit evaluation.

3.2.2.6 Conditional statements

A fundamental rule when modelling for simulation performance using VHDL isto only
execute code when necessary. Therefore, conditional statements should be used to reduce
unnecessary execution of code. The outer conditional statement should reduce the
necessity to evaluate enclosed conditional statements, based on an assessment on how
often subsequent code needs to be executed. This is done by using nested if- and case-
statements, ordered so that the branches with the highest probability are executed first.
Conditional expressionsinthe statements should be ordered for maximum boolean short-
circuit evaluation and the complexity should be minimised. Efficiency of
conditional statement structures can be analysed using code coverage results. It has been
shown that an assignment of a signal is between one and two orders of magnitude more
costly in terms of simulation time compared to reading a signal or variable in an if-
statement. This suggests that one can use large structures of if-statements to prevent a
signal to be unnecessarily assigned, and still gain in simulation performance.

It can be seen in example 3 that the if statements have been nested. The conditional
expression in the outer if-statement is the Rising Edge function. The conditional
expression intheinner if statement isacustom made To_X01 function that will detect and
report unknown values on the inpuit.

WSM/SH/010 Issue 1 21 european space agency

The Rising_Edge function is believed to execute faster than the custom To_XO1 function,
sinceit is accelerated in most VHDL simulators, and is consequently placed in the outer
If statement that will be executed more frequently. The two conditions are not combined
In one expression, not to evaluate any part of the expressions unnecessarily.

The DEnable signal in example 3 is used for enabling the tristate buffer isolating the
outgoing D_Out bus from the external port D in the top-level architecture. The type
Boolean was being simple to use in if statements and could potentially simulate faster
than Sd_ULogic. Itsusage in the top-level architectureis described further in example 22
and figure 4.

3.2.3 Evaluation of simulation performance

The simulation performance of a model should be evaluated continuously during the
development to identify simulation bottlenecks and accordingly modify the code for
improvements. An analysis of the smulation speed should compare the model intended
for board-level ssimulation and the actual hardware performance, stating the relative
simulation performance measured in terms of instructions per second, etc.

The test suite used for this purpose should have a low influence on the performance
measurements, but should also reflect realistic ssimulation scenarios and execute large
portions of the model. The measurements should be compared for different simulatorsand
platforms when possible, avoiding simulation pitfalls.

A code coverage utility is a useful means for identifying simulation bottlenecks during
model development. The output from such tools usually states the number of times each
statement in the source code has been executed during a simulation, alowing an
identification of statements frequently executed.

Simulation performance can often be improved by reordering the code or modifying the
structure of the conditional statements. It is aso possible to identified redundant and
unnecessary code that could complicate maintenance.

The Coverage utility in the Synopsys® VSS simulator records the number of times a
statement is executed when running a particular smulation. The Leapfrog® VHDL
simulator from Cadence has been announced to includes a code profiler, comparable with
the Coverage utility, but which also identifies where in the code most of the simulation
timeis spent.

The VHDLCover™ tool is a simulator independent coverage utility, that adds VHDL
code to the model which can then be ssmulate on any VHDL simulator, and the results can
be further analysed the tool. This tool claims to analyse branches taken and other things
besides the executed statement count.

european space agency 22 WSM/SH/010 Issue 1

3.24 Outline of entity and architecture declarationsfor functional cores

The entity of the functional core should have the same name as the model for board-level
simulation but with _Core suffixed when only one entity is needed. The architecture name
should reflect the nature of its contents: Behavioural or Structural. When multiple entities
are used for the functional core they should be named after their function. If athree-level
hierarchy is needed, the name of the second level should have _Core suffixed. The
InstancePath generic should be passed down the hierarchy where the checkers are
implemented. The default val ue should then be the same as the name of the corresponding
entity, which will not appear in an assertion report when the InstancePath is passed down
correctly. It should only be used for sub-module verification during the devel opment.

The entity shown in example 7 has ports of type Sd_ULogic since no tristate drivers are
implemented in the functional core. No type conversion is needed in the top-level
architecture between the Sd_Logic ports of the top-level entity and the Sd_ULogic ports
of the functiona core, since they are equivaent and compatible. Ports of
Sd_Logic \Vector type have not been converted to the unresolved Sd_ULogic \Vector
type in the top-level architecture. It is done in the functional core where and when the
valueis truly used and the ports are therefore of type Sid_Logic_\ector. The output port
D_Out of type Integer is converted to StId_ULogic_Mector in the top-level architecture
only when its value is used, and is therefore not converted in the functional core.

l'ibrary |EEE;
use | EEE. Std_Logic_1164. al | ;

entity BitMod Core is

generi ¢(
I nstancePath: String := "BitMd _Core:"); -- For assertions
port (
- Systemsignals
Test O: in Std_ULogi c; -- Test node
d k: in Std_ULogi c; -- Master C ock
Reset N in Std_ULogi c; -- Master Reset
- Interface to internal registers
A in Std Logic_Vector(0 to 1); -- Address bus
CS N in Std_ULogi c; -- Chip select
RW N: in Std_ULogi c; -- Read/wite
D In: in Std Logic_Vector(0 to 7); ~-- Data bus input
D Qut: out Integer range 0 to 255; -- Data bus out put
DEnabl e: out Bool ean; -- Data bus enabl e
- Serial Interface
Sa k: in Std_ULogi c; -- Serial clock
SDat a: in Std_ULogi c; -- Serial input
MDat a: out Std ULogic); -- Serial output

end Bi t Mod_Cor €;
Example7: Outline of a functional core entity for a model for board-level simulation.

All scheduling of output delays and timing checking are performed in the top-level
architecture. All type conversions and checking for unknown value on the input ports are
performed in the functional core, except the static signals Reset N and Test that are
converted in the top-level architecture.

WSM/SH/010 Issue 1 23 european space agency

The outline of the functional core architecture in example 8 covers some aspects of
modelling for functional accuracy and simulation performance described earlier. The
ClkRegion process covers al functionality related to the Clk input and is only made
sensitive to the Clk and Reset_N inputs, being asynchronously reset by Reset N. An if-
statement divides the processin four regions: reset of the process, functionality related to
the rising Clk edge, functionality related to the falling Clk edge, and checking for
unknown values on Clk when neither in reset nor an edge is detected.

The AsynchronousRegion process includes all asynchronous functionality in the example
and is made sensitive to Reset_N, CS N and RW_N, which are the only inputs that can
induce any changes on the outputs due to an event. An if-statement divides the processin
three regions. reset of the process, functionality related to the rising CS N edge and
functionality related to RW_N input when thereis no rising CS_N edge.

architecture Behavioural of BitMdd_Core is
-- Local signal declarations.
begi n
-- Inmplementation of all functionality driven by dk
O kRegi on: process(Reset N, d k)
begi n
if Reset_ N ="'0" then
-- Asynchronous reset of nopdel
el sif Rising_Edge(d k) then
-- Rising dk edge region
el sif Falling_Edge(C k) then
-- Falling Ck edge region
el se
-- Check for unknown Ok val ue, since the nodel is not
-- being reset and neither rising nor falling Ok edge
-- is detected.
-- No assertions at start up of simulation
assert not (Is_X(dk) and (Now /= 0 ns))
report InstancePath & " 'X on dk input"”
severity Error;
end if;
end process C kRegi on;

-- I nplenmentation of asynchronous functionality
AsynchronousRegi on: process(Reset _N, CS_ N, RWN)
begi n
if Reset_ N="'0" then
-- Asynchronous reset of nopdel
el se Rising Edge(CS_N) then
-- Asynchronous behavi our related to CS_N
el se
-- Asynchronous behavi our related to RWN
end if;
end process AsynchronousRegi on;
end Behavi oural ;

Example8: Outline of a functional core architecture for a model for board-level
simulation.

european space agency 24 WSM/SH/010 Issue 1

3.3 I nterface modelling

Models having similar user interfaces for simulation condition selection, the same type
and format of error messages etc., provide the user with a single interface to learn and
understand. The model interfacesin this document have been made as simple as possible,
without necessarily sacrificing the potential of the language, promoting their usage by
others than experienced VHDL users.

The following interface modelling aspects are covered in this section:
» Definition of timing parameters,

Checking for timing constraint violations;

Scheduling of output delays,

Management of unknown input values;

Reporting of model messages.

3.3.1 Timing modelling

In the VHDL Modelling Guidelines, RD1, the timing modelling concept is based on the
IEEE VHDL Initiative Toward ASIC Librariesactivity, VITAL, asdescribedin RD4. This
allows the VITAL subprograms to be reused, saving coding effort as well as potentially
offering high simulation performance since several simulators already provide
accelerated versions of VITAL subprograms.

Full VITAL compliance has not been achieved since adifferent techniquefor the selection
of the simulation conditions (e.g. minimum or maximum delay) has been specified.
VITAL isbased on using an external delay calculator, where the actual timing values for
a specific simulation condition are back-annotated using the Standard Delay File format,
SDF, which iswell adapted for ssmulation of ASICs.

The ESA timing modelling concept defines the notion of an operating point and provides
asingle generic with which auser can change the simulation condition for all components.

For models intended for board-level ssimulation developed for ESA the selection of the
simulation condition should be controlled by the SmCondition generic of type
SmConditionType declared in the package ESA.Smulation, and should have the default
value WorstCase. The generic TimingChecksOn of type Boolean should be used for
disabling the timing checkers and should have the default value False.

It is recommended to only report timing violations and not to generate unknown values
on the outputs. In case it is implemented, the XGenerationOn generic of type Boolean
with the default value False should be declared in the top-level entity declaration,
disabling generation of unknowns when set to False, which should also be the default
value. Generation of unknown values on outputs is usually only implemented for
components with low complexity where the propagation of the unknown values could be
useful to follow and analyse. Note that the VITAL specification uses the name XOn
instead of XGenerationOn.

WSM/SH/010 Issue 1 25 european space agency

Normally, the following generics should not be needed. The generic XChecksOn of type
Boolean should be used for disabling the checking for unknown input values, and should
have the default value True. The generic MsgOn of type Boolean should be used for
disabling the generation of messages from timing checkers, which could be used in
conjunction with XGenerationOn when only unknown values on the outputs are wanted,
and should have the default value True.

Since models developed following the proposed scheme are not VITAL compliant, the
VITAL compliance checkers possibly found in VHDL analysers should be switched off
not to generate unnecessary warning and error messages during the analysis. No back-
annotation should be performed using SDF and the negative constraint cal culation phase,
as specified in RD4, should be disabled not to change the generics used for negative setup
and hold constraints as described further in section 3.3.1.2.1.

Thetwo attributes Vital_Level0 and Vital _Level 1 defined in RD4 should not be used since
models for board-level simulation using ESA.Smulation are not compliant with either.

3.3.1.1 Timing parameters

The timing parameters should preferably be of the Time Array types declared in the
packages ESA.Smulation and ESA.Timing defined in appendix C, supporting most of the
types declared in Vital_Timing used for timing information. The Time Array types are all
indexed by the type SmConditionType, as shown in example 9, making it possible to
select the value corresponding to the simulation condition, which is performed in the top-
level architecture. Thereisno need for having aTime Array with Vital DelayType elements
since they are equivalent to the type Time for which aTime Array typeis already declared
in the package ESA.Smulation.

The two packages ESA.Smulation and ESA. Timing should never be redefined or moved
to adifferent library since the intention is to provide only one format for the selection of
simulation condition for all models, normally originating from different developers.

- Definition of the SinConditionType type
type SinConditionType is (WrstCase, TypCase, Best Case);

- Definition of Tine Array type, used with Tine.
type TinmeArray is array(Si mConditionType) of Tinmeg;

- Definition of Time Array types, used with Vital Delay Types.
type TinmeArray0Ol is array(Si nConditionType) of Vital Del ayTypeO1;
type TineArray01Z is array(Si nConditionType) of Vital Del ayType01lZ;
type TinmeArray01zZX is array(Si nConditionType) of Vital Del ayType01ZX;

Example9: Contents of the Smulation and Timing packages.

The intended purpose of the Vital Delay Array Types declared in Vital_Timing is for
specifying the timing for each individual element of an array, such as for data or address
signals, and should never replace the usage of the Time Array types declared above, since
they are indexed with the subtype Natural and not the required SmConditionType.

european space agency 26 WSM/SH/010 Issue 1

No Time Array types have been declared in package ESA. Timing for any of the Vital Delay
Array Types, since it is not possible to define a constrained array of unconstrained arrays.

Thelevel of detailed timing information that is represented by the Vital Delay Array Types
is not necessary for most models. Should such detailed timing information be necessary,
the required declarations should be done for those array widths needed and placed in the
timing package of the model. Example 10 shows a declaration of a Time Array type with
VitalDelayType01ZX elements that is used for holding timing information related to a
Sd Logic Vector (0 to 7) port.

type TimeArray01zX 0_7 is array(Si nConditionType) of
Vi tal Del ayArrayType01zZX(0 to 7);
constant tpd Ok _Data: TineArray01zX 0_7;

Example 10: Declaration of Time Array type for a port with individual timing on each
of the eight elements, supporting the full Vital Transition Type range.

The timing parameters needed by the model should be declared in a separate timing
package as adeferred constant asit has been shown in example 11. The package body can
then be modified if necessary and analysed without the need to re-analyse the complete
design, which can be necessary when new data from foundries become available. This
also eases distribution of analysed models.

