Requirements Document

Direct Interface

between

System Verilog

and

Foreign Language

Version: 0.1
September 2, 2002
Document #

SV-CC

Accellera Logo
Accellera Copyright Notice

Committee Members

	Name
	Company
	Email

	Yatin Trivedi
	ASIC Group
	trivedi@pacbell.net

	Francoise Martinolle
	Cadence
	fm@cadence.com

	Stuart Snow
	Cadence
	stuart@cadence.com

	Simon Davidmann
	Co-Design
	simond@co-design.com

	Peter Flake
	Co-Design
	flake@co-design.com

	Michael Rohleder
	Motorola
	Michael.Rohleder@motorola.com

	Kevin Cameron
	National Semiconductor
	Kevin.Cameron@nsc.com

	Bassam Tabbara
	Novas
	bassam@novas.com

	Darrell Parham
	Sun Microsystems
	Darrell.Parham@sun.com

	Joao Geada
	Synopsys
	Joao.Geada@synopsys.com

	Ghassan Khoory
	Synopsys
	Ghassan.Khoory@synopsys.com

	Andrzej Litwiniuk
	Synopsys
	Andrzej.Litwiniuk@synopsys.com

	Alain Reynaud
	Tensilica
	alain@tensilica.com

	
	
	

	
	
	

	
	
	

	Tarak Parikh
	@HDL
	tarak@athdl.com

	Vassilios Gerousis
	Infineon
	Vassilios.Gerousis@Infineon.Com

	Josef Derner
	Mentor
	josef_derner@mentorg.com

	Karen Bartleson
	Synopsys
	Karen.Bartleson@synopsys.com

	
	Synopsys
	ail@synopsys.com

	K Chen
	Verplex
	kchen@verplex.com

	Michael McNamara
	Verisity
	mac@verisity.com

	
	Xilinx
	drm@xilinx.com

Revision History

	Version
	Date
	Editor / Contributor
	Comments

	0.0
	7/30/02
	Andrzej Litwiniuk
	Initial contribution from Synopsys

	0.1
	9/2/02
	Yatin Trivedi
	Created in document format,

changed Verilog references to System Verilog,

brought in comments from email discussions

List of Open Issues

For now, I have copied comments from responses as they relate to specific requirements. Later, when the

List of open issues begin to form, we will use this as a quick reference for how we are doing.

Once we start closing a few items, I can move them to Closed Issues list at the end of the document (like an annex, and then remove (or separate) it eventually)

Table of Contents

4Revision History

5List of Open Issues

71
Introduction

82
Motivation

93
General Requirements

93.1
Very high level abstract design considerations:

93.1.1
Heterogeneous System:

93.1.2
Black Box

93.2
Practical considerations:

113.3
Functionality:

123.4
Usage:

123.5
Portability:

123.6
Performance:

1 Introduction

I will write some introduction part here regarding requirements.

In the mean time, it is serving as a place holder for broad comments.

Kevin Cameron’s comments:

I'd like to know if anyone else is keen to do a C++ (class) based API, or is everyone voting for C?

Also, does anyone want to be able to call tasks (in interfaces) directly and setup call-backs from interfaces? (this has a bearing on EC proposals)

Michael Rohleder’s comments (MR Comments):

. I am unsure about the intended use; at least I see some discrepancies between the motivation and the stated requirements

 . It looks like it is desired to build an extremely simple interface for calling of C functions, but not to

 include components build by C/C++ functions into a SystemVerilog simulation

 . There is nothing wrong with the simplistic approach, but we either clearly identify the intended scope

 and its limitations or we adjust the requirements appropriately

Areas that are not covered by the identified requires are especially:

 - support of sub-systems with local interconnects on the FL side; this results in

 - need to synchronize with the sub-system (not covered at all)

 - need for a solution when parts of a net are in Verilog and the rest is in FL (who does the resolution when and how,

 - support for converting pin-wiggling based I/O to transaction-level I/O and vice-versa

 [it is of course possible to a lot of this conversions on the SV side, the problem are the cases, where transactions are not only encoding multiple nets, but also events over the time]

 - identification of sensitive ports to the FL side to minimize calling overhead

 [FL module is executed when at least one of the (sensitive) ports at its boundary changes its

value - this is important for performance reasons]

 - the specified requirements do not permit to post events or request for events from the FL side; this reduces the functionality available on the FL side

 - information about simulation specific events (e.g. start-up, terminate, initial reset,

save/restore); the component on the FL side might also have internal data that must be resetted, saved, restored, cleaned up ...

