Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

Annex C
Inclusion of Foreign Language Code

This annex describes common guidelines for the inclusion of Foreign Language Code into a SystemVerilog
application. This intention of these guidelines is to enable the redistribution of C binaries in shared object
form.:

Foreign Language Code is functionality that is included into SystemVerilog using the DPI Interface. As a
result, all statements of this annex apply only to code included using this interface; code included by using
other interfaces (e.g., PLI or VPI) is outside the scope of this document. Due to the nature of the DPI Interface,
most Foreign Language Code is usually be created from C or C++ source code, although nothing precludes the
creation of appropriate object code from other languages. This annex adheres to this rule, it's content is inde-
pendent from the actual language used.

In general, Foreign Language Code is provided in the form of object code (compiled for the actual platform) or
source code. The capability to incl ude Fore| gn Language Code in obJect code form shall be supported by all
simulators as specm ed here A

C.1 Overview

This annex defines how to:

— specify the location of the corresponding files within the file system
— gpecify the files to be loaded (in case of object code) or

o " .) :

— provide the object code (as a shared library or archive)

Although this annex defines guidelines for a common inclusion methodology, it requires multiple implementa-
tions (usually two) of the corresponding facilities. This takes into account that multiple users can have differ-
ent viewpoints and different requirements on the inclusion of Foreign Language Code.

— A vendor that wants to provide his P in form of Foreign Language Code often requires a self-contained
method for the integration, which still permits an integration by athird party. This use-case is often cov-
ered by a bootstrap file approach.

— A project team that specifies acommon, standard set of Foreign Language code, might change the code
depending on technology, selected cells, back-annotation data, and other items. This-use case is often cov-
ered by a set of tool switches, although it might also use the bootstrap file approach.

— An user might want to switch between selections or provide additional code. This-use caseis covered by
providing a set of tool switchesto define the corresponding information, although it might also use the
bootstrap file approach.

NOTE—This annex defines a set of switch names to be used for a particular functionality. Thisis of informative nature;
the actual naming of switchesisnot part of this standard. It might further not be possible to use certain character configura-
tionsin all operating systems or shells. Therefore any switch name defined within this document is a recommendation how
to name a switch, but not a requirement of the language.

Copyright 2002 Accellera. All rights reserved. 55

Accellera
SystemVerilog 3.1/draft 2 Extensionsto Verilog-2001

C.2 Location independence

All pathnames specified within this annex are intended to be location-independent, which is accomplished by
using the switch - sv_r oot . It can receive a single directory pathname as the value, which is then prepended
to any relative pathname that has been specified. In absence of this switch, or when processing relative filena-
mes before any - sv_r oot specification, the current working directory of the user shall be used as the default
value.

C.3 Object code inclusion

Compiled object code is required for cases where the compilation and linking of source code is fully handled
by the user; thus, the created object code only need be loaded to integrate the Foreign Language Code into a
SystemVerilog application. All SystemVerilog applications shall support the integration of Foreign Language
Code in object code form. Figure C1— depicts the inclusion of object code and its relations to the various
stepsinvolved in thisintegration process. ** Revise this xref w/ Stu; also check/revise variable settings, etc.**

Performed by the user Object code
inclusion
Source |||—m Obiject Systlem
code ||[—® — > Verilog
: code application
Compile Link

Figure C1— Inclusion of object code into a SystemVerilog application

Compiled object code can be specified by one of the following two methods:

1) by anentry inabootstrap file; see section C.3.1 for more details on thisfile and its content. Itslocation
shall be specified with one instance of the switch -sv_I| i bl i st pat hnane. This switch can be
used multiple times to define the usage of multiple bootstrap files.

2) by specifying the file with one instance of the switch -sv_lib
pat hname_wi t hout _ext ensi on (i.e, the filename shall be specified without the platform
specific extension). The SystemVerilog application is responsible for appending the appropriate
extension for the actual platform. This switch can be used multiple times to define multiple libraries
holding object code.

Both methods shall be provided and made available concurrently, to permit any mixture of their usage. Every
location can be an absol ute pathname or a relative pathname, where the value of the switch- sv_r oot isused
to identify an appropriate prefix for relative pathnames (see section C.2 for more details on forming path-
names).

The following conditions also apply.

— The compiled object code itself shall be provided in form of a shared library having the appropriate exten-
sion for the actual platform.

NOTE—Shared libraries use, for example, . S0 for Solarisand . s| for HP-UX; other operating systems might use differ-
ent extensions. In any case, the SystemVerilog application needs to identify the appropriate extension.

— Theprovider of the compiled codeis responsible for any external references specified within these objects.
Appropriate data needs to be provided to resolve all open dependencies with the correct information.

56 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

| — Theprovider of the compiled code shall avoid interferences with other software and ensure the appropriate
software version is taken (e.g., in cases where two versions of the same library are referenced). Similar
problems can arise when there are dependencies on the expected runtime environment in the compiled
object code (e.g., in cases where C++ global objects or static initializers are used).

| — The SystemVerilog application need only load object code within a shared library that is referenced by the
SystemVerilog code or by registration functions; loading of additional functions included within a shared
library can interfere with other parts.

In case of multiple occurrences of the same file (files having the same pathname or which can easily be identi-
fied as being identical; e.g., by comparing the inodes of the files to detect cases where links are used to refer
the samefile), the above order also identifies the precedence of loading; afilelocated by method 1) shall over-
ride files specified by method 2).

All compiled object code need to be loaded in the specification order similarly to the above scheme; first the
content of the bootstrap file is processed starting with the first line, then the set of - sv_I i b switchesis pro-
cessed in order of their occurrence. Any library shall only be loaded once.

