SystemVerilog 3.1
C/C++ Interface
APl Reference Manual
DRAFT

Version 0.7

March 25, 2003

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

Copyright® 2003 by Accellera. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means
— graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems — without the prior approval of Accellera.

Additional copies of this manua may be purchased by contacting Accelleraat the address shown below.
Notices

The information contained in this manual represents the definition of the SystemVerilog 3.1 C/C++ APl as
| reviewed and released by Accellerain March 2003.

Accellera reserves the right to make changes to the SystemVerilog 3.1 C/C++ API and this manual in subse-
guent revisions and makes no warranties whatsoever with respect to the completeness, accuracy, or applicabil-
ity of the information in this manual, when used for production design and/or devel opment.

Accellera does not endorse any particular simulator or other CAE tool that is based on the SystemVerilog 3.1
CIC++ API.

Suggestions for improvements to the SystemVerilog 3.1 C/C++ API and/or to this manual are welcome. They
should be sent to the SystemVerilog 3.1 C/C++ API email reflector

sv-cc@server.eda.org
or to the address below.

The current Working Group’s website address is
www.eda.org/sv-cc

Information about Accelleraand membership enrollment can be obtained by inquiring at the address below.
Published as: SCE-MI Reference Manual

| Version 0.7, March 25, 2003.
Published by: Accellera
1370 Trancas Street, #163
Napa, CA 94558

Phone: (707) 251-9977
Fax: (707) 251-9877

Printed in the United States of America.

Verilog® isaregistered trademark of Cadence Design Systems, Inc.

| ii Copyright 2003 Accellera. All rights reserved.

Accellera
| Extensionsto Verilog-2001 SystemVerilog 3.1/draft 4

The following individuals contributed to the creation, editing, and review of SystemVerilog 3.1 C/C++ API.
| **Fill-in this list**

Joe Daniels Technical Editor
Vassilios Gerousis Infineon
John Stickley Mentor Graphics

| Copyright 2003 Accellera. All rights reserved. iii

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

Revision history:
| **Revise this**

Version 0.3, 1st draft 02/26/03

| Version 0.5 03/20/2003

| iv Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Table of Contents

Section 1

DirectC interfacel
00 1 1 o [F o o o O SO PTTPRT 1
1.2 Two layers of the DIireCtC INtEITaCE......ccucvi et 2
1.3 Required properties of external fUNCLIONS...........ccviviererrieeerse e e 3
1.4 EXIErNal AECIAIELIONS......c.civiireeeriiiriie ettt sttt sttt bt e e e n e 4
1.5 EXternal fUNCLON CAllSco.ioiiiiiiiic e st 7
1.6 ATQUMENE PASSING ..eeveueereeueeieseeteetestesteseestetessessesseseesessessesssssessesseseessensessensesesseensesessessessensessessensenes 7
A o q 0o (=0 1ot 0] 9

Section 2

SystemVerilog Assertion API11
2N R = o 0T 0 1= £ 11
2.2 EXtensionSto VPl eNUMEIEtiONS........coouiiiiiinene sttt ettt e 11
PR IS - (T 101 40T 1o o RSO RPRP 13
2.4 DyNamiC infOrMEHION........ceieiuireeieeeeee e es e st e e e eaesre e e saesresbeseeseeneenseseeneesenneeneenensen 15
2.5 CONLrOl FUNCLIONS ...ttt bbbttt sttt 18

Section 3

SystemVerilog Coverage API21
TN R = o 0T 0 1= £ 21
3.2 SystemVerilog real-time COVErage GCCESScuirrmrrerierestertestereeseeeeseeseesessessessessessessessssesssssessenses 22
GG T 1V =TT 11 1o o 27
3.4 VPl COVEragE EXLENSIONS.....cueviueeuiereeeereesestestesteseeseesteseeseeseesaeseessssessessessesseseeseensensesesnessessensessenses 29

Annex A

DirectC C-layer31
E N R O = 4= T TR 31
A.2 NaMING CONVENTIONScoveieiiiisieiesiesies e see s et e sesee e sse s e s e sressestesseseseese e sesaesseseessnseesessessessessessesees 32
N o 1 - 2 32
F N A | ot [T L=] PR 32
A5 SEMANTIC CONSITAINTEScveuievireetiieiereet sttt st se et st s b ese b es e b et b et b e besseneneenas 33
T T = 1 3] - 35
A7 Argument PasSinNg MOUES........cccuieeerererireesieseeseeseeseeeeeeseseesessessessessessesessessessensessessesesssessssenses 38
A8 CONEXE FUNCHIONS......viiiiteiieieieteee sttt b e b e bt bt ebeneenas 40
F e T [o[0T L=] PR 42
N N g = S 46
N R O = 0 I T 47

Annex B

Include files55
B.1 Binary-level compatibility includefile sve. h........ 55
B.2 Source-level compatibility includefile sve_src. h......... 58

Annex C

Inclusion of Foreign Language Code59

Copyright 2002 Accellera. All rights reserved. %

Accellera

SystemVerilog 3.1/draft 4 Extensions to Verilog-2001
C.l OVEIVIBW. ettt sttt et st ettt et etk etk e e b et e bt se b e se bt s bt e s bebeseebenbenenbeneas 59
C.2 LOCEtioN INAEPENTENCEeeveiveieesieiestiees e e see e es e se st s e saeste e stesteseeseeseensesae e eseesensesnessesrenseseens 60
[ORCIIN @] o] o aw'e o 7T 8¢ 11 o] o 150 60
C.4 SOUCE COUE INCIUSION ...ttt sttt sttt b e bbb bbb ene b e e nee e 62

Vi Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Section 1
Direct Programming Interface (DPI)

This chapter highlights the Direct Programming Interface and provides a detailed description of the System-
Verilog-layer of theinterface. The C-layer is defined in Annex A.

1.1 Overview

DPI is an interface between SystemVerilog and a foreign programming language. It consists of two separated
layers: the SystemVerilog-layer and a foreign language layer. Both sides of DPI are fully isolated. Which pro-
gramming language is actually used as the foreign language is transparent and irrelevant for the SystemVerilog
side of thisinterface. Neither SystemVerilog compiler nor the foreign language compiler is required to analyze
the source code in the other’s language. Different programming languages can be used and supported with the
same intact SystemVerilog-layer. For now, however, SystemVerilog 3.1 defines a foreign language layer only
for the C programming language. See Annex A for more details.

The motivation for thisinterface istwo-fold. The methodol ogical requirement isthat the interface should allow
to build a heterogeneous system (a design or a testbench) in which some components may be written in alan-
guage (or more languages) other than SystemVerilog, hereinafter called the foreign language. On the other
hand, thereis also apractical need for an easy and efficient way to connect the existing code, usually writtenin
C or C++, without the knowledge and the overhead of PLI or VPI.

DPI follows the principle of a black box: the specification and the implementation of a component is clearly
separated and the actual implementation is transparent to the rest of the system. Therefore, the actual program-
ming language is also transparent, with the stipulation that it must have C linkage
semantics. The separation between SystemVerilog code and the foreign language is based on using functions
as the natural encapsulation unit in SystemVerilog. By and large, any function can be treated as a black box
and implemented either in SystemVerilog or in the foreign language in a transparent way, without changing its
cals.

1.1.1 Functions

DPI alows direct function inter-language function calls (ILFC’'s) between the languages either side of the
interface. Specifically, functions implemented in a foreign language can be called from SystemVerilog; such
functions are referred to as imported functions. SystemVerilog functions that are to be called from a foreign
code shall be specified in expor t declarations (see section 1.6 for more details). allows for passing Sys-
temVerilog data between the two domains through function arguments and results. Thereis no intrinsic over-
head in thisinterface.

All functions used in DPI are assumed to complete their execution instantly and consume 0 (zero) simulation
time, just as normal SV functions. DPI provides no means of synchronization other than by data exchange and
explicit transfer of control.

Every imported function needs to be declared. A declaration of an imported function isreferred to as an import
declaration. Import declarations are very similar to SystemVerilog function declarations. External declarations
shall occur in any location that is legal for a native SystemVerilog function declaration. Specifically, this
means in nodul e, interface, program or generate scope. Multiple declarations of the same
external function are not allowed in the same scope. However, it is allowable to declare several external func-
tions that are all mapped to the same cnane. (This can be a useful way of providing different default argu-
ment values for the same basic function.) asteng-asthey-are-equivalent. External functions can have zero or
more formal i nput , out put, and i nout arguments, and they can return a result or be defined as voi d
functions.

DPI is entirely based entirely upon SystemVerilog constructs. The usage of imported functions is identical as
for native SystemVerilog functions. With few exceptions imported functions and native functions are mutually
exchangeable. Calls sites of imported functions are indistinguishable from calls of SystemVerilog functions.
This facilitates ease-of-use and minimizes the learning curve.

Copyright 2003 Accellera. All rights reserved. 1

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

1.1.2 Data types

SystemVerilog data types are the sole data types that can cross the boundary between SystemVerilog and afor-
eign language in either direction (i.e., when a foreign function is called from SystemVerilog code or an
exported SystemVerilog function is called from a foreign code). It is not possible to import the data types or
directly use the type syntax from another language. With with some restrictions and with some notational
extensions, most SystemVerilog datatypes are allowed in the DPI interface. Function result types are restricted
to small values, however (see).

Formal arguments of an imported function can be specified as open arrays. A formal argument is an open

array when a range of one or more of its dimensions, packed or unpacked, is unspecified (denoted by using
| square brackets ([])). Thisis solely a relaxation of the argument-matching rules. An actual argument
shall match the formal one regardless of the range(s) for its corresponding dimension(s), which facilitates writ-
ing amore general code that can handle SystemVerilog arrays of different sizes. See

1.1.2.1 Data representation

DPI does not add any constraints on how SystemVerilog-specific data types are actually implemented. Optimal
representation can be platform dependent. The layout of 2- or 4-state packed structures and arrays is imple-
mentation- and platform-dependent.

The implementation (representation and layout) of 4-state values, structures, and arrays is irrelevant for Sys-
temVerilog semantics, and can only impact the foreign side of the interface.

1.2 Two layers of the DPIl interface

DPI consists of two separate layers: the SystemVerilog-layer and aforeign language layer. The SystemVerilog-
layer does not depend on which programming language is actually used as the foreign language. Although dif-
ferent programming languages can be supported and used with the intact SystemVerilog-layer, SystemVerilog
3.1 defines aforeign language layer only for the C programming language. Nevertheless, SystemVerilog code
shall look identical and its semantics shall be unchanged for any foreign language layer.

1.2.1 DPI SystemVerilog-layer

The SystemVerilog side of DPI does not depend on the foreign programming language. In particular, the actual
function call protocol and argument passing mechanisms used in the foreign language are transparent and irrel-
evant to SystemVerilog. SystemVerilog code shall look identical regardless of what code the foreign side of the
interface is using. The semantics of the SystemVerilog side of the interface is independent from the foreign
side of the interface.

This chapter does not constitute a complete interface specification. It only describes the functionality, seman-

ticsand syntax of the SystemVerilog-layer of the interface. The other half of the interface, the foreign language

layer, defines the actual argument passing mechanism and the methods to access (read/write) formal arguments
| fromthe code. See Annex A for more details.