The timing parameters in the timing package can be used directly in the top-level
architecture or be passed via generics to the model. The latter option permits the user to
modify the timing parameters for each individual component instantiation by using
generic maps, useful e.g. when modelling large capacitive |loads on boards.

library ESA;
use ESA. Sinmul ation.all;
use ESA Timing.all;

package BitMbd_Timng is
- Deferred constants for the timng paranmeters.

constant tpd Ok _Mbata: TinmeArray01; -- T9

end Bi t Mod_Ti i ng;
package body BitMdd Timng is

constant tpd_C k_Mbata: TineArray0l : = -- 19
((25 ns, 24 ns), -- W
(11 ns, 13 ns), -- TC
(7 ns, 8ns)); -- BC

end Bi t Mod_Ti i ng;
Example 11: Package containing timing parameters declared as deferred constants.
The constantsin the timing package and the genericsin the entity declaration can have the

same names due to visibility rulesin the language. It istherefore no need to have suffixes
such as _Default attached to the constant names.

WSM/SH/010 Issue 1 27 european space agency

Timing parameters should have names compliant with RD4, or alternatively use names
from the Data Sheet. It is recommended that timing parameters containing signal names
with underscores should be written without them. For example, atiming parameter for the
signal CS N could be written as tperiod_CSN, which is compliant with RD4. The timing
parameter suffixes defined in RD4 should be used where applicable: posedge for rising
signal edges, negedge for falling signal edges etc.

The timing parameters should be given in an integer number of nanoseconds with values
rounded in a pessimistic way, to avoid simulation time limitations. Simulators supporting
64 bit implementation of the time counter support approximately 300 years of simulation
time with a resolution of 1 ns, and 32 bit implementations support only 2 seconds but
should be sufficient for limited hardware and software co-simulation.

3.3.1.2 Timing constraint checking

All timing constraint checkers should be contained in the process TimingCheck in the top-
level architecture, as outlined in example 12, but the process could be divided for
performance reasons when found beneficial. The processes should be sensitive to al
signals checked or referenced. All code in the process should be possible to disable with
the TimingChecksOn generic and a generate-statement, also shown in example 12, to
reduce the performance penalty when not used. This outline supports only positive
constraints, a version supporting negative constraints is shown in example 16. Timing
parameters to be checked should be assigned to the subprogram formals using named
association, indexed by the SmCondition generic to allow selection of timing parameter
values corresponding to the simulation condition as shown in example 15.

Timing constraint checkers should be enabled individually when relevant for the
simulation. This should be done by using the subprogram parameter CheckEnabled, as
shown in example 15 and example 18. Note that this parameter does not prevent the
checker from being executed, it only masks the assertion reports and the assertion of the
Violation parameter in Vital_Timing subprograms, and should not be used instead of the
TimingChecksOn generic used in the generate-statement.

Care should be taken when establishing the conditions for which each checker is enabled,
e.g. some checkers are not enabled during reset of the model, other checkers may only be
enabled after write operations. Enabling conditions of checkers related to clock period
timing constraints should be carefully modelled not to enable when not relevant to the
simulation, e.g. during reset. The frequent value changes on clock inputs could cause
many unnecessary subprogram invocations, decreasing the ssmulation performance, and
should be disabled for a clock not used in some mode or similar.

Enabling of the checkers for some timing constraints could be a rather complex task, as
for the setup and hold checker in example 15. The expression for the enabling variable
DataCheckEnabled is shown in example 13. The checker is enabled when there is a
falling edge on either CS_N or RW_N while the other input is asserted, which iswhen the
registers are written. It is kept enabled until thereisafaling CS_N edge while RW_N is
de-asserted, which iswhen the registers are read. The checker will therefore be enabled at
the beginning of awrite access and be kept enabled until the next read access begins.

european space agency 28 WSM/SH/010 Issue 1

Ti m ngGenerate: if TimngChecksOn generate

Ti m ngCheck: process(Ck, SCk, D, CS N, RWN, Reset N X01)
-- Variables containing information for period checkers
-- Variables containing information for setup & hold checkers
-- Variables for enabling tinmng checkers

begin
-- Enabling of various checkers
-- Reset Nlowtine wr.t. Ok checking
-- Register interfaces checked for illegal events etc.

-- Checkers using custom nade subprograns.

Peri odCheck(...); -- SOk period

CheckWdth(...); -- CS_ N de-assertion width

-- Timng checkers using Vital Timng subprograns.

Vit al Peri odPul seCheck(...); -- Ok period, high and low tines
Vi tal Peri odPul seCheck(...); -- CS Nwidth for wite access=
Vi t al Set upHol dCheck(...); -- Dsetup & hold w.r.t. CS N

end process Ti m ngCheck;
end generate Ti m ngGenerate;

Example 12: The process TimingCheck resides in the top-level architecture.

If the checker in example 13 was disabled on therising CS N or RW_N edge at the end of
the write access, the hold constraint would not be checked sinceit is normally longer than
0 nsrelative to that event. The same enabling scheme could be implemented by delaying
the control signals but would have lesser performance. Note the usage of the accelerated
functions Falling_Edge and To_XO01 in the example.

Thetype conversion is made locally in the TimingCheck process, since the signals are not
converted in the top-level architecture but only in the functional core, and will not
contribute any simulation performance penalty when timing checking is disabled. It is
preferable to formulate a smart enabling condition for an accelerated Vital_Timing
subprogram than to develop a completely new timing checker.

-- Enabl es the setup and hol d checker for D during wite operations.
-- The checker is enabl ed when both CS N and RWN are asserted,
-- until the next read access begins, since the data hold constraint
-- is longer than either CS Nor RWN is de-asserted after wite.
if ((Falling_Edge(CS N and To X01(RWN) ='0') or

(Falling Edge(RWN) and To X01(CS N)='0')) then

Dat aCheckEnabl ed : = True; -- Enabl e checker
elsif (Falling_Edge(CS N and To X01(RWN)='1') then

Dat aCheckEnabl ed : = Fal se; -- Di sabl e checker
end if;

Example 13: A complex enable expression for a setup and hold checker.

WSM/SH/010 Issue 1 29 european space agency

3.3.1.2.1 Timing constraint checking using Vital_Timing subprograms

It isrecommended that the timing checkers declared inthe Vital_Timing package are used.
The Vital_Timing procedures Vital SetupHoldCheck, VitalRecoveryRemovalCheck and
VitalPeriodPulseCheck are declared for the types Sid_ULogic and Sd_Logic \ector.
Note that Sd_ULogic Vector and Sd_Logic_\ector are not compatible, but Sd_ULogic
and Sd_Logic are, which excludes the possibility to check Sd_ULogic_\ector inputs.

The Vital SetupHoldCheck procedure detects a setup or a hold violation on the test signal
with respect to the corresponding reference signal. The timing constraints are specified
through parameters representing the setup and hold times for low and high test values.
This procedure assumes non-negative values for the timing constraints. The setup and
hold checker shown in example 15 supports only positive timing constraint values, thus
neither of the timing parameters can have a negative value.

The Vital RecoveryRemoval Check detects the presence of arecovery or removal violation
on the test signal with respect to the corresponding reference signal. The timing
constraints are specified through parameters representing the recovery and removal times
associated with areference edge of thereference signal. This procedure al so assumes non-
negative values for the timing constraints.

The Vital PeriodPul seCheck checks for minimum periodicity and pulse width for low and
high values of the test signal. The timing constraint is specified through parameters
representing the minimal period between successive rising and falling edges of the test
signal and the minimum pulse widths associated with high and low values. Note that the
procedure cannot be used for checking maximum period widths, when such checkers are
needed they have to be developed separately. Note also that the timing parameter names
defined in RD1 containing the suffixes_min and _max are no longer VITAL compliant,
but could still be used for modelsintended for board-level simulation developed for ESA.

- Variables containing informati on for checkers
vari able Period _dk: Vital PeriodDataType := Vital PeriodDatalnit;
vari abl e Peri od CSN:. Vital PeriodDat aType := Vital PeriodDatalnit;
variabl e Ti m ng_D: Vital Ti mi ngDat aType : = Vital Timi ngDatal nit;

Example 14: Initialisation of variables used by Vital _Timing subprograms.

Variables used by the Vital_Timing subprogramsfor storing intermediate results should be
initialised as shown in example 14 for correct operation. Most Vital_Timing subprograms
apply implicitly To X01 conversion on their inputs. It is therefore not necessary to
perform any type conversions on the signals external to the subprograms, as shown in
example 15. These implicit internal type conversions should be implemented in any
custom developed timing checkers when possible, to have similar interfaces as
Vital_Timing subprograms. The severity level of most ital_Timing subprogram assertion
reports can be controlled via the MsgSeverity parameter as shown in example 15, which
makes it possible to implement timing checkers that are compliant to the scheme
suggested in RD1. The RefTransition parameter used by most Vital_Timing subprograms

european space agency 30 WSM/SH/010 Issue 1

is of type \MitalEdgeSymbolType which alows the user to specify complex signal
transitions for the reference signals. The value ‘R used in example 15 denotes any
possible rising edge.

When it is chosen no to generate any unknown values on outputs at timing violations, it
Is sufficient to declare only one variable for al the Violation parameters of the timing
checkers, since the value of the variable will not be used. The parameter XOn is used in
conjunction with XGenerationOn, preventing an ‘X' from being assigned to the Violation
parameter when atiming violation is detected. It should have no impact when unknown
value generation is not implemented.

Vi t al Set upHol dCheck(-- Dsetup & hold wr.t. CS_N
Vi ol ati on => Viol ati on,
Ti mi ngDat a => Ti m ng_D,
Test Si gnal => D,
Test Si gnal Nane => "D',
Ref Si gnal => CS N,
Ref Si gnal Name => "CS_N',
Set upHi gh => tsetup_D CSN(Si nCondition),
Set upLow => tsetup_D CSN(Si nCondition),
Hol dHi gh => thol d_D _CSN(Si nCondi tion),
Hol dLow > thol d_D CSN(Si nCondi ti on),

CheckEnabl ed => Dat aCheckEnabl ed,

Ref Transi tion > 'R,

Header Msg => | nst ancePat h,
XOn => Fal se,

MsgOn => True,
MsgSeverity => W\r ni ng) ;

Example 15: Implementation of positive timing constraints using Vital_Timing
subprograms.

Since the Mital SetupHoldCheck and Vital RecoveryRemoval Check procedures accept only
positive setup and hold values, the relation between the test and reference signals has to
be adjusted. Negative setup and recovery times correspond to an internal delay on the
reference signal. Negative hold or removal times correspond to an internal delay on the
test signal.

Negative timing constraints are handled internally in the model by delaying the test or
reference signals using the function VitalSgnalDelay as shown in example 16. The
VitalSgnalDelay procedureis called in the top-level architecture to delay the appropriate
test or reference signal in order to accommodate negative constraint checks. When the
delays are associated with other signal sthey may need to be appropriately adjusted so that
al constraint intervals overlap the delayed reference signals.

When negative timing constraints are to be used in a model, two extra timing parameters
need to be declared for each setup and hold or recovery and removal pair. Timing
parameters on the format ticd_<ClkPort> should be used for declaring the time with
which areference signal should be delay, and tisd_<InPort>_<ClkPort> should be used
for declaring the time with which atest signal should be delayed.

WSM/SH/010 Issue 1 31 european space agency

The additiona local signals needed and the concurrent procedure calls to
VitalSgnalDelay should all be placed in ablock statement within the generate-statement
containing the procedure TimingCheck, as shown in example 16. It is suggested that the
label of the block is named TimingBlock. By including the signal declarationsin the block
instead of in the declarative part of the architecture, the signals will not be allocated if
timing checking is disabled, potentially reducing the memory usage. The block statement,
the signal declarations and the delaying of the signals should only be used when negative
timing values are checked, since it would else unnecessarily reduce the simulation
performance.

In the timng package (and in generic declaration):

constant tsetup_ IO dk: TimeArray := (10 ns, 10 ns, 10 ns);
constant thold_1O dk: TimeArray := (10 ns, 10 ns, 10 ns);
constant ticd_d k: TimeArray := (15 ns, 0 ns, 0 ns);
constant tisd_ IO CKk: TimeArray := (0 ns, 0 ns, 15 ns);
-- In the architecture BoardLevel:
Ti m ngGenerate: if TimngChecksOn generate
Ti m ngBl ock: bl ock
signal 10 Delay: Std_ULogic; -- Del ayed test
signal C k_Delay: Std_ULogic; -- Del ayed reference
begi n
Vital Signal Del ay(Cd k_Delay, Ok, ticd_C k(SinmCondition));
Vital Signal Del ay(1 O Delay, 10 tisd_IOdKk(SinmCondition));

Ti m ngCheck: process(d k_Del ay, |0 _Del ay)
variable 10 TD: Vital Ti m ngDat aType := Vital Ti m ngbDatalnit;

vari able Violation: X01 =0
begi n

Vi t al Set upHol dCheck(
Vi ol ati on => Viol ation,
Ti m ngDat a => | O_TD,
Test Si gnal => | O_Del ay,
Test Si gnal Name => "1 O,
Test Del ay => tisd_| O d k(SinCondition),
Ref Si gnal => (k_Del ay,
Ref Si gnal Name => "C k",
Ref Del ay => ticd_d k(Si mCondition),
Set upHi gh => tsetup_l O A k(Si mCondition),
Set upLow => tsetup_l O A k(Si mCondition),
Hol dHi gh => thol d_I O d k(Si nCondi tion),
Hol dLow => thol d_I O d k(Si nCondi tion),

CheckEnabl ed =>

True,

Ref Transition =>"'R,

Header Msg => | nst ancePat h,
XOn => Fal se,

MsgOn => True,
MsgSeverity => War ni ng) ;

end process Ti m ngCheck;

end bl ock Ti mi ngBl ock;

end generate Tim ngCenerate;

Example 16: Implementation of negative timing constraints using Vital_Timing

subprograms.

european space agency 32 WSM/SH/010 Issue 1

The calculation of the effective timing constraint values for the setup and hold checker in
example 16 is explained in example 17.

