
1

Add the following sections

11.8.1 Static methods

Methods can be declared as static. A static method is subject to all the class scoping and access rules, but be-
haves like a regular subroutine that can be called outside the class, even with no class instantiation. A static
method has no access to non-static members (properties or methods), but it may directly access static class
properties or call static methods of the same class. Access to non-static members or to the special this handle
within the body of a static method is illegal and results in a compiler error. Static methods cannot be virtual.

class id;
static int current = 0;
static function int next_id();

next_id = ++current; // OK to access static class property
endfunction

endclass

A static method is different from a method with static lifetime. The former refers to the lifetime of the method
within the class, while the latter refers to the lifetime of the arguments and variables within the task.

class TwoTasks;
static task foo(); ... endtask // static class method with automatic variable lifetime
task static bar(); ... endtask // non-static class method with static variable lifetime

endclass

11. 20 Class scope resolution operator ::

The class scope operator :: is used to specify an identifier
following form:

scoped_expression ::= class_name :: {class_name :: }

Identifiers on the left side of the scope-resolution operator (:

Because classes and other scopes can have the same identif
fies a member of a particular class. In addition to disambig
allows access to static members (properties and methods) fr
protected elements of a super-classes from within the derive

class Base;
typedef enum {bin,oct,dec,hex} radix;
static task print(radix r, integer n

endclass
...

Base b = new;
int bin = 123;
b->print(Base::bin, bin); // Base::
Base::print(Base::hex, 66);

In SystemVerilog the class scope operator applies to all stat
methods, typedefs, enumerations, struct, union, and nested
sions can be read (in expressions), written (in assignments
pressions). They can also be used as the name of a type or a
Insert before current section 20
defined within the scope of a class, and it has the

 identifier

:) can be only class names.

iers, the scope resolution operator uniquely identi-
uating class scope identifiers, the :: operator also
om outside the class, as well as access to public or
d classes.

); ... endtask

bin and bin are different

ic elements of a class: static class properties, static
 class declarations. Class-scope resolved expres-
or subroutines calls) or triggered off (in event ex-
method call.

2

Like modules, classes are scopes and can nest. Nesting allows hiding of local names and local allocation of
resources. This is often desirable when a new type is needed as part of the implementation of a class. Declar-
ing types within a class helps prevent name collisions, and cluttering the outer scope with symbols that are
used only by that class. Type declarations nested inside a class scope are public and can be accessed outside
the class.

class StringList;
class Node; // Nested class for a node in a linked list.

string name;
Node link;

endclass
endclass

class StringTree;
class Node; // Nested class for a node in a binary tree.

string name;
Node left, right;

endclass
endclass

// StringList::Node is different from StringTree::Node

The scope resolution operator enables:

� Access to static public members (methods and properties) from outside the class hierarchy.

� Access to public or protected class members of a super-class from within the derived classes.

� Access to type declarations and enumeration labels declared inside the class from outside the class hierar-
chy or from within derived classes.

