
==
Proposal
 ==

At any scope where a function declaration can occur, permit the following declarations:

extern "DPI" [pure | context] [<cname>=] <named_function_proto>;

export "DPI" [<cname>=] function <fname>;

This syntax does not require any new keywords: "DPI" is a string qualifying the type of
extern/export. For SV3.1 only the string "DPI" is valid.

Note that the <named_function_proto>, as defined in SV3.1 draft3 spec (page 233) must
be modified slightly so that the argument list permits open arrays. Only extern DPI
functions can use this argument type. Additionally we also want to relax the prototype
syntax to permit unnamed arguments, again only for extern DPI prototypes.
If the extern declaration uses unnamed arguments, this function cannot be invoked with
passing arguments by name syntax.

Semantics:

in both extern and export, cname is the name of the foreign function (extern/export),
fname is the SV name for the same function. If cname not explicitly given, it will be the
same as the SV function fname. An error will be generated if and only if the cname has
characters that are not valid in a C function identifier.

This syntax permits several SV functions to be mapped to the same foreign function by
supplying the same cname for several fnames. Note that all these SV functions would
have identical argument types (as per rules below).

For any given cname, all declarations, regardless of scope, must have exactly the same
type signature. The type signature includes the return type, the number, order, direction
and types of each and every argument. Type includes dimensions and bounds of any
arrays/array dimensions. Signature also includes the pure/context qualifiers that may be
associated with an extern definition.

Only one extern declaration or export declaration of a given fname is permitted in any
given scope. More specifically, for an extern, the extern must be the sole declaration of
fname in the given scope. For an export, the function must be declared in the scope
where the export occurs and there must be only one export of that fname in that scope.

NOTE: the restriction of a single extern definition for a given fname in a given scope may
be relaxed (as per deferred issue 2) if and only if the extern declaration is identical (same

type signature and exactly matching formal names for each and every argument) and
exactly matching default values for all such externs of fname in the same scope.
Argument names and default values are permitted to differ between externs declared at
different scopes as long as the type compatibility constraints are met. Extern "DPI"
functions are never considered to be a "constant_function_call" as described in the SV
3.1 draft 3 LRM, section A.8.2 (page 247). Specifically, extern function calls cannot be
used in any place requiring that the call be a constant_function_call. [Therefore extern
calls cannot be made during compilation/elaboration] Exported functions are not affected
by this restriction (i.e. exported functions can still qualify as constant functions if they
meet the SV criteria for such).

For exported functions, the exported function must be declared in the same scope that
contains the export "DPI" declaration. Only SV functions may be exported (specifically,
this excludes exporting a class method)

Note that extern “DPI” functions declared this way can be invoked by hierarchical
reference the same as any normal SV function. Declaring a SV function to be exported
does not change the semantics or behavior of this function from the SV perspective (i.e.
no effect in SV usage other than making this exported function also accessible to C
callers)

The pure qualifier for an extern function specifies that this function has absolutely no
side effects and uses no data other than its arguments. The function output is predicated
only on the values of its input arguments. Side effects include reading/writing to any files
or stdin/stdout, changing static or global variables, invoking any other APIs etc. Pure
functions cannot invoke exported SV functions.

NOTE: still have to update above paragraph to use appropriate text from sv-cc LRM.

An unqualified extern function can have side effects but may not read or modify any SV
signals other than those provided through its arguments. Unqualified externs are not
permitted to invoke exported SV functions.

Extern functions with the context qualifier may invoke exported SV functions, may read
or write to SV signals other than those passed through their arguments, either through the
use of other interfaces or as a side-effect of invoking exported SV functions. Context
functions are always implicitly supplied a scope representing the fully qualified instance
name within which the extern declaration was present. (I.e. an extern function always
runs in the instance in which the extern declaration occurred. This is the same semantics
as SV functions, which also run in the scope they were defined, rather than in the scope
of the caller) Extern context functions are permitted to have side effects and to use other
SV interfaces (including but not limited to VPI). However note that declaring an extern
context function does not automatically make any other simulator interface automatically
available. For VPI access (or any other interface access) to be possible, the appropriate
implementation defined mechanism must still be used to enable these interface(s). Note
also that DPI calls do not automatically create or provide any handles or any special

