Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

Section 1
SystemVerilog Assertion API

This chapter defines the Assertion Application Programming Interface (API) in SystemVerilog 3.1/draft 2.

1.1 Requirements

SystemVerilog 3.1/draft 2 provides assertion capabilities to enable:
— auser’s C code to react to temperal-property assertion events,
— third-party temperal-property assertion “waveform” dumping toolsto be written,
— third-party tempera-preperty assertion coverage tools to be written, and
— third-party tempera-preperty assertion debug tools to be written.

1.1.1 Naming conventions

All elements added by this interface shall conform to the Verilog Procedural Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi .

— All type names shall start with vpi , followed by initially capitalized words with no separators, e.g.,
vpi Assert Check.

— All calback names shall start with cb, followed by initially capitalized words with no separators, e.g.,
CbAssertionStart.

— Al function names shall start with vpi _, followed by all lowercase words separated by underscores
(1), eq.,vpi _get _assert_info().

1.1.2 Nomenclature

The following terms are used in this standard.

Directive— atype applied to atemporal expression describing how the results of the temporal expression
are to be captured and/or interpreted.

| Proeperty Assertion clock — the Verilog event expression that indicates to a temperal-preperty assertion
when time has advanced (and when HDL signals can be sampled, etc.).

Temporal expression — ** Add this from the SV-AC LRM**
Femperal-property—also-knewn-as Assertions — A declarative expression (one or more clock cycles)

describing the behavior of a system over time.

1.2 Extensions to VPl enumerations

These extension shall be merged into the contents of the vpi _user . h file, described in IEEE Sd 1364-2001,
Annex G. The numbersin therange 700 - 799 are reserved for the assertion portion of the VPI.

1.2.1 Object types
This section lists the object type VPI cals. The VPI reserved range for these call is 700 - 729.

| #defi ne vpi PrepertyAssertion 700 /* tepporal—property assertion */

Copyright 2002 Accellera. All rights reserved. 1

Accellera

SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

1.2.2 Object preperties assertions

This section lists the object preperty assertion VPI calls. The VPI reserved range for these call is700 - 729.

vpi Assert PrepertyrAsserti on701

vpi AssumePrepertyrAsserti on702

vpi Restri ct PrepertyrAsserti on703

vpi Cover ProepertyAsserti on704

vpi CheckPrepertyAsserti on705 /* inlined behavi or preperty assertion */
vpi PrepertyrAssertionDirective706 /* nethod to obtain preperty

assertion directive */

1.2.3 Callbacks

| This section lists the property assertion and preperty assertion system callbacks. The VPI reserved range for

these call is
700 - 719.

a) Preperbyr-Assertion

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne

cbPrepertyAssertionStart 700
cbPrepertyAsserti onSuccess701
cbPrepertyAssertionFail ure702
cbPropertyAssertionSt epSuccess703
cbPrepertyAssertionSt epFai |l ure704
cbPrepertyAssertionDi sabl e705
cbPrepertyAsserti onEnabl e706
cbPrepertyAsserti onReset 707

cbProepertyAssertionKill 708

b) “Preperty-Assertion system”

cbPropertyAssertionSysinitialized709
cbPrepertyAssertionSysStart 710
cbProepertyAssertionSysStop711
cbPropertyAsserti onSysEnd712
cbPropertyAsserti onSysReset 713

1.2.4 Control constants

| This section lists the preperty assertion, preperty assertion stepping, and preperty assertion system control
constant callbacks. The VPI reserved range for these call is 730 - 759.

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

a) Preperby-Assertion

vpi PrepertyAsserti onDi sabl e730

vpi PropertyAsserti onEnabl e731

vpi PropertyAsserti onReset 732

vpi PropertyAssertionKill 733

vpi PrepertyAsserti onEnabl eSt ep734
vpi PrepertyAsserti onDi sabl eSt ep735

b) Preperty-Assertion stepping
#defi ne vpi PrepertyAsserti onCl ockSt eps736
c) “Preperty-Assertion system”

#defi ne vpi PrepertyAsserti onSysStart 737
#defi ne vpi PrepertyAsserti onSysSt op738
#defi ne vpi PrepertyAsserti onSysEnd739

Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

#def i ne vpi PrepertyrAsserti onSysReset 740

1.3 Static information

This section defines how to obtain assertion handles and other static assertion information.

