
1

SystemVerilog 3.1
C/C++ API Tutorial

João Geada

Michael Rohleder

Doug Warmke

2

Outline

• Why does SystemVerilog (SV) need an enhanced API

• How the standard was developed

• The enhanced SV 3.1 APIs
• Direct Programming Interface (DPI)

• Consistent method for loading foreign code

• VPI extensions for Assertions

• VPI extensions for Coverage

• How it all comes together: packet router example

• Open issues and further plans

3

Disclaimer:

This is a discussion of work under development.

The exact details of syntax and usage described
by this presentation are still under discussion.

Some changes to the material shown might be
experienced in the final form of SystemVerilog.

4

Why does SV3.1 need new APIs
• VPI and PLI are not easy interfaces to use

• Require knowledge of the interface for even trivial usage

• A significant percentage of users do not need the sophisticated capabilities
provided by VPI/PLI. They only need a way of invoking foreign functions from SV
and getting results back

• VPI and PLI are not symmetric: Verilog can invoke C functions
but C functions cannot invoke Verilog functions

• SV has new data types, including user defined structs and unions, that
are not part of the VPI object model

• SystemVerilog includes assertions. These are a significant addition to
the language and were not addressed by any prior Verilog API

• Coverage driven tests have become a well established practice, but no
standard mechanism was available to implement such testbenches

5

How the standard was developed

• DPI and the VPI extensions are based on production
proven donations from Synopsys

• DirectC interface

• Assertions

• Coverage

• The SV-CC committee accepted those donations and
integrated them into the framework of the SV language

• Foreign code loading mechanism proposed by Motorola

6

SystemVerilog-C/C++ Comittee

• Representatives of user and vendor companies
• All major EDA companies are represented

John Amouroux, Mentor

Kevin Cameron, National

João Geada, Synopsys

Ghassan Khoory, Synopsys, Co-Chair

Andrzej Litwiniuk, Synopsys

Francoise Martinole, Cadence

Swapanjit Mittra, SGI, Chair

Michael Rohleder, Motorola

John Stickley, Mentor

Bassam Tabbara, Novas

Doug Warmke, Mentor

Simon Davidmann, Synopsys

Joe Daniels, LRM Editor

Peter Flake, Synopsys
Emerald Holzwarth, Mentor
Tayung Liu, Novas
Michael McNamara, Verisity
Darryl Parham, Sun
Tarak Parikh, @HDL
Alain Reynaud, Tensilica
Stuart Swan, Cadence
Kurt Takara, 0-in
Yatin Trivedi, ASIC Group, Past Chair

see URL: www.eda.org/sv-cc

7

DPI - Overview

• Name DPI = Direct Programming Interface (work name)

• Natural inter-language function call interface between SV
and a foreign programming language (e.g. C)

• Relies on C function call conventions and semantics

• On each side, the calls look and behave the same as the
normal function calls for that language

• On SV side, DPI calls look and behave like any other SV function

• On C side, DPI calls look and behave like any other C function

• Binary or source code compatible
• Binary compatible in absence of packed data types (svc.h)

• Source code compatible otherwise (svc_src.h)

8

DPI - Declaration Syntax

• Extern functions (implemented in C, called from SV):
extern "DPI" <attrprop> <result> [cname= <name>] (<params>);

• name shall not start with $, must adhere to C function naming

• param = [<direction>] <type> [<param_name>]; input direction is default

• <result> identifies return type, void functions return no value

• cname is optional, defaults to fname.
cname, if given, is the name of the function as seen by C.

• Export functions (implemented in SV, called from C):
export "DPI" [cname= <name>];

• Extern declaration is in same scope as function call site

• Export declaration is in same scope as function definition

9

DPI - Basics

• Formal arguments: input, inout, output + return value
• input arguments shall use a const qualifier on the C side

• output arguments are uninitialized

• passed by value or reference, dependent on direction and type

• Shall contain no timing control; complete instantly and
consume zero simulation time

• Changes to function arguments become effective when
simulation control returns to SV side

• Memory ownership: Each side is responsible for its
allocated memory

• Use of ref keyword in actual arguments is not allowed

10

DPI – Function Properties/Attributes

• Possible Function Properties/Attributes are:
• pure: no side effects/internal state (I/O, global variables, PLI/VPI calls)

result depends solely on inputs, might be removed when optimizing

• context: mandatory when PLI/VPI calls are used within the function, or
when an imported C/C++ function calls an exported SV function

• (default): no PLI/VPI calls, but might have side effects

• Free functions have no relation to instance specific data

• Context functions are bound to a particular instance
• Can work with data specific to that module / interface instance

• For C calling SV, it is expected that context functions will predominate

• Context aware functions are useful for implementation of functions
attached to specific instances

11

DPI – Parameter Passing
• Most SV data types are supported

• Value passing requires matching
type definitions on both sides

• user is responsible to ensure this

• packed types: arrays (defined),
structures, unions

• arrays see next slide

• Function result types are restricted to
small values and packed bit arrays
up to 32 bits and all equivalent types

