
0.0.1 Inclusion of Object Code

The inclusion of compiled object code is required for cases where the compilation and linking of source code
is fully handled by the user; thus only loading of the created object code is needed to integrate the foreign
language code into a SystemVerilog application.

It must be supported by all SystemVerilog applications as a minimum requirement to support the integration
of Foreign Language Code. Figure 1, “Inclusion of Object Code into a SystemVerilog Application”, depicts
the inclusion of object code and its relations

.

Figure 0-1 Inclusion of Object Code into a SystemVerilog Application

Compiled object code to be loaded can be specified by one of the following three methods:

1. By an entry in a bootstrap file; this file and its content will be described in more detail below. Its
location must be specified with one instance of the switch “-sv_liblist <pathname>“. This switch
may be used multiple times to define the usage of multiple bootstrap files.

2. By specifying the file with one instance of the switch “-sv_lib <path+name_without_extension>”;
the filename must be specified without the platform specific extension. The SystemVerilog applica-
tion is responsible for appending the appropriate extension for the actual platform.
This switch may be used multiple times to define multiple libraries holding object code.

Both methods must be provided and must be made available concurrently, to permit any mixture of their
usage. Every location can be either an absolute pathname or a relative pathname, where the value of the
switch -sv_root is used to identify an appropriate prefix for relative pathnames.1

Compiled object code must be provided in form of a shared library having the appropriate extension for the
actual platform2. The provider of the compiled code is responsible for any external references specified
within these objects. Appropriate data must be provided to resolve all open dependencies with the correct
information.3 The SystemVerilog application should only load object code within a shared library that is
referenced by the SystemVerilog code or by registration functions; loading of additional functions included
within a shared library should be avoided, because they might interfere with other parts.

1.Refer to the corresponding rules in the introduction for more details on forming pathnames.
2.Shared libraries use e.g. .so for Solaris, .sl for HP-UX, other operating systems might use different extensions.
In any case, it is the task of the SystemVerilog application to identify the appropriate extension.
3.Special care must be taken to avoid interferences with other software and to ensure the appropriate software
version is taken (e.g. in cases where two versions of the same library are referenced). Similar problems might
arise when there are dependencies in the compiled object code on the expected runtime environment (e.g. in
cases where C++ global objects or static initializers are used).

Load

System
Verilog

Application
Object
Code

Source
Code

Compile

Object Code
Inclusion

Link

Performed by the user



In case of multiple occurances of the same file1 the above order also identifies the precedence of loading;
as a result a file located by method 1) will override files specified by method 2). All compiled object code
must be loaded in specification order similarly to the above scheme; first the content of the bootstrap file is
processed starting with the first line, then the set of ’-sv_lib’ switches is processed in order of their
occurance. Any library must and will only be loaded once.

The object code bootstrap file has the following syntax:

1. The first line must contain the string: “#!SV_LIBRARIES”

2. It follows an arbitrary amount of entries, one entry per line, where every entry holds exactly one
library location. Each entry consists only of the <path+name_without_extension> of the object
code file to be loaded and may be surrounded by an arbitrary number of blanks; at least one blank
must preceed the entry in the line.
The value <path+name_without_extension> is equivalent to the value of the switch ’-sv_lib’.

3. Any amount of comment lines can be interspersed between the entry lines; a comment line starts
with the character '#' after an arbitrary (including zero) amount of blanks and is terminated with a
newline.

No other means shall be provided for identifying the location and filename of compiled object code to be
included via the DirectC Interface.

Examples:
1) Assuming the pathname root has been set by the switch ’-sv_root’ to “/home/user” and it is needed to
include the following object files

• /home/user/myclibs/lib1.so

• /home/user/myclibs/lib3.so

• /home/user/proj1/clibs/lib4.so

• /home/user/proj3/clibs/lib2.so

then this can be accomplished by one of the methods in the following figure. Both methods are equivalent.

2) Assuming the current working directory is “/home/user” the following series of switches (left column) will
result in loading the following files (right column):

1.This refers to files having the same pathname or can be easily identified as being identical; e.g. by comparing
the inodes of the files to detect cases where links are used to refer the same file.

#!SV_LIBRARIES
myclibs/lib1
myclibs/lib3
clibs/lib4
clibs/lib2

...
-sv_lib myclibs/lib1
-sv_lib myclibs/lib3
-sv_lib clibs/lib4
-sv_lib clibs/lib2
...

Example1a: BOOTSTRAP FILE Example 1b: SWITCH LIST

-sv_lib svLibrary1
-sv_lib svLibrary2
-sv_root /home/project2/shared_code
-sv_lib svLibrary3
-sv_root /home/project3/code
-sv_lib svLibrary4

/home/user/svLibrary1.so
/home/user/svLibrary2.a

/home/project2/shared_code/svLibrary3.so

/home/project3/code/svLibrary4.so

Example 2: ’-sv_lib’/’-sv_root’ switches and the resulting file names



3) Further, given the following set of switches and contents of bootstrap files:

results in loading the following files:

• /home/usr1/lib1.<ext>

• /home/usr1/lib2.<ext>

• /home/usr2/lib3.<ext>

• /common/libx.<ext>

• /home/usr2/lib5.<ext>

where <ext> stands for the actual extension of the corresponding file.

-sv_root /home/usr1
-sv_liblist bootstrap1

-sv_root /home/usr2
-sv_liblist /home/mine/bootstrap2

#! SV_LIBRARIES
lib1
lib2

#! SV_LIBRARIES
lib3
/common/libx
lib5

bootstrap1:

bootstrap2:

Example 3: Mixing -sv_root and bootstrap files