-- The effective setup and hold tines can be cal culated fromthe
-- tsetup, thold, ticd and tisd timng paraneters as foll ows:

-- fornulas: tsetup
-- thold
-- twi ndow

tsetup_ IOk - ticd Ak + tisd |10 CKk
thold 10Cdk + ticd dk - tisd 10 dk
tsetup + thold

-- The fornmulas will give the followi ng effective paraneter val ues:

-- WrstCase: tsetup =10 ns - 15 ns + 0 ns = -5 ns
-- t hol d =10 ns + 15 ns - 0 ns = 25 ns
-- twindow = -5 ns + 25 ns = 20 ns
-- TypCase: tsetup =10ns - Ons + 0 ns =10 ns
-- t hol d =10ns + Ons - 0 ns =10 ns
-- twi ndow = 10 ns + 10 ns = 20 ns
-- BestCase: tsetup =10ns - O ns + 15 ns = 25 ns
-- t hol d =10 ns + 0Ons - 15 ns = -5 ns
-- twindow = 25 ns + -5 ns = 20 ns

-- The timng paraneters define a negative setup tine of -5 ns for
-- WorstCase, 10 ns setup and 10 ns hold for TypCase, and negative
-- hold tine of -5 ns for BestCase. For all cases is the w ndow

-- 20 ns wide in which the O input nust be stable.

-- WorstCase, setup -5 ns, hold 15 ns, w ndow 20 ns:

-- -- > stabl e region | <--

-- Test XOOXKXKXXX HXHKKHKKRKXXXX
-- Reference |/

- | -->| | <-- hold

-- --> | <-- negative setup

-- TypCase, setup 10 ns, hold 10 ns, w ndow 20 ns:

-- -- > stabl e region | <--

-- Test XOOHXKXXX HXXKXAKXXAKXX
-- Reference /

-- | -->| | <-- hold

-- -->| setup | <--

-- BestCase, setup 15 ns, hold -5 ns, wi ndow 20 ns:

-- -- > stabl e region | <--
-- Test XOOOOKKXX XOXOOOKKXXK
-- Reference /T
-- | negative hold -->| | <--
-- -- > set up | <--

Example 17: Calculation of negative timing constraints

WSM/SH/010 Issue 1 33 european space agency

3.3.1.2.2 Timing constraint checking using non-Vital_Timing subprograms

There may be some timing constraint types that are unique for a design and cannot easily
be checked using subprograms from the Vital_Timing package. In such cases it is
preferable to develop new timing checkers for the model instead of inefficiently using
Vital_Timing subprograms. Format and parameter names could resemble those of the
Vital_Timing subprograms, to make it easier for the user to recognise each parameters
purpose and usage. Each parameter should have a default value when possible, allowing
the user to assign only those parameters needed for the application.

For example, a timing checker could have a parameter specified in number of clock
periods. Since the clock period can vary, no fixed time value can be provided to a
Vital_Timing subprogram. It is usually possible to examine the actual design and
transform the timing constraint stating number of periods to state number of relevant
clock edges, which are easier to detect and count than clock periods.

A subprogram with the declaration shown in example 18 could cover several such timing
constraint types. An inappropriate solution would be to samplethe clock period and to use
the measured value as a parameter to a Vital_Timing subprogram. That approach would
not be able to handle clocks with irregular although correct behaviour, e.g. a clock with
changing period length.

- Checks the relation between two cl ocks
- |If FasterThanRef = True,
- then the TestSignal nmay not have nore than Period rising edges
- between two RefSignal rising edges.
- |If FasterThanRef = Fal se, then vice versa.
procedure Peri odCheck(
vari abl e Viol ation: out X01;
vari abl e Peri odDat a: nout | nteger;

[
si gnal Test Si gnal : in Std _ULogi c;
constant Test Si gnal Name: in String =
si gnal Ref Si gnal : in Std_ULogi c;
constant Ref Signal Name: in String ="";
constant Peri od: in | nt eger = 0;
constant FasterThanRef: in Bool ean = True;
const ant CheckEnabl ed: in Bool ean = True;
const ant Header Msg: in String = "PeriodCheck:";
constant XOn: in Bool ean = True;
constant MsgOn: in Bool ean = True;
constant MsgSeverity: in Severity Level := Varning);

Example 18: Custom made period checker that checks the relation between two clocks.

There are types of checkers that could be directly incorporated in the TimingCheck
process since their small code sizes do not motivate development of subprograms. An
example could be a checker verifying that an input signal does not change while the
reference signal is asserted. Some memories require that the read/write selector may not
change while the component is selected. Thisis checked for in example 19, and could be
further optimised not to report unnecessary events, such as transitions between equivalent

european space agency 34 WSM/SH/010 Issue 1

Sd_Logic strengths, by first converting the input RW_N to the subtype X01. Note that
CS N requires To_X01 conversion in this example, since not previously done in the top-
level architecture and both the strengths ‘0" and ‘L should be interpreted as asserted.

- RWN may not change when CS_N is asserted.

assert not (RWN Event and To_X01(CS_N)='0'" and Reset N X01="1')
report InstancePath & " RWN event while CS N asserted"
severity Warning;

Example 19: Smple checker that could be included in the timing checker process.

Two types of timing constraints can be identified; timing parameters that change with the
simulation condition and timing parameters that are fixed by the architectural design. An
example of theformer isan absol ute setup time related to aclock edge. An example of the
latter is a setup time that is related to the number of periods of areference clock.

The first type could vary for different simulation conditions and should therefore be
included as a deferred constant in the timing package, allowing to be changed by the user.
These timing constraints can normally be checked using Vital_Timing subprograms as
described in section 3.3.1.2.1.

- Asserts that there are at |east tpw ResetN negedge nunber of

- falling Ck edges during the assertion of Reset N.

- This timng checker is approximated w r.t. the data sheet.

-- Only the nunber of Ok edges are counted for tpw ResetN negedge.
if (Falling Edge(d k) and Reset N X01='0'" and (Period Reset>0)) then

Peri od Reset := Period Reset - 1;

end if;

i f Falling_Edge(Reset_ N X01) then -- Reset begins
Peri od Reset := tpw Reset N negedge;

el sif Rising_Edge(Reset N X01) then -- Reset ends

assert (Period_Reset = 0)
report InstancePath & " Signal width too short on Reset N'
severity Error;
end if;

Example 20: Check of timing constraint on the Reset_N input.

The second type of parameter will normally not change, since established by the design
of the component, and could be declared in the declarative part of the top-level
architecture or in the TimingCheck process. The checker in example 20 verifies that
Reset_N is asserted during a minimum number of Clk periods. Its implementation is
somewhat approximated, only checking number of falling Clk edges. It could be included
in the TimingCheck process due to its small size.

WSM/SH/010 Issue 1 35 european space agency

3.3.1.3 Scheduling of output delays

Scheduling of output values with appropriate timing delays should be performed in the
top-level architecture, not to introduce timing related information in the functional core.
This could simplify the design and verification of the functional core since the behaviour
of synchronous designs will mostly be related to the clock cycle.

When adequate timing information is not available in the Data Sheet, the design house or
foundry responsible for the design should be consulted. Each output delay should be
related to the relevant driving clock or signal edge, and should be modelled to reflect the
actual component. The output values on signals being driven should be restricted to the
Sd_Logic strengths*U’, ‘0", ‘1, ‘X" and *Z'. Signals with internal pull up or pull down
could be assigned the strengths ‘L, ‘H’ and ‘W aswell. Thedon't care strength ‘-’ should
not appear at any output, not representing alogic level that should be expected in aboard
design. Local signalsin the top-level architecture not being delayed, i.e. outputs from the
functional core, should have NoTime suffixed to their names.

Scheduling of output delays should be done by using concurrent signal assignments.
VitalPathDelay is afunction used to select the propagation delay path and schedule anew
output value, but should be avoided since most output delays could be implemented by
the smpler and faster after construct. It is normally sufficient to have a single timing
parameter for both the rising and falling signal transitions. The VitalCalcDelay function
could be used when more elaborated timing modelling is required, as shown in
example 21. The function accepts the Vital Delay Types and selects the correct delay time
based on the previous and new signal values.

MDat a <= MData_NoTinme after Vital Cal cDel ay(
Newval => MDat a_NoTi ne,
a dval => MDat a_NoTi ne' Last _Val ue,
Delay => tpd_C k_Mbdata(Si nCondition));

Example 21: VitalCalcDelay usage.

Complex timing relations can be modelled with small code size overhead. Example 22
showsamemory interface where the timing of output dataisrelated to both the chip select
signal and to the arrival of the address. It illustrates that complex timing relations need not
be modelled in the functional core, but can readily be done in the top-level architecture.

- Ceneration of tristate or drive for the external data bus.
- D NoTine is delayed w.r.t. the address. DEn_NoTine is del ayed,
- with different timng for tristate. The D assi gnment includes an
- Integer to Std _Logic_Vector conversion.
DEn_Del ayed <= transport DEn_NoTine after
t pd_CSN D negedge(Si nCondi ti on)
when DEn_NoTi ne el se
DEn_NoTine after tpd CSN D posedge(Si nCondition);
D Del ayed <= transport D _NoTi ne after tpd_A D(SinmCondition);
D <= To_StdLogi cVector (D _Del ayed, 8)
when DEn_Del ayed el se (others => "'2Z");

Example 22: Timing and tristate modelling of the data output of a memory interface.

european space agency 36 WSM/SH/010 Issue 1

3.3.2 Management of unknown input values

Inputs should be checked for unknown values which should be reported to the model user.
Thisinformation is very useful since the behaviour of the real component is normally not
specified for unknown input values and could result in failure. The nine Sd_Logic
strengths are reduced to the three strengths‘0’, ‘1’ and ‘X', where ‘0’ corresponds to the
equivalent strengths ‘0’ and ‘L', where ‘1’ corresponds to the equivalent strengths ‘1’ and
‘H’, and ‘X' correspondsto the rest of the strengths consider being incorrect input values.
The detection, propagation and handling of unknown input values should be implemented
in accordance with RD1, and be documented in the source code header.

Type conversion and checking for unknown values on inputs should be performed only
where and when the data are used. This can be performed per statement or per process if
the value is evaluated and used in more than one place at the same time. The reason for
thisisto avoid unnecessary type conversion when events occur on inputs but the valueis
not used by the model. It will also reduce the number of unnecessary assertion reports.
This can be donein the top-level architecture aswell asin the functional core, depending
on the usage of the input value.

For example, if an input is only used in one process in the functional core the type
conversion should be then done only there, on the other hand if an input isused in several
processes in which it is evaluated ssimultaneously then the type conversion could be
performed in the top-level architecture to reduce the number of conversions and reports.
A trade off based on measured simulation performance should be performed before
deciding which approach is the most efficient. Detection of unknown input values should
be inhibited when not relevant to the simulation, not to induce unnecessary assertion
reporting, e.g. during reset of the model.

The severity level of assertion reports when unknown values are detected should be
related to their impact on the simulation as specified in RD1. An unknown value changing
the state of the model should have the severity level Error, but when only changing the
data being consumed or produced and not affecting the state of the model it should have
the severity level Warning.

Inputs should be converted to the X01 subtype of Sd_ULogic, reducing the number of
signal strengthsto be handled in the functional core. Signals being converted should have
_X01 suffixed to their names. A To_XO01 function could be implemented using the
functions To_X01 and Is X together with an assertion statement to both make the type
conversion and check for unknown input values.

Conversion of inputs of the type Sd _Logic_Vector to the subtype X01 should only be
done when necessary. In example 3 the data and address buses are converted directly to
the type Integer when being used in the functional core. A custom subprogram could be
developed which converts an Std_Logic_MVector array to the type Integer and also
performs checking, reporting and handling of unknown values. No type conversion would
therefore be needed for the two buses in the top-level architecture.

WSM/SH/010 Issue 1 37 european space agency

Propagation of unknown values to outputs should be implemented in the functional core
and only be done when not changing the state of the model, i.e. unknown values should
only be propagated when used as data. The propagation of unknown valuesis useful for
tracing the migration of possible faults in a system. The propagation is normally closely
related to the functional behaviour of the model and could therefore benefit from being
implemented in the functional core, reducing any simulation performance penalties.

Handling of unknown input values on signals used for clocking and latching should be
done by using functions such as Rising_Edge, Falling_Edge and Is_X when possible,
reducing the need of To_XO1 conversions since the functions perform the conversion
implicitly an are accelerated for simulation performance. If-statements should be
structured to explicitly check whether an input has the desired value as shown in
example 23, never relaying on an else statement.

Theinput CS N in example 3 is checked for unknown values in the el se statement when
the model is not being reset and no rising CS_N edge has been detected, and is done for
simulation performance reasons. Unknown values on CS N aretreated as‘1’ during read
and write accesses, i.e. the accessis being ignored.

Clock inputs could be checked in the functional core with an efficient checking scheme
using if statements as shown in example 8.

if CS N X01="0" and RWN X01="0" then
-- Wite access, unknown value on CS N X01 or RWN X01 is
-- handled as ‘1" which will not activate the access.
elsif CS N X01="0" and RWN X01="1" then
-- Read access, unknown value on CS N X01 or RWN X01 is
-- handled as ‘1" which will not activate the access.
el se
-- Neither wite nor read access, check for unknown val ues.
end if;

Example 23: Handling of unknown input values.

Inputs that are used in more than one process or that change state infrequently can be
checked for unknown values in the top-level architecture. To avoid unnecessary
invocation of processes, these checkers should be divided in two or more processes as
shown in example 8, grouping inputs together that change with comparable frequencies.