• Usage of packed types might prohibit
binary compatibility

<type>|intenum [<type>]

(abstract)packed array

C typeSV type

(abstract)unpacked array

avalue/bvaluelogic

(abstract)bit

char*string

void*handle

floatshortreal

doublereal

long longlongint

intint

short intshortint

charbyte

charchar

12

DPI – Parameter Passing (Arrays)
• Array parameters are passed by handle of type svHandle
• Arrays use normalized ranges for the packed [n-1:0] and

the unpacked part [0:n-1]
• A formal argument name must separate the packed and the

unpacked dimensions of an array
• Open Array have an unspecified range for at least one

dimension
• Relaxation of argument matching rules, range is ignored for a match
• Denoted by [] in the function declaration; elements can be accessed in C

by the same range as defined in SV for the actual argument
• Query functions are provided to determine array information
• Library functions are provided for accessing the array

• Examples:
bit [15:8], logic [31:0], logic [] 1x3 [3:1], bit [] unsized_array []

13

DPI – Argument Coercion (extern)

• For external functions, arguments appear in 3 places:
• Formal arguments in C-side function definition
• Formal arguments in SV-side external function declaration
• Actual arguments at SV-side call site

• There is no coercion at all between SV formals in an
external function declaration and the corresponding C-side
formals

• Normal SV coercions are performed between SV actuals at
a call site and SV formals in the external declaration

• User is responsible for providing C-side formal arguments
that precisely match the SV-side formals in the external
function declaration

14

DPI – Argument Coercion (export)

• For exported functions, arguments appear in 4 places:
• SV-side function definition

• C-side function prototype

• C-side function call site

• The SV simulator will not perform argument coercion
for the C-calls-SV direction

• The programmer must provide C-side arguments that
exactly match the type, width, and directionality
requirements of SV formals

15

DPI – C and SV Argument Matching

• DPI’s argument matching rules are based on common
sense and they are straightforward. However, there are
many details for users to remember

• To help users easily create DPI inter-language function
calls, it is expected that most SV implementations will
automatically generate C prototypes for each extern and
export function encountered in the SV source deck

16

Consistent loading of foreign code

• Only applies to DPI functions, PLI/VPI not handled (yet)

• All functions must be provided within a shared library
• user is responsible for compilation and linking of this library

• SV application is responsible for loading and integration of this library

• Libraries can be specified by switch or in a bootstrap file
• -sv_lib <filename w/o ext>

• -sv_liblist <bootstrap>

• extension is OS dependent; to be
determined by the SV application

• Uses relative pathnames
• -sv_root defines prefix myclib

common/clib2
function_set1

of libraries to be included
Bootstrap file containing names
#!SV_LIBRARIES

17

VPI extensions for Assertions

• Permits 3rd party assertion debugger applications
• Usable across all SV implementations

• Permits users to develop custom assertion control
mechanisms

• Permits users to craft C applications that respond to
assertions

• Permits users to create customized assertion reporting
mechanisms different than those that may be built into the
used SystemVerilog tool

18

VPI for assertions: overview
• Iterate over all assertions in an instance or the design
• Put callbacks on an assertion

• Success
• Failure
• Step

• Obtain information about an assertion
• Location in source code where the assertion is defined
• Signals/expressions referenced
• Clocking signal/expression
• Assertion name and directive and related instance, module

• Control assertions
• Reset: discard all current attempts, leave assertion enabled
• Disable: stop any new attempts from starting
• Enable: restart a stopped assertion
• EnableStep, DisableStep: enables/disable assertion stepping callbacks for an

attempt

19

Coverage Extensions: SV and VPI
• Standardized definition for a number of coverage types

• Statement, toggle, FSM state and assertion coverage defined
• For these coverages, coverage data has same semantics across all implementations

• Defines 5 system tasks to control coverage and to obtain “realtime”
coverage data from the simulator

• $coverage_control, $coverage_get_max, $coverage_get, $coverage_merge,
$coverage_save

• Interface designed to be extensible to future coverage metrics without perturbing
existing usage

• Coverage controls permit coverage to be started, stopped or queried for a specific
metric in a specific hierarchy of the design

• VPI extensions for coverage provide same capabilities as the system
tasks above, plus additional “fine-grain” coverage query

• Coverage can be obtained from a statement handle, FSM handle, FSM state handle,
signal handle, assertion handle

20

Ethernet Packet Router Example

DUT

EthPortWrapper EthPortWrapper

EthPortWrapper EthPortWrapper

Testbench
Coverage Monitor

EthPort

EthPort EthPort

EthPort

C++ Stimulus and Monitor Program

Example developed by John Stickley

21

C++ Side: SystemC Testbench Root
1 SC_MODULE(TestBench) {
2 private:
3 EthPortWrapper* context1;
4 EthPortWrapper* context2;
5 EthPortWrapper* context3;
6 EthPortWrapper* context4;
7 int numOutputs;
8
9 void testThread(); // Main test driver thread.

