
System Verilog Assertion API.doc Version 0.1

System Verilog Assertion API
João Geada

Change Log
Version Date Authors Description
0.1 11/25/2002 Joao First draft proposal for incorporating Synopsys

assertions API donation into SV framework.

Table of Contents
1 Requirements .. 2

1.1 Naming conventions ... 2
2 Static Information ... 2

2.1 Obtaining assertion handles .. 2
2.2 Obtaining static assertion information .. 3

2.2.1 Additional static information .. 4
3 Dynamic Information.. 4

3.1 Placing assertion “system” callbacks.. 4
3.2 Placing assertions callbacks.. 5
3.3 Obtaining dynamic information.. 6

4 Control Functions.. 7
4.1 Assertion System control .. 7
4.2 Assertion control... 8

 Page 1 of 8

System Verilog Assertion API.doc Version 0.1

1 Requirements
To provide an API into the SV assertion capabilities providing sufficient capabilities to:
1. enable user’s C code to react to assertion events
2. enable 3rd party assertion “waveform” dumping tools to be written
3. enable 3rd party assertion coverage tools to be written
4. enable 3rd party assertion debug tools to be written
The interface should also be readily extensible/adaptable so that it can easily be kept in
sync with progress made by the sv-ac committee.
In addition, this interface should not unnecessarily duplicate any existing PLI/VPI
interfaces.

1.1 Naming conventions1
All elements provided by this interface must have the unique prefix “sva”
Types names will start with “sva” followed by Capitalized words with no separators, eg:
 svaAssertID
Function names will start with “sva_” followed by all lowercase words separated by ‘_’,
eg:
 sva_get_assertion_by_name()
In addition, enumeration entries for “actions” will end with the
character ‘A’, whereas enumeration entries for “events” will end with
‘E’

2 Static Information
2.1 Obtaining assertion handles
1. Iterate over all assertions

typedef enum { svaFirstItemI, svaNextItemI } svaIter;
typedef void* svaAssertID;
svaAssertID sva_iterate_assertions(svaClientID, svaIter);

The iterator has to be initialized by making a call with svaFirstItem; if there are
assertions in the design this returns the handle to the first assertion and initializes a
client iterator data structure. Repeated calls with svaNextItem will return handles to
other assertions in the design until all assertions have been visited. After the last
handle has been returned, a further call with svaNextItem will return a NULL handle.
It is undefined what happens if svaNextItem is invoked without a prior call to
svaFirstItem.
Only one assertion iterator can be in-progress for a given svcClientID

2. Iterate over all assertions in an instance
svaAssertID sva_instance_assertions(svaClientID,
 const char *instance,
 svaIterEnum);

Similar to global iterators above. instance is a fully qualified name of an instance in

1 João comment: these rules are meant to be consistent with the naming conventions used by PLI and VPI
interfaces

 Page 2 of 8

System Verilog Assertion API.doc Version 0.1

the design. Instance must be provided only when svaFirstItem is given, and on all
successive calls with svaNextItem instance must be NULL.

3. Iterate over all assertions in a module
no proposal

4. Obtain assertion by name
svcAssertID svc_get_assertion_by_name(svaClientID,
 const char *name);

returns the handle for the named assertion or NULL. ‘name’ must be a fully qualified2
assertion name.

Note that all assertion handles (svaAssertID) are to a specific assertion in a specific
instance.

2.2 Obtaining static assertion information
The following information about an assertion is considered to be “static”:

1. Assertion name
2. Instance in which the assertion occurs
3. Module definition containing the assertion
4. Assertion type3:

a. check
b. forbid
c. event
d. etc as necessary by assertion updates in sv-ac

5. Assertion directive4:
a. property
b. assume
c. etc as necessary by assertion updates in sv-ac

6. Assertion source information
file, line and column where assertion defined

7. Assertion clocking domain/expression5
Static information can be obtained directly from an svaAssertID without requiring any
assertion attempts to be started or completed.

typedef enum { svaCheckType,

svaForbidType,
svaEventType } svaAssertType;

typedef enum { svaProperty, svaAssume } svaAssertDirective;
typedef struct { char *fileName;

int startLine; int startColumn;
int endLine; int endColumn;

} svaSourceInfo;
typedef struct { char *assertName;
 char *instanceName;
 char *moduleName;

2 Using regular Verilog hierarchical ‘dot’ notation
3 Exact types will have to be adjusted as per developments in the sv-ac committee
4 Exact directives will have to be adjusted as per developments in the sv-ac committee
5 Specific clocking domain info will have to be adjusted as per developments in the sv-ac committee

 Page 3 of 8

System Verilog Assertion API.doc Version 0.1

 char *clockDomain;
 svaAssertType assertType;
 svaAssertDirective assertDirective;
 svaSourceInfo sourceInfo;
} svaAssertStaticInfo;
int svaGetAssertStaticInfo(svaClientID,

svaAssertID,
svaAssertStaticInfo*);

This call is used to obtain all the static information associated with an assertion. Note: a
single call returns all the information for efficiency reasons, as most clients will require
most of the data; for efficiency one roundtrip through the API is better than multiple. The
inputs are a valid svaClientID, svaAssertID and a pointer to an existing
svaAssertStaticInfo datastructure. On success the function returns TRUE and the
svaAssertStaticInfo datastructure will be filled in as appropriate. On failure, the function
returns FALSE and the contents of the the static info datastructure are unpredictable.