The To_XO01 conversion could be performed in the top-level architecture when aninput is
used in astatic manner, e.g. mode pinsthat are normally held to defined levelswhen used,
or used in many concurrent statements in the functional core. In example 24, static inputs
or inputs with infrequent state changes are checked for unknown values in the
CheckSaticlnputs process. The checking isonly performed when reset isinactive or when
reset isdeactivated, requiring the Reset_N signal to bein the sensitivity list of the process.
Static inputs that are not allowed to change after reset are checked for such illegal events
as well. All checkers in the example are disabled during the initial simulation cycle to
prevent unnecessary assertion reporting.

european space agency 38 WSM/SH/010 Issue 1

The production test is activated by the Test input but is not modelled in the example and
any attempt to use it will result in an assertion report with the severity level Note. The
Reset_ N input isalso checked for unknown valuesin this process, using thels_X function
only for the sake of conformance since already being converted to the subtype X01. Clock
inputs and other inputs with frequent state changes are checked for unknown valuesin the
CheckDynamiclnputs procedure in example 25, which is kept simple to reduce the
performance penalty for each invocation. The Is X function will make the To_X01
conversion implicitly.

CheckStaticlnputs: process(Reset N X01, Test XO01)
begin
if (Reset_N X01="1') and (Now /= 0 ns) then
-- No assertions at start-up or when Reset N is asserted
-- The Test input is a vector, elenent 0 is used for
-- production test only.
assert (Test _X01(1)='0")
report InstancePath & " Prod. test not nodell ed"
severity Note;
assert not |s_X(Test_ X01) -- Note: done on a vector
report InstancePath & " 'X on Test input”
severity Error;
-- Check if the static pin changed after reset
assert not Test_ X01' Event
report InstancePath & " Test changed after reset"”
severity Error;
el sif Reset N X01'Event and (Now /= 0 ns) then
-- Check for X on Reset N
assert not |s_X(Reset N X01)
report InstancePath & " 'X on Reset N input”
severity Error;
end if;
end process CheckStaticlnputs;

Example 24: Check for unknown values on static inputs.

Separation of dynamic and static input checking is important when the number of static
inputs is large and would slow down the simulation if each was checked for every event
that occurred on the dynamic inputs. It can be worthwhile to assess the performance
impact on whether to use more than one process when checking dynamic inputs.

-- Check for unknown values on the SC Kk input.
-- The Ak input is checked in the functional core.
CheckDynami cl nputs: process(Sd k)
begi n
-- No assertions at start
assert not (Is_X(SCO k) and (Now /= 0 ns))
report InstancePath & " 'X on SOk input"”
severity Error;
end process CheckDynani cl nputs;

Example 25: Check of dynamic inputs which change states frequently.

WSM/SH/010 Issue 1 39 european space agency

3.3.3 Reporting model messages

Each message should contain the InstancePath generic in the beginning of the report
string. In case of more than one hierarchical level, the sub-level path should be the same
asfor the top-level entity, since the user would normally not need to know from which of
the subcomponents the report originates. The purpose of the InstancePath generic is to
provide the user with amean for naming each instance with a unique name corresponding
to the component identifier on the ssimulated board. This scheme makes it easier for the
user to identify the source of areport than if all the instances of the same component type
would produce exactly the same name.

The InstancePath generic should have a default value corresponding to the model name
as shown in example 26. A colon is used as a delimiter in the String returned by the
attributes Path_Name and Instance Path defined for VHDL ’93, and should therefore
also be used for the InstancePath generic in modelsfor board-level ssimulation. The usage
of the InstancePath generics will be discussed further in section 5 where an example of a
board design is presented.

I nstancePath: String := "BithMd:";
Example 26: Declaration of InstancePath generic with default value.

No features for masking assertions and their reports need to be included in the model,
since most VHDL simulators can stop the simulation at a preset severity level.

3.34 Outlineof entity and architecture declarationsfor models

The generics and ports of the top-level entity provide the interface of the model. Generics
are used for passing timing parameters and to select simulation conditions etc. Ports
represent the pins of the component. The generic and port names should be selected in
accordance with RD1 and section 3.3.1. Any control parameters and files names used by
the model should be declared as generics, allowing them to be flexibly selected using
configuration declarations.

The only standard packages which should be made visible when using amodel for board-
level simulation are Standard, TextlO, Sd_Logic_1164, Vital_Timing, Vital_Primitives,
ESA.Smulation and ESA.Timing. The only model specific packages made visible are
those containing the timing parameters of the models. The packages made visible to the
entity declaration should only be S/d_Logic_1164, ESA.Smulation and ESA.Timing.

The entity declaration in example7 contains the simulation condition selector
SmCondition, InstancePath for messages, and TimingChecksOn for enabling the timing
checkers, all of them having default values. Thetiming parameters are passed to the model
via the timing generics declared as types declared in ESA.Smulation and ESA.Timing,
each containing three values for the simulation conditions. Note the usage of the suffixes
posedge and negedge. The default values are fetched from the BitMod_Timing package
aready made visible to the entity. Thereis no need to have different names for the timing
constants in the timing package and the timing generics.

european space agency 40 WSM/SH/010 Issue 1

The VITAL packages have not been made visible since the types declared there are not
used explicitly. If atiming generic would need to contain individual timing data for each
element of aSXd_Logic \ector, the needed Time Array Type would have been declared in
the BitMod_Timing package and would be visible to the entity. The ports are grouped after
functionality and the arrays have the most significant bit to the left. Each parameter has
been commented on the line where being declared.

library | EEE;
use | EEE. Std_Logic_1164. al | ;

library ESA;
use ESA. Simul ation.all;
use ESA Timing.all;

l'ibrary BitMd_Lib;

use BitMdd_Lib. Bi t Mod_Ti i ng. al | ; -- Default timng
entity BitMbd is
generi c(
Si mCondi ti on: Si nCondi ti onType : = Wbr st Case;
I nst ancePat h: String = "BitMd:";
Ti m ngChecksOn: Bool ean = Fal se;
t period_d k: Ti meArray t peri od_d k; -- TAk

t pw_C k_posedge: Ti meArray
t pw_C k_negedge: Ti meArray

t pw_C k_posedge; -- TCHi
tpw_C k_negedge; -- TCLo

t pw_CSN_negedge: Ti meArray t pw_CSN_negedge; -- T1
tsetup_D CSN: Ti meArray tsetup_D CSN; -- T2
t hol d_D_CSN: Ti meArray thol d_D_CSN,; -- T3

t pd_CSN_D negedge: Ti meArray
t pd_CSN_D posedge: Ti meArray

t pd_CSN D negedge; -- T4
t pd_CSN D posedge;-- T5

tpd_A D Ti meArray tpd_A D -- T6

t pd_C k_MDat a: Ti meArray01 tpd_d k_Mbat a) ; -- T9
por t (

-- Systemsignals (4)

Test : in Std_Logic_Vector(0 to 1); -- Test node

d k: in Std_Logi c; -- Master dock

Reset N in Std_Logi c; -- Master Reset

-- Interface to internal registers (12)

A in Std_Logic_Vector(0 to 1); -- Address bus

CS N in Std_Logi c; -- Chip select

RW N: in Std_Logi c; -- Read/wite

D inout Std _Logic_ Vector(0 to 7); -- Bidirectional

-- Serial Interface (3)

SA k: in Std_Logi c; -- Serial clock

SDat a: in Std_Logi c; -- Serial input

MDat a: out Std_Logic); -- Serial output
end Bit Mod;

Example 27: Outline of entity declaration for a model for board-level simulation.

WSM/SH/010 Issue 1 41 european space agency

The architecture declaration in example 28 contains: component declarations for the
functional core; local signal declarations; timing parameters which are fixed by the
architecture and do not change with ssimulation conditions; To_X01 conversion for static
inputs and inputs used in multiple processes; process for checking dynamic inputs for
unknown values; process for checking static inputs for unknown values; process for
timing checking contained in a generate-statement; assignment of output delays and
instantiation of subcomponents. Each components should be declared including at least
the InstancePath generic when any checking is performed in the functional core. The
component instantiation should associate the | nstancePath generic of the entity to that of
the component. The packages Vital_Timing and BitMod_Definition which contains
custom made timing checkers are made visible only to the architecture, not to the entity.

l'ibrary | EEE;
use |EEE. Vital _Timng.all

library BitMd_Lib;
use BitMbd Lib.BitMod Definition.all; -- For custom functions

architecture BoardLevel of BitMd is

-- Conponent decl arations.

-- Local signal declarations.

-- Declaration of tining paraneters not to be changed by user
begin

-- Strength stripping to X01 for sonme signals using

-- Std_Logic_1164 subprogram To_XO01.

-- Check for unknown val ues on dynam c input.
CheckDynami cl nputs: process(...)

begin

end process CheckDynanmi cl nputs;

-- Check for unknown val ues on the static inputs.
CheckStaticlnputs: process(...)

begi n

end process CheckStaticlnputs;

-- Timng checks on inputs (setup, hold, period, pulse wdth).
Ti m ngGenerate: if TimngChecksOn generate
Ti mi ngCheck: process(...)
-- Variables containing information for checkers
begi n
-- Enabling of various checkers.
-- Checkers inplenented in the process.
-- Checkers using custom nade subprograns.
-- Timng checkers using Vital _Timng subprograns.
end process Ti m ngCheck
end generate Tinm ngGenerate

-- Assignnent of output del ays.
-- Instantiation of subconponents.

end Boar dLevel

Example 28: Ouitline of a top-level architecture.

european space agency 42 WSM/SH/010 Issue 1

4 VERIFICATION OF MODELSFOR BOARD-LEVEL SIMULATION

Model verification is performed to ensure that the model for board-level simulation fulfils
its requirements, both on functionality and timing. The method outlined in this section is
based on the existence of a component model for comparison. When such model is not
available, emphasis should be put on performing the verification independently from the
model development. Two categories of verification can be identified; to ensure that the
model has the same functionality as the component model (performed during model
development), and to verify that the model works for a certain combination of simulator
and platform (performed by the user with test suites provided by the model developer).

Thefirst category of verification should be performed at the end of the model devel opment
to ensure that the model reflects the functionality of the component. Such verification
should include al functional test stimuli used during the component devel opment. It isthe
responsibility of the model developer to verify the functionality of the subcomponents of
themodel. Normally thistype of verification isbest performed by the designer who knows
all the details of the model. Subcomponent verification should be an exhaustive test which
includes every input combination with both legal and illegal values, and be applied for
every state. Exhaustivetesting at higher level isnot alwaysfeasible because of complexity
reasons. It could be advantageous to begin the devel opment of the test programme already
during the design of the component when a development of a model for board-level
simulation isforeseen. A verification of the model should be performed by placingitina
typical board design to detect any system problems.

The second category of verification should be performed by the user when installing the
model in his particular simulation environment to ensure that it will operate correctly
when simulated. This should be done by using a test bench provided by the model
developer, developed in accordance with RD1, including one or more test benches,
reporting whether atest has passed or failed etc. The reason for performing a verification
when a model is installed is that there are still some differences between VHDL
simulators. Each model should preferably be verified by the model developer for more
than one combination of computer platform, operating system and simulator before being
released. The test should allow automatic verification and be suitable as a maintenance
vehicle for verifying the model after modifications. As for all verification activities, the
test suites should be developed by somebody not involved in the development of the
model itself to avoid masking of errors.

The structure of the test environment differs between the two categories. For the first
category several different structures can be used, depending on the simulator. For the
simulation of the model in its environment, the test structure will normally be devel oped
asaboard design, which isdescribed in section 5.1. Test structure for the second category
should provide full controllability and observability of the test object.

The following sections will present an approach to development of test benches for the
second category of verification. The first category of verification should also follow the
suggestions presented below asfar as possible. Since being morerelated to the stimuli and
data from the component development, it could be performed in several ways and is
therefore not completely covered in this document.

WSM/SH/010 Issue 1 43 european space agency

4.1 Test bench

The test bench contains the model to be verified, referred to as the test object, a test
generator, and occasionally objects external to the test object that are necessary for its
operation, such as memories or buffers, as outlined in figure 5. For complete verification,
all external objects should be modelled in the test generator, e.g. protocol machines, bus
interfaces etc. allowing for generation of non-nominal stimuli such as inducing incorrect
or corrupted accesses, error injection etc., which is normally only possible when having
full controllability and observability. The test generator can have several architectures
implementing different test suites.

The test bench should have no ports or generics in the entity declaration, since this is
potential not portable. Therefore should there be no needed to make any declarations in
the test bench entity and it should be independent of any packages or design units, i.e. the
entity declaration should be completely empty.

Each architecture of the test bench should have a purely structural composition reflecting
only possible interconnections of physical components and contain no functionality,
alowing the test bench to be replaced with a schematic containing the VHDL test
generator and the component model when using mixed-level simulation. Signals not
present as physical pins on any external objects, e.g. debugging umbilical to
microprocessor model, should not be connected to the test object, since the test object is
used for Board-Level simulation where only physically possible connections are allowed.

| entity TestBench |

architecture Structural

component component
instantiation instantiation
Test_Obiject: Test_Generator:
BitMod TestGenerator

Figure5: Entity and architecture of the TestBench.

Each component declaration in the test bench architecture should have the same name,
generic and port declarations as for the corresponding entity. Since the test bench root
entity should not have any generics, the selection of the simulation condition and test suite
could either be made in the test bench architecture or by using configuration declarations.
The selection of the simulation condition is necessary for the verification of the timing
interfaces of the model.

Thefirst approach isto have one test bench architecture for each simulation condition and
test suite pair. The component instantiation and interconnection of the test object and test
generator will be the same for all architectures, only differing in the values associated in
the generic maps and the selection of the test generator architecture in the configuration
specification.

european space agency 44 WSM/SH/010 Issue 1

The second approach is more advanced and utilises the full power of the language and
yields less code. The component declarations for the test object and the test generator
should only contain the ports declared for each entity, not any generic declarations, as
shown in example 29.

entity TestBench is
end Test Bench;

l'ibrary | EEE;
use | EEE. Std_Logic_1164. all;

architecture Structural of TestBench is
conponent Bit Md
port(...);
end conponent;
conponent Test Gener at or
port(...);
end conponent;
-- Local signal declarations.
begi n
Test _(Obj ect: BitMd
port map(...);
Test _Cenerator: Test Generator
port map(...);
end Structural;

Example 29: Outline of entity and architecture of test bench.