environment that may be needed by those other interfaces. It is the user’s responsibility to
create, manage or otherwise manipulate the required handles/environment(s) needed by
the other interfaces. (The svGetScopeName and related functions exist to provide a name
based linkage from DPI to other interfaces) Exported functions can only be invoked if the
current context refers to an instance from which the named function could be called in
SV by an unqualified function call (i.e. a call to the function with no hierarchical path
qualifier). In general this implies that an exported SV function is visible from its declared
scope to any scope lower down in the hierarchy. Note that this implies that $root
functions are visible to all callers. Attempting to invoke an exported SV function from a
scope in which it is not directly visible will result in a runtime error; how such errors are
handled is implementation dependent. If an extern function needs to invoke an exported
function that is not visible from the current scope, it needs to change, via svSetScope, the
current scope to a scope that does have visibility to the exported function. This is
conceptually equivalent to making a hierarchically qualified function call in SV. The
current SV context will be preserved across a call to an exported function, even if current
context has been modified by an application. Note that context is not defined for non-
context externs and attempting to use any functionality depending on context from non-
context externs can lead to unpredictable behavior.

This:

a) uses consistent syntax with other similar SV 3.1 constructs
b) permits straightforward extension later to extern/exported tasks
c) permits all information needed by DPI coder to be put in the scope where such

usage occurs
d) by permitting extern/export declarations to be inside module scope, this simplifies

(permits) use of DPI inside library modules using just normal library resolution
mechanisms

e) allows for later extension of DPI to handle tasks (if such is ever necessary)
without syntax conflict with existing usage

f) permits later extension to address other interfaces (eg "extern VPI function
$foobar;") without syntax conflict with existing usage

g) use of extern/export is more symmetrical and was recommended by sv-ec and by
Friday's all-committees meeting

NOTES:

1. do not need to put function prototype along with the export because export has to
occur in same scope as the function definition being exported

2. extern/exports can occur anywhere where function declarations can occur.
However note that exports must be in same scope as the function being exported.

3. clarified some of the rules regarding the prohibition of multiple extern/exports in
a single scope (prohibition is only with respect to a given fname)

The following C side functions will exist in DPI to support contexts:

svScope svFetchScope()

returns the current scope. Returns NULL if invoked from a call chain starting with a non-
context SV extern function call, otherwise an opaque handle to the SV context
corresponding to the instance where the extern definition is present.

void svPutScope(const svScope)

sets the current context to the given scope handle. If this function is supplied an invalid
scope handle results may be unpredictable. Note that this affects all following calls to
exported SV functions, as their invocation relies on current scope. Note also it is not
necessary to reset the context prior to returning from the extern call; Note that NULL is
not a valid argument to this function. Behavior of SV calls if NULL passed to this
function may be unpredictable.

void* svGetUserData(const svScope)

gets the current user data associated with the given scope. See notes for svGetUserData.
Note: always returns NULL if called from a non-context DPI function.

svSetUserData(const svScope, void*)

sets the user data (a void*) associated with the current context. Note that a single
(*ONE*) user data pointer is associated with each context, regardless of how many
extern functions may be defined in that instance. This implies that if two extern functions
both set the user data for the same context, then only the last value will be obtained by
getContextUserData.

svGetScopeByName(const char*)

gets a scope handle when given a fully qualified instance name. Returns NULL if no such
name available or if "byName" queries not enabled in this simulation run.

svGetScopeName(const svHandle)

gets the fully qualified name of a scope handle

int svGetCallerInfo(char **fileName, int *lineNumber)

returns the file and line number in the SV code from which the extern call was made. If
this information is available, returns TRUE and updates fileName and lineNumber to the
appropriate values. Behavior is unpredictable if fileName or lineNumber are not
appropriate pointers. If this information is not available return FALSE and contents of
fileName and lineNumber not modified. Whether this information is available or not is
implementation specific. Note that the string provided (if any) is owned by the SV

implementation and is valid only until the next call to any SV function. Applications
must not modify this string or free it.