2.2.1 Additional static information
There are additional items that could be obtained statically from assertion, including:

1. Structure of assertion
2. Set of HDL variables used by assertion
3. Set of HDL expressions used by assertion

No proposal for these items.

3 Dynamic Information

3.1 Placing assertion “system” callbacks
1. Assertion system initializing

Occurs before assertion system has initialized. No assertion specific actions can
be performed at this time

2. Assertion system started
Assertion system has completed initialization and is about to become active.
Typically will occurs just before start of simulation

3. Assertion system finish
Occurs when all assertions have completed and no new attempts will start.
Typically occurs after the end of simulation.

4. Assertion system reset
Occurs when the assertion system is reset, eg due to a system control action

5. Assertion system terminated
Occurs if assertion system is terminated, eg due to a system control action

typedef enum {
 svaSystemInitializingE,
 svaSystemStartedE,
 svaSystemFinishE,
 svaSystemResetE,
 svaSystemTerminateE,
} svaSystemEvent;
typedef void (*svaSystemCallback)(svaSystemEvent,
 void *userData);

 Page 4 of 8

System Verilog Assertion API.doc Version 0.1

int svaAddSystemCallback(svaClientID,
 svaSystemEvent,
 svaSystemCallback,
 void *userData);
int svaDeleteSystemCallback(svaClientID,
 svaSystemEvent,
 svaSystemCallback,
 void **userData);

3.2 Placing assertions callbacks
Callbacks can be placed on any occurrence of the following per-assertion events:

1. Assertion attempt start
An assertion attempt has started. For most assertions one attempt will start each
and every clock tick

2. Assertion success
When an assertion attempt reaches a success state

3. Assertion failure
When an assertion attempt fails to reach a success state

4. Successful transition
progress of one “thread” along an attempt

5. Failed transition
failure of one “thread” to progress along the attempt

6. Assertion disabled
Whenever the assertion is disabled (eg as a result of a control action)

7. Assertion enabled
Whenever the assertion is enabled

8. Assertion reset
Whenever the assertion is reset

9. Assertion killed
When an attempt is killed (eg as a result of a control action)

These callbacks are specific to a given assertion; placing such a callback on one assertion
will not cause the callback to trigger on an event occurring on a different assertion

typedef enum {
 svaAttemptStartE,
 svaAttemptSuccessE,
 svaAttemptFailureE,
 svaSuccessfullTransitionE,
 svaFailedTransitionE,
 svaAssertionDisabledE,
 svaAssertionEnabledE,
 svaAssertionResetE,
 svaAssertionKilledE,
 svaAssertionAllE, /* composite event = all events */
} svaAssertEvent;
typedef void (*svaAssertCallback)(svaAssertEvent,
 svaAssertID,
 svaAssertAttemptID,
 void *userData);
int svaAddAssertCallback(svaClientID,
 svaAssertID,

 Page 5 of 8

System Verilog Assertion API.doc Version 0.1

 svaAssertEvent,
 svaAssertCallback,
 void *userData);
int svaDeleteAssertCallback(svaClientID,
 svaAssertID,
 svaAssertEvent,
 svaAssertCallback,
 void **userData);
This call places an assertion callback. The call return TRUE if successful, FALSE
otherwise. Attempting to place the same callback (ie same callback function) on the same
assertion by the same client repeatedly has no effect other than changing the userData
associated with that callback. Supplying invalid IDs or an invalid event to this call may
have unpredictable effects.
Transition callbacks will occur for every transition along each attempt in the FSM
representing the assertion. Note that multiple transitions may occur as a result of a single
clocking event.
Once the callback is placed the user-supplied function will be called each time this event
occurs on the given assertion. The callback will continue to be called whenever the event
occurs until the callback is removed. The callback function will be supplied the event that
caused the callback, the handle for the assertion, a handle to the specific assertion attempt
(if appropriate, NULL otherwise), and a reference to the user data supplied when the
callback was placed.
A callback can be removed once placed by the svaDeleteAssertCallback() function by
supplying the appr. arguments. Attempting to remove a non-existent callback has no
effect. If a callback is successfully removed, TRUE is returned and the userData pointer
will be set to the userData supplied when the callback was placed. If no callback is
removed FALSE is returned. As with all other calls, invoking this function with invalid
arguments will have unpredictable effects.