1.3.1 Obtaining assertion handles

SystemVerilog 3.1/draft 2 extends the VPl module iterator model (i.e., the instance) to encompass assertions,
| asshownin Figure 1-1—. **Revise this xref w/ Stu; also check/revise variable settings, etc.**

The following steps highlight how to obtain the assertion handles for named assertions.

1 3
I
I
I b
I
I

c)

NOTES

module property

all other module ->> object iterators
from [EEE 1364-2001, section 26.6.1 page 634

Figure 1-1—Encompassing assertions

Iterate all properties assertionsin the design: use a NULL reference handle (ref) tovpi _i terate(),
eg.,

itr = vpi_iterate(vpi PrepertyAssertion, NULL);
while (assertion = vpi_scan(itr)) {

/* process property assertion */
}

Iterate all preperties assertions in an instance: pass the appropriate instance handle as a reference
handletovpi _iterate(),eg.,

itr = vpi_iterate(vpi PropertyrAssertion, instanceHandl e);
while (assertion = vpi_scan(itr)) {

/| * process property assertion */
}

Obtain the assertion by name: extend vpi _handl e_by nane to also search for assertion namesin
the appropriate scope(s), e.g.,

vpi Handl e = vpi _handl e_by_name(assert Name, scope)

1—Aswith all VPI handles, assertion handles are handles to a specific instance of a specific assertion.

Copyright 2002 Accellera. All rights reserved. 3

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

| 2—Theseiterators return both temperal-properties assertions and immediate non-temporal checks.
3—Unnamed assertions cannot be found by name.
1.3.2 Obtaining static assertion information

The following information about an assertion is considered to be “ static”.
— Assertion name
— Instance in which the assertion occurs
— Module definition containing the assertion

— Assertion directive!

a) assert
b) check
C) assume
d) cover

| €) Any assertion updates from the SV-AC.

— Assertion source information: the file, line, and column where the assertion is defined.

— Assertion clocking domai n/expression?
| 1.3.2.1Using vpi _get_prepertyassertion_info

Static information can be obtained directly from an assertion handle by using
| vpi_get_propertyassertion_info,asshown below.

typedef struct t_vpi_source_info {
PLI _BYTE* *fil eNane;
PLI I NT32 startLine;
PLI I NT32 start Col um;
PLI I NT32 endLi ne;
PLI _I NT32 endCol umm;
} s_vpi_source_info, *p_vpi_source_info;
typedef struct t_vpi_prepertyassertion_info {

PLI _BYTE8 *nane; /* nanme of preperty assertion */
vpi Handl e i nstance; /* instance containing preperty assertion */
PLI _BYTE8 nodnane; /* nanme of nodul e/interface containing

assertion */

vpi Handl e cl ock; /* clocki ng expression */
PLI _INT32 directive; /* vpiAssunme, ... */
s_vpi _source_i nfo sourcel nfo;
s_vpi _proepertyasserti on_info, *p_vpi_prepertyassertion_info;
int vpi _get_propertyassertion_info (assert_handl e,
p_vpi _prepertyassertion_info);

Thiscall obtains al the static information associated with a temperal-property assertion.

The inputs are a valid handle to a tempera—property assertion and a pointer to an existing
S_vpi _prepertyassertion_i nfo data structure. On success, the function returns TRUE and the

The exact directives need to be adjusted per developmentsin the SV-AC committee.
2Any specific clocking domain information needs to be adjusted per developmentsin the SV-AC committee.

4 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

s_vpi _prepertyassertion_i nf o data structure is filled in as appropriate. On failure, the function
returns FAL SE and the contents of the preperty-irfermation assertion data structure are unpredictable.