C.3.1 Bootstrap file

The object code bootstrap file has the following syntax.
1) Thefirstlinecontainsthe string #! SV_LI BRARI ES.

2) Anarbitrary amount of entries follow, one entry per line, where every entry holds exactly one library
location. Each entry consists only of the pat hnanme_wi t hout _ext ensi on of the object codefile
to be loaded and can be surrounded by an arbitrary number of blanks; at least one blank shall precede
the entry intheline. The value pat hnane_wi t hout _ext ensi on isequivalent to the value of the
switch-sv_li b.

3) Any amount of comment lines can be interspersed between the entry lines, a comment line starts with
the character # after an arbitrary (including zero) amount of blanks and is terminated with a newline.

C.3.2 Examples

1) If the pathname root has been set by the switch - sv_r oot to/ hone/ user and the following object
files need to be included:

/ hone/ user/nyclibs/libl.so
/ hone/ user/nyclibs/lib3.so
/ home/ user/proj 1/clibs/lib4.so
/ home/ user/proj 3/clibs/lib2.so

then use either of the methods in Example C-1. Both methods are equivalent.

#! SV_LI BRARI ES -sv_lib nyclibs/libl
nyclibs/1ibl -sv_lib nyclibs/lib3
nyclibs/1ib3 -sv_lib proj1/clibs/lib4
g:giyg::gzﬂ:gg -sv_lib proj3/clibs/lib2

Bootstrap file method Switch list method

Example C-1Using a simple bootstrap file or a switch list

2) If the current working directory is/ hone/ user, using the series of switches shown in Example C-2
(left column) result in loading the following files (right column).

Copyright 2002 Accellera. All rights reserved. 57

Accellera

SystemVerilog 3.1/draft 2 Extensionsto Verilog-2001

-sv_lib svLibraryl / home/ user/ svLi braryl. so

-sv_lib svLibrary2 / home/ user/ svLi brary?2. so

-sv_root /hone/project?2/shared_code

-sv_lib svLibrary3 / home/ pr oj ect 2/ shar ed_code/ svLi brary3. so

-sv_root /hone/project3/code))

-sv_lib svLibrary4 / hone/ proj ect 3/ code/ svLi brary4. so
Switches Files

Example C-2Using a combination of -sv_|i b and - sv_r oot switches

3) Further, using the set of switches and contents of bootstrap files shown in Example C-3:

-sv_root /home/usr1 |- bootstrapl: #! SV_LI BRARIES
-sv_liblist bootstrapl] : i B%
i

-sv_root /hone/usr2
-sv_liblist /home/ m ne/ bootstrap2 — bootstrapZ: #! SV_LI BRARI ES
lib3

/ conmon/ | i bx
l'ib5

Example C-3Mixing - sv_r oot and bootstrap files

resultsin loading the following files:

/[home/ usr1/1ibl. ext
[/ home/ usr1/1ib2. ext
/ home/ usr 2/ 1i b3. ext
/ comon/ | i bx. ext

/ home/ usr2/1i b5. ext

where ext stands for the actual extension of the corresponding file.

58 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

SystemVerilog 3.1/draft 2

Performed by the user

Source |||—® Object
code : :; | ode

Object code
inclusion

System
Verilog
application

Compile Link
/ Source code [performed by the application\
inclusion transparent to the user
Source |||—Lp» r—a -0
d — . >

coae T j I_» _1 '_» V]

L — L 1

i Intermediate results | ; | di |

\ Compile not visible LI nte”:gt \I/?;?blreesu " J

Copyright 2002 Accellera. All rights reserved.

59

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

60 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

Copyright 2002 Accellera. All rights reserved. 61

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

62 Copyright 2002 Accellera. All rights reserved.

	Annex C Inclusion of Foreign Language Code
	C.1 Overview
	C.2 Location independence
	C.3 Object code inclusion
	Figure C1— Inclusion of object code into a SystemVerilog application
	1) by an entry in a bootstrap file; see section�C.3.1 for more details on this file and its conte...
	2) by specifying the file with one instance of the switch -sv_lib pathname_without_extension (i.e...

	C.3.1 Bootstrap file
	1) The first line contains the string #!SV_LIBRARIES.
	2) An arbitrary amount of entries follow, one entry per line, where every entry holds exactly one...
	3) Any amount of comment lines can be interspersed between the entry lines; a comment line starts...

	C.3.2 Examples
	1) If the pathname root has been set by the switch -sv_root to /home/user and the following objec...
	Example�C�1 Using a simple bootstrap file or a switch list
	2) If the current working directory is /home/user, using the series of switches shown in Example�...

	Example�C�2 Using a combination of -sv_lib and -sv_root switches
	3) Further, using the set of switches and contents of bootstrap files shown in Example�C�3:

	Example�C�3 Mixing -sv_root and bootstrap files

	C.4 Source code inclusion
	Figure C2— Source code inclusion vs. object code inclusion
	1) by an entry in a bootstrap file; see section�C.4.3 for more details on this file and its conte...
	2) by specifying the file pathname with one instance of the switch -sv_src filepath (including th...

	C.4.1 Invocation
	C.4.2 Overriding compilation settings
	Table C1— Switches for overriding compilation settings�

	C.4.3 Bootstrap file
	1) The first line contains the string #!SV_SOURCES.
	2) An arbitrary amount of entries follow, one entry per line, where every entry holds exactly one...
	3) Any amount of comment lines can be interspersed between the entry lines; a comment line starts...

	C.4.4 Examples
	1) If the following source files are to be included in a simulation:
	Example�C�4 Using a switch list
	2) The bootstrap file also permits a more granular assignment of include directories to source co...

	Example�C�5 Assigning include directories to source code via the bootstrap file
	3) Finally, a highly customized compilation with user-specific options can be obtained by specify...

