
5. SystemVerilog 3.1 scheduling semantics 
Extracted from IEEE Std. 1364-2001 
Edited and expanded by Phil Moorby Feb 2003 
Edited by David Smith Feb 2003 
Version 6. 

5.1 Execution of a hardware model and its verification environment 
 
The balance of the sections of this standard describes the behavior of each of the 
elements of the language. This section gives an overview of the interactions between 
these elements, especially with respect to the scheduling and execution of events. 
 
Although SystemVerilog is used for more than simulation, the semantics of the language 
are defined for event directed simulation, and everything else is abstracted from this base 
definition. 

5.2 Event simulation 
 
The SystemVerilog language is defined in terms of a discrete event execution model. The 
discrete event simulation is described in more detail in this section to provide a context to 
describe the meaning and valid interpretation of SystemVerilog constructs. 
 
These resulting definitions provide the standard SystemVerilog reference algorithm for 
simulation, which all compliant simulators shall implement. Note, though, that there is a 
great deal of choice in the definitions that follow, and differences in some details of 
execution are to be expected between different simulators. In addition, SystemVerilog 
simulators are free to use different algorithms than those described in this section, 
provided the user-visible effect is consistent with the reference algorithm. 
 
A SystemVerilog description consists of connected threads of execution or processes. 
Processes are objects that can be evaluated, that may have state, and that can respond to 
changes on their inputs to produce outputs. Processes are concurrently scheduled 
elements, such as initial blocks. Example of processes include, but are not limited to, 
primitives, initial and always procedural blocks, continuous assignments, asynchronous 
tasks, and procedural assignment statements. 
 
Every change in state of a net or variable in the system description being simulated is 
considered an update event. 
 
Processes are sensitive to update events. When an update event is executed, all the 
processes that are sensitive to that event are considered for evaluation in an arbitrary 
order. The evaluation of a process is also an event, known as an evaluation event. 
 
Evaluation events also include PLI callbacks, which are points in the execution model 
where user-defined external routines can be called from the simulation kernel. 



 
In addition to events, another key aspect of a simulator is time. The term simulation time 
is used to refer to the time value maintained by the simulator to model the actual time it 
would take for the system description being simulated. The term time is used 
interchangeably with simulation time in this section. 
 
To fully support clear and predictable interactions, a single time slot is divided into 
multiple regions where events may be scheduled that provide for an ordering of particular 
types of execution. This allows properties and checkers to sample data when the design 
under test is in a stable state. Property expressions can be safely evaluated, and 
testbenches can react to both properties and checkers with zero delay, all in a predictable 
manner. This same mechanism also allows for non-zero delays in the design, clock 
propagation, and/or stimulus and response code to be mixed freely and consistently with 
cycle accurate descriptions. 

5.3 The stratified event scheduler 
 
A compliant SystemVerilog simulator must maintain some form of data structure that 
allows events to be dynamically scheduled, executed and removed as the simulator 
advances through time. The data structure is normally implemented as a time ordered set 
of linked lists, which are divided and sub-divided in a well defined manner. 

 
The first division is by time. Every event has one and only one simulation execution time, 
which at any given point during simulation may be the current time or some future time. 
All scheduled events at a specific time define a time slot. Simulation proceeds by 
executing and removing all events in the current simulation time slot before moving on to 
the next non-empty time slot, in time order. This procedure guarantees that the simulator 
never goes backwards in time. 
 
A time slot is divided into a set of ordered regions: 
 

1) preponed 
2) pre-active 
3) active 
4) inactive 
5) pre-NBA 
6) NBA 
7) post-NBA 
8) observed 
9) post-observed 
10) reactive 
11) postponed 

 
The purpose of dividing a time slot into these ordered regions is to provide predictable 
interactions between the design and testbench code. 
 



Except for the observed and reactive regions and the post-observed PLI region, these 
regions essentially encompass the Verilog 1364-2001 standard reference model for 
simulation, with exactly the same level of determinism. This means that legacy Verilog 
code will continue to run correctly without modification within the new mechanism. The 
postponed region is where the monitoring of signals, and other similar events, takes 
place. No new value changes are allowed to happen in the time slot once the postponed 
region is reached. 
 
The observed and reactive regions are new in the SystemVerilog 3.1 standard, and events 
are only scheduled into these new regions from new language constructs. 
 
The observed region is for the evaluation of the property expressions when they are 
triggered. It is essential that the signals feeding and producing all the clocks to the 
property expressions have stabilized, so that the next state of the property expressions can 
be calculated deterministically. A criterion for this determinism is that the property 
evaluations must only occur once in any clock triggering time slot. During the property 
evaluation, pass/fail code will be scheduled to be executed in the reactive region of the 
current time slot. 
 
