System Verilog Assertion API-v0.2.doc

Version 0.2

System Verilog Assertion API

João Geada

Change Log

	Version
	Date
	Authors
	Description

	0.1
	11/25/2002
	Joao
	First draft proposal for incorporating Synopsys assertions API donation into SV framework.

	0.2
	12/03/2002
	João
	Updated with comments/suggestions for sv-cc face to face meeting on 12/3/2002. Major changes: API changed to an extension of VPI, making all names consistent with naming scheme, additional static information APIs. Also synch-ed up terminology to current state of sv-ac (eg assertion (property)

Table of Contents

21
Requirements

21.1
Naming conventions

22
Extensions to VPI enumerations

33
Static Information

33.1
Obtaining assertion handles

43.2
Obtaining static assertion information

53.2.1
Additional static information

54
Dynamic Information

54.1
Placing assertion “system” callbacks

64.2
Placing assertions callbacks

75
Control Functions

75.1
Assertion System control

75.2
Assertion control

Requirements

To provide an API into the SV assertion capabilities providing sufficient capabilities to:

1. enable user’s C code to react to assertion events

2. enable 3rd party assertion “waveform” dumping tools to be written

3. enable 3rd party assertion coverage tools to be written

4. enable 3rd party assertion debug tools to be written

The interface should also be readily extensible/adaptable so that it can easily be kept in sync with progress made by the sv-ac committee.

In addition, this interface should not unnecessarily duplicate any existing PLI/VPI interfaces.

1.1 Naming conventions

All elements added by this interface will conform to the vpi interface naming conventions:

1. all names will be prefixed by vpi

2. type names will start with “vpi” followed by Capitalized words with no separators, eg vpiAssertCheck

3. all function names will start with “vpi_” followed by all lowercase words separated by ‘_’, eg vpi_get_assert_info()
2 Extensions to VPI enumerations

1. Object types:

1. #define vpiProperty 130 /* temporal assertion */

2. #define vpiCheck 131 /* immediate (non-temporal) assertion */

2. Object properties:

1. #define vpiAssertProperty
132

2. #define vpiAssumeProperty
133

3. #define vpiRestrictProperty
134

4. #define vpiCoverProperty
135

3. Callbacks

1. Property related

· #define cbPropertyStart 30

· #define cbPropertySuccess 31

· #define cbPropertyFailure 32

· #define cbPropertyStep 33

· #define cbPropertyDisable 34

· #define cbPropertyEnable 35

· #define cbPropertyReset 36

· #define cbPropertyKill 37

2. “Property System” related

· #define cbPropertySysInitialized 38

· #define cbPropertySysStart 39

· #define cbPropertySysStop 40

· #define cbPropertySysEnd 41

· #define cbPropertySysReset 42

4. Control constants

1. Property related

· #define vpiPropertyDisable 136

· #define vpiPropertyEnable 137

· #define vpiPropertyReset 138

· #define vpiPropertyKill 139

· #define vpiPropertyEnableStep 140

· #define vpiPropertyDisableStep 141

2. “Property System” related

· #define vpiPropertySysStart 142

· #define vpiPropertySysStop 143

· #define vpiPropertySysEnd 144

· #define vpiPropertySysReset 145

3 Static Information

3.1 Obtaining assertion handles

Extend the VPI module (actually, instance) iterator model to encompass assertions.

[image: image1.wmf]module

pro

perty

all other module

-

>> object iterators

from IEEE 1364

-

2001, section 26.6.1 page 634

1. Iterate over all properties in the design: use a NULL reference handle (ref) to vpi_iterate()

itr = vpi_iterate(vpiProperty, NULL);

while (assertion = vpi_scan(itr)) {

/* process property */

}
5. Iterate over all properties in an instance: pass appropriate instance handle as reference handle to vpi_iterate()

itr = vpi_iterate(vpiProperty, instanceHandle);

while (assertion = vpi_scan(itr)) {

/* process property */

}
6. Obtain assertion by name: extend vpi_handle_by_name to also search for assertion names in the appropriate scope(s)
vpiHandle = vpi_handle_by_name(assertName, scope)
Note that this operation only works for named assertions! Unnamed assertions cannot be found by name.

NOTE: as with all vpi handles, assertion handles are handles to a specific instance of a specific assertion.

NOTE: these iterators will return both temporal properties and immediate non-temporal checks.

