SystemVerilog 3.1
C/C++ API Tutorial

Joao Geada
Michadgl Rohleder
Doug Warmke

accellera

Qutline

* Why does SystemVerilog (SV) need an enhanced API
 How the standard was developed
 Theenhanced SV 3.1 APIs

» Direct Programming Interface (DPI)

» Consistent method for loading foreign code
* VP extensions for Assertions

* VPI extensions for Coverage

 How it all comestogether: packet router example
e Open issues and further plans

aceceller

Disclaimer:

Thisisadiscussion of work under development.

The exact details of syntax and usage described
by this presentation are still under discussion.

Some changes to the material shown might be
experienced in the final form of SystemVerilog.

aceceller

Why does SV3.1 need new APIs

VPI and PLI are not easy interfaces to use
* Require knowledge of the interface for even trivial usage

» A significant percentage of users do not need the sophisticated capabilities
provided by VPI/PLI. They only need away of invoking foreign functions from SV
and getting results back

VPl and PLI are not symmetric: Verilog can invoke C functions
but C functions cannot invoke Verilog functions

« SV has new datatypes, including user defined structs and unions, that
are not part of the VPI object model

o SystemVerilog includes assertions. These are a significant addition to
the language and were not addressed by any prior Verilog AP

» Coverage driven tests have become a well established practice, but no
standard mechanism was available to implement such testbenches

aceceller

How the standard was developed

 DPI and the VPI extensions are based on production

proven donations from Synopsys
e DirectC interface

o Assertions

 Coverage

* The SV-CC committee accepted those donations and
Integrated them into the framework of the SV language

« Foreign code |oading mechanism proposed by Motorola

aceceller

SystemVerilog-C/C++ Comittee

* Representatives of user and

companies

* All mgor EDA companies are represented

John Amouroux,

Kevin Cameron, National
Joado Geada,

Ghassan Khoory,

Andrzg Litwiniuk,
Francoise Martinole,
Swapanjit Mittra, SGI, Chair
Michael Rohleder, Motorola
John Stickley,

Bassam Tabbara,

Doug Warmke,

accellera

Co-Chair

Simon Davidmann,
Joe Danidls, LRM Editor

Peter Flake,

Emerald Holzwarth,

Tayung Liu,

Michael McNamara,

Darryl Parham, Sun

Tarak Parikh,

Alain Reynaud, Tensilica

Stuart Swan,

Kurt Takara,

Y atin Trivedi, ASIC Group, Past Chair

see URL: www.eda.org/sv-cc

DPI - Overview

 Name DPI = Direct Programming Interface (work name)

« Natural inter-language function call interface between SV
and a foreign programming language (e.g. C)
e Relieson C function call conventions and semantics

e On each side, the callslook and behave the same as the

normal function calls for that language
« On SV sde, DPI callslook and behave like any other SV function
* OnCdde DPI callslook and behave like any other C function

e Binary or source code compatible
* Binary compatible in absence of packed data types (svc.h)
« Source code compatible otherwise (svc_src.h)

aceceller

DPI - Declaration Syntax

o Extern functions (implemented in C, called from SV):
extern "DPI" <attrprop> <result> [cname= <name> | (<params>);
« name shall not start with $, must adhere to C function naming
o param = [<direction>] <type> [<param_name>]; input direction is default
o <result> identifies return type, void functions return no value

e cnameisoptional, defaults to fname.
cname, if given, isthe name of the function as seen by C.