Configuration declarations are used to bind the component instances in the test bench
architecture using configuration specifications; selecting corresponding entities and
architectures, binding port and generic formals with actuals. Each test suiteis selected by
its architecture name in the configuration specification for the test generator instance, as
shown in figure 6.

configuration FunctionalTest |
configuration X HandlingTest |
configuration WorstCaseTest |
configuration TypCaseTest |

configuration BestCaseTest
for Test_Object: BitMod use configuration...
generic map (SimCondition => BestCase...
for Test_Generator: TestGenerator use entity...TestGenerator(Timing)
generic map (SimCondition => BestCase...

Figure®6: Configuration declarations for the TestBench.

The configuration declaration of the test object should be selected in the configuration
specification, as shown for BitMod_Configuration in example 30, since the test object
normally hasahierarchy. The binding of the component and entity portsisdone by default
named association when their declarations are identical. Values can be assigned to the

WSM/SH/010 Issue 1 45 european space agency

entity generics using generic maps in the configuration specifications, e.g. timing
parameters, file names, ssmulation condition, since the generic declarations have been
omitted in the component declaration in the architecture. The declarations made in the
ESA.Smulation package should be made visible to the configuration declarations using
library and use statements as shown in example 30.

library BitMd_Lib;
library BitMd TB Lib;

library ESA
use ESA. Sinulation.all;
use ESA Tining.all;

configuration Functional Test of TestBench is
for Structural
for Test _(bject: BitMd
use configuration BitMd Lib.BitMd Configuration
generic map(
Si nCondi tion => \Wbr st Case,
I nst ancePat h => ": Test Bench: Test _Chject:",
Ti m ngChecksOn => Fal se);
end for;
for Test Generator: TestGenerator
use entity BitMd TB Lib. Test Generator (Ti m ng)
generic map(
Si nCondi tion => \Wbr st Case,
I nst ancePat h => ":TestBench: Test _Generator:");
end for;
end for;
end Functional Test;

Example 30: Ouitline of configuration declaration of test bench.

By providing one configuration declaration for each simulation condition and test suite
pair, the amount of code duplication can be reduced compared to the first approach since
only one architecture is necessary for the test bench. It is generally a good practice to
select only configuration declarations, not entities, when binding components of a test
bench with configuration specifications. The test bench, test generator and its packages
should be analysed to a library separate from the test object. The name of the library
should bethe same asfor that of thetest object, but with_TB_Lib suffixed instead of _Lib.

4.2 Test object

The test object is instantiated in the test bench architecture as explained above. The
component declaration should be identical to the entity declaration, but should not include
the generics when the second approach described above is used for the selection of
simulation conditions and test suites. The development of the test object has been
described in section 3.

european space agency 46 WSM/SH/010 Issue 1

4.3 Test generator and result checker

Thetest generator should generate stimuli and acquire response data for comparison with
the expected results in order to verify the behaviour of the test object. The test generator
could have more than one architecture, implementing different test suites with different
functions as outlined in figure 7. An architecture of a test generator should include
processes that generate the test suite, evaluate test results, generate list files, perform
output data compression etc. Since several of these functions are normally used in more
than one architecture, subprograms could be declared in a separate package or in the
declarative part of the entity.

| entity TestGenerator |

architecture Functional |
architecture X_Handling |
architecture Timing

Figure7: Entity and architectures of the TestGenerator.

Thetest generator entity should have the same port declaration as the test object, but with
the opposite directionsfor the signal flow, as shown in example 31. The entity declaration
should include the InstancePath generic and SmCondition generic for the selection of
simulation condition as described in section 3.3.1, to allow for efficient verification of
timing checkers. Enabling of optional functions, e.g. generation of log files or test
statistics, should be done using generics to allow the usage of configuration declarations.
File names should be passed to the test generator using generics of type String, enabling
the usersto provide afile path supported by their operating system.

When test suites consist of severa sequential sub-tests, each such sub-test should run
independently from the preceding tests, i.e. the sub-test results should not affect the
adjacent sub-tests. This is useful during the development of the test suite to reduce the
simulation time by being able to exclude preceding sub-test in long simulation runs. Each
sub-test should always begin and end with the test object in aknown state and each signal
being observed by the test bench should have the same value, which is normally the case
when the model is reset. When compressing the output data, the signature should be
checked and reset between sub-tests, allowing modifications of sub-tests without
changing the signatures for al other sub-tests, as described in section 4.3.3

Each test or sub-test should report whether it has passed or failed, using the severity levels
Note for passed and Error for failed and the generic InstancePath, as shown in
example 32. When a sub-test has failed the assertion report should identify the error to
allow tracing of the fault, including the name of the test suite and state the simulation
condition. The criterion used for determining whether a test has passed or failed should
be documented, i.e. state what is automatically verified. One method to indicate that atest
suite is completed is to generate an assertion report with the severity level Failure.

WSM/SH/010 Issue 1 47 european space agency

Unnecessary assertion reports should be avoided, reducing the amount of output to be
reviewed by the user.

When input and output files are used they should be of the type Std.Textl O.Text to ensure
portability. Binary files should not be used as input or output to the test generator. If the
natural representation of dataisin binary format, e.g. in image processing applications, a
C program converting data between the binary and the hexadecimal representation, and
vice versa, should be provided with the binary files.

l'ibrary | EEE;
use | EEE. Std_Logic_1164. al | ;

library ESA
use ESA. Sinul ation.all;

entity TestCenerator is

generi c(
Si mCondi ti on: Si nCondi ti onType : = Wr st Case;
| nst ancePat h: String = "Test Generator:");
port (
-- Systemsignals (4)
Test : inout Std Logic Vector(0 to 1); -- Test node
d k: inout Std Logic :="'0"; -- Master C ock
Reset N inout Std Logic; -- Master Reset
-- Interface to internal registers (12)
A inout Std Logic Vector(0 to 1); -- Address bus
CS N i nout Std_Logic; -- Chip select
RW N: i nout Std_Logic; -- Read/wite
D: inout Std Logic Vector(0 to 7); -- Bidirectional
-- Serial Interface (3)
SA k: inout Std ULogic :="'0"; -- Serial clock
SDat a: inout Std ULogic :="'0"; -- Serial input
MDat a: in Std _Logic); -- Serial output

end Test Gener at or;
Example 31: Outline of an entity declaration for a test generator.

The test generator need not be optimised for smulation performance. However,
simulation lengths should not discourage the user from performing the verification. The
usage of wait-statements has been shown efficient due to their flexibility when modelling
test suites, even though not having optimum simulation performance. The duration of the
simulated time of each test suite should be documented.

Test suites could be assembled using calls to procedures that encapsulate low level
interfacing to the test object. These procedures should be implemented with all timing
values passed as parameters, allowing easy modification of the interfaces.

There should be aseparation between the verification of the functionality of thetest object
and the verification of its interface modelling. The following sections will more in detail
describe the purpose and implementation of these two different verification procedures.

european space agency 48 WSM/SH/010 Issue 1

4.3.1 Verification of functionality

The functional verification should cover the full functionality of the test object. The test
suites implementing this are subject to several diverse requirements. The test suite should
detect any differences between the board-level and detailed models, employing several
different testing methods as outlined below. It should be possible to run the test suite for
both the test object and the component model during model development. It should be
possible to evaluate the efficiency of the test suite using fault ssmulation as described in
section 4.4. The results from a smulation performed by the user should either be
compared to areference file or with reference signatures when data compression is used
to determine whether atest has passed or failed.

The development time of the functional test suite should not be underestimated. It has
been often shown that it takes at |east the same amount of time as the development of the
test object itself.

To ensure that any differences between the two models are detected, all inputs should be
asserted a couple of clock cycles before and after their expected sampling points,
implementing a sliding window. It is sufficient to verify the clock cycle behaviour for
fully synchronous designs. The reset of the test object should be treated as any other
functionality and be adequately exercised. The behaviour of the test object before reset,
during reset and after reset should be verified. The timing checkers of the test object could
be disabled during this type of verification since the correct behaviour of the model after
atiming violation is often not required.

The test object should not be verified only for its nomina behaviour but also for
robustness. All input combinations should be generated including erroneous usage of the
test object interfaces, incorrect accessing schemes etc. The test object should berunin all
modes, entering all internal states.

Independent high-level checkers should beimplemented for the test suite. These checkers
should evaluate the data sent and received by the test object, verifying that protocols are
correct, ensure that interface requirements are meet, etc. The incorporation of high-level
checkersin the verification is acomplement to the comparison with the component model,
and is essential when such areference model does not exist.

It has been shown that random generation of input values, the order and type of accesses
etc., detects many differences between two model representations and should therefore be
included in the test suite when found beneficial. The implementation of the random
function should never use the type Real, sinceits realisation is often simulator dependent
and could give inconsistent simulation results.

All inputs to the test object should be synchronously asserted at relevant clock edges and
with appropriate clock-to-output delays, not to violate any setup and hold constraints. The
logical values on theinputs of the test object should be compatible with the simulator used
for the component model, which isnormally ‘1" and ‘0’. The use of unknown values on
the inputs will most likely not produce the same result for the two models and should be
avoided. When multiple input clocks are used, they should be phased locked to avoid
unnecessary timing violations during the simulation of the component model.

WSM/SH/010 Issue 1 49 european space agency

Thetest suite could generate formatted output files showing status, output data etc., which
could be useful to the model developer. For example, a serial output data stream could be
converted to a parallel format before being evaluated in the test bench or written to afile
for further reviewing of the simulation results. These files should not be generated when
thetest suiteisrun by auser, neither should it be necessary for auser to review thosefiles.

The outputs of the test object should be sampled with respect to adriving clock edge and
bewritten to alist file or be compressed using aMultiple Input Signature Register, MISR,
as described in section 4.3.3. Care should be taken when deciding the sampling point
within the clock cycle, allowing all outputs of the model to settle for al simulation
conditions. Thetest suite should allow the outputs of the component model to obtain other
values than unknown after reset or start up of the simulation, before beginning the
comparison of the results. The format of the list file should alow straightforward
comparison with the output generated by the component model simulator.

All inputsto the test object, including those from external components, could be sampled
at their assertion point and written to a force file. The format of the stimuli in force files
should be readable by the ssmulator used for the component model. If that smulator can
use the VHDL test bench directly, the file would then not be necessary.

Force, list and output files can be used when verifying the functionality of the model
intended for board-level simulation against the component model. When the verification
has been successful, thelist file from the component model simulation should be provided
to the user as a reference file for comparison with obtained simulation results. When the
test suite is run by the user, the outputs should be sampled and compared to a reference
file to establish whether each sub-test has passed. The comparison could be done within
the test generator to avoid generating an output file for comparison outside the simulator.
Since reference files tend to become large and cumbersome, compression of the output
datais recommended and is described in section 4.3.3.

When the test suite is to be evaluated using fault smulation as described in section 4.4,
the test stimuli could be transferred between the simulators using tool specific methods,
otherwise the previously mentioned force file could be used. In case bidirectiona ports
are used, it could sometimes be necessary to generate force files to obtain the correct
waveforms even when tool specific methods are available. When Built In Self Test, BIST,
Is not fully implemented in the model for board-level ssimulation, e.g. it is modelled only
as adelay before the nominal operation after reset, it should be verified in a separate test
suite.

The force, list and output file generation should be possible to disable by a Boolean
generic with the default value False, and it should be disabled when not used for
debugging purposes. It issuggested that the implementation of such file generators should
not induce any simulation penalties when not used and be disabled using
generate statements as shown in example 12.

An architecture containing a functional test suite is shown in example 32. The test suite
in the example will test the full functionality of the model, except the BIST operation.

european space agency 50 WSM/SH/010 Issue 1

The activation of the BIST would preclude the test suite to be evaluated using fault
simulation. The BIST is tested separately in the architecture X _Handling as outlined in
section 4.3.2. Only the Sd_Logic strengths’0’, ' 1, ' Z" are applied to theinputs, to be able
to apply the same stimuli to the component model as well. The outputs are sampled and
the datais compressed in a concurrent procedure. The resulting signature is compared to
an expected signature at the end of each sub-test, which is done in the test suite. The test
object is reset and the MISR is cleared between each sub-test. The length of the MISR
adaptsitself to thelength of the Input parameter. The MISR will be sampled on each rising
Clk edge. The source code of the MISR procedure can be found in appendix B.

library BitMd_TB Lib;
use BitMbd_TB Lib. M SR Definition.all;

architecture Functional of TestGenerator is
si gnal M SRegi ster: Std_Logic_Vector(0 to 15);
si gnal M SRl nput : Std_Logic_Vector(0 to 15);

si gnal M SRReset : Bool ean;
begi n
Test Suite: process
vari abl e Test Fail ed: Bool ean : = Fal se;
begi n

Initialisation
Reset M SR(M SRReset) ;
Test suite
CheckM SR(M SRegi ster, "1234", TestFail ed,
I nst ancePat h&" Functi onal : Test Sui t e: Sub-test 41");
Reset M SR(M SRReset) ;
Reset (Test, Ok, Reset N, A, CS N, RWN, Sclk, SData);
Test suite
CheckM SR(M SRegi ster, "5678", TestFail ed,
I nst ancePat h&" Functi onal : Test Sui t e: Sub-test 42");
assert not TestFailed
report InstancePat h& Functional : TestSuite: Test failed."
severity Error;
assert TestFailed
report InstancePath& Functional: TestSuite: Test passed.”
severity Note;
assert Fal se
report InstancePat h& Functional : TestSuite: End of test."
severity Failure;
wait;
end process Test Suite;
M SRI nput <= MData & SData & SCk & D & A & CS_ N & RWN & Reset _N;

M SR(Cl k => dKk,
Reset => M SRReset,
I nput => M SRl nput,
M SR => M SRegi ster,
Ri si ng => True,
Fal ling => Fal se,
Header Msg => | nst ancePat h&" Functi onal : M SR ",
Sense => 45 ns);

end Functional ;

Example 32: Outline of architecture containing a functional test suite.