3.3 Obtaining dynamic information
Success: attempt start time
Failure: attempt start time, expression at which assertion failed
Transition: expression(s) causing transition, from state, to state, next state expression
typedef struct {
 char *failExpression; /* expression causing assert to fail */
 long long attemptTime; /* time when assert attempt started (in fs) */
} svaAssertAttemptInfo;
int svaGetAttemptInfo(svaClientID,
 svaAssertID,
 svaAssertAttemptID,

svaAssertAttemptInfo*);

typedef struct {
 int expressionCount;

char **expressionsEvaluated;
int stateFrom;
int stateTo;
char *nextExpression;

} svaTransitionInfo;

 Page 6 of 8

System Verilog Assertion API.doc Version 0.1

int svaGetTransitionInfo(svaClientID,
 svaAssertID,
 svaAssertAttemptID,

svaTransitionInfo*);
This function gets the information related to a transition. The input are a valid
svaClientID, svaAssertID, svaAssertAttemptID (obtained from a transition callback), and
a pointer to an existing svaTransitionInfo datastructure, which will be filled in by the API
on successful completion of the call. If the call is successful it returns TRUE, FALSE
otherwise.
Neither the stateFrom nor stateTo ids are meaningful other than for uniquely identifying
states in the FSM from which transitions occur. The expressionCount has the number of
expressions evaluated by the assertion in the processing of this transition.
expressionsEvaluated is the array of expressions evaluated (dimension ==
expressionCount). nextExpression is the expression that will be evaluated in the next
clock for this attempt and thread. Note that this expression can be a union of the
expressions that will actually be used during the evaluation of the next transition.
Note that the expression array co by this function will not persist across any subsequent
call of this same function. If user requires persistence of this information it is their
responsibility to copy it.
Note this callback and information is primarily intended to support debuggers and
runtime analysis of assertions, rather than for user applications.

4 Control Functions

4.1 Assertion System control
1. Initialize the API and register a user of the API

typedef void *svaClientID;
svaClientID svaRegisterClient();

This call must be made prior to any use of the API by a client application. The
returned client identifier must be supplied to all other API calls. The client handle is
used to preserve client specific information including:
• userData per callback
• state of iterators
• callbacks placed

2. Control the assertion system
• Reset assertion engine

discard all attempts in progress for all assertions and restore the entire assertion
system to its initial state.

• Finish assertion system
consider all attempts in progress as unterminated and disable any further
assertions from being started.

• Terminate assertion system
discard all attempts in progress and disable any further assertions from starting.

typedef enum {
 svaResetSysA,

 Page 7 of 8

System Verilog Assertion API.doc Version 0.1

 Page 8 of 8

 svaFinishSysA,
 svaTerminateSysA } svaSysAction;

int svaDoSysAction(svaClientID, svaSysAction, void *userData);

The above call performs a control action upon the whole assertion system. The call
returns TRUE if action was successful, FALSE otherwise. Action to be performed is
specified by providing the appropriate enum. Only one action can be performed per call.
Supplying a value other than one of the legal enum values above may have unpredictable
consequences. The userData field will be propagated to any callbacks waiting on
assertion system events.

4.2 Assertion control
• Reset assertion

discards all current attempts in progress for this assertion and resets this assertion
to its initial state

• Disable new attempts
disables the starting of any new attempts for this assertion. Has no effect on any
existing attempts. No effect if assertion already disabled. Note that by default all
assertions are enabled.

• Enable new attempts
Enables starting new attempts for this assertion. No effect if assertion already
enabled. No effect on any existing attempts.

• Kill existing attempts
Discards any existing attempts but leaves assertion enabled and does not reset any
state used by this assertion (eg past() sampling)

• Enable assertion tracing
Enables state transition callbacks to occur for this assertion. No effect if tracing
already enabled. Note that by default tracing is disabled for all assertions.

• Disable assertion tracing
Disables state transition callbacks for this assertion. No effect if tracing already
disabled

typedef enum {
 svaResetAssertA,
 svaDisableAttemptsAssertA,
 svaEnableAttemptsAssertA,
 svaKillAssertA,
 svaEnableTraceAssertA,
 svaDisableTraceAssertA } svaAssertAction;
int svaDoAssertAction(svaClientID, svaAssertAction,
 svaAssertID, void *userData);

The above call performs a control action upon a specific assertion, identified by its
svaAssertID. The call returns TRUE if action was successful, FALSE otherwise. Action
to be performed is specified by providing the appropriate enum. Only one action can be
performed per call. Supplying a value other than one of the legal enum values above or
supplying an invalid svaAssertID may have unpredictable consequences. The userData
field will be propagated to any callbacks waiting on events for the given assertion.

	Requirements
	Naming conventions

	Static Information
	Obtaining assertion handles
	Obtaining static assertion information
	Additional static information

	Dynamic Information
	Placing assertion “system” callbacks
	Placing assertions callbacks
	Obtaining dynamic information

	Control Functions
	Assertion System control
	Assertion control