Taken the provided requirements, the absence of the above features would still require to use PLI/VPI functionalilty for the stated motivation. We did this, it's a pain; it would be great if this is an inherent feature of a language like SystemVerilog.

IMHO support of C/C++ modules in SV result in the requirements I have tried to identify for the use cases UC3, UC4, UC5, and UC6.

I understand that this might be too much for SV 3.1; I just say we clearly need to state what we want to approach and what are the known limitations.

2 Motivation

(1) Methodology:

· heterogeneous systems built up from System Verilog XE "System Verilog" (SV) and non-System Verilog XE "non-System Verilog" components

MR’s comments:

Referring to my use cases identified in an earlier email, is this UC3 or UC4. This statement looks more like UC4, but the requirements look more like UC3?

(2) Practical needs:

 - need for an easy and efficient way to connect a C code XE "C code" without the knowledge and the overhead of PLI XE "PLI"

The requirements are manifold and come from the different angles.

3 General Requirements

3.1 Very high level abstract design considerations:

3.1.1 Heterogeneous System XE "Heterogeneous System" :

The interface should allow to build a heterogeneous system (a design or a testbench XE "testbench") in which some components may be written in a language (or more languages) different than System Verilog, hereinafter called the foreign language XE "foreign language" .

MR’s Comments:

Be more specific about the components. Are these single FL modules or can this be a subsystem (meaning there are interconnects between these modules also on the FL side)?

In the simplest typical scenario there is a System Verilog design and/or a testbech and the non-System Verilog environment (file system, etc.), usually in C.

3.1.2 Black Box XE "Black Box"
A principle of a black box should be followed, i.e. the specification and the implementation of a component should be clearly separated and the actual implementation should be transparent to the rest of the system. Therefore also the actual programming language should be transparent.

MR’s comments:

Probably this is only a terminology problem: Do you mean that the 'definition' and the 'instantiation' of a component should be clearly separated?

This seems to suggest that in System Verilog parts the separation between System Verilog code and the foreign language should follow the natural encapsulation units XE "encapsulation units" in System Verilog:

Functions XE "Functions"
Tasks XE "Tasks"
Modules XE "Modules"
Interfaces XE "Interfaces"
It seems to be desirable that any function/module/interface might be treated as a black box and implemented either in System Verilog or in the foreign language in a transparent XE "transparent" way.

Bassam’s comments:

1) I am more concerned about the -unstated- assumptions/limitations

(i.e. -scope-/-usage- of DFLI (direct foreign language interface :-)!)) in the doc, than the clearly stated ones.

2) Closely related to #1, some of the reqs themselves do not mesh a 100% and may be slightly contradictory even.

3.2 Practical considerations XE "Practical considerations" :

- changes to the System Verilog language should be as small as possible

- the actual foreign language should be transparent and irrelevant to the System Verilog user

- the interface should not require any changes to the foreign language nor its compiler XE "compiler"
- both sides of the interface should be fully isolated, i.e. neither of the two compilers (System Verilog compiler and the foreign language compiler) should be required to analyze XE "analyze" the source code XE "source code" in the other language

- it is desirable that the System Verilog language side/facet of the interface would be based upon the System Verilog constructs in order to facilitate an ease of use and to minimize the learning curve

- the foreign language side/facet of the interface should be transparent XE "transparent" and irrelevant to the System Verilog user. It is desirable that there would be several shells of the foreign side of the interface, with different balance of security XE "security" , convenience XE "convenience" and performance XE "performance" . The System Verilog compiler/simulator should generate/use the representation XE "representation" /protocol XE "protocol" required for the intended shell. It should be possible to use the same System Verilog code with different shells regardless of the data access method XE "data access method" assumed in a given shell.

