Requirements Document

API

for

Assertions

Version: 0.1
September 15, 2002

Document #

SVCC-AR090602-0.1

[image: image1.png]

Accellera Copyright Notice

Committee Members

	Name
	Company
	Email

	Yatin Trivedi
	ASIC Group
	trivedi@pacbell.net

	Francoise Martinolle
	Cadence
	fm@cadence.com

	Stuart Swan
	Cadence
	stuart@cadence.com

	Simon Davidmann
	Co-Design
	simond@co-design.com

	Peter Flake
	Co-Design
	flake@co-design.com

	Michael Rohleder
	Motorola
	Michael.Rohleder@motorola.com

	Kevin Cameron
	National Semiconductor
	Kevin.Cameron@nsc.com

	Bassam Tabbara
	Novas
	bassam@novas.com

	Darrell Parham
	Sun Microsystems
	Darrell.Parham@sun.com

	Joao Geada
	Synopsys
	Joao.Geada@synopsys.com

	Ghassan Khoory
	Synopsys
	Ghassan.Khoory@synopsys.com

	Andrzej Litwiniuk
	Synopsys
	Andrzej.Litwiniuk@synopsys.com

	Alain Raynaud
	Tensilica
	alain@tensilica.com

	
	
	

	
	
	

	
	
	

	Tarak Parikh
	@HDL
	tarak@athdl.com

	Vassilios Gerousis
	Infineon
	Vassilios.Gerousis@Infineon.Com

	Josef Derner
	Mentor
	josef_derner@mentorg.com

	Karen Bartleson
	Synopsys
	Karen.Bartleson@synopsys.com

	K Chen
	Verplex
	kchen@verplex.com

	Michael McNamara
	Verisity
	mac@verisity.com

	
	Xilinx
	drm@xilinx.com

Revision History
	Version
	Date
	Editor / Contributor
	Comments

	0.0
	8/14/02
	Joao Geada
	Initial contribution from Synopsys

	0.1
	9/12/02
	Yatin Trivedi
	Created initial document
brought in comments from email discussions

Table of Contents

4Revision History

6List of Open Issues

71
Introduction

82
General Requirements

11List of Closed Issues

1. 12Index

List of Open Issues
For now, I have copied comments from responses as they relate to specific requirements. Later, when the

List of open issues begin to form, we will use this as a quick reference for how we are doing.

Once we start closing a few items, I can move them to Closed Issues list at the end of the document (like an annex, and then remove (or separate) it eventually)

1 Introduction

I will write some introduction part here regarding requirements.

General Requirements

Provide means (e.g. iterator) to obtain every assertion XE "assertion:within an instance" within a given instance

2. Provide means to obtain every assertion XE "assertion:within a module" associated with a given module (sum of all assertions in all instances of the given module)
Bassam’s comments:
Let's just say - Provide means to obtain every assertion associated with a given module

It should not be "sum...", it's just things bound to module instead of instance (i.e. module ... { }) So it is really "intersection..." but let's not even say that. Just keep it for module bound, we have the instance bound in 1- above.

Joao’s response:
Good point. I agree.

Provide means to get handle to an assertion XE "assertion:by name" by name

Bassam’s comments:
full name (meaning full_design_instance_name.assertion_name)

Joao’s response:
Yes, one way or another the name has to be a fully qualified name.

Provide means to control assertions XE "assertion:controlling" :

enable XE "enable assertion" an assertion XE "assertion:enable"
disable XE "disable assertion" an assertion XE "assertion:disable"
reset XE "reset assertion" an assertion XE "assertion:reset"
Bassam’s comments:
We are still working in SV-AC on "reset"/"accept on"/"reject on"/.... so we

may need to add/remove a few things here.

Joao’s response:
Whether there are reject/accept constructs on in the language itself is one thing, but I really believe that the API should be able to exert some "low-level" control over the assertions. In this sense:

 enable: allow the assertion to run as usual

 disable: stop the assertion from running (& reset any internal state)

 reset: behaves as disabled immediately followed by enable.