1.2.2 DPI foreign language layer

The foreign language layer of the interface (which is transparent to SystemVerilog) shall specify how actua
arguments are passed, how they can be accessed from the foreign code, how SystemVerilog-specific data types

| (suchasl ogi c and packed) are represented, and how to trand ate them to and from some predefined C-like
types.

| The datatypes allowed for formal arguments and results of imported functions or exported functions are gen-
erally SystemVerilog types (with some restrictions and with notational extensions for open arrays). The user is
responsible for specifying in their foreign code the native types equivalent to the SystemVerilog types used in

| imported declarations or expor t declarations. EDA toals, like a SystemVerilog compiler, can facili-
tate the mapping of SystemVerilog types onto foreign native types by generating the appropriate function
headers.

| 2 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

The SystemVerilog compiler or simulator shall generate and/or use the function call protocol and argument
passing mechanisms required for the intended foreign language layer. The same SystemVerilog code (com-
piled accordingly) shall be usable with different foreign language layers, regardless of the data access method
assumed in a specific layer. Annex A defines DPI foreign language layer for the C programming language.

1.3 Global name space of imported and exported functions

Every function imported to SystemVerilog must eventually resolve to a global symbol. Similarly, every func-
tion exported from SystemVerilog defines a global symbol. Thus the functions imported to and exported from
SystemVerilog have their own global name space, different from $r oot name space. Global names of
imported and exported functions must be unique (no overloading is allowed) and shall follow C conventions
for naming. Exported and imported functions, however, may be declared with local SystemVerilog names.
Import and export declarations alow to specify a global name for a function in an addition to its declared
name. If aglobal name is not explicitly given, it will be the same as the SystemV erilog function name. Exam-
ple:

export “DPI” foo_plus = function \foo+ ; // “foo+” exported as “foo_plus”

export “DPI” function foo; // “foo” exported under its own name

import “DPl” init_1 = function void \init[1] (); // “init_1" is a global nane

[Syntactical/lexical rulesfor cname should allow arbitrary C identifier, including those clashing with SV

keywords.]

The same global function may be referred to in multiple import declarations in different scopes or/and with
different SystemV erilog names, see section 1.4.4. Each exported function must have a unique global name.

1.4 Imported functions

The usage of imported functionsis similar as for native SystemVerilog functions.
1.4.1 Required properties of imported functions - semantical constraints

This section defines the semantic constraints imposed on imported functions. Some semantic restrictions are
shared by all the imported functions. Other restrictions depend on whether the special properties pur e (see
section 1.4.2) or cont ext (see section 1.4.3) are specified. for an imported function. A SystemVerilog com-
piler is not able to verify that those restrictions are observed and if those restrictions are not satisfied, the
effects of imported function call can be unpredictable.

1.4.1.1 Instant completion

1.4.1.2 i nput and out put arguments

Imported functions can havei nput and out put arguments. Theformal i nput arguments shall not be mod-
ified. If such arguments are changed within afunction, the changes shall not be visible outside the function; the
actual arguments shall not be changed.

The imported function shall not assume anything about the initial values of formal out put arguments. The
initial values of out put arguments are undetermined and implementati on-dependent.

1.4.1.3 Special properties pur e and cont ext

Special properties can be specified for an imported function: as pur e or ascont ext (see aso section 1.4.2
or section 1.4.3).

A function which result depends solely on the values of its input arguments and with no side effects may be

Copyright 2003 Accellera. All rights reserved. 3

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

1.4.1.4 Memory management

The memory spaces owned and allocated by the foreign code and SystemVerilog code are disjoined. Each side

is responsible for its own allocated memory. Specifically, an imported function shall not free the memory allo-

cated by SystemVerilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the mem-

ory alocated by the foreign code (or the foreign compiler). This does not exclude scenarios where foreign code

allocates ablock of memory, then passes ahandle (i.e., apointer) to that block to SystemVerilog code, which in
| turncallsanimported function (e.g. C standard function f r ee) which directly or indirectly frees that block.

NOTE—In this last scenario, a block of memory is alocated and freed in the foreign code, even when the standard func-
tionsmal | oc and f r ee arecalled directly from SystemVerilog code.

A pur e function call can be safely eliminated if its result is not needed or if the previous result for the same
values of input arguments is available somehow and can be reused without needing to recalculate. Only non-
void functions with no out put or i nout arguments can be specified aspur e. Functions specified as pur e
shall have no side effects whatsoever; their results need to depend solely on the values of their input argu-
ments. Calls to such functions can be removed by SystemVerilog compiler optimizations or replaced with the
values previously computed for the same values of the input arguments.

Specifically, apur e function is assumed not to directly or indirectly (i.e., by calling other functions):
— perform any file operations

— read or write anything in the broadest possible meaning, includes i/o, environment variables, objects from
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If apur e function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

Some DPI external functions require that the context of their call is known. It takes special instrumentation of
their call instances to provide such context; for example, an internal variable referring to the “ current instance”
might need to be set. To avoid any unnecessary overhead, external function calls in SystemVerilog code are
not instrumented unless the external function is specified as cont ext inits SystemVerilog declaration.

All DPI export functions require that the context of their call is known. This occurs since SystemV erilog func-
tion declarations always occur in instantiable scopes, hence alowing a multiplicity of unique function
instances in the simulator’ s elaborated database. Thus, there is no such thing as a hon-context export function.

For the sake of simulation performance, an external function call shall not block SystemV erilog compiler opti-
mizations. An external function not specified ascont ext shall not access any data objects from SystemVer-
ilog other than its actual arguments. Only the actual arguments can be affected (read or written) by its call.
Therefore, acall of non-cont ext function is not a barrier for optimizations. A cont ext external function,

| 4 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

however, can access (read or write) any SystemVerilog data objects by calling PLI/VPI, or by caling an
embedded export function. Therefore, a call to acont ext function is a barrier for SystemVerilog compiler
optimizations.

Only calls of cont ext external functions are properly instrumented and cause conservative optimizations;
therefore, only those functions can safely call al functions from other APIs, including PLI and VPI functions
or exported SystemV erilog functions. For external functions not specified as cont ext , the effects of calling
PLI, VPI, or SystemVerilog functions can be unpredictable and such calls can crash if the callee requires a
context that has not been properly set. However note that declaring an import context function does not auto-
matically make any other simulator interface automatically available. For VPI access (or any other interface
access) to be possible, the appropriate implementation defined mechanism must still be used to enable these
interface(s). Note also that DPI calls do not automatically create or provide any handles or any special environ-
ment that may be needed by those other interfaces. It isthe user’ s responsibility to create, manage or otherwise
mani pulate the required handles/environment(s) needed by the other interfaces.

Special DPI utility functions exist that allow external functions to retrieve and operate on their context. See
Annex A for more details.

1.4.4 declarations

Also cross-reference to section 10.6, import and export functions

Each imported function shall be declared. Such declaration are referred to as declarations. The syntax
of an import declaration is similar to the syntax of SystemVerilog function prototypes.

Imported functions are similar to SystemVerilog functions. Imported functions can have zero or more formal
i nput, out put, andi nout arguments. Imported functions can return aresult or be defined asvoi d func-
tions.

Syntax:

import_dpi_decl ::= import “ DPI” [pure|context] [cname=] <named_function_proto>;
where named_function_proto is as defined in section A.2.6 of SV 3.1 BNF
/* EDITOR: UPDATE ABOVE CROSS-REFERENCE AS NECESSARY */

An import declaration specifies the function name, function result type, and types and directions of formal
arguments. It can also provide optional default values for formal arguments. Formal argument names are
optional unless argument passing by name is needed. An external declaration can also specify an optional
function property: cont ext or pur e.

Note that an import declaration is equivalent to defining a function of that name in the SV scope in which the
import declaration occurs, and thus multiple imports of the same function name into the same scope are forbid-
den.

cname provides the linkage name for this function in the foreign language. If not provided, this defaults to the
same identifier asthe SV function name. In either case, this linkage name must conform to C identifier syntax,
specifically, must start with aletter or underscore, and may be followed by al phanumeric characters or under-
sores. An error will occur if the cname, either directly or indirectly, does not conform to these rules.

For any given cnane (whether explicitly defined with cname=, or automatically determined from the func-
tion name), al declarations, regardless of scope, must have exactly the same type signature. The type signa-
ture includes the return type, the number, order and types of each and every argument. Type includes
dimensions and bounds of any arrays or array dimensions. Signature also includes the pure/context qualifiers
that may be associated with an extern definition.

Note that multiple declarations of the same external language function in different scopes may vary argument
names and default values, provided the type compatibility constraints are met.

Copyright 2003 Accellera. All rights reserved. 5

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

A formal argument name is required to separate the packed and the unpacked dimensions of an array.

The qualifier r ef can not be used in external declarations. The actual implementation of argument passing
depends solely on the foreign language layer and its implementation and shall be transparent to the SystemVer-
ilog side of the interface.

The following are examples of external declarations.

import “DPI” function void nmylnit();

/1 fromstandard math library

import “DPI” pure function real sin(real);

/1 fromstandard C |library: menory managenent

import “DPI” function handle nmalloc(int size); // standard C function

import “DPI” function void free(handle ptr); // standard C function

/1 abstract data structure: queue

import “DPI” function handl e newQueue(input string name_of _queue);

import “DPI” function handl e newEl em(bit [15:0]);

import “DPI” function void enqueue(handl e queue, handle el em;

import “DPI” function handl e dequeue(handl e queue);

/'l mscellanea

import “DPI” function bit [15:0] getStinmulus();

import “DPI” context function void processTransaction(handle el em
output logic [64:1] arr [0:63]);

1.4.5 Function result

Function result types are restricted to small values. The following SystemVerilog data types are alowed for

imported function results:

— voi d,byte,shortint,int,longint,real,shortreal,handl e,andstring

— packed bi t arraysup to 32 bitsand all typesthat are eventually equivalent to packed bi t arraysup to 32
bits.

The same restrictions apply for the result types of exported functions.

1.4.6 Types of formal arguments

With some restrictions and with notational extensions, all SystemVerilog data types are allowed for formal

arguments of imported functions.

— Enumerated data types are not supported directly. Instead, an enumerated data type isinterpreted asthe
type associated with that enumerated type.

— SystemVerilog does not specify the actual memory representation of packed structures or any arrays,
packed or unpacked. Unpacked structures have an implementation-dependent packing, normally matching
the C compiler.

— Theactual memory representation of SystemVerilog data typesis transparent for SystemVerilog semantics
and irrelevant for SystemVerilog code. It can be relevant for the foreign language code on the other side of
the interface, however; a particular representation of the SystemVerilog data types can be assumed. This
shall not restrict the types of formal arguments of imported functions, with the exception of unpacked
arrays. SystemVerilog implementation can restrict which SystemVerilog unpacked arrays are passed as
actual arguments for aformal argument which is asized array, athough they can be always passed for an
unsized (i.e., open) array. Therefore, the correctness of an actual argument might be implementation-
dependent. Nevertheless, an open array provides an implementation-independent solution.

1.4.6.1 Open arrays

The size of the packed dimension, the unpacked dimension, or both dimensions can remain unspecified; such

6 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

cases are referred to as open arrays (or unsized arrays). These arrays allow the use of generic code to handle
different sizes.

Formal arguments of imported functions can be specified as open arrays. (Exported SystemVerilog functions
cannot have formal arguments specified as open arrays.) A formal argument is an open array when a range of
one or more of its dimensions is unspecified (denoted by using square brackets ([])). Thisis solely a relax-
ation of the argument-matching rules. An actual argument shall match the formal one regardless of the range(s)
for its corresponding dimension(s), which facilitates writing a more general code that can handle SystemVer-
ilog arrays of different sizes.

Although the packed part of an array can have an arbitrary number of dimensions, in the case of open arrays
only asingle dimension is allowed for the packed part. Thisis not very restrictive, however, since any packed
type is eventually equivalent to one-dimensional packed array. The number of unpacked dimensions is not
restricted.