Bassam’s Comments:

Here's a practical projection (into a set of questions/issues/comments) of the 2 concerns above:

a) Is DFLI intended to be a complement to a "PLI" where PLI is the main access/manipulation mechanism into internal simulation data structures etc.

If so (i.e. orthogonal to PLI) then the following trouble me:

 -
to get values of some common basic types (e.g. integer values) from the foreign code

· synchronize the Verilog part of the design with non-Verilog concurrent components only via value changes.

If not (see later), why is this so ? Is this really needed (see (d) below).

b) Is DFLI intended to be "side-effect" (using the term loosely...) free ? If so, again the 2 reqs above (and the passing mechanism) trouble me.

c)
you mention an excellent req of compiler optimization, yet:

 i) you allow access to Verilog data ("get") from within the so-called black boxes... how predictable can that be ? It's bad enough we have "black box" boundaries, would be worse if black box is touching other parts (this would be exacerbated if synchronization is allowed inside ...).

 - "blackbox"

 - the usage of the interface should not prohibit compiler optimizations by introducing unpredictability in accessing and/or modifying Verilog data

 - the ability of access of the foreign code to the Verilog data should be easily visible to the compiler in order to minimize performance penalty

d) Again to harp on the same point, once we open the door to "get", people will ask for "set", and you have a VCL soon people would want "end/begin of timestep"... so we are back in PLI world. We already have those. I thought we were serving a different set of apps with DFLI.... see counterproposal below for how to do synchronization ...

**My counter proposal would be:

- let's adopt the "black box" as you suggest

- DFLI calls are "side-effect free" (Uhm that is let's not build problems into it, user can always shoot themselves in the foot with an endless for loop or something).

- let's clearly/cleanly define the -pass- and the -return-. This would be only way to sample values (func gets a copy ...). More overhead... but we need to "automatically" map the types back and forth so might as well build it "safe".

- Verilog side is "master" i.e. if you want a VC trigger, or timestep sync or whatever do:

 @always(...)

 func(...)

- Verilog is the medium where funcs communicate (as Andrzej suggests, through the presence of "foreign objects" (not interpreted in Verilog).

** BTW, I think may be the concept of "shell"s with different access "level"s is the answer to most of the issues I raise. BUT if we want to go the route of providing different levels of services/access, the reqs should be recategorized based on the level of access. We would then have a clearer idea on the set of services and cost (compiler optimization, overhead etc...). Did I answer my own questions ? If so, would you kindly mind reorganizing, if you think it's a good way to tackle these issues ? I suspect we would not all agree on the need for the "full access"/"full interactivity/flexibility with simulator" since that is already VPI's function ...

MR’s comments:

I am not so sure why the different shells are sooo important, without having said what different

kinds of security, convenience and performance should be selectable. For me this looks like a

implementation detail instead of a requirement; aren't the requirements that:

 - the integration of FL functionality must support multiple facets with the same API

 [meaning there is _not_ a different set of functions for each facet]

 - the facets are (this is only the list that comes into my mind)

 . maximum performance (perform no validation of parameters, no debug support)

 . enhanced security (validate correctness of parameters, check for errors in FL code when possible)

 . provision of debug support (enable debug statement requried for debug of FL code and the I/F)

 - the facets should be selectable by the SV compiler/simulator by (whatever you like: env vars, #pragmas, 'defines)

 - is it intended to select different FL component definitions/implementation within different shells?

Also your statement says that the Verilog code (SV code) should stay the same. What about the FL code?

