
Accellera

Extensions to Verilog-2001 SystemVerilog 3.1
Problem: Assertions are not allowed in functions.

Context:

Logic designers typically uses functions to describe logic that will be replicated but is smaller than logic

placed into a module.

Description:

Allowing assertions in a function scope provides for protection for proper use of functions and correctness of

their results. Without the ability, it is optional for a designer to write their own assertions. This allows for the

possibility to misuse the function or to overlook an erroneous result.

Solution: Support assertions in functions following the same rules
for extracting the enabling condition and clock for assertions
(17.12.2)

17.12.3 Embedding concurrent assertions in functions.

A concurrent assertion can be embedded within functions. For example:

function [1:0] encode4;
input [3:0] decoded;
begin
assert property @(posedge clock)
($onehot(decoded)

else $error(“Input is not fully decoded, %0b.”, decoded);//fix syntax sampled.
casez (1’b1) //synopsys full_case parallel_case
 decoded[0]: encode4 = 2’d0;
decoded[1]: encode4 = 2’d1;
decoded[2]: encode4 = 2’d2;
decoded[3]: encode4 = 2’d3;

endcase
end

endfunction

...
way = encode4(hit[3:0]); // Fixme - hit could be zero, violating the property.

The code does not allow for any other input value than 1, 2, 4, 8. Thus the property will detect an illegal value

and report a failure.

Concurrent assertions shall not be placed in automatic functions or constant functions. Functions can be called

from multiple places within a module, allowing reuse of the code. Functions that are called from multiple

places will have the following operations done:

1) The internal function state is maintained for each call - so that extracted assertions that use internal

function state will obtain the correct values.

2) The assertion has its enabling condition extracted from the logic to the function call point combined (and)

with the enabling condition extracted from the function code.
Copyright 2003 Accellera. All rights reserved. 1

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001
For example.

always @(*)
begin
if (selected)

begin
selmask = mask_from_valid(valid, flush); // call #1.
if (nextvalid == FULL && selectTwo)

secondMask = mask_from_valid(validB, flush2); // call #2.
...

function [3:0] mask_from_valid;
input [3:0] valid;
input flush;
reg [4:0] incr;
begin
if (!flush)

begin
incr = {valid[3:0], 1’b0};
assert property @(posedge clock) // clock is in upper scope.
($onehot(incr))
else $error(“Incremented valid was not onehot, %0d.”, incr);
casez (incr) //synopsys full_case parallel_case

5’b??010: mask_from_valid = 4’b0011;
5’b?0110: mask_from_valid = 4’b0111;
5’b01110: mask_from_valid = 4’b1111;

endcase
end

else
mask_from_valid = 4’b0;

endfunction

The code fragment + function definition will produce assertions equivalent to the following code:

reg [4:0] incr_call1; // Extracted state assignments from first call.
reg flush_call1;
always @(*)
begin : call_1_mask_from_valid
reg [3:0] _valid;
_valid = valid; // Assign input reg from call.
flush_call1 = flush;

// Compute state for assertion.
incr_call1 = {_valid[3:0], 1’b0};
end

reg [4:0] incr_call2; // Extracted state assignments from second call.
reg flush_call2;
always @(*)
begin : call_2_mask_from_valid
reg [3:0] _valid;
_valid = validB; // Assign input reg from call.
flush_call2 = flush2;

// Compute state for assertion.
incr_call2 = {_valid[3:0], 1’b0};
end
2 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1
always @(posedge clock)
begin
assert property // Assertion extracted from call #1.
(selected |-> // Enabling condition for first call.
!flush_call1 |-> // Enabling condition from function for assertion.
$onehot(incr_call1))

else $error(“Incremented valid was not onehot, %0d.”, incr_call1);

assert property // Assertion extracted from call #2.
(selected
&& (nextvalid == FULL && selectTwo) |->//enabling condition for 2nd call
!flush_call2 |->//enabling condition from function
$onehot(incr_call2))

else $error(“Incremented valid was not onehot, %0d.”, incr_call2);
end

The function bodies are inlined for each call to preserve state needed by the assertion.
Copyright 2003 Accellera. All rights reserved. 3

	Problem: ����Assertions are not allowed in functions.
	Context:
	Description:
	Solution: Support assertions in functions following the same rules for extracting the enabling co...
	17.12.3 Embedding concurrent assertions in functions.