Export functions (implemented in SV, called from C):

export "DPI" [cname= <name>];
Extern declaration is in same scope as function call site
Export declaration is in same scope as function definition

accellera

DPI - Basics

Formal arguments:. input, Inout, output + return value

* input arguments shall use a const qualifier on the C side

e Output arguments are uninitialized

» passed by value or reference, dependent on direction and type
Shall contain no timing control; complete instantly and
consume zero simulation time

Changes to function arguments become effective when
simulation control returnsto SV side

Memory ownership: Each side isresponsible for its
allocated memory

Use of ref keyword in actual arguments is not allowed

accellera

DPI| — Function Properties/Attributes

» Possible Function Propertiesd/Attributes are:

» pure: no side effectsinternal state (1/0, global variables, PLI/VPI calls)
result depends solely on inputs, might be removed when optimizing

» context: mandatory when PLI/VPI calls are used within the function, or
when an imported C/C++ function calls an exported SV function

o (default): no PLI/VPI cals, but might have side effects
* Freefunctions have no relation to instance specific data

o Context functions are bound to a particular instance

« Can work with data specific to that module / interface instance
 For Ccaling SV, it is expected that context functions will predominate

o Context aware functions are useful for implementation of functions
attached to specific instances

10

DP| — Parameter Passing

« Most SV data types are supported
« Value passing requires matching
type definitions on both sides
e userisresponsibleto ensure this

o packed types: arrays (defined),
structures, unions

o arraysseenext dide
* Function result types are restricted to
small values and packed bit arrays
up to 32 bits and all equivalent types
o Usage of packed types might prohibit
binary compatibility

SV type C type
char char

byte char
shortint short int
int int
longint long long
rea double
shortreal float
handle void*
string char*

bit (abstract)
enum [<type>] <type>|int
logic avalue/bvalue
packed array (abstract)
unpacked array | (abstract)

11

DPI — Parameter Passing (Arrays)

* Array parameters are passed by handle of type svHandle

e Arrays use normalized ranges for the packed [n-1:0] and
the unpacked part [0:n-1]

o A forma argument name must separate the packed and the
unpacked dimensions of an array

* Open Array have an unspecified range for at least one
dimension
» Relaxation of argument matching rules, range isignored for a match

» Denoted by [] in the function declaration; elements can be accessed in C
by the same range as defined in SV for the actual argument

e Query functions are provided to determine array information
e Library functions are provided for accessing the array
* Examples: _ _
bit [15:8], logic [31:0], logic [] 1x3[3:1], bit [] unsized array []

accellera

12

DPI — Argument Coercion (extern)

e For external functions, arguments appear in 3 places.
* Formal argumentsin C-side function definition
* Formal argumentsin SV-side external function declaration
e Actua arguments at SV-side cal site
e Thereisno coercion at all between SV formalsin an
external function declaration and the corresponding C-side
formals

 Normal SV coercions are performed between SV actuals at
acall siteand SV formalsin the external declaration

e Userisresponsible for providing C-side formal arguments
that precisely match the SV-side formals in the external
function declaration

accellera

DPI| — Argument Coercion (export)

» For exported functions, arguments appear in 4 places:
e SV-side function definition
o (C-side function prototype
o (C-sidefunction call site
e The SV simulator will not perform argument coercion
for the C-calls-SV direction

e The programmer must provide C-side arguments that
exactly match the type, width, and directionality
reguirements of SV formals

accellera

14

DPI — C and SV Argument Matching

e DPI’sargument matching rules are based on common
sense and they are straightforward. However, there are
many details for users to remember

 To help userseasily create DPI inter-language function
calls, it Is expected that most SV implementations will
automatically generate C prototypes for each extern and
export function encountered in the SV source deck

accellera

Consistent loading of foreign code

Only appliesto DPI functions, PL1/VPI not handled (yet)
All functions must be provided within ashared library

e user isresponsible for compilation and linking of this library
o SV application is responsible for loading and integration of this library

Libraries can be specified by switch or in abootstrap file

e -sv_lib <filename w/o ext> #'SV_LIBRARIES
* -sv_liblist <bootstrap> # Bootstrap file containing names

* extension is OS dependent; to be | # of |ibraries to be included
determined by the SV application SRS SR