3.3 Functionality:

The interface should allow (in the order from the most rudimentary to more sophisticated requirements):

· to execute a foreign procedure XE "foreign procedure" from System Verilog code (master-slave model XE "master-slave model" with System Verilog side being the master and no simulation time passing during the call); the implementation should support at least calls to C functions

· to pass values XE "pass:values" of some common basic types XE "basic types" (e.g. integer values XE "integer values") from System Verilog to the foreign code

MR’s comments:

these are 3 requirements:

 . the interface enables to execute a FL function/procedure from SV code

 . no simulation time passed during the call [be more specific here - what about delta cycles]

 . implementation should support at least calls to C functions [be more specific here - what means at least? C vs. C++ or what else]

· to pass string XE "pass:string" literals (i.e. text in quotes) to the foreign code

MR’s comments:

This is not enough. The API must permit to pass values of all kind of SV types; we might want to distinguish between scalar types and more complex types (arrays etc).

Do we want to support the modification of SV types within the FL code? Your statement does not look like this is the case ...

· to get values of some common basic types (e.g. integer values) from the foreign code

· to pass XE "pass:data types" values of System Verilog data types between the System Verilog code and the foreign code, in either direction

· to pass XE "pass:foreign data" foreign data from the foreign code via System Verilog code back to the foreign code; an ability to pass XE "pass:handle" a handle (pointer XE "pass:pointer" , reference XE "pass:reference") to a foreign data type between the foreign code and the System Verilog code and store it temporary XE "temporary" on the System Verilog side seems sufficient; such a handle may be meaningless on the System Verilog side and should not be interpreted there.

MR’s comments:

I assume this also means to pass the handle between different components on the FL side?

· synchronize XE "synchronize" the System Verilog part of the design with non-System Verilog concurrent components only via value changes

We don't require the ability to call a System Verilog function or task from the foreign code. The rationale is as follows.

System Verilog functions/tasks are usually defined within some context XE "context" (module or interface scope XE "scope") and may access non-local data XE "local data" (functions/tasks declared in $root are an exception XE "exception"). Hence a caller XE "caller" should provide the context XE "context" of a call (e.g. a module or interface instance). In a non-System Verilog part such context is simply not visible/available. The interface specification XE "interface specification" should not attempt to enhance the other programming language with new constructs for supporting System Verilog.

Kevin Cameron’s comments:

I'd quite like to be able to call tasks in interfaces from C/C++ somehow – maybe through a C++ class API.

3.4 Usage:

- the learning curve should be minimal

- simple things should be simple and intuitive

- preferably there should be no changes in the syntax of behavioral System Verilog code

- the implementation XE "implementation" should provide an automatic and transparent conversion XE "conversion" between the basic type used in the interface and the relevant System Verilog types (reg/wire, scalars and vectors)

3.5 Portability XE "Portability" :

- the interface should be available also on the platforms on which the native code is not supported and where C code is the only way to go (System Verilog compiled to C); hence the interface must be built upon the C function calling protocol XE "protocol:function calling"
MR’s comments:

this sounds again like there is more than one requirement:

 . platform independence of the interface

 . interface must use the C function call semantics

I am unsure what the statement "(Verilog compiled to C)" means?

3.6 Performance:

- there should be no intrinsic overhead XE "overhead" at least for the simple scenarios

MR’s comments:

remove the part after "at least" or define what simple scenarios are

- the usage of the interface should not prohibit compiler optimizations XE "optimizations" by introducing unpredictability XE "unpredictability" in accessing and/or modifying System Verilog data

- the ability of access of the foreign code to the System Verilog data should be easily visible to the compiler XE "compiler" in order to minimize performance penalty

Index

analyze
10

basic types
11

Black Box
9

C code
8

caller
12

compiler
10, 13

context
12

convenience
10

conversion
12

data access method
10

encapsulation units
9

exception
12

foreign language
9

foreign procedure
11

Functions
9

Heterogeneous System
9

implementation
12

integer values
11

interface specification
12

Interfaces
9

local data
12

master-slave model
11

Modules
9

non-System Verilog
8

optimizations
13

overhead
12

pass

data types
12

foreign data
12

handle
12

pointer
12

reference
12

string
11

values
11

performance
10

PLI
8

Portability
12

Practical considerations
9

protocol
10

function calling
12

representation
10

scope
12

security
10

source code
10

synchronize
12

System Verilog
8

Tasks
9

temporary
12

testbench
9

transparent
9, 10

unpredictability
13