WSM/SH/010 Issue 1 51 european space agency

4.3.2 Verification of interfaces

The interfaces of the test object should be verified to function correctly, and should be
performed separately from the functional verification. The test results must normally be
visually inspected by the user since automatic verification is not always possible.

Test suites resulting in assertion reports should be delivered together with areferencefile
listing the expected assertion reports, including time of assertion and severity level, which
should be used for manual comparison with the results obtained by the user. All message
reports that can be generated by the test object should be verified.

Each input of the test object should be applied all nine Std_Logic strengths, which should
result in the detection of unknown values and assertion reports. Since inputs are checked
for unknown values only when needed in models for board-level ssimulation, the test suite
needs to execute the test object to the point when the input value is actually used and
affectsthe ssmulation. Modelswith internal memory elementswhich are observable at the
interface should be verified to return the Sd_Logic strength ‘U’ at simulation start up if
not reset.

The handling and propagation of unknown values should be verified for each input. The
outputs should be sampled and the test suite could use a reference file or output
compression, with expected responses first being examined by the model developer.
Comparison with a component model will normally not be possible since its unknown
value propagation isimplemented differently.

The architecture X _Handling shown in figure 7 contains a test suite that will test the
following: al inputs should be applied all nine Std_Logic strengths; all checkers for
unknown values on inputs; the handling of each unknown input value should be checked;
the propagation of each unknown input value should be checked. This test suite should
also test the BIST functionality of the model, and should not be evaluated using fault
simulation sinceit would activate portions of the component not modelled for board-level
simulation.

The verification of the timing of the test object should include all input-to-output delays,
clock-to-output delays, setup and hold times etc. The timing verification should be done
for all simulation conditions and be selected by the SmCondition generic. Outputs from
the test object do not need to be compared with the component model during the
verification of the timing, since they would not necessarily give identical results. The
purposeisto verify the operation of the timing checkers, not the functionality of the model
after atiming violation. No reference file nor output compression is therefore needed for
thistype of verification.

The test suite should not use the timing package provided with the test object to avoid
possible error masking. It is therefore not necessary that the test suite should be able to
verify the timing of atest object for which the timing package has been modified by the
user. This approach will also provide a meansfor detecting whether atiming package has
been modified since delivered.

european space agency 52 WSM/SH/010 Issue 1

Each timing constraint checker in the model should be verified by asserting the tested
signal from two units before to two units after the critical point, implementing a dliding
window over the timing constraint value. The unit should be ns for absolute parameters
and periods for clock relative parameters. The implementation of the sliding window
should take into account that the timing parameters could change during the life time of
the test object. Each checker in the model should also be checked under conditions which
should not result in an assertion report.

The output delay timing for each signal, including bidirectional signals, should be
verified, observing all possible signal transitions and timing parameters.

The architecture Timing shown in figure 7 should contain a test suite that will test all
timing constraint checkers (both with and without timing violations). The architecture
with the timing test suite should be bound for the three simulation conditions by using the
three configuration declarations WorstCaseTest, TypCaseTest and BestCaseTest. A listing
of simulator outputs (assertion reports) should be provided in the reference files named
wor stcase.ref, typcase.ref and bestcase.ref.

4.3.3 Verification result compression

A method useful for verifying that the exact behaviour of amodel has not changed is to
generate a signature, similar to implementing BIST for ASICs. One usage of this
technique is to prove the exact behaviour of adelivered VHDL model to the user.

Data from the sampled outputs of the test object could be compressed using a Multiple
Input-Signature Register, MISR, which is compared to a predetermined signature to
determine whether a test has passed or failed. The benefit of compressing output datais
the elimination of large reference files. This method is also useful when combined with
high level checkers, sinceit can provide accurate clock cycle observation of signals when
the stimuli and responses have been approved. A MISR can be used for regression tests
during model and ASIC developments, as well as for verification test benches. A MISR
implemented as a VHDL procedure is shown in appendix B.

Data compression is most feasible for data that have been synchronously sampled, and
should therefore mainly be done for the test suites verifying the functional behaviour on
aper clock cycle basis. A MISR can also be clocked by the changes on itsinput vector, it
should then be independent of any delta cycles since these can differ between VHDL
simulators. A way to implement thisisto allow all events on the input vector to take place
in each simulation cycle before shifting the MISR. The input vector should therefore be
stored for each event, and the MISR should be shifted only when there has been an
increase of the simulation time since the last event.

All outputs from the test object should be input to the MISR, including those interfacing
external components such as memories. Inputsto the test object could also beinput to the
MISR, especially when there is a need to assure that input stimuli have not changed. The
MISR should have sufficient number of register stagesto allow for long test suites without
therisk of error detection masking due to register contents repeating themselves. It should

WSM/SH/010 Issue 1 53 european space agency

therefore be structured as a primitive binary polynomial implementing amaximum length
Linear Feedback Shift Register, LFSR, as shown in figure 8. A list of binary polynomials
for different register lengths can be found in RD5.

The MISR should be able to detect any differences on its inputs, taking into account all
nine Sd_Logic strengths. For an LFSR to function correctly, the xor operator is assumed
to operate on operands with only the logic strengths ‘0’ and *1'. LFSRs are therefore not
capable to work with the type Sd_Logic directly. The nine Sd_Logic strengths should
therefore be transformed to a binary vector representation with the length 4, assigning a
unique binary combination for each Sd_Logic strength. The resulting vector could then
be input to the MISR which would be four times longer than the input vector. A way to
reduce the vector length isto divide the input vector in four and shift the MISR four times
for each sampling point. The MISR would then have the same length as the input vector.

All signals observed by the MISR should be input each clock cycle, be that by applying
the full input vector once or to split it and clock the MISR multiple times as explained
above. It is recommended that MISRs containing only xor operators are set to all ones
when reset, to reduce the risk of error detection masking for signatures with all bits zero.

Asfor the generation of list files, the sampling point within the clock cycle should allow
the outputs to settle for the test object under all simulation conditions. The MISR should
therefore be clocked with the same, or derived, clock as the test object, but after an
appropriate delay. The usage of multiple M1SRs should be considered when the test object
has more than one input clock.

The MISR signature should be checked and the MISR reset between each sub-test. Both
the board-level and detailed models should be in aknown state and each sampled input or
output should always have the same value between two tests. This will enable the sub-
tests to be modified, reordered, or removed without affecting adjacent sub-tests, since the
MISR signature of each sub-test would be independent of the preceding simulation
results.

Each test suite should be developed with data compression in mind, even when using
reference files since these often tend to grow during the development of the test suite and

will probably grow too large to be manageable and be eventually replaced by output
compression.

Input O Input 1 Input 2 Input 3 Input 4

xo"é—'x1 xz"é@—'x?’"é)—'x“

Figure8: MISR implementing the polynomial XX+ X2+ 1

european space agency 54 WSM/SH/010 Issue 1

44 Evaluation of verification coverage

The efficiency of the test suites can be assessed and evaluated using quantitative
measurement methods such as code and fault coverage. The purpose of the verification
should always be to verify the complete functionality of the model for board-level
simulation, not to solely satisfy the code and fault coverage goals since these are merely
measurements of the verification efficiently. The calculation of the code coverage should
be done in accordance with RD1. The code and fault coverage of each test suite should be
documented.

The functional coverage of the test suites verifying the functionality of the model can be
approximated as the fault coverage achieved when applying the same stimuli to a fault
simulation of the component model. Thistype of coverage measurement is of course only
feasible when a component model exists. Only the fault coverage for the functional core
of the component model need to be considered, excluding test structures and logic used
for production or self-test when not fully implemented in the test object.

Functions used for internal testability, e.g. BIST, should not be activated by the test suites
during the fault simulation when not fully implemented in the test object. The testability
logic could else cover faultsin parts of the component model which are not verified by the
stimuli when applied to the model for board-level simulation. Thiswould result in afault
coverage not being proportional to the functional coverage.

Normally only stimuli stemming from clock cycle oriented test suites can readily be used
asinput to fault simulators.

WSM/SH/010 Issue 1 55 european space agency

5 MODELLING AND SIMULATING BOARD DESIGNS

Board-level simulations are performed to verify board designs. The verification strategy
should be analysed before the simulation commences, assessing its fulfilment by the
intended simulation. To be able to make the assessment, an understanding of the
properties and capabilities of the simulation models is necessary. The simulation models
define the types of design characteristics that can be ssmulated. The level of correctness
in terms of functionality and timing should be assessed for each model, otherwise
potential errors will be found on the real breadboard after manufacturing. The quality of
simulation results is rarely higher than the quality of the models used in the ssmulation.
Models not meeting the requirements imposed by the purpose of the simulation have to
be modified or replaced else the desired result will not be achieved.

Board designs can be simulated in full or only partially. When a full board design is
simulated it is recommended that the interfaces of the board are modelled sufficiently
accurately to allow the board design to be used in further simulations without the
necessity for the user to have excessive knowledge about the board's structure. Board
designs can be described in VHDL or in a description suiting mixed-level simulation
when required. Board designs described exclusively in VHDL have al the benefits as
earlier described for models for board-level ssmulation, allowing portability and usage
with different simulators. Therest of thissection will outline two approachesto modelling
and verification of full board designs described in VHDL.

51 Board designsin VHDL

The interfaces of a board design should follow the same requirements as previously
suggested for modelsfor board-level simulation. All timing parameters, such as clock-to-
output and propagation delays, which are affected by the interconnection between the
board design and other equipment, should have a corresponding timing generic with a
default value declared as a deferred constant in a separate timing package. All signals
interfacing the board design should be declared as ports.

The board design should have the same control generics as models for board-level
simulation, such as SmCondition and InstancePath, with appropriate default values, as
shown in example 33. Each component instantiated on the board should have a label
matching the component number on the board or other unique name. The InstancePath
generics of the component instantiations should be associated with the InstancePath
generic of the board design entity and the instantiation label name. The generics
SmCondition, TimingChecksOn, etc. should be passed from the entity to the components.

There are two approaches to how components in a board design can be configured: in
separate configuration declarations or using configuration specifications in the
architecture. The first approach keeps the timing and interconnection separated, placing
the interconnection in the architecture and the timing in the configuration declaration,
allowing for greater flexibility if the user of the board wants to modify timing parameters
internal to the board. The second approach allows the user to contain al the information
about timing and interconnection in one place. Both approaches allow the user to modify
timing parameters that are declared as generics in the board design entity.

european space agency 56 WSM/SH/010 Issue 1

library ESA
use ESA. Sinulation.all;
use ESA Tining.all;

l'ibrary |EEE;
use | EEE. Std_Logic_1164. al | ;

i brary BoardDesi gn_Li b;
use BoardDesi gn_Li b. BoardDesi gn_Tinng.all;

entity BoardDesign is

generi ¢(
Si nCondi ti on: Si nCondi ti onType : = Wr st Case;
| nst ancePat h: String = "BoardDesign:";
Ti m ngChecksOn: Bool ean = Fal se;

tpd_Ck Mdata: TineArray01 tpd_C k_Mata);

port (
Test : in Std Logic_Vector(0 to 1);-- Board Test nopde
d k: in Std_Logic; -- Board Master O ock
Reset N in Std_Logic; -- Board Master Reset
A in Std Logic_Vector(0 to 1);-- Board Address bus
D: inout Std _Logic_Vector(0 to 7);-- Board Bidirectional
RW N: in Std_Logic; -- Board Read/wite
CSO0_N: in Std_Logic; -- Chip select, 1Q0
CS1 N in Std_Logic; -- Chip select, ICL
CS2_ N in Std_Logic; -- Chip select, IC2
Sda k: in Std_ULogi c; -- Serial Cock
Dataln: in Std_ULogi c; -- Serial input data
Dat aCut : out Std _Logic); -- Serial output data

end Boar dDesi gn;
Example 33: Outline of an entity declaration for a board design.

The architecture of the first approach contains component declarations without any
generics, since the generics of the board-level entitieswill be associated with valuesin the
configuration declaration. The architecture statement part contains only component
instantiations representing the connectivity of the board, as shown in example 34 and
figure 9. The port maps should be declared using named association. This approach does
not need to make any libraries or packages visible to the architecture. The components on
the board are defined by the component declarations and are bound to entities in the
separate configuration declaration, allowing the user of the board to select entities
independently of the board design model.

| entity BoardDesign | configuration BoardDesign_Configuration

for ICO: BitMod use configuration...
for IC1: BitMod use configuration...
for IC2: BitMod use configuration...

architecture Structural

ICO: IC1: IC2:
BitMod BitMod BitMod

Figure9: Board design architecture and configuration declaration.

WSM/SH/010 Issue 1 57 european space agency

architecture Structural of BoardDesign is
conponent Bit Mod

port(...);
end conponent;

begin
| C0: BitMd
port map(...);
I Cl: BitMd
port map(...);
| C2: BitMd

port map(...);
end Structural;

Example 34: Outline of board design architecture without configuration specifications.