Example usage:

--

------------------- sv code --------------------

// NOTE: distance is SV name, Distance is C name
extern "DPI" pure Distance=

function integer distance(input integer a, input integer b);

module top;
TB tb;

endmodule

module TB

// NOTE: MyDistance is SV name, Distance is C name. Both this
// function and the function at $root map to the same C function and
//therefore have to have identical type signatures
extern "DPI" pure Distance=

function integer MyDistance(input integer t,input integer v=10);

DUT dut;
...
$root.distance(10, 20); // invokes the C function Distance(10,
MyDistance(2,); // invokes the C function Distance(2, 10)

endmodule

module DUT

...
UNIT unit1;
UNIT unit2;
...

endmodule

module UNIT

extern "DPI" context genPacket = function void genIt();
export "DPI" drivePacket = function driveIt;

function void driveIt(input l, m, n)

...
endfunction

...
genPacket; // invokes C function genPacket(), which invokes this
instances driveIt
// via the C function drivePacket()'
...

endmodule

----------------------- end sv code -----------------
---- c code ----

int Distance(int a, int b)
{

return (int)(sqrt(a*a + b*b));
}

extern void drivePacket(int a, int b, int c);

/* NOTE: genPacket is context-aware function */
void genPacket()
{

...
// call the drivePacket function in the instance from which
// genPacket invoked
drivePacket(x,y,z);
...

}

---- end c code -----

EXAMPLE CLARIFYING THE NOTION OF CONTEXT/SCOPES

This example is specifically to clarify the notion of the context of a function vs. the
location where a function is called. In Verilog, functions run in the context where they
are defined not where they are called from. Specifically, the only variables a function can
"see" without qualification are the variables that occur in its context, not those visible in
the location where it was called.

For example:

module foo(input clk);
reg a, b; // top level decls

function dummy(input bar);

a = bar;
endfunction

always @(posedge clk) begin

...
dummy(b); // call 1
...
begin: myblock

reg a; // local decls
...
dummy(b); // call 2

end
...

end
endmodule

(please forgive any syntax errors). In the above example, both call 1 and call 2 cause the
same variable, the top-level a, to be modified, even though in call2's local scope there is a
different version of "a" available.

In short: for a SV function, context is always where the function was declared, not where
it was called from. I hope this explanation clarifies the definition of "function context": it
is the context where the function was declared (i.e. where the extern appears or where the
function definition of an exported function appears) and is conceptually, just the fully
qualified name of that function (minus the function name part itself).

 SHORT TERM DEFERALL

(i.e. to be completed once extern/export syntax SV side semantics completed) - reusable
mechanism for user data associated with a scope. Current suggestion is to modify sv(Get |
Set)ScopeUserData to take an additional string argument. Internally tool maintains a table
per instance mapping strings to associated user data. This permits several independent
applications to manage user data in a consistent way without clashing with each other
(i.e. permits interoperable DPI applications requiring context)

DEFERED ISSUES (TO SV3.2+) + WORKAROUNDS

1. syntax to export a specific instance of a given SV function for example, export
only function "foo" from instance "top.here"
Deferred proposal:

export “DPI” [cname=] function path.fname;

Workaround: At $root,

export "DPI" c_foo=function globalFoo;

function global_foo(...)

top.here.foo(...)
endfunction

NOTE that the context of the exported c_foo function is $root and *not*
top.here, which would be the case if foo was exported directly in its definition.

2. how to permit multiple IPs to all use the same shared externs (present in
a shared “include” file)

Deferred proposal:

Permit multiple externs to coexist in the same scope as long as all the externs
define exactly the same function. Note that this is a stronger requirement than that
the externs be required to have the same type signature; this requirement in
addition forces that all the externs use exactly the same names (if any) for the
formals.

Workarounds:

Typically, shared library functions will typically also required that a set of
complex types (structs) also be shared. Neither C nor SV permit for the multiple
definition of types in a given scope. In C this issue is addressed by inclusion
guards to prevent against the multiple inclusion of the same header file.

This same approach may also be used with SV, as follows:

`ifndef SV_HEADER_NAME_SV
`define SV_HEADER_NAME_SV
… shared datatype definitions and extern functions etc

`endif

SystemVerilog also permits an additional mechanism to be used, namely having a
shared module contain all the required types and functions. This approach is
commonly used with existing Verilog IP and would remain equally valid when
DPI is used (in many respects, modules are the SV equivalent of C++
namespaces)

module MyBusLibrary;
… datatype definitions and extern functions etc
endmodule

3. syntax to permit a function definition to be exported from a scope other than
where the function is declared.

Deferred proposal:

export “DPI” [cname=] function DefinitionScope::fname

(note DefinitionScope may itself have DefinitionScope:: qualifiers, for the case of
nested definition scopes, such as nested modules)

Possible workaround:

suggestion to investigate the “extends” mechanism currently under discussion in
sv-ac, which permits for out-of-module code to “extend” the definition of a
module. Using an extend, out-of-module code could contain the required export
and still be considered local to the module, thus accomplishing the requirements
with no new syntax.