 (in a sense: discard all current attempts, start new attempts on next clock)

Provide means for applications to register callback XE "register callback" s for:

Bassam’s comments:
We probably need to classify callbacks (r/w/...)... Some callbacks are "read" (you cannot control assertion), whereas others are "write" (need a better word of course, but here you can enable/disable/reset/.... the assertion). Essentially the idea is the relationship between callbacks (of success/fail/...i.e. dynamic occurrences) and control.

Joao’s response:
I am not sure exactly what you mean here.

assertion XE "assertion:success" success XE "success"
assertion XE "assertion"

 XE "assertion:failure" \i failure XE "failure" \i
assertion XE "assertion:attempt" attempt XE "attempt" \i
assertion XE "assertion:disabled" being disabled XE "disabled" \i
assertion XE "assertion:enabled" being enabled XE "enabled" \i
assertion XE "assertion:reset" being reset XE "reset" \i
Bassam’s comments:

Are these the only dynamic info ? What about things like assertion "local" vars (init/assign..), these objects will need to be available for access as well ... what else besides vars ?

Joao’s response:
Good catch.

There are really a couple of areas of both static and dynamic information for which tools will need access that I failed to include in the requirements:

+ static information (added to item 7)

+7.8: list of all HDL expressions referenced by an assertion (static drivers)

+10 - dynamic information on per attempt basis (new item 10)

+10.1: list of all HDL expressions actively driving the current state of the assertion

 (on a per attempt basis: ie all expressions that were used by the assertion

 on its last clock tick)

+10.2: values of all assertion "local" variables (this will depend, of course, on

 the kind of local variables that will be present in the SV assertions)

+10.3: trace of expressions over time matched by the an specific attempt of an assertion

 NOTE: there will have to be significant limitations on this requirement, eg

 can only be provided for specific assertions and for a specific attempt and only

 if this information is requested ahead of time.

 Without limitations this requirement would kill all performance and capacity.

2.1 Provide means to obtain per assertion XE "assertion:static information" static information XE "static information" \i :

2.2 assertion XE "assertion:type" type XE "type" \i (eg check/forbid/event/...)

2.3 assertion XE "assertion:attributes" attributes XE "attributes" \i (eg assume/guarantee/...)
Bassam’s comments:

Can we call this one "assertion modes" (or directive modes ...), I'd rather reserve attributes for 6.4

Joao’s response:
OK. We should use whatever terminology is consistent with the assertion standard.

source information XE "source information" \i (source file, line number, ...)

clocking signal XE "clocking signal" \i /expression

instance XE "instance" \i in which assertion XE "assertion:instance" exists

name XE "name" \i of assertion XE "assertion:name"
module XE "module of declaration" \i in which assertion XE "assertion:module" declared

Bassam’s comments:

We need to generalize this one. "attributes", clocking signal is one attribute, there are others (weak/strong clock), others ? Of course, we should define how far we should go here ... what's is useful info for the scope of this API, and what's too much...

Joao’s response:
Is the clocking signal an attribute or a "driver" ?

I consider "attributes" to be things are generally informational hints to tools, and specifically to be things that should have no impact functionality/semantics. Both clocking and weak/strong clock have both functionality and semantics, so in my opinion these are "properties" of an assertion rather than "attributes".

But moving away from the terminology issue, I agree that there are probably a number of other "property/attribute/..." things that could be provided by the API _and_ that we should be careful on how many of these are made part of the API requirements.

Provide means to obtain information about a specific success XE "specific success" \i /failure:

time XE "time of assertion" \i assertion XE "assertion:attempt time" attempt started

signal XE "signal of assertion detection" \i /expression where success/failure detected

List of Closed Issues
Index

assertion
9

attempt
9

attempt time
10

attributes
9

by name
8

controlling
8

disable
8

disabled
9

enable
8

enabled
9

failure
9
instance
9

module
9

name
9

reset
8, 9

static information
9

success
9

type
9

within a module
8

within an instance
8

attempt
9
attributes
9
clocking signal
9
disable assertion
8

disabled
9
enable assertion
8

enabled
9
failure
9
instance
9
module of declaration
9
name
9
register callback
8

reset
9
reset assertion
8

signal of assertion detection
10
source information
9
specific success
10
static information
9
success
9

time of assertion
10
type
9