The configuration declaration of the board design above is shown in example 35. The
SmCondition and TimingChecksOn generics in the board design entity are propagated
down the hierarchy. Only the timing packages themselves are made visible to the models,
not their contents. In the general case it is not possible to make al the contents of the
timing package visible to the configuration declaration, since when there are more than
one component in the design, each having its own timing package, it could result in
naming conflicts for some of the timing parameters. Therefore is the default timing
parameter tpd Clk_MData referenced using complete named selection when used in the
generic map of instance ICO. If timing parameter values are not needed, as for instance
IC2 which isusing the default generic value of the entity, the timing package need not be
made visible. A new configuration declaration could be derived when other timing values
are needed, e.g. the output delays of the components can be annotated with signal path
delays or delays due to capacitive loads on the circuit board.

The architecture of the second approach is shown in example 36 and figure 10. The
generic declarations of the component need only to include those generics which will be
associated in the architecture. The rest will take default values declared for the
corresponding entity. Each timing generic declaration need to have the same default
values as have been declared for the entity, due to language rules. In this example the
instantiation 1C2 will use the default value for the timing parameter tpd_Clk_MData. The
default value isfetched from the timing package with named sel ection not to conflict with
the timing parameter names of other models used in the architecture (not shown here).

| entity BoardDesign |

architecture Structural

for ICO: BitMod use configuration...
for IC1: BitMod use configuration...
for IC2: BitMod use configuration...

ICO: IC1: IC2:
BitMod BitMod BitMod

Figure10: Board design architecture with configuration specifications.

european space agency 58 WSM/SH/010 Issue 1

All instances of component BitMod are bound in the configuration specification to the
configuration declaration BitMod_Configuration in library BitMod_L.ib.

l'ibrary |EEE;
use |EEE. Vital _Timng.all;

library BitMd_Lib;

configuration BoardDesi gn_Configuration of BoardDesign is
for Structural
for 1C0: BitMd -- Annotated timng
use configuration BitMd Lib.BitMd Configuration
generic map(
Si nCondi ti on => Si mCondi ti on,
| nst ancePat h => | nstancePat h&"Il CO: ",
Ti m ngChecksOn => Ti m ngChecksOn,
tpd_ Ck MData =>
((BitMod_Lib.BitMd Timng.tpd Ck _NMata(WrstCase)
(tr01)+ 5 ns,
Bi t Mod_Li b. Bi t Mod_Ti mi ng. t pd_Cl k_NMDat a(Wr st Case)
(tr10)+ 5 ns),
(BitMbd_Lib.BitMdd Timng.tpd Ck Mata(TypCase)
(tr01)+ 5 ns,
Bit Mod_Li b.BitMod _Timing.tpd Gk _Mata(TypCase)
(tr10)+ 5 ns),
(BitMbd_Lib.BitMd Tinng.tpd Ck _Mat a(Best Case)
(tr01)+ 5 ns,
Bi t Mod_Li b. Bi t Mod_Ti mi ng.tpd_C k_Mbat a(Best Case)
(tr10)+ 5 ns)));
end for;

for 1CL: BitMd -- Absolute timng
use configuration BitMd Lib.BitMd Configuration
generic map(

Si nCondi ti on => Si mCondi ti on,

| nst ancePat h => | nstancePat h&"I CL: ",

Ti m ngChecksOn => Ti m ngChecksOn,

tpd Gk Mbata => ((5 ns,5 ns),

(5 ns,5ns),(5 ns,5 ns)));

end for;

for 1C2: BitMd -- Unnodified timng
use configuration BitMd Lib.BitMd Configuration
generic map(

Si nCondi ti on => Si mCondi ti on,
| nst ancePat h => | nstancePat h&"I C2: ",
Ti m ngChecksOn => Ti m ngChecksOn);

end for;

end for;
end Boar dDesi gn_Confi gurati on;

Example 35: Outline of configuration declaration for a board design.

WSM/SH/010 Issue 1 59 european space agency

library BitMd_Lib;

l'ibrary | EEE;
use |EEE. Vital _Timng.all;

architecture Structural of BoardDesign is
conponent Bit Md

generi c(
Si mCondi ti on: Si nCondi ti onType : = Wr st Case;
| nst ancePat h: String ;= "BitMd:";
Ti m ngChecksOn: Bool ean = Fal se;

tpd_Ck Mdata: TineArray01 X
Bi t Mod_Li b. Bit Mod_Ti mi ng.tpd_C k_Mbat a) ;
port(...);
end conponent;

for all: BitMd
use configuration BitMd Lib.BitMd Configuration;
begin
| CO: BitMd -- Annotated timng
generic map(
Si nCondi ti on => Si mCondi ti on,
| nst ancePat h => | nstancePat h&"I C0O: ",
Ti m ngChecksOn => Ti m ngChecksOn,
tpd_ Gk Mdata =>
((BitMod_Lib.BitMd Timng.tpd dk_Mata(Wrst Case)
(tr01) + 5 ns,
Bi t Mod_Li b. Bi t Mod_Ti mi ng. t pd_C k_Mbat a(Wr st Case)
(tr10)+ 5 ns),
(BitMod_Lib.BitMdd Timng.tpd Ck _Mata(TypCase)
(tr01)+ 5 ns,
Bi t Mod_Li b. Bi t Mod_Ti mi ng.tpd_C k_Mbat a(TypCase)
(tr10)+ 5 ns),
(BitMod_Lib.BitMd Timng.tpd Ok _Mat a(Best Case)
(tr01)+ 5 ns,
Bi t Mod_Li b. Bi t Mod_Ti mi ng.tpd_C k_MDat a(Best Case)
(tr10)+ 5 ns)))
port map(...);
| Cl: BitMd -- Absolute timng
generic map(
Si nCondi ti on => Si mConditi on,
| nst ancePat h => | nstancePat h&"I CL: ",
Ti mi ngChecksOn => Ti m ngChecksOn,
tpd_ Gk Mbata => ((5 ns,5 ns), (5 ns,5 ns), (5 ns,5 ns)))
port map(...);
| C2: BitMd -- Unnodified timng
generic map(
Si nCondi ti on => Si mCondi ti on,
| nst ancePat h => | nstancePat h&"I C2: ",
Ti m ngChecksOn => Ti mi ngChecksOn)
port map(...);
end Structural;

Example 36: Outline of board design architecture with configuration specifications.

european space agency 60 WSM/SH/010 Issue 1

52 Verification of board designs

A test bench should be developed for the board design analogous to the test bench for a
model for board-level ssimulation, as shown in figure11. A test generator with one or
multiple architectures with test suites should be instantiated together with the board
design in the test bench architecture. Selection of simulation conditions and test suites
should be done by using configuration declarations with the same names as have been
defined for the verification of models for board-level simulation: WorstCaseTest,
TypCaseTest and BestCaseTest.

| entity TestBench |

architecture Structural

component component
instantiation instantiation
Test_Object: Test_Generator:
BoardDesign TestGenerator

Figurell: Test bench containing the BoardDesign and the TestGenerator.

An outline of the test bench is shown in example 37. Only the ports are declared in the
component declarations, since the generics will be associated with their values in each of
the configuration declarations used. The only package neededisStd_Logic 1164 sincethe
architecture is purely structural only containing the connections between the object being
tested and the test generator. The port maps should be declared using named associ ation
as shown for the port Test and the local signal Test.

entity TestBench is
end Test Bench;

l'ibrary |EEE;
use | EEE. Std_Logic_1164. al | ;

architecture Structural of TestBench is
conmponent Boar dDesi gn
port(...);
end conponent;
conmponent Test Gener at or
port(...);
end conponent;
-- Local signal declarations.

begi n
Test _Cbj ect: BoardDesi gn
port map(Test => Test, ...);
Test _Generator: Test Generat or
port map(Test => Test, ...);

end Structural;

Example 37: Outline of entity and architecture of a test bench for a board design.

WSM/SH/010 Issue 1 61 european space agency

The package ESA.Smulation is made visible to the configuration declaration in
example38 to alow the selection of the simulation condition. The libraries
BoardDesign _Liband BoardDesign_TB_Lib aremadevisibleto allow the selection of the
test object and the test generator.

The timing parameter values for the board design are selected by using the
BoardDesign_Configuration in the configuration specification for the Test_Object.

The InstancePath generics of the Test_Object and the Test_Generator have been chosen
to contain the same String value as would have been returned by the VHDL ’ 93 attribute
Path_Name. Note that the root of the path begins with a colon.

library ESA
use ESA. Sinul ation.all;

I'i brary BoardDesi gn_Li b;
i brary BoardDesi gn_TB Lib;

configurati on Wrst CaseTest of TestBench is
for Structural
for Test Object: BoardDesign
use configuration BoardDesi gn_Lib. BoardDesi gn_Confi guration
generic map(
Si nCondi tion => \Wbr st Case,
I nst ancePat h => ": Test Bench: Test _Chject:",
Ti m ngChecksOn => True);
end for;
for Test Generator: TestGenerator
use entity BoardDesign_TB Lib. Test Generator (Ti m ng)
generic map(
Si nCondi tion => \Wbr st Case,
I nst ancePat h => ":TestBench: Test _Generator:");
end for;
end for;
end Wor st CaseTest ;

Example 38: Ouitline of a configuration declaration of a test bench for a board design.

A more detailed approach to verification of board designs can be found in RD7.

european space agency 62 WSM/SH/010 Issue 1

6 DESIGN DOCUMENTATION

All documentation should bein English. The documentation should be well structured and
easily readable. The documentation should be consistent, e.g. the same item should have
the same name in al documentation and code. Diagrams should be introduced where
beneficial for the understanding of the text.

Every time a document is updated it should include a detailed change list, and all
significant changes marked using a change bar in the margin.

6.1 User’'s Manual

The purpose of the User’s Manual should be to allow any board-level designer, with little
or no VHDL experience, to efficiently use the developed models to perform board-level
simulation without needing the full source code. The manual shall be independent from
any VHDL simulator specific features.

Thetext should be oriented towards the user and be spell checked. Naming and numbering
conventions used for the model and documentation should be documented.

The component which is modelled should be unambiguously identified, including the
component name and number, and foundry. The sources describing the functionality and
timing from which the modelling is performed should be identified. To avoid potential
documentation errors, information from aready established and publicly available
documents, such as Data Sheets, can be referenced using a compl ete reference (document
title, reference number, issue number and date, section).

Any limitation introduced during the model development should be documented,
including assumptions or restrictions regarding the usage of the model, unresolved coding
errors (and workarounds), and non-compliances w.r.t. the component functionality.

The model should be identified including library and configuration declaration names.

All interfaces of the model should be described, including but not restricted to:

* Ports (purpose and signal polarity);

» Generics (purpose and default values, limitations on negative values);

* Input and output files (data formats and default names);

» Timing package (maximum loading for each timing parameter, description of how the
values for al three simulation conditions have been obtained).

Management of unknown input values should be documented, including X-checking, X-
handling and X-propagation. The conditions under which the X-checkers are enabled or
disabled should be identified.

The timing constraints which are checked by the model should be identified, including
any limitations or assumptions. Any timing constraints not checked should be identified.
The output delays on the ports should be documented for each operating mode of the
model, including X-generation when applicable.

WSM/SH/010 Issue 1 63 european space agency

The provided test bench should be identified, including library and configuration
declaration names. The level of verification achieved by the test bench should be
documented, including code coverage figures and the capabilities of the self-checking
mechanism.

The level of verification should be documented, including whether comparison has been
made versus the component model, whether functional or production test vectors have
been reused, etc. The version number of the simulators, platforms and operating systems
on which the model has been verified should be documented.

The document should include all necessary steps for installing the model and its
test bench, performing a verification and analysing the obtained results to determine
whether the model simulates correctly in the installed environment. If any file conversion
tools are needed, their usage should be documented.

The organisation of the delivered files should be fully described, including source files,
script files, referencefiles, and input and output files. The version of each moduleto which
the User’s Manual corresponds to should be identified.

When a distribution channel for the model has been established, a point of reference for
model support and maintenance should be identified, including name, address, email
address, phone and fax numbers.

A suggested outline of the User’sManual can befound in appendix A. However, it should
be noted that it is not necessarily complete. The User’s Manual should be delivered both
as an unbound paper copy and an electronic copy in ESA developments.

6.2 Supplement

A supplement, including all information necessary for the maintenance of the model and
its verification, should be attached as an appendix to the User’s Manual when requested.

The complete hierarchy and structure of the model, the test bench and test suites, should
be described, taking into account all dependencies, such as the usage of packages. An
accurate block diagram showing the relationship between different modules, their input
and output signals etc. should be created. Information readily found in the source code
should not be repeated.

The verification of the model should be documented in detail. When the functional and
production test vectors from the Detailed Design of the component have been used during
the verification, it should be documented. The comparison between the board-level and
the component model simulation results should be documented. A compliance matrix
should be included showing the correspondence between the model intended for board-
level simulation and the component, any discrepancies should be documented. Any
source code lines not possible to cover should be included together with an explanation.
When simulation performance measurements have been performed, they should be
documented.

european space agency 64 WSM/SH/010 Issue 1

APPENDIX A: OUTLINE OF USER'SMANUAL

Table of Contents

Introduction
Reference data and documentation
Conventions and abbreviations

Limitations

Description of the model
Component and library names
Interfaces
Management of unknown input values
Timing constraints
Output delays

Description of the test bench
Test bench and library names
Self-checking capability
Calculated code coverage
Simulators, platforms and operating systems

Usage of the model and test bench
Installation procedure
Verification procedure

File organisation
Source files and analysis order
Reference/input/output files

Script/make files
Supplement {Upon request, as an appendix}
Detailed description of the model
Hierarchy/Structure {Including diagrams}
Detailed description of the test bench
Hierarchy/Structure {Including diagrams}
Verification

Comparison versus gate-level model
Compliance matrix
Not covered code lines

Simulation performance

WSM/SH/010 Issue 1 65 european space agency

APPENDIX B: MULTIPLE-INPUT SIGNATURE REGISTER

-- Miltiple-lnput Signature Register (M SR

-- This procedure inplenents a variable length M SR The length is deternined by
-- the length of Input, ranging from4 to 100. The Input can be sanpled on

-- either Gk edge or both, delayed by Sense, selected with the Rising and

-- Falling paraneters. If neither option is selected, events on Input wll

-- determ ne the sanpling point. Events happening in the sane sinulation cycle,
-- differing only in delta cycles, will be sanpled when the | ast event has

-- occurred, and the MSR will then be shifted.