3.2 Obtaining static assertion information

The following information about an assertion is considered to be “static”:

1. Assertion name

2. Instance in which the assertion occurs

3. Module definition containing the assertion

4. Assertion type
:

a. check

b. property

c. etc as necessary by assertion updates in sv-ac

5. Assertion directive
:

a. assert

b. assume

c. restrict

d. cover

e. etc as necessary by assertion updates in sv-ac

6. Assertion source information
file, line and column where assertion defined

7. Assertion clocking domain/expression

Static information can be obtained directly from an svaAssertID without requiring any assertion attempts to be started or completed.

typedef struct t_vpi_source_info {

PLI_BYTE* *fileName;

PLI_INT32 startLine;
PLI_INT32 startColumn;

PLI_INT32 endLine;
PLI_INT32 endColumn;

} s_vpi_source_info, *p_vpi_source_info;

typedef struct t_vpi_property_info {

PLI_BYTE8 *name; /* name of property */

PLI_BYTE8 *instance; /* instance containing property */

PLI_BYTE8 *module; /* module containing assertion */

PLI_BYTE8 *clock; /* clocking expression */

PLI_INT32 type; /* vpiProperty, vpiCheck */

PLI_INT32 directive; /* vpiAssume, … */

s_vpi_source_info sourceInfo;

} s_vpi_property_info, *p_vpi_property_info;

int vpi_get_property_info(assert_handle, p_vpi_property_info);

This call is used to obtain all the static information associated with an assertion. Note: a single call returns all the information for efficiency reasons, as most clients will require most of the data; for efficiency one roundtrip through the API is better than multiple roundtrips. The inputs are a valid handle to an assertion and a pointer to an existing s_vpi_property_info datastructure. On success the function returns TRUE and the s_vpi_property_info datastructure will be filled in as appropriate. On failure, the function returns FALSE and the contents of the property info datastructure are unpredictable.

3.2.1 Additional static information

There are additional items that could be obtained statically from assertion, including:

1. Structure of assertion

2. Set of HDL variables used by assertion

3. Set of HDL expressions used by assertion

No proposal for these items.

4 Dynamic Information

4.1 Placing assertion “system” callbacks

Use vpi_register_cb(), setting the cb_rtn element to the function to be invoked and the reason element of the s_cb_data structure to one of the following:

1. cbPropertySysInitialized
Occurs after system has initialized. No assertion specific actions can be performed until after this callback occurs. Note that the property system may initialize before or after cbStartOfSimulation

2. cbPropertySysStart
Assertion system has become active and will begin processing property attempts. Will always occur after cbPropertySysInitialized. Note that by default the property system will be “started” on simulation startup, but it is possible for a user to delay this with the appropriate use of property system control actions.

3. cbPropertySysStop
Assertion system has been temporarily suspended. While stopped no property attempts will be processed and no property related callbacks will occur. The property system may be stopped and resumed an arbitrary number of times during a single simulation run.

4. cbPropertySysEnd
Occurs when all assertions have completed and no new attempts will start. Once this callback occurs no more property related callbacks will occur and property related actions will have no further effect. Typically occurs after the end of simulation.
5. cbPropertySysReset
Occurs when the assertion system is reset, eg due to a system control action
The callback routine invoked follows the normal vpi callback prototype and is passed a s_cb_data containing the callback reason and any user data provided to the vpi_register_cb() call.

4.2 Placing assertions callbacks

Use vpi_register_property_cb()
, whose prototype is as follows:

vpiHandle vpi_register_property_cb(
 vpiHandle,

/* handle to property */
 PLI_INT32 event,

/* event for which callbacks needed */
 PLI_INT32 (*cb_rtn)(/* callback function */
 PLI_INT32 event,
 vpiHandle property,

 p_vpi_attempt_info info,

 PLI_BYTE8 *userData),
 PLI_BYTE8 *user_data

/* user data to be supplied to cb */
);
typedef struct t_vpi_property_step_info {

 /* contents to be defined from feedback from sv-ac (Bassam?) */

} s_vpi_property_step_info, *p_vpi_property_step_info;

typedef struct t_vpi_attempt_info {

 union {

 PLI_BYTE* failExpr;

 s_vpi_property_step_info step;

 } detail;
 s_vpi_time attemptTime,
} s_vpi_attempt_info, *p_vpi_attempt_info;

Where event is any of the following:

1. cbPropertyStart
An assertion attempt has started. For most assertions one attempt will start each and every clock tick

2. cbPropertySuccess
When an assertion attempt reaches a success state

3. cbPropertyFailure
When an assertion attempt fails to reach a success state

4. cbPropertyStep
progress of one “thread” along an attempt. Note that by default step callbacks are not enabled on any properties. Note also that step callbacks are enabled on a per-property/per-attempt basis, rather than on a per-property basis.

