
Section 10.1 and A.1.3 ???
Add BNF for the import and export statements based on the following anywhere a
function declaration can occur.

import "DPI" [pure | context] [<cname>=] <named_function_proto>;

export "DPI" [<cname>=] function <fname>;

Modify the BNF for named_function_proto to permit open arrays (whatever they are)
which can only be used with import “DPI” declarations. Relax prototype syntax to permit
unnamed arguments for import “DPI” declarations only which implies that pass by name
is not supported.

Section 10.6
Add the following as a new sub-section in Section 10

10.6 Import and Export Functions

The syntax for the import and export of functions is:

import "DPI" [pure | context] [<cname>=] <named_function_proto>;

export "DPI" [<cname>=] function <fname>;

In both import and export, cname is the name of the foreign function
(import/export), fname is the SystemVerilog name for the same function. If cname
is not explicitly given, it will be the same as the SystemVerilog function fname.
An error will be generated if and only if the cname has characters that are not
valid in a C function identifier.

Several SystemVerilog functions may be mapped to the same foreign function by
supplying the same cname for several fnames. Note that all these SystemVerilog
functions would have identical argument types (as defined below).

For any given cname, all declarations, regardless of scope, must have exactly the
same type signature. The type signature includes the return type, the number,
order, direction and types of each and every argument. Type includes dimensions
and bounds of any arrays/array dimensions. Signature also includes the
pure/context qualifiers that may be associated with an import definition.

Only one import or export declaration of a given fname is permitted in any given
scope. More specifically, for an import, the import must be the sole declaration
of fname in the given scope. For an export, the function must be declared in the

scope where the export occurs and there must be only one export of that fname in
that scope.

For exported functions, the exported function must be declared in the same scope
that contains the export "DPI" declaration. Only SV functions may be exported
(specifically, this excludes exporting a class method)

Note that import “DPI” functions declared this way can be invoked by
hierarchical reference the same as any normal SystemVerilog function. Declaring
a SystemVerilog function to be exported does not change the semantics or
behavior of this function from the SystemVerilog perspective (i.e. no effect in
SystemVerilog usage other than making this exported function also accessible to
C callers).

Imported functions specified as pure shall have no side effects; their results need
to depend solely on the values of their input arguments. Calls to such functions
can be removed by SystemVerilog compiler optimizations or replaced with the
values previously computed for the same values of the input arguments.
Specifically, a pure function is assumed not to directly or indirectly (i.e., by
calling other functions): — perform any file operations — read or write to any
SystemVerilog signal other than those passed as its arguments — access any
persistent data, like global or static variables. If a pure function does not obey the
above restrictions, SystemVerilog compiler optimizations can lead to unexpected
behavior, due to eliminated calls or incorrect results being used.

An unqualified imported function can have side effects but may not read or
modify any SystemVerilog signals other than those provided through its
arguments. Unqualified imports are not permitted to invoke exported
SystemVerilog functions.

Imported functions with the context qualifier may invoke exported
SystemVerilog functions, may read or write to SystemVerilog signals other than
those passed through their arguments, either through the use of other interfaces or
as a side-effect of invoking exported SystemVerilog functions. Context functions
are always implicitly supplied a scope representing the fully qualified instance
name within which the import declaration was present. (I.e. an import function
always runs in the instance in which the import declaration occurred. This is the
same semantics as SystemVerilog functions, which also run in the scope they
were defined, rather than in the scope of the caller) Import context functions are
permitted to have side effects and to use other SystemVerilog interfaces
(including but not limited to VPI). However note that declaring an import context
function does not automatically make any other simulator interface automatically
available. For VPI access (or any other interface access) to be possible, the
appropriate implementation defined mechanism must still be used to enable these
interface(s). Note also that DPI calls do not automatically create or provide any
handles or any special environment that may be needed by those other interfaces.

It is the user’s responsibility to create, manage or otherwise manipulate the
required handles/environment(s) needed by the other interfaces. (The
svGetScopeName and related functions exist to provide a name based linkage
from DPI to other interfaces) Exported functions can only be invoked if the
current context refers to an instance from which the named function could be
called in SystemVerilog by an unqualified function call (i.e. a call to the function
with no hierarchical path qualifier). In general this implies that an exported
SystemVerilog function is visible from its declared scope to any scope lower
down in the hierarchy. Note that this implies that $root functions are visible to all
callers. Attempting to invoke an exported SystemVerilog function from a scope in
which it is not directly visible will result in a runtime error; how such errors are
handled is implementation dependent. If an imported function needs to invoke an
exported function that is not visible from the current scope, it needs to change, via
svSetScope, the current scope to a scope that does have visibility to the exported
function. This is conceptually equivalent to making a hierarchically qualified
function call in SystemVerilog. The current SystemVerilog context will be
preserved across a call to an exported function, even if current context has been
modified by an application. Note that context is not defined for non-context
imports and attempting to use any functionality depending on context from non-
context imports can lead to unpredictable behavior.

	Section 10.1 and A.1.3 ???
	Section 10.6