-- The Reset input will reset the MSR to all-ones. Wen sanpling is made with
-- GOk, it will re-start on the next relevant edge after the asserting edge of
-- Reset. If Reset is detected between an Ok edge and the sanpling point, the
-- MSRw Il be reset and the sanmple will be ignored. When asynchronous sanpling
-- is used, the next event on Input will be the first sanple after reset. The

-- M SR signal can be read at any point and should be conpared with a

-- predeternined signature.

-- The MSR is inmplemented as a primtive polynomal with up to five ternms. The
-- terms are taken fromthe text book Built-In Test for VLSI: Pseudorandom

-- Techniques, by Bardell et al. The elements in the |Input vector are expanded
-- to four bits, each Std_Logic value having a unique bit pattern,

-- the internediate vector is then divided in four and each part is shifted into
-- the M SR separately. The procedure can be used as a concurrent subprogram

-- not needi ng any surroundi ng process or bl ock.

-- Inputs: dKk, sanpl e clock used with Rising and Falling

-- Reset, reset of M SR when an event is detected and Reset is True
-- | nput, input vector to the MSR, sane length as M SR

-- Ri si ng/ Fal l'i ng:

-- Fal se False sanple at each Input event

-- Fal se True sanmpl e I nput after Sense on falling Ok edge

-- True Fal se sanple Input after Sense on rising Ok edge

-- True True sampl e I nput after Sense on rising or falling Ok edge
-- Sense, positive time after the C k edge when Input is sanpled

-- Header Msg, message header

-- In/Quts: M SR Miltiple-Input Signature Register

-- Author: Sandi Habi nc, ESTEC M croel ectronics and Technol ogy Section (WM
-- P.O Box 299, 2200 AG Noordw j k, The Netherl ands

library |EEE;

use | EEE. Std_Logic_1164. al | ;

package M SR Definition is
procedure M SR(

si gnal d k: in Std_ULogi c; -- Sanpl e cl ock

si gnal Reset : in Bool ean; -- Reset of M SR

si gnal I nput : in Std_Logi c_Vect or; -- Input vector

si gnal M SR: i nout Std_Logic_Vector; -- MSR

const ant Ri sing: in Bool ean : = True; -- See above

constant Falling: in Bool ean : = Fal se; -- See above

const ant Header Msg: in String ="MSR"; -- Message header
constant Sense: in Ti me = 0 ns); -- Sense tinme after clock

end M SR Definition; --=============== End of package header --

european space agency 66 WSM/SH/010 Issue 1

package body M SR Definition is

-- Local declarations of m nimumand nmaxi mum M SR | engt hs.
const ant MaxLen: I nt eger
constant M nLen: I nt eger

-- Local declarations defining subtypes and types needed for the definition
-- of the Std Logic to 4bit vector transfer function. Each Std _Logi c val ue
-- has a unique 4bit vector associ ated.

subtype Index is Integer range 0 to 3; -- Definition of table
subtype Vector is Std _Logi c_Vector (I ndex); -- with a 4bit vector for
type VTable is array (Std_Logic) of Vector; -- each Std_Logic val ue
constant St d4: VTable := (*U => "0001", 'X => "0010", '0' => "0100",
1" => "1000", 'Z' => "0011", 'W => "0110",
‘L' => "1100", 'H => "O0O111", '-' => "1110");

-- Expands every Std Logic Vector elenent to four bits returning a
-- Std _Logic_Vector with four times the length of the input.
-- Input: V Std _Logic_Vector defined (0 to n)

-- CQutput: Std _Logic_Vector defined (0 to n) with sane length as V
function ToO1(V: Std_Logi c_Vector;
Header Msg: String := "M SR ") return Std _Logic_Vector is
variable R Std Logic Vector(0 to (V Length*4-1));
begi n

assert (V' Length<=MaxLen) and (V' Length>=M nLen) -- Check |l ength
report Header Msg&" Only vectors of Length 4 to 100 are support ed.
severity Fail ure;

for i in V Range |oop
R(i*4+0 to i *4+3):= Std4(V(i)); -- Expand i nput
end | oop;
return R
end ToO01;

-- Logical and operation between Std _ULogic scalar and Std _Logic_Vector.
-- Input: B Std _ULogic scalar, V Std _Logic_Vector vector
-- Qutput: Std Logic Vector with same array constraints as V
function "and" (B: Std_ULogic;
V: Std Logic Vector) return Std_Logic_Vector is
variable R Std _Logic_Vector(V Range);

begi n
for i in V Range |oop
R(i):= B and V(i); -- logical and
end | oop;
return R -- return vector

end "and";

WSM/SH/010 Issue 1 67 european space agency

-- Expands the Input four tines using ToOl, the resulting vector is then

-- shifted into the MSR in four parts. The resulting M SR val ue is returned.
function Shift(MSR Std _Logic_ Vector;

I nput: Std _Logic_Vector;

Poly: Std _Logic Vector) return Std Logic_Vector is

Std_Logi c_Vect or (M SR Range) .= M SR,

vari abl e M =
Std Logic_Vector(0 to 4*M SR Length-1) := To01(I nput);

variable T:
begi n
for i in0Oto 3 loop --
M:= ("0"&0 to M SR Lengt h-2)) xor
T(M SR Length*i to M SR Length*(i+1)-1) xor
(MM SR Length-1) and Poly); --
end | oop;
return M --
end Shift;

Four M SR shifts

Scal ar and vect or

Return resulting M SR

-- Returns a Std _Logic_Vector of length L (1 to 100) containing a primtive

-- polynomal with up to five terns (always including x+1).
-- Input: L, the length of the resulting polynom al Std_Logi c_Vector
-- Qutput: polynomal Std Logic Vector defined (0 to n)

function Pol ynom al (L: Nat ur al ;
Header Msg: String: ="M SR ")
Std Logic _Vector(0 to L-1)

return Std _Logic Vector is

vari abl e P: .= (others =>"'0");

subtype Degree is Integer range 0 to MaxLen; -- Exponent range

type Terns is array (1 to 3) of Degree; -- Triplet

type TTable is array (1 to MaxLen) of Terns; -- Triplets

constant Tabl e: TTable := (-- Look-up table
(0,0,0), (1,0,0), (1,0,0), (1,0,0), (2,0,0), (1,0,0), 1
(1,0,0), (6,5,1), (4,0,0), (3,0,0), (2,0,0), (7,4,3), 7
(4,3,1), (12,11,1), (1,0,0), (5,3,2), (3,0,0), (7,0,0), 13
(6,5,1), (3,0,0), (2,0,0), (1,0,0), (5,0,0), (4,3,1), 19
(3,0,0), (8,7,1), (8,7,1), (3,0,0), (2,0,0), (16, 15, 1), 25
(3,0,0), (28,27,1), (13,0,0), (15,14,1), (2,0,0), (112,0,0), 31
(12,10,2), (6,5,1), (4,0,0), (21,19,2), (3,0,0), (23,22,1), 37
(6,5,1), (27,26,1), (4,3,1), (21,20,1), (5,0,0), (28,27,1), 43
(9,0,0), (27,26,1), (16,15,1), (3,0,0), (16, 15,1), (37,36,1), 49
(24,0,0), (22,21,1), (7,0,0), (19,0,0), (22,21,1), (1,0,0), 55
(16, 15,0), (57,56,1), (1,0,0), (4,3,1), (18,0,0), (10,9,1), 61
(10,9,1), (9,0,0), (29,27,2), (16,15,1), (6,0,0), (53,47, 6), 67
(25,0,0), (16,15,1), (11,10,1), (36,35,1), (31,30,1), (20,19,1), 73
(9,0,0), (38,37,1), (4,0,0), (38,35,3), (46,45,1), (13,0,0), 79
(28,27,1), (13,12,1), (13,0,0), (72,71,1), (38,0,0), (19,18,1), 85
(84,83,1), (13,12,1), (2,0,0), (12,0,0), (11,0,0), (49,47,2), 91
(6,0,0), (112,0,0), (47,45,2), (37,0,0)); 97

begi n
assert (L <= MaxLen) and (L > 0) -- Check length

report Header Msg&" Only pol ynom al
severity Fail ure;
for i inl1lto 3 loop
P(Tabl e(L)(i)) :=
end | oop;
return '1'&P(1 to L-1); --
end Pol ynom al ;

degree of 1 to 100 is supported.”

B -- Insert terns

Ret urn pol ynoni al

european space agency 68 WSM/SH/010 Issue 1

procedure M SR(

si gnal d k: in Std _ULogi c; -- Sanpl e cl ock

si gnal Reset : in Bool ean; -- Reset of M SR

si gnal | nput : in Std_Logi c_Vector; -- |l nput vector

si gnal M SR i nout Std _Logic_Vector; -- M SR

constant Ri sing: in Bool ean : = True; -- See above

constant Falling: in Bool ean : = Fal se; -- See above

constant Header Msg: in String ="MSR"; -- Message header

const ant Sense: in Ti me =0ns) is -- Sense tinme after clock
constant L: I nt eger | nput ' Lengt h;

constant Poly: Std Logi c_Vector
constant Ones: Std Logic Vector(0 to L-1)

Pol ynom al (L) ;
(others =>"1");

vari abl e Tenp: Std _Logic Vector(0 to L-1) I nput; -- Last I|nput

variable Last: Tine 0 ns; -- Last simcycle
begi n

assert (L <= MaxLen) and (L >= M nLen) -- Check length

report Header Msg&" Only M SRs of length 4 to 100 are supported.”
severity Failure;

assert L = M SR Length -- M SR=lInput |ength
report Header Msg&" The |l ength of the Input and the M SR differs."
severity Failure;

while True | oop -- Loop never exited
if not Rising and not Falling then
-- Ak input has no influence on the M SR in asynchronous node.
-- Sanpling only the final input vector in each sinulation cycle.

wait on Input, Reset; -- Asynchronous sanpl e
if not (Reset'Event and Reset) and -- Check not reset
| nput' Event then -- Check for |nput event
if Now = Last then -- New delta cycle
Tenp : = | nput; -- Store until next event
el se -- New simcycle
M SR <= Shift(M SR, Tenp, Poly); -- Shift MSR 4 tines
Tenp : = | nput; -- Store until next event
Last : = Now, -- Store simtine
end if;
end if;
el se
wait on Ok, Reset; -- Synchronous sanpl e
if not (Reset'Event and Reset) and -- Check not reset
((Rising and Ri sing Edge(dKk)) or -- Check rising edge
(Falling and Falling Edge(Clk))) then -- Check falling edge
wait on Reset until Reset for Sense; -- Delay until sanple
M SR <= Shift(M SR, I|nput, Poly); -- Shift MSR 4 tines
end if;
end if;
if Reset'Event and Reset then
M SR <= Ones; -- Reset M SR
Tenmp : = Ones; -- Reset Tenp
end if;
end | oop;

end M SR,
end M SR Definition; --================ End of package body --

WSM/SH/010 Issue 1 69

european space agency

APPENDIX C: TIMING PARAMETER TYPES

-- Design unit : Timng (Package decl aration)
-- File nane : timng.vhd
-- Purpose . This package defines three array types, indexed by the ESA

-- Si mCondi ti onType, needed for timng generics when using
-- Vital Delay Types. The types are intended to be used

- - in VHDL nodel s for board-| evel
- - shoul d not be nodified or

simul ati on. This package
nmoved to a different library.

-- Note: The type TineArray has been defined in ESA Sinulation.

-- Thi s package does not define any types related to the

- - Vital Delay Array Types,

since it is not possible to

-- define a constrained array of unconstrained arrays. Such
-- decl arati ons should be done in the tining package of the

-- conponent .
-- Errors: : None known
-- Library . ESA

-- Dependencies : ESA Simulation, |EEE. Vital _Timng.

- - Aut hor : Sandi Habi nc, Peter Sinander

-- ESTEC M croel ectroni cs and Technol ogy Section (WM

-- P. 0. Box 299

- - 2200 AG Noordwi j k
- - The Net her | ands
-- Sinul at or

-- Revision list
-- Version Author Date Changes

1 July 95 New version

library ESA;
use ESA. Sinulation.all;

library | EEE;
use | EEE. Vital _Timing.all;

package Timing is

Synopsys v. 3.2c, on Sun Sparcstation 10, SunCS 4.1.3

-- Definition of Time array types, which can be used for the tinng

-- paraneters with Vital Delay Types.

type TinmeArray01 is array (SimConditionType)
type TimeArray01lZ is array (SimConditionType)
type TimeArray01zX is array (SinConditionType)

end Tim ng; --==================== End of package

of Vital Del ayTypeO1,;
of Vital Del ayTypeO1Z;
of Vital Del ayType01ZX;

european space agency 70 WSM/SH/010 Issue 1

APPENDIX D: ABBREVIATIONS

ASIC
ASSP
BIST
ESA
ESTEC
FTP
HTML
I/F
|EEE
LFSR
MISR
MSB
RTL
SDF
URL
VHDL
VHSIC
VITAL

Application Specific Integrated Circuit
Application Specific Standard Product

Built In Self Test

European Space Agency

European Space Research and Technology Centre
File Transfer Program

HyperText Mark-up Language

Interface

Institute of Electrical and Electronics Engineers
Linear Feedback Shift Register

Multiple Input Signature Register

Most Significant Bit

Register Transfer Level

Standard Delay File

Uniform Resource L ocator

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

VHDL Initiative Towards ASIC Libraries

