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List of Open Issues
For now, I have copied comments from responses as they relate to specific requirements. Later, when the

List of open issues begin to form, we will use this as a quick reference for how we are doing. 

Once we start closing a few items, I can move them to Closed Issues list at the end of the document (like an annex, and then remove (or separate) it eventually)

1 Introduction

I will write some introduction part here regarding requirements. 

General Requirements

Provide means (e.g. iterator) to obtain every assertion XE "assertion:within an instance"  within a given instance

2. Provide means to obtain every assertion XE "assertion:within a module"  associated with a given module   (sum of all assertions in all instances of the given module)
Bassam’s comments:
Let's just say - Provide means to obtain every assertion associated with a given module

It should not be "sum...", it's just things bound to module instead of instance (i.e. module ... { }) So it is really "intersection..." but let's not even say that. Just keep it for module bound, we have the instance bound in 1- above.

Joao’s response:
Good point. I agree.

Provide means to get handle to an assertion XE "assertion:by name"  by name

Bassam’s comments:
full name (meaning full_design_instance_name.assertion_name)

Joao’s response:
Yes, one way or another the name has to be a fully qualified name.

Provide means to control assertions XE "assertion:controlling" :

enable XE "enable assertion"  an assertion XE "assertion:enable" 
disable XE "disable assertion"  an assertion XE "assertion:disable" 
reset XE "reset assertion"  an assertion XE "assertion:reset" 
Bassam’s comments:
We are still working in SV-AC on "reset"/"accept on"/"reject on"/.... so we

may need to add/remove a few things here.

Joao’s response:
Whether there are reject/accept constructs on in the language itself is one thing, but I really believe that the API should be able to exert some "low-level" control over the assertions. In this sense:

        enable: allow the assertion to run as usual

        disable: stop the assertion from running (& reset any internal state)

        reset: behaves as disabled immediately followed by enable.

                (in a sense: discard all current attempts, start new attempts on next clock)

Provide means for applications to register callback XE "register callback" s for:

Bassam’s comments:
We probably need to classify callbacks (r/w/...)... Some callbacks are "read" (you cannot control assertion), whereas others are "write" (need a better word of course, but here you can enable/disable/reset/.... the assertion). Essentially the idea is the relationship between callbacks (of success/fail/...i.e. dynamic occurrences) and control.

Joao’s response:
I am not sure exactly what you mean here.

assertion XE "assertion:success"  success XE "success" 
assertion XE "assertion" 

 XE "assertion:failure" \i  failure XE "failure" \i 
assertion XE "assertion:attempt"  attempt XE "attempt" \i 
assertion XE "assertion:disabled"  being disabled XE "disabled" \i 
assertion XE "assertion:enabled"  being enabled XE "enabled" \i 
assertion XE "assertion:reset"  being reset XE "reset" \i 
Bassam’s comments:

Are these the only dynamic info ? What about things like assertion "local" vars (init/assign..), these objects will need to be available for access as well ... what else besides vars ?

Joao’s response:
Good catch. 

There are really a couple of areas of both static and dynamic information for which tools will need access that I failed to include in the requirements:

+ static information (added to item 7)

+7.8: list of all HDL expressions referenced by an assertion (static drivers)

+10 - dynamic information on per attempt basis (new item 10)

+10.1: list of all HDL expressions actively driving the current state of the assertion

        (on a per attempt basis: ie all expressions that were used by the assertion

        on its last clock tick)

+10.2: values of all assertion "local" variables (this will depend, of course, on

      the kind of local variables that will be present in the SV assertions)

+10.3: trace of expressions over time matched by the an specific attempt of an assertion

        NOTE: there will have to be significant limitations on this requirement, eg

        can only be provided for specific assertions and for a specific attempt and only

        if this information is requested ahead of time.

        Without limitations this requirement would kill all performance and capacity.

2.1 Provide means to obtain per assertion XE "assertion:static information"  static information XE "static information" \i :

2.2 assertion XE "assertion:type"  type XE "type" \i  (eg check/forbid/event/...)

2.3 assertion XE "assertion:attributes"  attributes XE "attributes" \i  (eg assume/guarantee/...)
Bassam’s comments:

Can we call this one "assertion modes" (or directive modes ...), I'd rather reserve attributes for 6.4

Joao’s response:
OK. We should use whatever terminology is consistent with the assertion standard.

source information XE "source information" \i  (source file, line number, ...)

clocking signal XE "clocking signal" \i /expression

instance XE "instance" \i  in which assertion XE "assertion:instance"  exists

name XE "name" \i  of assertion XE "assertion:name" 
module XE "module of declaration" \i  in which assertion XE "assertion:module"  declared

Bassam’s comments:

We need to generalize this one. "attributes", clocking signal is one attribute, there are others (weak/strong clock), others ? Of course, we should define how far we should go here ... what's is useful info for the scope of this API, and what's too much...

Joao’s response:
Is the clocking signal an attribute or a "driver" ?

I consider "attributes" to be things are generally informational hints to tools, and specifically to be things that should have no impact functionality/semantics. Both clocking and weak/strong clock have both functionality and semantics, so in my opinion these are "properties" of an assertion rather than "attributes".

But moving away from the terminology issue, I agree that there are probably a number of other "property/attribute/..." things that could be provided by the API _and_ that we should be careful on how many of these are made part of the API requirements.

Provide means to obtain information about a specific success XE "specific success" \i /failure:

time XE "time of assertion" \i  assertion XE "assertion:attempt time"  attempt started

signal XE "signal of assertion detection" \i /expression where success/failure detected
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