Assertions can occur in modules and interfaces. assertions defined in modules (by using VPI) shall have
instance information; assertions in interfaces shall have a NULL instance handle. In either case, nodnane is
the definition name.

NOTES

1—The preperty assertion clock is an event expression supplied as the clocking expression to the temperal-property
assertion declaration, i.e., thisis a handle to an arbitrary Verilog event expression.

2—A single call returns all the information for efficiency reasons.

1.3.2.2 Extending vpi _get () and vpi _get _str ()

In addition to vpi _get proepertyassertion_i nf o, the following existing VPI functions are also
extended:

vpi _get (), vpi_get_str()
vpi _get () can be used to query the following VPI preperties assertions from a handle to a temperal-prop-
erty assertion.

vpi PropertyAssertionDirective
returns one of vpi Assert Property or vpi CheckProperty.

vpi Li neNo

returns the line number where the preperty assertion is declared.
vpi _get _str () can be used to obtain the following VPI preperties assertions from a temperal-property
assertion handle.

vpi Fi | eNane
returns the filename of the source file where the property assertion was declared.

vpi Nane
returns the name of the preperty assertion.

vpi Ful | Nane
returns the fully qualified name of the property assertion.

1.4 Dynamic information
This section defines how to place assertion system and assertion callbacks.

1.4.1 Placing assertion “system” callbacks

Usevpi _register_cb(), setting the cb_r t n element to the function to be invoked and the reason ele-
ment of thes_cb_dat a structure to one of the following values, to place an assertion system callback.

cbPrepertyAsserti onSyslnitialized
occurs after the system has initialized. No assertion-specific actions can be performed until this callback

completes. The preperty assertion system can initialize beforecbSt ar t OF Si mul at i on does or after-
wards.

Copyright 2002 Accellera. All rights reserved. 5

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

cbProepertyAsserti onSysStart
the assertion system has become active and starts processing preperty assertion attempts. This adways

occur after chPrepertyyAssertionSysl niti al i zed. By default, the property assertion system is
“started” on simulation startup, but the user can delay this by using preperty assertion system control
actions.

cbPrepertyAsserti onSysSt op

the assertion system has been temporarily suspended. While stopped no preperty assertion attempts are
processed and no preperty assertion-related callbacks occur. The preperty assertion system can be
stopped and resumed an arbitrary number of times during a single simulation run.

cbPrepertyAsserti onSysEnd

occurs when all assertions have completed and no new attempts will start. Once this callback occurs no
more property assertion-related callbacks shall occur and preperty assertion-related actions shall have no
further effect. Thistypically occurs after the end of simulation.

cbPropertyAsserti onSysReset
occurs when the assertion system is reset, e.g., due to a system control action.

The callback routine invoked follows the normal VPI callback prototype and is passed an s_cb_dat a con-
taining the callback reason and any user data provided to thevpi _r egi st er _cb() cdll.

1.4.2 Placing assertions callbacks
Usevpi _regi ster_propertyassertion_ch() to place an assertion calback; the prototypeis:

vpi Handl e vpi _regi ster_prepertyyasserti on_ch(
vpi Handl e, /* handle to preperty assertion */
PLI _I NT32 event,/* event for which callbacks needed */
PLI _I NT32 (*cb_rtn)(/* cal |l back function */
PLI _I NT32 event,
vpi Handl e preperty assertion,
p_vpi _attenmpt _info info,
PLI _BYTE8 *user Dat a),
PLI _BYTE8 *user_data/* user data to be supplied to cb */
)
typedef struct t_vpi_prepertyassertion_step_info {
PLI _I NT32 mat ched_expressi on_count ;
vpi Handl e *matched_exprs; /* array of expressions */
p_vpi _source_info *exprs_source_info; /* array of source info */
PLI _I NT32 stateFrom stateTo;/* identify transition */
} s_vpi _prepertyassertion_step_info, *p_vpi_preopertyasserti on_step_info;
typedef struct t_vpi_attenpt_info {
uni on {
vpi Handl e fail Expr;
p_vpi _prepertyassertion_step_info step;
} detail;
s_vpi _tine attenptTine,
} s_vpi_attenpt_info, *p_vpi_attenpt_info;

where event isany of the following.

cbPrepertyAssertionStart
an assertion attempt has started. For most assertions one attempt starts each and every clock tick.

cbPrepertyAsserti onSuccess
when an assertion attempt reaches a success state.

cbPrepertyAsserti onFail ure

when an assertion attempt fails to reach a success state.