If aformal argument is specified as an open array with a range of its packed or one or more of its unpacked
dimensions unspecified, then the actual argument shall match the formal one — regardless of its dimensions
and sizes of its linearized packed or unpacked dimensions corresponding to an unspecified range of the formal
argument, respectively.
Here are examples of types of formal arguments (empty square brackets[] denote open array):

l ogi c

bit [8:1]

bit[]

bit [7:0] b8x10 [1:10] // b8x10 is a formal arg nane

logic [31:0] 132x [] // 132x is a formal arg nane

logic [] Ix3 [3:1] // Ix3 is a formal arg nane

bit [] an_unsized_array [] // an_unsized_ array is a formal arg nane
Example of complete import declarations:

import “DPI” function void foo(input |ogic [127:0]);
inport “DPI” function void boo(logic [127:0] i []); // open array of 128-bit

The following exampl e shows the use of open arrays for different sizes of actual arguments:
typedef struct {int i; ... } MType;

import “DPI” function void foo(input MyType i []1[1);
[* 2-di mensi onal unsized unpacked array of MyType */

MyType a_10x5 [11:20][6:2];
MyType a_64x8 [64:1][-1:-8];

foo(a_10x5);
foo(a_64x8);

1.5 Imported function calls

The usage of imported functionsis identical as for native SystemVerilog functions. The usage and syntax for
calling imported functions is identical as for native SystemVerilog functions.

1.5.1 Argument passing

Arguments passing for imported functionsis ruled by WYSWYG principle: What You Specify |s What You Get,

Copyright 2003 Accellera. All rights reserved. 7

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

see section 1.5.1.1. The evaluation order of formal arguments follows general SystemVerilog rules. Directions
and types of formal arguments of imported functions are never coerced, regardless of the actual argument.

Argument compatibility and coercion rules are the same as for native SystemVerilog functions. If acoercionis
needed, atemporary variableis created and passed as the actual argument. For i nput andi nout arguments,
the temporary variable isinitialized with the value of actual argument with the appropriate coercion; for out -
put or i nout arguments, the value of the temporary variable is assigned to the actual argument with the
appropriate conversion. The assignments between atemporary and the actual argument follow general System-
Verilog rules for assignments and automatic coercion.

On the SystemVerilog side of the interface, the values of actual arguments for formal input arguments of
imported functions shall not be affected by the callee; theinitial values of formal output arguments of imported
functions are unspecified (and can be implementation-dependent), and the necessary coercions, if any, are
applied as for assignments. imported functions shall not modify the values of their i nput arguments.

For the SystemVerilog side of the interface, the semantics of arguments passing isasif i nput arguments are
passed by copy-in, out put arguments are passed by copy-out, and i nout arguments were passed by copy-in,
copy-out. The terms copy-in and copy-out do not impose the actual implementation, they refer only to “hypo-
thetical assignment”.

The actual implementation of argument passing is transparent to the SystemVerilog side of the interface. In
particular, it is transparent to SystemVerilog whether an argument is actually passed by value or by reference.
The actual argument passing mechanism is defined in the foreign language layer. See Annex A for more
details.

1.5.1.1 “What You Specify Is What You Get” principle

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by external declaration; they shall have ranges of packed or unpacked arrays
exactly as specified in the externa declaration. Only the declaration site of the imported function is relevant
for such formal arguments.

The formal arguments defined as open arrays have the size and ranges of the actual argument, i.e., have the
ranges of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of open arrays
are determined at acal site; the rest of type information is specified at the external declaration.

So, if aformal argument isdeclaredasbit [15: 8] b [],thenitistheexternal declaration which specifies
the formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument
used at a particular call site defines the bounds for the unpacked part for that call.

1.5.2 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for out put and i nout arguments.
| Such changes shall be detected and handled after control returns from imported functions to SystemVerilog
code.

For out put andi nout arguments, the value propagation (i.e., value change events) happens as if an actual
argument was assigned a formal argument immediately after control returns from imported functions. If there
is more than one argument, the order of such assignments and the related value change propagation follows
general SystemVerilog rules.

1.6 Exported functions

DPI allows calling SystemV erilog functions from another language. However, such functions must adhere to
the same restrictions as are imposed on imported functions.

| 8 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

SystemVerilog functions that can be called from a foreign code need to be specified in export declarations.
Export declarations are alowed to occur only in the scope in which the function being exported is defined.
Only one export declaration per function is allowed in a given scope.

Note that class member functions may not be exported, but al other SystemVerilog functions may be
exported.

Similar toi mport declarations, export declarations can define an optional cnane to be used in the foreign
language when calling an exported function.

Syntax:

export_dpi_decl ::= export “ DPI” [cname=] function fname;
cnane isoptional here, it defaultsto f name . Note that all export functions are always context functions; thus

there is no need to attribute them as such with specia syntax. Export functions may not be attributed as pure,
either.

Copyright 2003 Accellera. All rights reserved. 9

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

| 10 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

Section 2
SystemVerilog Assertion API

This chapter defines the Assertion Application Programming Interface (API) in SystemVerilog 3.1/draft 2.

2.1 Requirements

SystemVerilog 3.1/draft 2 provides assertion capabilities to enable:
— auser’s C code to react to assertion events,
— third-party assertion “waveform” dumping tools to be written,
— third-party assertion coverage tools to be written, and

— third-party assertion debug tools to be written.

2.1.1 Naming conventions

All elements added by this interface shall conform to the Verilog Procedural Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi .

— All type names shall start with vpi , followed by initialy capitalized words with no separators, e.g.,
vpi Assert Check.

— All callback names shall start with cb, followed by initially capitalized words with no separators, e.g.,
cbAssertionStart.

— All function names shall start with vpi _, followed by all lowercase words separated by underscores
(),egq.,vpi _get _assert _info().

2.1.2 Nomenclature

The following terms are used in this standard.

Directive—atype applied to atemporal expression describing how the results of the temporal expression
are to be captured and/or interpreted.

Assertion clock — the Verilog event expression that indicates to an assertion when time has advanced
(and when HDL signals can be sampled, etc.).

Assertion Temporal expression — A declarative expression (one or more clock cycles) describing the behavior
of asystem over time. // Thisisthe "body" of the assertion.

2.2 Extensions to VPl enumerations

These extension shall be merged into the contents of thevpi _user . hfile, described in IEEE Sd 1364-2001,
Annex G The numbersin the range 700 - 799 are reserved for the assertion portion of the VPI.

2.2.1 Object types

This section lists the object type VPI calls. The VPI reserved range for these call is700 - 729.
#define vpi Assertion 700 /* assertion */

Copyright 2002 Accellera. All rights reserved. 11

Accellera

SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

2.2.2 Object properties

This section lists the object property VPI calls. The VPI reserved range for these call is 700 - 729.

/* Directives as properties */

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

vpi SequenceAssertion 701

vpi Assert Assertion 702

vpi AssuneAssertion 703

vpi RestrictAssertion 704

vpi Cover Assertion 705

vpi CheckAssertion 705 /* inlined behavior assertion */

vpi O herDirectiveAssertion 706 /* placehol der for other assertion

directive */

2.2.3 Callbacks

This section lists the system callbacks. The VPI reserved range for these call is700 - 719.

1) Assertion

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne

cbAssertionStart 700
cbAssertionSuccess 701
cbAssertionFail ure 702
cbAssertionStepSuccess 703

cbAssertionStepFailure 704

cbAssertionDi sabl e 705
cbAsserti onEnabl e 706
cbAsserti onReset 707
cbAssertionKill 708

2) “Assertion system”

#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne

cbAssertionSyslnitialized709

cbAssertionSysStart 710
cbAsserti onSysSt op 711
cbAsserti onSysEnd 712
cbAsserti onSysReset 713

2.2.4 Control constants

This section lists the system control constant callbacks. The VPI reserved range for these call is 730 - 759.

1) Assertion

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

vpi Asserti onDi sabl e 730
vpi Asserti onEnabl e 731
vpi Asserti onReset 732
vpi AssertionKil | 733
vpi Asserti onEnabl eStep 734

vpi AssertionDi sabl eStep 735

2) Assertion stepping

#define vpi AssertionCl ockSteps 736

3) “Assertion system”

#define vpi Asserti onSysStart 737
#define vpi Asserti onSysSt op 738
#define vpi Asserti onSysEnd 739

12

Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

#define vpi Asserti onSysReset 740

2.3 Static information

This section defines how to obtain assertion handles and other static assertion information.

2.3.1 Obtaining assertion handles

SystemVerilog 3.1/draft 2 extends the VPl module iterator model (i.e., the instance) to encompass assertions,
asshown in Figure 2-1—. **Revise thisxref w/ Stu; also check/revise variable settings, etc.**

The following steps highlight how to obtain the assertion handles for named assertions.

1

2)

3

4)

{ module } property

all other module ->> object iterators
from IEEE 1364-2001, section 26.6.1 page 634

Figure 2-1—Encompassing assertions

Iterate all assertionsin the design: use a NULL reference handle (ref) tovpi _iterate(), eg.,

itr = vpi _iterate(vpi Assertion, NULL);
while (assertion = vpi_scan(itr)) {
/* process assertion */

}

Iterate all assertions in an instance: pass the appropriate instance handle as a reference handle to
vpi _iterate(),eg.,

itr = vpi _iterate(vpi Assertion, instanceHandl e);
while (assertion = vpi_scan(itr)) {
/* process assertion */

}

Obtain the assertion by name: extend vpi _handl e_by narme to also search for assertion namesin
the appropriate scope(s), e.9.,

vpi Handl e = vpi _handl e_by_nane(assert Nane, scope)

/* room for expanding iteration later, filtering based on "object property" e.g.

itr = vpi _iterate_property(vpi Assertion, /* property_here: e.g.
vpi CheckAssertion*/, NULL);

while (assertion = vpi_scan(itr)) {

/* process assertion *

Copyright 2002 Accellera. All rights reserved. 13

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

}
NOTES
1—Aswith all VPI handles, assertion handles are handles to a specific instance of a specific assertion.
2—These iterators return both assertions and immediate non-temporal checks.
3—Unnamed assertions cannot be found by name.
2.3.2 Obtaining static assertion information

The following information about an assertion is considered to be "static".
— Assertion name

— Instance in which the assertion occurs

— Module definition containing the assertion

— Assertion directive

1) assert

2) check

3) assume
4) cover

5) sequence

6) Any assertion updates from the SV-AC.
— Assertion source information: the file, line, and column where the assertion is defined.

— Assertion clocking domain/expression2
2.3.2.1 Using vpi _get _assertion_info

Static information can be obtained directly from an assertion handle by using
vpi _get _assertion_i nf o, asshown below.

typedef struct t_vpi_source_info {
PLI _BYTE* *fil eNane;
PLI _I NT32 startLine;
PLI _I NT32 start Col um;
PLI I NT32 endLi ne;
PLI _I NT32 endCol umm;
} s_vpi _source_info, *p_vpi_source_info;
typedef struct t_vpi_assertion_info {

PLI _BYTE8 *nane; /* name of assertion */
vpi Handl e i nstance; /* instance containing assertion */
PLI _BYTE8 nodnane; /* name of nodul e/interface containing

assertion */

vpi Handl e cl ock; /* clocking expression */
PLI _INT32 directive; /* vpiAssune, ... */
s_vpi _source_info sourcel nfo;
s_vpi _assertion_info, *p_vpi_assertion_info;
int vpi_get_assertion_info (assert_handle, p_vpi_assertion_info);

14 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

This call obtains all the static information associated with an assertion.

The inputs are a valid handle to an assertion and a pointer to an existing s_vpi _asserti on_i nf o data
structure. On success, the function returns TRUE and thes_vpi _asserti on_i nf o data structure is filled
in as appropriate. On failure, the function returns FALSE and the contents of the assertion data structure are
unpredictable.

Assertions can occur in modules and interfaces: assertions defined in modules (by using VPI) shall have
instance information; assertions in interfaces shall have a NULL instance handle. In either case, nbdnane is
the definition name.