The sampling time of sampled data for property expressions is controlled in the clock 
domain block. The new #1step sampling delay has been added to provide the ability to 
sample data immediately before entering the current time slot, and is a preferred construct 
over other equivalent constructs in order to allow the 1step time delay to be 
parameterized. This #1step construct is a conceptual device that provides a method of 
defining when sampling takes place, and it is not creating a requirement that an event be 
created in this previous time slot. Conceptually this #1step sampling is identical to taking 
the data samples in the preponed region of the current time slot. 
 
Code specified in the program block, and pass/fail code from property expressions, are 
scheduled to occur in the reactive region. 
 
The pre-active, pre-NBA, and post-NBA are new in the SystemVerilog 3.1 standard but 
support existing PLI callbacks. The post-observed region is new in the SystemVerilog 3.1 
standard and has been added for PLI support. 
 
The pre-active region is specifically for a PLI callback control point that allows for user 
code to read and write values and create events before events in the active region are 
evaluated (see PLI callback control points below). 
 
The pre-NBA region is specifically for a PLI callback control point that allows for user 
code to read and write values and create events before the events in the NBA region are 
evaluated (see PLI callback control points below).. 
 
The post-NBA region is specifically for a PLI callback control point that allows for user 
code to read and write values and create events after the events in the NBA region are 
evaluated (see PLI callback control points below).. 
 



The post-observed region is specifically for a PLI callback control point that allows for 
user code to read values after properties are evaluated (in observed or earlier region). 
 
The flow of execution of the event regions is specified in figure 5.1. 
 

time slot 
from previous 
time slot 

preponed 

pre-active 

active 

inactive 

pre-NBA Legend: 

NBA 
region 

post-NBA 

PLI Region 

observed 

post-observed 

reactive 
to next 
time slot 

postponed 

 

Figure 5.1. The SystemVerilog flow of time slots and event regions 
 



The active, inactive, pre-NBA, NBA, post-NBA, observed, post-observed and reactive 
regions are known as the iterative regions. 
 
The preponed region is specifically for a PLI callback control point that allows for user 
code to access data at the current time slot before any net or variable has changed state. 
 
The active region holds current events being evaluated and can be processed in any order. 
 
The inactive region holds the events to be evaluated after all the active events are 
processed. 
 
An explicit zero delay (#0) requires that the process be suspended and an event scheduled 
into the inactive region of the current time slot so that the process can be resumed in the 
next inactive to active iteration. 
 
A non blocking assignment creates an event in the NBA region, scheduled for current or 
a later simulation time. 
 
The postponed region is specifically for a PLI callback control point that allows for user 
code to be suspended until after all the active, inactive and non blocking assign update 
regions have completed. Within this region, it is illegal to write values to any net or 
variable, or to schedule an event in any previous region within the current time slot. 

5.3.1 The SystemVerilog simulation reference algorithm 
 
execute_simulation { 

T = 0; 
initialize the values of all nets and variables; 
schedule all initialization events into time 0 slot; 
while (some time slot is non-empty) { 

move to the next future non-empty time slot and set T; 
execute_time_slot (T); 

} 
} 
 
execute_time_slot { 

execute_region (preponed); 
while (some iterative region is non-empty) { 

execute_region (active); 
scan iterative regions in order { 

if (region is non-empty) { 
move events in region to the active region; 
break from scan loop; 

} 
} 

} 



execute_region (postponed); 
} 
 
execute_region { 

while (region is non-empty) { 
E = any event from region; 
remove E from the region; 
if (E is an update event) { 

update the modified object; 
evaluate processes sensitive to the object and possibly schedule 
further events for execution; 

} else { /* E is an evaluation event */ 
evaluate the process associated with the event and possibly 
schedule further events for execution; 

} 
} 

} 
 
The iterative regions and their order are: active, inactive, pre-NBA, NBA, post-NBA, 
observed, post-observed and reactive. 

5.4 The PLI callback control points 
 
There are two kinds of PLI callbacks, those that are executed immediately when some 
variable changes value in an update event, and those that are explicitly registered as a 
one-shot evaluation event. 
 
It is possible to explicitly schedule a PLI callback event in any region. Thus, an explicit 
PLI callback registration is identified by a tuple: (time, region). 
 
The following list provides the mapping from the various current PLI callbacks: 
 

tf_synchronize (time, pre-NBA) 
tf_isynchronize (time, pre-NBA) 
tf_rosynchronize (time, postponed) 
tf_irosynchronize (time, postponed) 
cbReadWriteSynch (time, post-NBA) 
cbAtStartOfSimTime (time, pre-active) 
cbReadOnlySynch (time, postponed) 
cbNBASynch (time, pre-NBA) 
cbAtEndOfSimTime (time, postponed) 
cbNextSimTime (time, pre-active) 
cbAfterDelay (time, pre-active) 

 


	5. SystemVerilog 3.1 scheduling semantics
	5.1 Execution of a hardware model and its verification environment
	5.2 Event simulation
	5.3 The stratified event scheduler
	Figure 5.1. The SystemVerilog flow of time slots and event regions
	5.3.1 The SystemVerilog simulation reference algorithm

	5.4 The PLI callback control points