6 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

cbPrepertyAsserti onSt epSucess

the progress of one “thread” along an attempt. By default, step callbacks are not enabled on any preperties
assertions; they are enabled on a per-propertyassertion/per-attempt basis, rather than on a per-propertyas-
sertion basis.

cbPropertyAsserti onSt epFai l ure

failure to progress along one “thread” along an attempt. By default, step callbacks are not enabled on any
properties assertions, they are enabled on a per-propertyassertion/per-attempt basis, rather than on a per-
propertyassertion basis.

cbPrepertyAsserti onDi sabl e
whenever the assertion is disabled (e.g., as aresult of a control action).

| cbPrepertyAsserti onEnabl e
whenever the assertion is enabled.

| cbPrepertyAsserti onReset
whenever the assertion is reset.

| cbProepertyAsserti onKil |
when an attempt iskilled (e.g., asaresult of a control action).

These callbacks are specific to a given assertion; placing such a callback on one assertion does not cause the
callback to trigger on an event occurring on a different assertion. If the callback is successfully placed, a han-
dle to the callback is returned. This handle can be used to remove the callback viavpi _renove_cb() . If
there were errors on placing the callback, a NULL handle is returned. As with al other calls, invoking this
function with invalid arguments has unpredictabl e effects.

Once the callback is placed, the user-supplied function shall be called each time the specified event occurs on
| the given preperty assertion. The callback shall continue to be called whenever the event occurs until the call-
back isremoved.

The callback function shall be supplied the following arguments:
a) theevent that caused the callback
b) the handle for the assertion
C) apointer to an attempt information structure

d) areference to the user data supplied when the callback was placed.

The attempt information structure contains details relevant to the specific event that occurred.

— Ondisable, enable, reset and kill events, thei nf o fieldisabsent (aNULL pointer is given asthe value
of i nf 0).

— On start and success events, only the attempt time field is valid.
— On afailure event, the attempt timeand det ai | . f ai | Expr arevalid.

— On astep callback, the attempt time and det ai | . st ep elementsare valid.

On a step callback, the det ai | describes the set of expressions matched in satisfying a step along the asser-
tion, along with the corresponding source references. In addition, the st ep also identifies the source and des-
tination “states’ needed to uniquely identify the path being taken through the assertion. Sate ids are just
integers, with O identifying the origin state, 1 identifying an accepting state, and any other number represent-
ing some intermediate point in the assertion. It is possible for the number of expressions in a step to be 0
(zero), which represents an unconditional transition. In the case of a failing transition, the information pro-
vided isjust as that for asuccessful one, but the last expression in the array represents the expression where the
transition failed.

Copyright 2002 Accellera. All rights reserved. 7

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

NOTES
1—In afailing transition, there shall always be at least one element in the expression array.

2—Placing a step callback resultsin the same callback function being invoked for both success and failure steps.

1.5 Control functions
This section defines how to obtain assertion system control and assertion control information.

1.5.1 Assertion system control

Usevpi _control (), with one of the following operators and no other arguments, to obtain assertion sys-
tem control information.

Usage example: vpi _control (vpi Asserti onSysReset)

vpi PropertyAsserti onSysReset

discards all attemptsin progress for all assertions and restore the entire assertion system toitsinitia state.
Usage example: vpi _control (vpi Asserti onSysSt op)

vpi PropertyAsserti onSysSt op

considers all attempts in progress as unterminated and disable any further assertions from being started.
Usage example: vpi _control (vpi AssertionSysStart)

vpi PrepertyyAssertionSysStart
restarts the property assertion system after it was stopped (e.g., due to vpi PrepertyAsserti on-
Sys St op). Once started, attempts shall resume on all properties assertions.