NOTES

1—The assertion clock is an event expression supplied as the clocking expression to the assertion declaration, i.e., thisisa
handle to an arbitrary Verilog event expression.

2—A single call returns all the information for efficiency reasons.

2.3.2.2 Extending vpi _get () and vpi _get _str()

Inadditiontovpi _get _asserti on_i nf o, thefollowing existing VPI functions are also extended:
vpi _get(), vpi_get_str()

vpi _get () canbe used to query the following VPI properties from a handle to an assertion.

vpi AssertionDirective
returns one of vpi Assert Property orvpi CheckProperty.

vpi Li neNo
returns the line number where the assertion is declared.

vpi _get str () canbe usedto obtain thefollowing VPI properties from an assertion handle.
vpi Fi | eName
returns the filename of the source file where the assertion was declared.
vpi Name
returns the name of the assertion.

vpi Ful | Namre
returns the fully qualified name of the assertion.

2.4 Dynamic information

This section defines how to place assertion system and assertion callbacks.
2.4.1 Placing assertion “system” callbacks

Usevpi _regi ster_ch(), setting thecb_rt n element to the function to be invoked and the reason ele-
ment of thes_cb_dat a structure to one of the following values, to place an assertion system callback.
cbAssertionSyslnitialized
occurs after the system has initialized. No assertion-specific actions can be performed until this callback
completes. The assertion system can initialize before cbSt ar t OF Si nul at i on does or afterwards.

cbAssertionSysStart

the assertion system has become active and starts processing assertion attempts. This always occur after
cbAssertionSyslnitialized. By default, the assertion system is “ started” on simulation startup,
but the user can delay this by using assertion system control actions.

Copyright 2002 Accellera. All rights reserved. 15

Accellera

SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

cbAsserti onSysSt op

the assertion system has been temporarily suspended. While stopped no assertion attempts are processed
and no assertion-related callbacks occur. The assertion system can be stopped and resumed an arbitrary
number of times during a single simulation run.

cbAsserti onSysEnd

occurs when all assertions have completed and no new attempts will start. Once this callback occurs no
more assertion-related callbacks shall occur and assertion-rel ated actions shall have no further effect. This
typically occurs after the end of simulation.

cbAsserti onSysReset
occurs when the assertion system is reset, e.g., due to a system control action.

The callback routine invoked follows the normal VPI callback prototype and is passed an s_cb_dat a con-
taining the callback reason and any user data provided to thevpi _r egi st er _cb() call.

2.4.2 Placing assertions callbacks

Usevpi _regi ster_assertion_cb() toplacean assertion callback; the prototypeis:

vpi Handl e vpi _regi ster_assertion_ch(
vpi Handl e, /* handle to assertion */
PLI _INT32 event,/* event for which call backs needed */
PLI _I NT32 (*cb_rtn)(/* cal |l back function */
PLI _I NT32 event,
vpi Handl e assertion,
p_vpi _attenpt_info info,
PLI _BYTE8 *user Dat a),
PLI _BYTE8 *user _data/* user data to be supplied to cb */
)
typedef struct t_vpi_assertion_step_info {
PLI _I NT32 mat ched_expressi on_count;
vpi Handl e *mat ched_exprs; /* array of expressions */
p_vpi _source_info *exprs_source_info; /* array of source info */
PLI _I NT32 stateFrom stateTo;/* identify transition */
} s_vpi_assertion_step_info, *p_vpi_assertion_step_info;
typedef struct t_vpi_attenpt_info {
uni on {
vpi Handl e fail Expr;
p_vpi _assertion_step_info step;
} detail;
s_vpi _time attenptTine,
} s_vpi _attenpt _info, *p_vpi_attenpt_info;

where event isany of the following.

16

cbAssertionStart
an assertion attempt has started. For most assertions one attempt starts each and every clock tick.

cbAsserti onSuccess
when an assertion attempt reaches a success state.

cbAssertionFail ure
when an assertion attempt fails to reach a success state.

cbAsserti onSt epSucess
the progress of one “thread” along an attempt. By default, step callbacks are not enabled on any asser-
tions; they are enabled on a per-assertion/per-attempt basis, rather than on a per-assertion basis.

Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

cbAssertionStepFail ure
failure to progress along one “thread” along an attempt. By default, step callbacks are not enabled on any
assertions; they are enabled on a per-assertion/per-attempt basis, rather than on a per-assertion basis.

cbAsserti onDi sabl e
whenever the assertion is disabled (e.g., as aresult of acontrol action).

cbAsserti onEnabl e
whenever the assertion is enabled.

cbAsserti onReset
whenever the assertion is reset.

cbAssertionKil |
when an attempt is killed (e.g., asaresult of a control action).

These callbacks are specific to a given assertion; placing such a callback on one assertion does not cause the
callback to trigger on an event occurring on a different assertion. If the callback is successfully placed, a han-
dle to the callback is returned. This handle can be used to remove the callback viavpi _renove_cb() . If
there were errors on placing the callback, a NULL handle is returned. As with al other calls, invoking this
function with invalid arguments has unpredictable effects.

Once the callback is placed, the user-supplied function shall be called each time the specified event occurs on
the given assertion. The callback shall continue to be called whenever the event occurs until the callback is
removed.

The callback function shall be supplied the following arguments:
1) theevent that caused the callback
2) thehandlefor the assertion
3) apointer to an attempt information structure

4) areferenceto the user data supplied when the callback was placed.

The attempt information structure contains details rel evant to the specific event that occurred.

— On disable, enable, reset and kill events, thei nf o field isabsent (a NULL pointer is given asthe value
of i nf 0).

— On start and success events, only the attempt time field is valid.
— On afailure event, the attempt timeand det ai | . f ai | Expr arevalid.

— On astep callback, the attempt timeand det ai | . st ep elementsare valid.

On a step callback, the det ai | describes the set of expressions matched in satisfying a step along the asser-
tion, along with the corresponding source references. In addition, the st ep also identifies the source and des-
tination “states’ needed to uniquely identify the path being taken through the assertion. Sate ids are just
integers, with O identifying the origin state, 1 identifying an accepting state, and any other number represent-
ing some intermediate point in the assertion. It is possible for the number of expressions in a step to be 0
(zero), which represents an unconditional transition. In the case of a failing transition, the information pro-
vided isjust asthat for a successful one, but the last expression in the array represents the expression where the
transition failed.

NOTES
1—In afailing transition, there shall always be at least one element in the expression array.

2—Placing a step callback results in the same callback function being invoked for both success and failure steps.

Copyright 2002 Accellera. All rights reserved. 17

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

2.5 Control functions
This section defines how to obtain assertion system control and assertion control information.

2.5.1 Assertion system control

Usevpi _control (), with one of the following operators and no other arguments, to obtain assertion sys-
tem control information.
Usage example: vpi _control (vpi Asserti onSysReset)

vpi Asserti onSysReset
discards all attemptsin progress for all assertions and restore the entire assertion system to itsinitial state.

Usage example: vpi _cont rol (vpi Asserti onSysSt op)

vpi Asserti onSysSt op

considers all attempts in progress as unterminated and disable any further assertions from being started.
Usage example: vpi _control (vpi AssertionSysStart)

vpi Asserti onSysStart
restarts the assertion system after it was stopped (e.g., duetovpi Asserti onSysSt op). Once started,
attempts shall resume on all assertions.

Usage example: vpi _cont rol (vpi Asserti onSysEnd)

vpi Asserti onSysEnd
discard all attemptsin progress and disable any further assertions from starting.

2.5.2 Assertion control

Usevpi _control (), with one of the following operators, to obtain assertion control information.

— For the following operators, the second argument shall be avalid assertion handle.

Usage example: vpi _control (vpi Asserti onReset, assertionHandl e)

vpi Asserti onReset
discards all current attempts in progress for this assertion and resets this assertion to itsinitia state.

Usage example: vpi _cont rol (vpi Asserti onDi sabl e, asserti onHandl e)

vpi Asserti onDi sabl e
disables the starting of any new attempts for this assertion. This has no effect on any existing attempts. or
if the assertion already disabled. By default, all assertions are enabled.

Usage example: vpi _control (vpi Asserti onEnabl e, asserti onHandl e)

vpi Asserti onEnabl e
enables starting new attempts for this assertion. This has no effect if assertion already enabled or on any
existing attempts.

— For the following operators, the second argument shall be avalid assertion handle and the third argument
shall be an attempt start-time (as a pointer to a correctly initialized s_vpi _t i ne structure).
Usage example: vpi _control (vpi AssertionKill, assertionHandl e, attenpt)

vpi AssertionKil |
discards the given attempts, but leaves the assertion enabled and does not reset any state used by this
assertion (e.g., past () sampling).

18 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2

Usage example: vpi _control (vpi Asserti onDi sabl eStep, assertionHandl e, attenpt)

vpi Asserti onDi sabl eSt ep
disables step callbacks for this assertion. This has no effect if stepping not enabled or it is aready dis-
abled.

— For the following operator, the second argument shall be a valid assertion handle, the third argument shall
be an attempt start-time (as a pointer to acorrectly initialized s_vpi _t i me structure) and the fourth argu-
ment shall be a*“ step control” constant.

Usage example: vpi _cont rol (vpi Asserti onEnabl eSt ep, assertionHandl e, attenpt,
vpi AssertionCl ockSt eps)

vpi Asserti onEnabl eSt ep

enables step callbacks to occur for this assertion attempt. By default, stepping is disabled for all asser-
tions. Thiscall has no effect if stepping is already enabled for this assertion and attempt, other than possi-
bly changing the stepping mode for the attempt if the attempt has not occurred yet. The stepping mode of
any particular attempt cannot be modified after the assertion attempt in question has started.

NOTE—In this release, the only step control constant available is vpi Asserti onCl ockSt eps, indicating call-
backs on a per assertion/clock-tick basis. The assertion clock isthe event expression supplied as the clocking expression to
the assertion declaration. The assertion shall “advance” whenever this event occurs and, when stepping is enabled, such
events shall also cause step callbacks to occur.

Copyright 2002 Accellera. All rights reserved. 19

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001

20 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Section 3
SystemVerilog Coverage API

3.1 Requirements
This chapter defines the Coverage Application Programming Interface (API) in SystemVerilog 3.1/draft 4.

3.1.1 SystemVerilog API

| Thefollowing criteriaare used within this API.

1) ThisAPI shall be similar for all coverages
There are a wide number of coverage types available, with possibly different sets offered by different
vendors. Maintaining a common interface across al the different types enhances portability and ease
of use.

2) Ataminimum, the following types of coverage shall be supported:
a) statement coverage
b) toggle coverage
c) fsmcoverage
i) fsm states
ii) fsmtransitions
d) assertion coverage

3) Coverage APIs shall be extensible in a transparent manner, i.e., adding a new coverage type shall not
break any existing coverage usage.

4) This API shal provide means to obtain coverage information from specific sub-hierarchies of the
design without requiring the user to enumerate all instances in those hierarchies.

3.1.2 Naming conventions

All elements added by this interface shall conform to the Verilog Procedural Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi .

— All type names shall start with vpi , followed by initialy capitalized words with no separators, e.g.,
vpi Cover ageSt nt .

— All callback names shall start with cb, followed by initially capitalized words with no separators, e.g.,
cbAssertionStart.

— All function names shall start with vpi _, followed by all lowercase words separated by underscores (),
e.g., vpi _control ().

3.1.3 Nomenclature

The following terms are used in this standard.

Satement coverage — whether a statement has been executed or not, where statement is anything defined
| as a statement in the LRM. Covered means it executed at |east once. Some implementations also permit

Copyright 2003 Accellera. All rights reserved. 21

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

guerying the execution count. The granularity of statement coverage can be per-statement or per-state-
ment block (however defined).