10 public:
11 SC_CTOR(System) : numOutputs(0) {
12
13 SC_THREAD(testThread);
14 sensitive << UTick;
15
16 // Construct 4 instances of reusable EthPortWrapper
17 // class for each of 4 different HDL module instances.
18 context1 = new EthPortWrapper("c1"); context1->Bind("top.u1", this);
19 context2 = new EthPortWrapper("c2"); context2->Bind("top.u2", this);
20 context3 = new EthPortWrapper("c3"); context3->Bind("top.u3", this);
21 context4 = new EthPortWrapper("c4"); context4->Bind("top.u4", this);
22 }
23 void BumpNumOutputs() { numOutputs++; }
24 };
25
26 void TestBench::testThread() {
27 // Now run a test that sends random packets to each input port.
28 context1->PutPacket(generateRandomPayload());
29 context2->PutPacket(generateRandomPayload());
30 context3->PutPacket(generateRandomPayload());
31 context4->PutPacket(generateRandomPayload());
32
33 while (numOutputs < 4) // Wait until all 4 packets have been received.
34 sc_wait();
35 }

22

C++ side: SystemC EthPortWrapper
1 #include “svc.h”
2
3 SC_MODULE(EthPortWrapper) {
4 private:
5 svHandle svContext;
6 sc_module* myParent;
7
8 public:
9 SC_CTOR(EthPortWrapper) : svContext(0), myParent(0) { }

10 void Bind(const char* hdlPath, sc_module* parent);
11 void PutPacket(vec32* packet);
12
13 friend void HandleOutputPacket(svHandle context, int portID, vec32* payload);
14 };
15
16 void EthPortWrapper::Bind(const char* svInstancePath, sc_module* parent) {
17 myParent = parent;
18 svContext = svHandleByName(svInstancePath);
19 svSetUserContext(svContext, (void*)this);
20 }
21
22 void EthPortWrapper::PutPacket(vec32* packet) {
23 PutPacket(svContext, packet); // Call SV function.
24 }
25
26 void HandleOutputPacket(int portID, vec32* payload) {
27 svHandle svContext = svGetFunctionContext();
28 EthPortWrapper* me = (EthPortWrapper*)svGetUserContext(svContext); // Cast -> C context
29 me->myParent->BumpNumOutputs(); // Let top level know another packet received.
30
31 printf("Received output on port on port %\n", portID);
32 me->DumpPayload(payload);
33 }
34

23

SV side: SystemVerilog EthPort Module
1
2 module EthPort(
3 input [7:0] MiiOutData,
4 input MiiOutEnable,
5 input MiiOutError,
6 input clk, reset,
7 output bit [7:0] MiiInData,
8 output bit MiiInEnable,
9 output bit MiiInError);

10
11 extern "DPI" context void HandleOutputPacket(
12 input integer portID,
13 input bit [1439:0] payload);
14
15 export "DPI" PutPacket;
17
18 bit packetReceivedFlag;
19 bit [1499:0] packetData;
20
21 //
21 // This exported function is called by the C side
22 // to send packets into the simulation.
23 //
24 function void PutPacket(input bit [1499:0] packet)
25 packetData = packet;
26 packetReceivedFlag = 1;
27 endfunction
28 endmodule

24

SV side: SystemVerilog EthPort, contd.
29 always @(posedge clk) begin // input packet FSM
30 if (reset) begin
31 ...
32 end
33 else begin
34 if (instate == READY) begin
35 if (packetReceived)
36 state <= PROCESS_INPUT_PACKET;
37 end
38 else if (instate == PROCESS_INPUT_PACKET) begin
39 // Start processing input packet byte by byte ...
40 end
41 end
42 end
43
44 always @(posedge clk) begin // output packet FSM
45 if (reset) begin
46 ...
47 end
48 else begin
49 if (outstate == READY) begin
50 if (MiiOutEnable)
51 state <= PROCESS_OUTPUT_PACKET;
52 end
53 else if (outstate == PROCESS_OUTPUT_PACKET) begin
54 // Start assembling output packet byte by byte ...
55 ...
56 // Make call to C side to handle the assembled packet.
57 HandleOutputPacket(myPortID, outPacketVector);
58 end
59 end
60 end
61 endmodule

25

SV side: Coverage monitor
module coverage_monitor(input clk)

integer cov = 0, new_cov = 0, no_improvement = 0;

always @(posedge clk) begin
// count clocks and trigger coverage monitor when appropriate

end

always @(sample_coverage) begin

// get the current FSM state coverage in the DUT and all instances below
new_cov = $coverage_get(`SV_COV_FSM_STATE,

`SV_HIER, “DUT”);
if (new_cov <= cov) begin

// no coverage improvement

no_improvement++
if (no_improvement == 3) $finish();

end

else begin
// coverage still increasing. Good!

cov = new_cov;
end

end

endmodule

26

Open Issues and Further Plans

• Extend VPI object model
to support the complete SV type system
• extend VPI to cover all new elements of SystemVerilog

• Additional callback functions
to match enhanced scheduling semantics

• Further enhancements to loading/linking
• inclusion of source code, uniform PLI/VPI registration

• Dealing with C++ specifics

• All driven by experiences and user requests/needs