5. cbPropertyDisable
Whenever the assertion is disabled (eg as a result of a control action)

6. cbPropertyEnable
Whenever the assertion is enabled

7. cbPropertyReset
Whenever the assertion is reset

8. cbPropertyKill
When an attempt is killed (eg as a result of a control action)

These callbacks are specific to a given assertion; placing such a callback on one assertion will not cause the callback to trigger on an event occurring on a different assertion. If the callback is successfully placed a handle to the callback will be returned. This handle can be used to remove the callback via vpi_remove_cb(). If there were errors on placing the callback a NULL handle will be returned. As with all other calls, invoking this function with invalid arguments will have unpredictable effects.

Once the callback is placed the user-supplied function will be called each time the specified event occurs on the given property. The callback will continue to be called whenever the event occurs until the callback is removed.

The callback function will be supplied the following arguments:

the event that caused the callback,

the handle for the assertion,

a pointer to an attempt info structure

a reference to the user data supplied when the callback was placed.

The attempt info structure contains details relevant to the specific event that occurred:

a. on disable, enable, reset and kill events the info field absent (a NULL pointer is given as the value of info

b. on start and success events, only the attempt time field is valid

c. on a failure event, the attempt time and detail.failExpr are valid

d. on a step callback, the attempt time and detail.step elements are valid.

NOTE: step callbacks are primarily intended to support property debugging and tracing applications, rather than general users.
NOTE: the actual contents and semantics of the step callbacks are still to be defined; pending information from sv-ac related to observable points in assertions (Bassam’s action item)

5 Control Functions

5.1 Assertion System control

Use vpi_control(), with one of the following operators and no other arguments:

1. vpiPropertySysReset
discard all attempts in progress for all assertions and restore the entire assertion system to its initial state.

2. vpiPropertySysStop
consider all attempts in progress as unterminated and disable any further assertions from being started.
3. vpiPropertySysStart
restart the property system after it was stopped (eg due to vpiPropertySysStop). Once started, attempts will resume on all properties.
4. vpiPropertySysEnd
discard all attempts in progress and disable any further assertions from starting.

5.2 Assertion control

Use vpi_control() with one of the following operators:

1. For all the following, the second argument must be a valid property handle.

a. vpiPropertyReset
discards all current attempts in progress for this assertion and resets this assertion to its initial state

b. vpiPropertyDisable
disables the starting of any new attempts for this assertion. Has no effect on any existing attempts. No effect if assertion already disabled. Note that by default all assertions are enabled.

c. vpiPropertyEnable
Enables starting new attempts for this assertion. No effect if assertion already enabled. No effect on any existing attempts.

2. For all the following, the second argument must be a valid property handle and the third argument must be an attempt start time (as a pointer to a correctly initialized s_vpi_time structure)

a. vpiPropertyKill
Discards the given attempts but leaves assertion enabled and does not reset any state used by this assertion (eg past() sampling)

b. vpiPropertyEnableStep
Enables step callbacks to occur for this property attempt. No effect if stepping already enabled for this property+attempt. Note that by default stepping is disabled for all assertions.

c. vpiPropertyDisableStep
Disables step callbacks for this assertion. No effect if stepping not enabled or already disabled

� João comment: these rules are meant to be consistent with the naming conventions used by PLI and VPI interfaces

� To be merged to the contents of the “vpi_user.h”, described in 1364-2001, Annex G, pages 764-777�NOTE on final LRM merge, will have to verify that proposed number assignments remain unique

� Exact types will have to be adjusted as per developments in the sv-ac committee

� Exact directives will have to be adjusted as per developments in the sv-ac committee

� Specific clocking domain info will have to be adjusted as per developments in the sv-ac committee

� NOTE can’t just use vpi_register_cb because the prototype of the callback function is different

Page 1 of 8

_1101547927.unknown