FSM coverage — the number of statesin afinite state machine (FSM) that this simulation reached. This
standard does not require FSM automatic extraction, but a standard mechanism to force specific extrac-
tion isavailable via pragmas.

Toggle coverage — for each bit of every signal (wire and register), whether that bit has both a0 value and
a 1 value. Full coverage means both are seen; otherwise, some implementations can query for partial
coverage. Some implementations also permit querying the toggle count of each bit.

Assertion coverage — for each assertion, whether it has had at least one success. |mplementations permit
querying for further details, such as attempt counts, success counts, failure counts and failure coverage.

These terms define the “ primitives” for each coverage type. Over instances or blocks, the coverage number is
merely the sum of all contained primitivesin that instance or block.

3.2 SystemVerilog real-time coverage access
This section ...

3.2.1 Predefined coverage constants in SystemVerilog

The following predefine * def i nes represent basic real-time coverage capabilities accessible directly from
SystemVerilog.

— Coverage control

‘define SV_COV_START
‘define SV_COvV_STOP

‘define SV_COV_RESET
‘define SV_COV_QUERY

wN k- O

— Scope definition (hierarchy traversal/accumul ation type)

“define SV_COV_MODULE 10
“define SV_COV_H ER 11

— Coverage type identification

‘define SV_COV_ASSERTION 20
‘define SV_COV_FSM STATE 21
‘define SV_COV_STATEMENT 22
‘define SV_COV_TOGGLE 23

— Status results
‘define SV_COV_OVERFLOW -2
‘ define SV_COV_ERROR 1
‘ define SV_COV_NOCOV

0
‘define SV_CO/V_ X 1
‘define SV _COV_PARTI AL 2

3.2.2 Built-in coverage access system functions

This section ...

22 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

3.2.2.1 $cover age_control

$coverage_control (control _constant,
cover age_t ype,
scope_def,
nmodul es_or _i nst ance)

This function enables, disables, resets or queries the availability of coverage information for the specified por-
tion of the hierarchy. The return value is a * def i ned name, with the value indicating the success of the
action.

‘' SV_COV_K
the request is successful. When querying, if starting, stopping, or resetting this means the desired effect
occurred, coverageis available. A successful reset clears all coverage (i.e., usinga...get () == 0 after

asuccessful ...reset ()).

* SV_COV_ERROR

the call failed with no action, typically due to errors in the arguments, such as a non-existing module or
instance specifications.

* SV_COvV_Nocov

coverage is not available for the requested portion of the hierarchy.

‘ SV_COV_PARTI AL

coverageisonly partially available in the requested portion of the hierarchy (i.e., some instances have the
requested coverage information, some don'’t).

Starting, stopping, or resetting coverage multiple times in succession for the same instance(s) has no further
effect if coverage has already been started, stopped, or reset for that/those instance(s).

The hierarchy(ies) being controlled or queried are specified as follows.

‘SV_MODULE_COV, “uni que nmodul e def nane”

provides coverage of al instances of the given module (the unique module name is a string), excluding
any child instances in the instances of the given module. The module definition name can use special
notation to describe nested module definitions.

‘SV_COV_H ER, “nodul e nane”
provides coverage of all instances of the given module, including all the hierarchy below.

‘SV_MODULE _COV, instance_nhane
provides coverage of the one named instance. The instance is specified as a normal Verilog hierarchical
path.

‘*SV_COV_HI ER, instance_nane
provides coverage of the named instance, plus all the hierarchy below it.

All the permutations are summarized in Table 3-1 on page 23.
| **Revisethisxref w/ Stu; also check/revise variable settings, etc.**

Table 3-1: Instance coverage permutations

Control/query “Definition name” instance.name

* SV_COv_MODULE The sum of coverage for all Coverage for just the named
instances of the named module, instance, excluding any hierar-
excluding any hierarchy below chy in instances bel ow that
those instances. instance.

Copyright 2003 Accellera. All rights reserved. 23

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

Table 3-1: Instance coverage permutations (continued)

Control/query “ Definition name” instance.name

‘*SV_COV_H ER The sum of coverage for all Coverage for the named instance
instances of the named module, and any hierarchy below it.
including all coverage for all
hierarchy below those instances.

NOTE—Definition names are represented as strings, whereas instance names are referenced by hierarchical paths. A hier-
archical path need not include any . if the path refersto an instance in the current context (i.e., normal Verilog hierarchical
path rules apply).

$root

module TestBench
instance tb

module DUT
instance unitl

module component
instance comp

module control
instance ctrl

module DUT
instance unit2

module component
instance comp

module control
instance ctrl

module BusWatcher
instance watch

Example 3-1Hierarchical instance example

If coverageis enabled on all instances shown in Example 3-1, then:

$coverage_control (* SV_COV_CHECK, ‘SV_COV_TOGGLE, ‘SV_COV_H ER, $root)
checks all instances to verify they have coverage and, in this case, returns* SV_COV_COK.

$coverage_control (* SV_COV_RESET, ‘SV_COV_TOGGLE, ‘ SV_COV_MODULE,
“DUT”)

24 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

resets coverage collection on both instances of the DUT, specificaly, $root.tb.unit1 and

$root . th. unit2,butleavescoverage unaffected in all other instances.

$coverage_control (* SV_COV_RESET, ‘SV_COV_TOGGLE, ‘ SV_COV_MODULE,
$root.th.unitl)

resets coverage of only the instance $r oot . t b. uni t 1, leaving al other instances unaffected.

$coverage_control (* SV_COV_STOP, ‘SV_COV_TOGGEE, *‘SV_COV_H ER
$root.th.unitl)

resets coverage of the instance $r oot . t b. uni t 1 and aso reset coverage for all instances below it,

specifically $root . tb. unit1l. compand$root.tb.unitl.ctrl.

$coverage_control (" SV_COV_START, "SV_COV_TOGGLE, "SV_COV_H ER, “DUT")

starts coverage on all instances of the module DUT and of all hierarchy(ies) below those instances. In this

design, coverage is started for the instances $root.tb.unitl, $root.tb.unitl. conp,

$root.tb.unitl.ctrl, $root.tb.unit?2, $root. th. unit2.conp, and

$root.th.unit2.ctrl.

3.2.2.2 $cover age_get _max

$coverage_get _max(coverage_type, scope_def, npdul es_or_instance)

This function obtains the value representing 100% coverage for the specified coverage type over the specified
portion of the hierarchy. This value shall remain constant across the duration of the simulation.

NOTE—This value is proportiona to the design size and structure, so it also needs to be constant through multiple inde-
pendent simulations and compilations of the same design, assuming any compilation options do not modify the coverage
support or design structure.

The return value is an integer, with the following meanings.

-2 (* SV_COV_OVERFLOW
the value exceeds a number that can be represented as an integer.

-1 (* SV_COV_ERROR)
an error occurred (typically dueto using incorrect arguments).

0 (* SV_COV_NOCOV)

no coverage is available for that coverage type on that/those hierarchy(ies).

+pos_num
the maximum coverage number (where pos_num > 0), which is the sum of al coverable items of that
type over the given hierarchy(ies).

The scope of thisfunction is specified as per $cover age_cont r ol (seesection 3.2.2.1).
3.2.2.3 $cover age_get

$cover age_get (coverage_type, scope_def, nodul es_or_instance)

This function obtains the current coverage value for the given coverage type over the given portion of the hier-
archy. This number can be converted to a coverage percentage by use of the equation:

cov erage _ get()
coverage get max()

cov erage% = *100

The return value follows the same pattern as $cover age_get _max (see section 3.2.2.2), but with the
pos__numanadmber representing the current coverage level, i.e., the number of the coverable items that have
been covered in this/these hierarchy(ies).

The scope of thisfunction is specified as per $cover age_cont r ol (seesection 3.2.2.1).

Copyright 2003 Accellera. All rights reserved. 25

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

The return value is an integer, with the following meanings.
-2 (' SV_COV_OVERFLOW
the value exceeds a number that can be represented as an integer.
-1 (* SV_COV_ERROR)
an error occurred (typically dueto using incorrect arguments).
0 (‘ SV_COV_NOCov)
no coverage is available for that coverage type on that/those hierarchy(ies).
+pos_num
the maximum coverage number (where pos_num > 0), which is the sum of al coverable items of that
type over the given hierarchy(ies).

3.2.2.4 $cover age_ner ge
$coverage_nerge(coverage_type, “nanme”)

This function loads and merges coverage data for the specified coverage into the simulator. name is an arbi-
trary string used by the tool, in an implementation-specific way, to locate the appropriate coverage database,
i.e, tools are allowed to store coverage files any place they want with any extension they want as long as the
user can retrieve the information by asking for a specific saved name from that coverage database. If nane
does not exist or does not correspond to a coverage database from the same design, an error shall occur. If an
error occurs during loading, the coverage numbers generated by this simulation might not be meaningful.

The return values from this function are:

‘' SV_COV_XK

the coverage data has been found and merged.

* SV_COvV_Nocov

the coverage data has been found, but did not contain the coverage type requested.

* SV_COV_ERROR

the coverage data was not found or it did not correspond to this design, or another error.
3.2.2.5 $cover age_save

$coverage_save(coverage_type, “nanme”)

This function saves the current state of coverage to the tool’s coverage database and associates it with the file
named name. This file name shall not contain any directory specification or extensions. Data saved to the
database shall be retrieved later by using $cover age_ner ge and supplying the same name. Saving cover-
age shall not have any effect on the state of coveragein this simulation.

The return values from this function are:
‘' SV_COV_K
the coverage data was successfully saved.
* SV_COvV_Nocov
no such coverage is available in this design (nothing was saved).

* SV_COV_ERRCR

some error occurred during the save. If an error occurs, the tool shall automatically remove the coverage
database entry for nane to preserve the coverage database integrity. It is not an error to overwrite a previ-
ously existing nane.

NOTES

1—The coverage database format isimplementation-dependent.

26 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

2—Mapping of names to actual directories/files is implementation-dependent. There is no requirement that a coverage
name map to any specific set of files or directories.

3.3 FSM recoghnition

Coverage tools need to have automatic recognition of many of the common FSM coding idioms in Verilog/
SystemVerilog. This standard does not attempt to describe or require any specific automatic FSM recognition
mechanisms. However, the standard does prescribe a means by which non-automatic FSM extraction occurs.
The presence of any of these standard FSM description additions shall override the tool’s default extraction
mechanism.

I dentification of an FSM consists of identifying the following items:
1) the state register (or expression)
2) thenext state register (thisis optional)
3) thelegal states.

3.3.1 Specifying the signal that holds the current state
**This section reads a bit like a user’ s guide; convert this into an annex??
Use the following pragmato identify the vector signal that holds the current state of the FSM:

/* tool state_vector signal _nane */

|et’s define these terms (in the next draft)

wheret ool andst at e_vect or arerequired keywords. This pragma needs to be specified inside the mod-
ule definition where the signal is declared.

Another pragma is also required, to specify an enumeration name for the FSM. This enumeration nameis also

specified for the next state and any possible states, associating them with each other as part of the same FSM.
There are two waysto do this:

— Use the same pragma:

/* tool state_vector signal _nane enum enuneration_nane */

— Use aseparate pragmain the signal’s declaration:

/* tool state_vector signal _nane */
reg [7:0] /* tool enum enumeration_name */ signal _nane;

In either case, enumis arequired keyword; if using a separate pragma, t ool isalso arequired keyword and
the pragma needs to be specified immediately after the bit-range of the signal.

3.3.2 Specifying the part-select that holds the current state

A part-select of a vector signal can be used to hold the current state of the FSM. When cnVi ew displays or
reports FSM coverage data, it names the FSM after the signal that holds the current state. If a part-select holds
the current state in the user’s FSM, the user needs to also specify a hame for the FSM that cnVi ew can use.
The FSM nameis not the same as the enumeration name.