Usage example: vpi _control (vpi Asserti onSysEnd)

vpi PropertyAsserti onSysEnd
discard all attemptsin progress and disable any further assertions from starting.

1.5.2 Assertion control

Usevpi _control (), with one of the following operators, to obtain assertion control information.
— For the following operators, the second argument shall be a valid preperty assertion handle.

Usage example: vpi _control (vpi AssertionReset, assertionHandl e)

vpi PropertyAsserti onReset
discards all current attemptsin progress for this assertion and resets this assertion to itsinitial state.

Usage example: vpi _control (vpi Asserti onDi sabl e, assertionHandl e)

vpi PreopertyAsserti onDi sabl e
disables the starting of any new attemptsfor this assertion. This has no effect on any existing attempts. or
if the assertion already disabled. By default, all assertions are enabled.

Usage example: vpi _control (vpi Asserti onEnabl e, assertionHandl e)

vpi PrepertyAsserti onEnabl e
enables starting new attempts for this assertion. This has no effect if assertion already enabled or on any
existing attempts.

| — For thefollowing operators, the second argument shall be avalid preperty assertion handle and the third
argument shall be an attempt start-time (as a pointer to acorrectly initialized s_vpi _t i me structure).

8 Copyright 2002 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
Usage example: vpi _control (vpi AssertionKill, assertionHandl e, attenpt)
vpi PropertyAssertionKill

discards the given attempts, but leaves the assertion enabled and does not reset any state used by this
assertion (e.g., past () sampling).

| Usage example: vpi _control (vpi AssertionDi sabl eStep, assertionHandl e, attenpt)

vpi PropertyAsserti onDi sabl eSt ep
disables step callbacks for this assertion. This has no effect if stepping not enabled or it is dready dis-
abled.

| — For thefollowing operator, the second argument shall be avalid preperty assertion handle, the third argu-
ment shall be an attempt start-time (as a pointer to a correctly initialized s_vpi _t i me structure) and the
fourth argument shall be a“step control” constant.

Usage example: vpi _control (vpi Asserti onEnabl eSt ep, assertionHandl e, attenpt,
vpi PropertyAsserti onCl ockSt eps)

vpi PreopertyAsserti onEnabl eSt ep

enables step callbacks to occur for this preperty assertion attempt. By default, stepping is disabled for all
assertions. This call has no effect if stepping is already enabled for this property assertion and attempt,
other than possibly changing the stepping mode for the attempt if the attempt has not occurred yet. The
stepping mode of any particular attempt cannot be modified after the assertion attempt in question has
started.

NOTE—In this release, the only step control constant availableisvpi PropertyrAsserti onCl ockSt eps, indi-
cating callbacks on a per assertion/clock-tick basis. The preperty assertion clock is the event expression supplied as the
clocking expression to the temperal-preperty assertion declaration. The property assertion shall “ advance” whenever this
event occurs and, when stepping is enabled, such events shall aso cause step callbacksto occur.

Copyright 2002 Accellera. All rights reserved. 9

	Section 1 SystemVerilog Assertion API
	1.1 Requirements
	1.1.1 Naming conventions
	1.1.2 Nomenclature

	1.2 Extensions to VPI enumerations
	1.2.1 Object types
	1.2.2 Object properties assertions
	1.2.3 Callbacks
	1.2.4 Control constants

	1.3 Static information
	1.3.1 Obtaining assertion handles
	1.3.2 Obtaining static assertion information

	1.4 Dynamic information
	1.4.1 Placing assertion “system” callbacks
	1.4.2 Placing assertions callbacks

	1.5 Control functions
	1.5.1 Assertion system control
	1.5.2 Assertion control