Uses relative pathnames common/clib2
o -sv_root defines prefix myclib

accellera

VPI extensions for Assertions

* Permits 3" party assertion debugger applications

e Usable acrossal SV implementations

e Permits usersto develop custom assertion control
mechanisms

o Permits usersto craft C applications that respond to
assertions

e Permits usersto create customized assertion reporting
mechanisms different than those that may be built into the
used SystemVerilog tool

accellera

VPI for assertions: overview

e |terate over all assertionsin an instance or the design

e Put callbacks on an assertion
e Success
o Fallure
° Step
» Obtain information about an assertion
» Location in source code where the assertion is defined
o Signals/expressions referenced
* Clocking signal/expression
e Assertion name and directive and related instance, module
o Control assertions
» Reset: discard all current attempts, leave assertion enabled
» Disable: stop any new attempts from starting
« Enable: restart a stopped assertion

» EnableStep, DisableStep: enables/disable assertion stepping callbacks for an
attempt

accellera

18

Coverage Extensions: SV and VPI

» Standardized definition for a number of coverage types
« Statement, toggle, FSM state and assertion coverage defined
» For these coverages, coverage data has same semantics across all implementations

» Defines 5 system tasks to control coverage and to obtain “realtime”
coverage data from the simulator

« S$coverage control, $coverage get_max, $coverage get, $coverage merge,
$coverage save

» Interface designed to be extensible to future coverage metrics without perturbing
existing usage
» Coverage controls permit coverage to be started, stopped or queried for a specific
metric in a specific hierarchy of the design
* VPl extensions for coverage provide same capabilities as the system
tasks above, plus additional “fine-grain” coverage query

» Coverage can be obtained from a statement handle, FSM handle, FSM state handle,
signal handle, assertion handle

accellera

Ethernet Packet Router Example

C++ Stimulus and Monitor Program

EthPortWrapper EthPort EthPort

EthPortWrapper

DUT

EthPortWrapper EthPort EthPort

EthPortWrapper

Coverage Monitor

Example developed by John Stickley

Testbench

accellera

20

C++ Side: SystemC Testbench Root

1 SC MODULE(Test Bench) ({

2 private:

3 Et hPor t W apper * cont ext 1;

4 Et hPort W apper * cont ext 2;

5 Et hPor t W apper * cont ext 3;

6 Et hPor t W apper * cont ext 4;

7 i nt numCut put s;

8

9 void testThread(); // Main test driver thread

10 publi c:

11 SC CTOR(System) : nunfut puts(0) {

12

13 SC THREAD(t est Thr ead) ;

14 sensitive << UTick

15

16 /1l Construct 4 instances of reusabl e EthPortW apper

17 /1 class for each of 4 different HDL nobdul e i nstances.

18 contextl = new Et hPort Wapper ("cl1"); contextl1l->Bind("top.ul", this);
19 context2 = new Et hPort W apper ("c2"); context2->Bind("top.u2", this);
20 context3 = new Et hPort W apper ("c3"); context3->Bind("top.u3", this);
21 context4 = new Et hPort W apper ("c4"); context4->Bind("top.ud", this);
22 }
23 voi d BunpNunfQut put s() { numQut put s++; }
24},
25
26 void TestBench::test Thread() {
27 /1 Now run a test that sends random packets to each input port.
28 cont ext 1- >Put Packet (gener at eRandonPayl oad()) ;
29 cont ext 2- >Put Packet (gener at eRandonPayl oad()) ;
30 cont ext 3- >Put Packet (gener at eRandonPayl oad()) ;
il cont ext 4- >Put Packet (gener at eRandonPayl oad()) ;
32
33 while (numlutputs < 4) // Wait until all 4 packets have been received.

sc_wait();

accellera

C++ side: SystemC EthPortWrapper

1 #include “svc. h”