Specify the part-select by using the following pragma:

/* tool state_vector signal_nane[n:n] FSM nanme enum enuneration_nanme */

Copyright 2003 Accellera. All rights reserved. 27

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

3.3.3 Specifying the concatenation that holds the current state

Like specifying a part-sel ect, a concatenation of signals can be specified to hold the current state (when includ-
ing an FSM name and an enumeration name):

/* tool state_vector {signal _name , signal _nare, ...} FSM name enum
enuneration_nanme */

The concatenation is composed of all the signals specified. Bit-selects or part-selects of signals cannot be used
in the concatenation.

3.3.4 Specifying the signal that holds the next state

The signal that holds the next state of the FSM can also be specified with the pragmathat specifies the enumer-
ation name:

reg [7:0] /* tool enum enunmeration_name */
si gnal _nane

This pragma can be omitted if, and only if, the FSM does not have asignal for the next state.
3.3.5 Specifying the current and next state signals in the same declaration

Thetool assumesthe first signal following the pragmaholds the current state and the next signal holds the next
state when a pragma.is used for specifying the enumeration name in a declaration of multiple signals, e.g.,

/* tool state_vector cs */
reg [1:0] /* tool enum nyFSM */ c¢s, ns, nonstate,;

In this example, the tool assumes signal c¢s holds the current state and signal ns holds the next state. It
assumes nothing about signal nonst at e.

3.3.6 Specifying the possible states of the FSM
The possible states of the FSM can also be specified with a pragma that includes the enumeration name:

paraneter /* tool enum enuneration_name */

SO = 0,
sl =1,
s2 = 2,
s3 = 3;

Put this pragma immediately after the keyword par anet er, unless a bit-width for the parametersis used, in
which case, specify the pragmaimmediately after the bit-width:

paraneter [1:0] /* tool enum enuneration_nane */

S0 = 0,
sl =1,
s2 = 2,
s3 = 3;

3.3.7 Pragmas in one-line comments

These pragmas work in both block comments, between the / * and */ character strings, and one-line com-
ments, following the/ / character string, e.g.,

paraneter [1:0] // tool enum enuneration_nane

SO0 = 0,
sl =1,

28 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

s2
s3

2,
3;

3.3.8 Example

SystemVerilog 3.1/draft 4

nodul e nB;

reg[31: 0] cs;
reg[31:0] /* tool enum MY_FSM */ ns;
reg[31: 0] clk;
reg[31:0] rst;

/1 tool state_vector ¢S enum MY_FSM

parameter // tool enum MY_FSM
pl=10,

of the FSM
endnodule // nB

Signal ns holds the next state

Signal cs holdsthe current state

p2=11, \ .
p3=12; pl, p2, and p3 are possible states

Example 3-2FSM specified with pragmas

3.4 VPI coverage extensions
| Thissection ...

3.4.1 VPI entity/relation diagrams related to coverage
| Thissection...

3.4.2 Extensions to VPl enumerations

— Coverage control

#define vpi CoverageSt art
#defi ne vpi Cover ageSt op
#defi ne vpi Cover ageReset
#defi ne vpi Cover ageCheck
#defi ne vpi Cover ageMer ge
#defi ne vpi Cover ageSave

— VP properties
1) Coveragetype properties

#define vpi Assert Cover age
#defi ne vpi Fsntt at eCover age
#defi ne vpi St at ement Cover age
#defi ne vpi Toggl eCover age

2) Coverage status properties

#define vpi Covered
#defi ne vpi Cover Max
#defi ne vpi Cover edCount

Copyright 2003 Accellera. All rights reserved.

29

Accellera

SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

3) Assertion-specific coverage status properties

#define vpi Assert Att enpt Cover ed
#define vpi Assert SuccessCover ed
#define vpi Assert Fai | ureCover ed

4) FSM-specific methods

#define vpi Fsntt at es
#defi ne vpi FsnBt at eExpr essi on

— FSM handle types (vpi types)

#define vpi Fsm
#define vpi FsmHandl e

3.4.3 Obtaining coverage information

| All **what?? usevpi _get () along with the appropriate properties and object handles.

coverage type, instance
the number of covered itemsin the given instance.

vpi Cover ed, handle
the number of items of the handle type is covered. This is only applicable to: statement handles, signal
(wire/reg) handles, assertion handles, and FSM handles.

vpi Cover edCount , handle
the number of times each item of the handle typeis covered. Thisisonly easily interpretable when handle
points to a unique coverable item (otherwise thisis the sum of counts of all contained items).

vpi Cover edvax, handle

the total possible coverableitemsin the given handle. Handle types limited as per above. vpi Cover ed-
Max isonly realy useful when handle is a handle to an object potentially containing more than one cov-
erableitem.

Usevpi _iterate(vpi Fsm instance-handl e) toget theiterator to all FSMsin an instance.

Usevpi _handl e(vpi Fsntt at eExpr essi on, fsm handl e) to get the handle to the signal or
expression encoding the FSM state.

Usevpi _iterate(vpi Fsnttates, fsm handl e) togettheiterator to all states of an FSM.

Usevpi _get val ue(fsm state_handl e, state-handl e) togetthevaueof astate.

3.4.4 Controlling coverage

| **Revisesimilar to Assertions**

30

vpi _control ()

has three arguments: coverage control (st art, st op, r eset, query), coverage type, and the handle
to the appropriate instance or assertion. Statement, toggle, and FSM coverage are not individually con-
trollable (i.e., they are controllable only at the instance level, not on a per statement/signal/FSM). The
semantics and behavior are specified as per the equivalent system function $cover age_contr ol
(' see section 3.2.2.1).

vpi _control ()

has three arguments. coverage control (mer ge, save), coverage type, and name. This merges coverage
into the current simulation. The semantics and behavior are specified as per the equivalent system func-
tions$cover age_ner ge (seesection 3.2.2.4) and $cover age_save (see section 3.2.2.5).

Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Annex A

A.1 Overview

The SystemV erilog Direct Programming Interface (DPI) allows direct inter-language function calls
between SystemVerilog and any foreign programming language with a C function call protocol and linking
model:

— Functions implemented in C can be called from System-
Verilog; such functions are referred to as sEmcti ons.
cul

— Functions implemented in SystemVerilog and
functions are referred to as exported functions.

ified in export declarations can be called from C; such

The SystemVerilog DPI supports only SystemVerilog data types, which are the sole data types that can cross
the boundary between SystemVerilog and a foreign language in either direction. On the other hand, the data
types used in C code shall be C types; hence, the duality of types.

A valuethat is passed through the Direct Programming Interface is specified in SystemVerilog code as avalue
of SystemVerilog type, while the same value shall be specified in C code asavalue of C type. Therefore, apair
of matching type definitions is required to pass a value through DPI: the SystemVerilog definition and the C
definition.

It is the user’s responsibility to provide these matching definitions. A tool (such as the a SystemVerilog com-
piler) can facilitate this by generating C type definitions for the SystemVerilog definitions used in for
imported and exported functions.

Some SystemVerilog types are directly compatible with C types; defining a matching C type for them is
straightforward. There are, however, SystemVerilog-specific types, namely packed types (arrays, structures,
and unions), 2-state or 4-state, which have no natural correspondence in C. DPI does not require any particular
representation of such types and does not impose any restrictions on SystemVerilog im antation. This
allows implementors to choose the layout and representation of packed types that best suil_iZeir simulation
performance.

While not specifying the actual representation of packed types, this C-layer interface defines a canonical repre-
sentation of packed 2-state and 4-state arrays. This canonical representation is actually based| = /erilog legacy
Programming Language Interface’s (PLI's) aval ue/bval ue representation of 4-state vected Library func-
tions provide the transl ation between the representation used in a simulator and the canonical representation of
packed arrays. There are also functions for bit selects and limited part selects for packed arrays, which do not
require the use of the canonical representation.

Formal arguments in SystemVerilog can be specified as open arrays solely in declarations; exported
SystemVerilog functions can not have formal arguments specified as open arrays. A formal argument is an
open array when arange of one or more of its dimensions is unspecified (denoted in SystemVerilog by using
empty square brackets ([])). This corresponds to arelaxation of the ment-matching rules. An actual argu-
ment shall match thr=ymal one regardless of the range(s) for its corrl_Znding dimension(s), which facilitates
writing mcl.%jeﬂer(—pZcode that can handle SystemVerilog arrays of different sizes.

The C-laye—Jr DPI basically uses normalized ranges. Normalized ranges mean [n- 1: 0] indexing for the
packed part (packed arrays are restricted to one dimension) and [0: n- 1] indexing for a dimension in the
unpacked part of an array. Normalized ranges are used for the canonical representation of packed arraysin C
and for System Verilog arrays passed as actual argumentsto C, with the exception of the actual arguments for
open arrays. The elements of an open array can be accessed in C by using the same rar| = Jf indices as defined
in System Verilog for the actual argument for that open array and the same indexing as'SystemVerilog.

Function arguments are generally passed by some form of or by value. All formal arguments, except
open arrays, are passed by direct reference or value, and, therefore, are directly accessible in C code. Only
small values of SystemVerilog input arguments (see section A.7.7) are passed by value. Formal arguments

Copyright 2003 Accellera. All rights reserved. 31

dwarmke
"mported" should be "imported"

dwarmke
"implementation" should be "implementations".

dwarmke
"Verilog legacy" should be "the legacy Verilog"

dwarmke
What exactly are you referring to by "the argument matching rules"? Is it "SystemVerilog's normal argument matching rules"? Or is it "DPI's normal argument matching rules"? Please spell it out here. A cross-reference to such rules would be nice as well.

dwarmke
"the formal one" should be "the corresponding formal argument"

dwarmke
"more general" should be "generalized"

dwarmke
"the actual arguments" should be "actual arguments"

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

declared in SystemVerilog as open arrays are passed by a handle (type) and are
accessible vialibrary functions. Array-querying functions are provided for open arrays.

Depending on the data types used for imported or functions, either binary level or C-source level

compatibility is granted. Binary level is granted for all data types that do not mix SystemVerilog packed and

unpacked types and for open arrays which can have both packed and unpacked parts. If a data type that mixes

SystemVerilog packed and unpacked types is used, then the C code needs to be re-compiled using the
-dependent definitions provided by the vendor.

The C-layer of the Direct Programming Interface provides two include files. The main include file, . h,
is implementation-independent and defines the canonical representation, all basic types, and all interface func-
tions. The second include file, . h, defines only the actual representation of packed arrays and,
hence, its contents are implementati on-dependent. Applications that do not need to include thisfile are binary-
level compatible.

A.2 Naming conventions
All namesintroduced by this interface shall conform to the following conventions.

— All names defined in this interface are prefixed with sv

— Function and type names start with sv, followed by initially capitalized words with no separators, e.g.,
svBi t PackedAr r Ref .

— Names of symbolic constants start withsv_, e.g., sv_X.

— Names of macro definitions start with , followed by all upper-case words separated by adash (-), e.g.,
CANONI CAL_SI ZE.

A.3 Portability

Depending on the data types used for imported or functions, the C code can be binary-level or
source-level compatible. Applications that do not use SystemVerilog packed types are always binary compati-
ble. Applications that don’t mix SystemVerilog packed and unpacked types in the same data type can be writ-
ten to guarantee binary compatibility. Open arrays with both packed and unpacked parts are also binary
compatible.

The values of SystemVerilog packed types can be accessed via interface functions using the canonical repre-
sentation of 2-state and 4-state packed arrays, or directly through pointers using the implementation represen-
tation. The former mode assures binary level compatibility; the latter one allows for tool-specific,
performance-oriented tuning of an application, though it also requires recompiling with the implementation-
dependent definitions provided by the vendor and shipped with the simulator.

