
5-1

FSM Coverage

Using Pragmas

A pragma is a meta-comment, something entered in a code comment,
that is a message for the software that reads the comment. These
pragmas are sometimes called compiler directives even though they
do not have the syntax of a compiler directive defined in the IEEE Std
1364.

You use pragmas to specify an FSM that VCS might not automatically
extract.

With these pragmas you tell VCS the following things about the FSM:

• The vector signal, part-select of a vector signal, or concatenation
of signals that hold the current state of the FSM.

• The vector signal that hold the next state of the FSM, unless the
FSM doesn’t use a signal for the next state (in which case VCS
displays a warning and assumes that the current state and next
state are in the same signal, part-select of a signal, or
concatenation of signals).

• The possible states of the FSM that are specified in a parameter
declaration. When using pragmas to specify an FSM there must
be a parameter declaration to specify the possible states of the
FSM.

Specifying The Signal That Holds The Current State

You use the following pragma to identify the vector signal that holds
the current state of the FSM:

/* VCS state_vector signal_name */

5-2

FSM Coverage

VCS and state_vector are required keywords. You must enter this
pragma inside the module definition where the signal is declared.

You also must use a pragma to specify an enumeration name for the
FSM. This enumeration name is also specified for the next state and
the possible states, associating them with each other as part of the
same FSM. There are two ways you can do this:

• Use the same pragma:

/* VCS state_vector signal_name enum enumeration_name */

• Use a separate pragma in the signal’s declaration:

/* VCS state_vector signal_name */
reg [7:0] /* VCS enum enumeration_name */ signal_name;

In either case enum is a required keyword, if using the separate
pragma, VCS is also a required keyword. Also, when using a separate
pragma, enter the pragma immediately after the bit range of the
signal.

Specifying The Part-Select That Holds The Current State

You can specify that a part-select of a vector signal holds the current
state of the FSM. When cmView displays or reports FSM coverage
data it names the FSM after the signal that holds the current state. If
in your FSM a part-select holds the current state, you must also
specify a name for the FSM that cmView can use. The FSM name is
not the same as the enumeration name.

You specify the part-select with the following pragma:

/* VCS state_vector signal_name[n:n] FSM_name enum
enumeration_name */

5-3

FSM Coverage

Specifying The Concatenation That Holds The Current
State

Like specifying a part-select, you can specify a concatenation of
signals to hold the current state, when you do you also specify an
FSM name and an enumeration name:

/* VCS state_vector {signal_name, signal_name,...} FSM_name
enum enumeration_name */

The concatenation is of entire signals. You cannot include in the
concatenation bit-selects or part-selects of signals.

Specifying The Signal That Holds The Next State

You also specify the signal that holds the next state of the FSM with
the pragma that specifies the enumeration name:

reg [7:0] /* VCS enum enumeration_name */
signal_name

If, and only if, the FSM does not have a signal for the next state, you
can omit this pragma.

Specifying The Current and Next State Signals In The
Same Declaration

If you use the pragma for specifying the enumeration name in a
declaration of multiple signals, VCS assumes that the first signal
following the pragma holds the current state and the next signal holds
the next state, for example:

/* VCS state_vector cs */
reg [1:0] /* VCS enum myFSM */ cs, ns, nonstate;

5-4

FSM Coverage

In this example VCS assumes that signal cs holds the current state
and signal ns holds the next state. It assumes nothing about signal
nonstate.

Specifying The Possible States of The FSM

You also specify the possible states of the FSM with the pragma that
specifies the enumeration name:

parameter /* VCS enum enumeration_name */
 S0 = 0,
 s1 = 1,
 s2 = 2,
 s3 = 3;

Enter this pragma immediately after the keyword parameter unless
you specify a bit width for the parameters, in which case enter the
pragma immediately after the bit with:

parameter [1:0] /* VCS enum enumeration_name */
 S0 = 0,
 s1 = 1,
 s2 = 2,
 s3 = 3;

Pragmas In One Line Comments

These pragmas work in both block comments, between the /* and
*/ character strings, and one line comments, following the //
character string, for example:

parameter [1:0] // VCS enum enumeration_name
 S0 = 0,
 s1 = 1,
 s2 = 2,
 s3 = 3;

5-5

FSM Coverage

Example FSM Specified With Pragmas

module m3;

 reg[31:0] cs;
 reg[31:0] /* VCS enum MY_FSM */ ns;
 reg[31:0] clk;
 reg[31:0] rst;

// VCS state_vector cs enum MY_FSM

 parameter // VCS enum MY_FSM
 p1=10,
 p2=11,
 p3=12;

 endmodule // m3

Signal ns holds the next state

signal cs holds the current state

p1, p2, and p3 are possible
states of the FSM

5-6

FSM Coverage

	Using Pragmas
	Specifying The Signal That Holds The Current State
	Specifying The Part-Select That Holds The Current State
	Specifying The Concatenation That Holds The Current State
	Specifying The Signal That Holds The Next State
	Specifying The Current and Next State Signals In The Same Declaration
	Specifying The Possible States of The FSM
	Pragmas In One Line Comments
	Example FSM Specified With Pragmas