2
3 SC _MODULE(Et hPort W apper) {
4 private:
5 svHandl e svCont ext ;
6 sc_nodul e* nyParent ;
7
8 publi c:
9 SC CTOR(Et hPort W apper) : svContext(0), nyParent(0) { }
10 voi d Bi nd(const char* hdl Path, sc_nodul e* parent);
11 voi d Put Packet (vec32* packet);
12
13 friend voi d Handl eCut put Packet (svHandl e context, int portlD, vec32* payl oad);
14}
15
16 void EthPortWapper::Bind(const char* svlnstancePath, sc_nodul e* parent) {
17 nmyParent = parent;
18 svCont ext = svHandl eByNanme(svl nst ancePat h) ;
19 svSet User Cont ext (svCont ext, (void*)this);
20 }
21
22 void EthPort W apper: : Put Packet (vec32* packet) {
23 Put Packet (svCont ext, packet); // Call SV function
24 '}
25
26 voi d Handl eQut put Packet (i nt portl D, vec32* payl oad) {
27 svHandl e svCont ext = svGet Functi onCont ext () ;
28 Et hPort W apper* nme = (Et hPort W apper *) svGet User Cont ext (svContext); // Cast -> C context
29 nme- >myPar ent - >BunpNunQut puts(); // Let top |evel know anot her packet received.
30
31 printf("Received output on port on port %n", portlD)
32 me- >DunpPay| oad(payl oad) ;
3

accellera

22

SV side: SystemVerilog EthPort Module

1

2 nodul e Et hPort (

3 i nput [7:0] M CQutDat a,

4 i nput M i Qut Enabl e,

5 i nput M i QutError

6 i nput clk, reset,

7 output bit [7:0] MilnData,

8 out put bit Ml nEnabl e,

9 output bit MilnError);

10

11 extern "DPlI" context void Handl eCut put Packet (
12 i nput integer portl D

13 i nput bit [1439:0] payl oad);

14

15 export "DPl" Put Packet ;

17

18 bit packet Recei vedFl ag;

19 bit [1499: 0] packet Dat a;

20

21 /1

21 /1 This exported function is called by the C side
22 /1 to send packets into the sinmnulation

23 /1

24 function void PutPacket (i nput bit [1499: 0] packet)
25 packet Dat a = packet;

26 packet Recei vedFl ag = 1

27 endf uncti on

28 endnodul e

aceceller

23

SV side: SystemVerilog EthPort, contd.

29 al ways @ posedge cl k) begin /'l input packet FSM

30 if (reset) begin

31 C

32 end

&3 el se begin

34 if (instate == READY) begin

85 i f (packet Recei ved)

36 stat e <= PROCESS | NPUT_PACKET

37 end

38 else if (instate == PROCESS | NPUT_PACKET) begin

39 [l Start processing input packet byte by byte ..
40 end

41 end

42 end

43

44 al ways @ posedge cl k) begin /1 output packet FSM

45 if (reset) begin

46 S

47 end

48 el se begin

49 if (outstate == READY) begin

50 if (MiQutEnable)

51 stat e <= PROCESS_ OUTPUT_PACKET

52 end

53 else if (outstate == PROCESS OUTPUT_ PACKET) begin
54 /[l Start assenbling output packet byte by byte ..
55 S

56 /1 Make call to C side to handl e the assenbl ed packet.
57 Handl eQut put Packet (nyPort | D, out Packet Vect or);
58 end

24

SV side: Coverage monitor

nodul e coverage_nonitor (i nput clk)
i nteger cov = 0, new cov = 0, no_inprovenent = O;

al ways @ posedge cl k) begin
/1 count clocks and trigger coverage nonitor when appropriate
end

al ways @ sanpl e_coverage) begin
/1l get the current FSM state coverage in the DUT and all instances bel ow
new cov = $coverage get(SV_COV_FSM STATE,
"SV_H ER, “DUT");

if (new_cov <= cov) begin

/1 no coverage inprovenment

no_i nprovement ++

if (no_inprovement == 3) $finish();

end
el se begin
/'l coverage still increasing. Good!
COV = new_cov;
end
end
endnodul e

aceceller

25

Open Issues and Further Plans

o Extend VPI object model
to support the complete SV type system
« extend VPI to cover al new elements of SystemVerilog

« Additional callback functions
to match enhanced scheduling semantics

 Further enhancementsto loading/linking
 Inclusion of source code, uniform PLI/VPI registration

e Dealing with C++ specifics

« All driven by experiences and user requests/needs

aceceller

26