A.3.1 Binary compatibility

Binary compatibility means an application compiled for a given platform shall work with every SystemVerilog
simulator on that platform.

A.3.2 Source-level compatibility

Source-level compatibility means an application needs to be re-compiled for each SystemVerilog simulator and
implementation-specific definitions shall be required for the compilation.

A.4 Include files

The C-layer of the Direct Programming Interface defines two include files corresponding to these two levels of
compatibility: . hand . h.

Binary compatibility of an application depends on the data types of the values passed through the interface. If
all corresponding type definitions can be written in C without the need to includ . h file, then
an application is binary compatible. If . h fileis required, then application is not binary
compatible and needs to be recompiled ach simulator of choice.

32 Copyright 2003 Accellera. All rights reserved.

dwarmke
"an" should be "the"

dwarmke
"an" should be "the"

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Applications that pass solely C-compatible data types or standalone packed arrays (both 2-state and 4-state)
require only . h file and, therefore, are binary compatible with all simulators. Applications that use
complex dataaEs which are constructed of both SystemVerilog packed arrays and C-compatible typ
require . h file and, therefore, are not binary compatible with all simulators. They are >
level C(%Jlti ble, however.

A4.1l . hinclude file

Applications which use the Direct Programming I nterface with C code usually need this main include file. The
includefile . h defines the types for canonical representation of 2-state (bi t) and 4-state (I ogi c) val-
ues and passing references to SystemVerilog data objects. Thefile also provides function headers and defines a
number of helper macros and constants.

This document fully defines the . h file. The content of . h does not depend on any particular
implementation or platform; al simulators shall use the same file. For more details on . h, see
section A.9.1.

Applications which only use . h shall be binary-compatible with all SystemVerilog simulators.

A4.2 .hinclude file

Thisisan auxiliary include file. . h defines data structures for implementation-specific represen-

tation of 2-state and 4-state SystemVerilog packed arrays. The interface specifies the contents of thisfile, i.e.,
what symbols are defined. The actual definitions of those symbals, however, are implementation-specific and
shall be provided by vendors.

Applications that requi re@ . h file are only source-level compatible, i.e., they need to be com-
piled with the version of . h provided for a particular implementation of SystemVerilog.

=

Formal and actual arguments of both imported functions and exported functions are bound by the principle
“What Y ou Specify IsWhat You Get.” Thisprincipleis both for the caller and for the callee, in C code
and in SystemVerilog code. For the calleg, it guarantees the actual arguments are as for the formal
ones. For the caller, it means the function call arguments shall conform with the types of the formal arguments,
which might require type-coercion on the caller side.

E

Semantic constraints

In SystemV erilog code, the compiler can change the formal arguments of a native SystemVerilog function and
modify its code accordingly, because of optimizations, compiler pragmas, or command line switches. Simi-
:@1 SystemVerilog compiler any necessary for the actual arguments of

function call. For example, a SystemV erilog compiler might truncate or extend bits of a packed
array if the widths of the actual and formal arguments are different.

The situation is different for imported and exported functions. A SystemV erilog compiler can not modify the C
code, perform any or make any changes whatsoever to the formal arguments of an imported func-
tion.

since the SystemVerilog code of an

exported function expects the types of arguments to be exactly as declared. The C caller needs to guarantee
this. Thus, if the user passes a 10-bit packed array to SystemVerilog, when a 40-hit array is expected, the error

Copyright 2003 Accellera. All rights reserved. 33

dwarmke
"an" should be "the"

dwarmke
", also" should be "also"

dwarmke
"an" should be "the"

dwarmke
"an svdpi_src.h file" should be "svdpi_src.h"

dwarmke
I think an example of a non-source compatible fragment of C code should be given to make this constraint crystal-clear. Could you provide one, please?

dwarmke
Can you please copy this clarifying paragraph into the SV-side document as well? I think it clarifies the grounds behind the WYSIWYG principle in a valuable way.

dwarmke
Actually I don't think these two things are similar. Please change "Similarly, a SystemVerilog compiler will naturally..." to "Further, a SystemVerilog compiler will naturally..."

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

| not corrected by the C compiler. , if the same happened in SystemV erilog code, the SystemVerilog
compiler would handle it correctly by providing coercion and atemporary variable.

A.5.1 Types of formal arguments

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
| functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by imported declaration; they shall have ranges of packed or unpacked arrays
| exactly as specified in the imported declaration. Only the SystemV erilog declaration site of the imported func-
tion isrelevant for such formal arguments.

Formal arguments defined as open arrays have the size and ranges of the actual argument, i.e., have the ranges
of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of open arrays are
‘ determined at a call site; the rest of the type information is specified at the import declaration.

So, if aformal argument isdeclared asbit [15: 8] b [],thenitistheimport declaration which specifies
the formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument
used at aparticular call site defines the bounds for the unpacked part for that call.

A.5.2 i nput arguments

T@rmal arguments specified in SystemVerilog asi nput shall not be modified.
A58 out put arguments

The initial values of formal arguments specified in SystemVerilog as out put are undetermined and imple-
mentation-dependent.

A.5.4 Value changes for out put and i nout arguments

The SystemVerilog simulator is responsible for handling value changes for out put and i nout arguments.
| Such changes shall be detected and handled after the control returns from C code to SystemVerilog code.

A.5.5 cont ext and non-cont ext functions

Some DPI imported functions or other interface functions called from them require that the context of their call
be known. It takes special instrumentation of their call instances to provide such context; for example,

referring to the “current instance” need to be set. To avoid any unnecessary overhead, imported
function calls in SystemVerilog code are not instrumented unless the imported function is specified as con-
t ext inits SystemVerilog import declaration.

All DPI export functions require that the context of their call is known. This SystemVerilog func-
tion declarations always occur in instantiable scopes, hence alowing a multiplicity of unique function
. Thus, there is no such thing as a non-context export function.

For the sake of simulation performance, an i[=}rted function call shall not block SystemVerilog compiler
optimizations. An imported function not speci ascont ext shall not access any data objects from System-
Verilog other then its actual arguments. Only the actual arguments can be affected (read or written) by its call.
Therefore, acall 0 -cont ext function isnot abarrier for optimizations. A cont ext imported function,
however, can acc read or write) any SystemVerilog data objects by calling PLI/VPI, by cdling

export toriction. Therefore, a call to acont ext function is a barrier for SystemVerilog compiler
optimizations.

| Only the calls of cont ext imported functions are properly instrumented and cause conservative optimiza-
tions; therefore, only those functions can safely call all functions from other APIs, including PLI and VPI

| functions or exported SystemVerilog functions. For imported functions not specified as cont ext , the effects
of calling PLI, VPI, or SystemVerilog functions can be unpredictable and such calls can crash if the callee
reguires a context that has not been properly set.

| Special DPI utility functions exist that allow imported functions to retrieve and operate on their context. For

| 34 Copyright 2003 Accellera. All rights reserved.

dwarmke
"The formal" should be "Formal". Also, modified by whom? The compiler?

dwarmke
This section doesn't specify if it is discussing formal arguments for *export* or *import* function declarations. If all semantic constraints on arguments apply to both categories of function, please state that explicitly. If some constraints apply only to one category, please state that explicitly.

dwarmke
"an imported function" should be a "non-context imported function"

dwarmke
"a call of non-context function" should be "a call of a non-context imported function". Also, I wonder if you shouldn't change the general term "imported function" to "import function" in this area? Just a thought... in any case the term used should probably be consistent throughout the document.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

example, the C implementation of an imported function may use svGet Scope() to retrieve an svScope cor-
responding to the instance scope of its corresponding SystemVerilog i rr@ted declaration. See section A.8 for
more details.

A.5.6 No consumption of time by imported or export functions

Both imported and export functions shall complete their execution instantly and consume zero simulation time

A.5.7 pur e functions

Only non-void functionswith no out put ori nout arguments can be specified aspur e. Functions specified
aspur e intheir corresponding SystemVerilog import declarations shall have no side effects; their results need
to depend solely on the values of their input arguments. Calls to such functions can be removed by SystemVer-
ilog compiler optimizations or replaced with the values previously computed for the same values of the input
arguments.

Specifically, apur e function is assumed not to directly or indirectly (i.e., by calling other functions):
— perform any file operations

— read or write anything in the broadest possible meaning, includes i/o, environment variables, objects from
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If apur e function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

A.5.8 Memory management

The memory spaces owned and allocated by C code and SystemVerilog code are digoined. Each side is
responsible for its own allocated memory. Specifically, C code shall not free the memory allocated by System-
Verilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the memory allocated by
C code (or the C compiler). This does not exclude scenariosin which C code all ocates a block of memory, then
passes a handle (i.e., a pointer) to that block to SystemVerilog code, which in turn calls a C function that
directly (if it isthe standard function f r ee) or indirectly frees that block.

NOTE—In thislast scenario, a block of memory is alocated and freed in C code, even when the standard functions
mal | oc andf r ee are called directly from SystemVerilog code.

A.6 Data types

This section defines the data types of the C-layer of the Direct Programming Interface.
A.6.1 Limitations

Packed arrays can have an arbitrary number of dimensions; though they are eventually always equivalent to a
one-dimensional packed array and treated as such. If the packed part of an array in the type of aformal argu-
ment in SystemVerilog is specified as multi-dimensional, the SystemVerilog compiler linearizes it. Although
the original ranges are generally preserved for open arrays, if the actual argument has a multidimensional
packed part of the array@ equivalent one-dimensional packed array shall be normalized.

NOTE—The actual argument can have both packed and unpacked parts of an array; either can be multidimensional.
A.6.2 Duality of types: SystemVerilog types vs. C types

A value that crosses the Direct Programming Interface is specified in SystemVerilog code as a value of Sys-
temVerilog type, while the same value shall be specified in C code as a value of C type. Therefore, each data

type that is passed through the Direct Programming Interface requires two matching type definitions: the Sys-
temVerilog definition and C definition.

Copyright 2003 Accellera. All rights reserved. 35

dwarmke
"imported" should be "import" here, for sure, since the term "import declaration" was formally defined at the top of the SV-side document.

dwarmke
"the equivalent one-dimensional packed array shall be normalized" should be "it will be normalized into an equivalent one-dimensional array".

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

The user needs to provide such matching definitions. Specifically, for each SystemVerilog type used in the
import declarations or export declarations in SystemVerilog code, the user shall provide the equivalent type
definition in C reflecting the argument passing mode for the particular type of SystemVerilog value and the
direction (i nput , out put , or i nout) of the formal SystemVerilog argument. For values passed by refer-
ence, a generic pointer voi d * can be used (conveniently t ypedef ed in .hor . h)
without knowing the actual representation of the value.

A.6.3 Data representation

DPI imposes the following additional restrictions on the representation of SystemVerilog data types.
— Basic integer and real data types are represented as defined in section A.6.4.

— Enumeration types are represented as the types associated with them. Enumerated names are not available
on C side of interface.

— Representation of packed types is implementation-dependent.

— Thelayout of unsized (or open) standalone unpacked arrays is implementation-dependent with the follow-
ing restriction:

an element of an array shall have the same representation as an individual value of the same type,
except for scalars (bi t or | ogi ¢) and packed arrays.

Hence, an array’s elements, other than scalars or packed arrays, can be accessed from C code via pointers
similarly to doing so for individual values.

— Thelayout of unpacked arrays, with the exception of actual arguments passed for formal arguments speci-
fied as open arrays, is the same as used by a C compiler; thisincludes arrays embedded in structures and
any standalone arrays (i.e., those not embedded in any structure).

The natural order of elements for each dimension in the layout of an unpacked array shall be used, i.e.,
elements with lower indices go first. For SystemVerilog range [L: R] , the element with SystemVerilog
index m n(L, R) hasthe Cindex 0 and the element with SystemVerilog index max(L, R) hasthe C
index abs(L-R) .

NOTE—This does not actually impose any restrictions on how unpacked arrays are implemented; it only says an array that
does not satisfy this condition shall not be passed as an actual argument for aformal argument which isasized array; it can
be passed, however, for a formal argument which is an unsized (i.e., open) array. Therefore, the correctness of an actual
argument might be implementation-dependent. Nevertheless, an open array provides an implementati on-independent solu-
tion; this seems to be a reasonabl e trade-off.

A.6.4 Basic types

Table A1 on page 36 defines the mapping between the basic SystemVerilog data types and the corresponding
C types.

Revise this xref w/ Stu; also check/revise variable settings, etc.

Table A1—Mapping data types

SystemVerilog type C type
byt e char
shortint short int

36 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

Table A1—Mapping data types (continued)

SystemVerilog type C type
int int

| ongi nt I ong | ong
real doubl e
shortreal f | oat
handl e voi d*
string char*

SystemVerilog 3.1/draft 4

The representation of SystemVerilog-specific data types like packed bi t and | ogi ¢ arrays is implementa
tion-dependent and generally transparent to the user. Nevertheless, for the sake of performance, applications
can be tuned for a specific implementation and make use of the actua representation used by that implementa-
tion; such applications shall not be binary compatible, however.

A.6.5 Normalized ranges

Packed arrays are treated as one-dimensional; the unpacked part of an array can have arbitrary number of
dimensions. Normalized ranges mean [n- 1: 0] indexing for the packed part and [0: n- 1] indexing for a
dimension of the unpacked part of an array. Normalized ranges are used for accessing all arguments but open
arrays. The canonical representation of packed arrays also uses normalized ranges.

A.6.6 Mapping between SystemVerilog ranges and normalized ranges

The SystemVerilog ranges for a formal argument specified as an open array are those of the actual argument
for aparticular call. Open arrays are accessible, however, by using their original ranges and the same indexing
asin the SystemVerilog code.

For al other types of arguments, i.e., all arguments but open arrays, the SystemVerilog ranges are defined in
the corresponding SystemVerilog import or export declaration. Normalized ranges are used for accessing such
arguments in C code. The mapping between SystemVerilog ranges and normalized ranges is defined as fol-
lows.

1) If a packed part of an array has more than one dimension, it is linearized as specified by the
equivalence of packed typesf=t section 7?).

2) A packed array of range [LT R] is normalized as [abs(L- R): 0] ; its most significant bit has a
normalized index abs(L- R) and itsleast significant bit has a normalized index O.

3) Thenatural order of elementsfor each dimension in the layout of an unpacked array shall be used, i.e.,
elements with lower indices go first. For SystemVerilog range [L: R], the element with
SystemVerilog index mi n(L, R) has the C index O and the element with SystemVerilog index
max(L, R) hastheCindexabs(L-R).

NOTE—The above range mapping from SystemVerilog to C appliesto calls made in both directions, i.e., SystemVerilog-
callsto C and C-calls to SystemVerilog.

For example,ifl ogic [2:3][1:3][2: 0] b [1:10] [31:0] isusedin SystemVerilog, it needsto be
defined in C asif it were declared in SystemVerilog in the following normalized form: | ogic [17:0] b
[0:9] [O0:31].

A.6.7 Canonical representation of packed arrays

The Direct Programming Interface defines the canonical representation of packed 2-state (type
svBi t Vec32) and 4-state arrays (type svLogi cVec32). This canonical representation is actually based on

Copyright 2003 Accellera. All rights reserved. 37

dwarmke
Please resolve this "cross-reference prototype"

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

the Verilog legacy PLI's aval ue/bval ue representation of 4-state vectors. Library functions provide the
translation between the representation used in a simulator and the canonical representation of packed arrays.

A packed array is represented as an array of one or more elements (of type svBi t Vec32 for 2-state values
and svLogi cVec32 for 4-state values), each element representing a group of 32 bits.The first element of an
array contains the 32 least-significant bits, next element contains the 32 more-significant bits, and so on. The
last element may contain a number of unused bits. The contents of these unused bits is undetermined and the
user is responsible for the masking or the sign extension (depending on the sign) for the unused hits.

Table A2 on page 38 defines the encoding used for apacked | ogi ¢ array represented assvLogi cVec32.

Table A2—Encoding of bits in svLogi cVec32

c d Value
0 0 0
0 1 1
1 0 z
1 1 X

A.7 Argument passing modes

This section defines the ways to pass arguments in the C-layer of the Direct Programming Interface.

A.7.1 Overview

Imported function arguments are generally passed by some form of a reference, with the exception of small
values of SystemVerilog input arguments (see section A.7.7), which are passed by value. Similarly, the func-
tion result, which is restricted to small values, is passed by value, i.e., directly returned.

Actual arguments passed by reference typically are passed without changing their representation from the
one used by a simulator. There is no inherent copying of arguments (other than any copying resulting from
coercing).

Access to packed arrays via the canonical representation involves copying arguments and does incur some
overhead, however. Alternatively, for the sake of performance the application can be tuned for a particular tool
and access the packed arrays directly through pointers using implementation representation, which could com-
promise compatibility. Data can be, however, moved around (copied, stored, retrieved) without using
canonical representation while preserving binary or source level compatibility at the sametime. Thisis possi-
ble by using pointers and size of data and when the detailed knowledge of the data representation is not
required.

NOTE—This provides some degree of flexibility and allows the user to control the trade-off of performance vs. portability.

Formal arguments, except open arrays, are passed by direct reference or value, and, therefore, are directly
accessiblein C code. Formal arguments declared in SystemVerilog as open arrays are passed by a handle (type
svQpenAr r ayHandl e) and are accessible vialibrary functions.

A.7.2 Calling SystemVerilog functions from C

Thereis no difference in argument passing between calls from SystemVerilog to C and callsfrom C to System-
Verilog. Functions exported from SystemVerilog can not have open arrays as arguments. Apart from this
restriction, the same types of formal arguments can be declared in SystemVerilog for exported functions and
imported functions. A function exported from SystemVerilog shall have the same function header in C as
would an imported function with the same function result type and same formal argument list. In the case of
arguments passed by reference, an actual argument to SystemVerilog function called from C shall be allocated
using the same layout of data as SystemVerilog uses for that type of argument; the caller is responsible for the

38 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

alocation. It can be done preserving the binary compatibility, see section A.7.5 and section A.11.11.
A.7.3 Argument passing by value

Only small values of formal input arguments (see section A.7.7) are passed by value. Function results are also
directly passed by value. The user needs to provide the C-type equivalent to the SystemVerilog type of a for-
mal argument if an argument is passed by value.

A.7.4 Argument passing by reference

For arguments passed by reference, their original simulator-defined representation shall be used and a refer-
ence (a pointer) to the actual data object is passed. The actual argument is usually allocated by a caller. The
caller can also pass areference to an object already allocated somewhere else, for example, its own for-
mal argument passed by reference.

If an argument of type T is passed by reference, the formal argument shall be of the type T* . However, packed
arrays can aso be passed using generic pointers voi d* (t ypedef ed accordingly to svBi t PackedAr -
r Ref or svLogi cPackedAr r Ref).

A.7.5 Allocating actual arguments for SystemVerilog-specific types

Thisis relevant only for calling SystemVerilog functions from C code. The caller is responsible for
alocating any actual arguments that are passed by reference.

Static allocation requires knowledge of the relevant data type. If such a type involves SystemVerilog
packed arrays, their actual representation needs to be known to C code; thus, the file . h needsto
be included, which makes the C code i mplementati on-dependent and not binary compatible.

Sometimes binary compatibility can be achieved by using dynamic allocation functions. The functions
svSi zeOf Logi cPackedArr () andsvSi zeOr Bi t PackedArr () provide the size of the actual repre-
sentation of a packed array, which can be used for the dynamic allocation of an actual argument without com-
promising the portability (see section A.11.11). Such a technique does not work if a packed array is a part of
another type.

A.7.6 Argument passing by - open arrays

Arguments specified as open (unsized) arrays are always passed by a handle, regardless of direction of the Sys-
temVerilog formal argument, and are accessible vialibrary functions. The actual implementation of ahandleis
simulator-specific and transparent to the user. A handle is represented by the generic pointer voi d * (t ype-
def edto sv_handl e). Arguments passed by handle shall always have aconst qualifier, because the user
shall not modify the contents of a handle.

A.7.7 i nput arguments
i nput arguments of imported functions implemented in C shall dways have aconst qualifier.

i nput arguments, with the exception of open arrays, are passed by value or by reference, depending on the
size. ‘Small’ values of formal input arguments are passed by value. The following data types are considered
small:

— byte,shortint,int,longint,real,shortreal
— handl e,string

— bi t (i.e., 2-state) packed arrays up to 32- bit (canonical representation shall be used,
like for afunction result).

i nput arguments of other types are passed by reference.

Copyright 2003 Accellera. All rights reserved. 39

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

If ani nput argument isapacked bi t array passed by value, its value shall be represented using the canoni-
cal representation svBi t Vec32. If the size is smaller than 32 hits, the most significant bits are unused and
their contents are undetermined. The user is responsible for the masking or the sign extension, depending on
the sign, for the unused bits.

A.7.8 i nout and out put arguments

i nout and out put arguments, with the exception of open arrays, are always passed by reference.

A.7.9 Function result

Types of afunction result are restricted to the following SystemVerilog data types (see Table A1 on page 36 for
the corresponding C type):

— byte,shortint,int,longint,real,shortreal,hhandle,string

— packed bi t arrays up to 32 hits.

If the function result type is a packed bi t array, the returned value shall be represented using the canonical
representation svBi t Vec32. If a packed bi t array is smaler than 32 hits, the most significant bits are
unused and their contents are undetermined.

A.8 Context functions

Some DPI imported functions require that the context of their call is known. For example, those calls may be
associated with instances of C models that have a one-to-one correspondence with instances of modules
that are making the calls. Alternatively, a DPI imported function may need to access or modify Jator data
structures using PL1 or VPI calls, or by making a call back into SystemVerilog via an export function. Context
knowledge is required for such calls to function properly. It may take specia instrumentation of their call to
provide such context.

unless the imported function is specified as cont ext in its SystemVerilog i ‘ed declaration. A small set
of DPI utility functions is available to assist programmers when working with—=¥ntext functions (See section
A.8.3). If those utility functions are used with any non-context function, a system error will result.

A.8.1 Overview of DPIl and VPI context

To avoid any unnecessary overhead, imported function calls in SystemVeriIoi code are not instrumented

Both DPI functions and VPI/PLI functions may need to understand their context. However, the meaning of the
term is different for the two categories of functions.

DPI imported functions are essentially proxies for native SystemVerilog functions. Native SystemVerilog
functions always operate in the scope of their declaration site. For example, a native SystemVerilog function
f() may bedeclared in amodule mwhich is instantiated ast op. i 1_m Thet op. i 1_minstance of f ()
may be called via hierarchical reference from code in a distant design region. Function f () issaid to execute
in the context (aka. instantiated scope) of t op. i 1_m sinceit hasunqualified visibility only for variableslocal
to that specific instance of m Functionf () does not have unqualified visibility for any variablesin the calling
code’ s scope.

DPI imported functionsfollow the same model as native SystemV erilog functions. They execute in the context
of their surrounding declarative scope, rather than the context of their call sites. This type of context istermed
DPI context.

Thisisin contrast to VPI and PLI functions. Such functions executein a context associated with their call sites.
The VPI/PLI programming model relies on C code’s ahility to retrieve a context handle associated with the
associated system task’s call site, and then work with the context handle to glean information about arguments,
itemsin the call site's surrounding declarative scope, etc. This type of context istermed VPI context.

Note that all DPI export functions require that the context of their call is known. This occurs since SystemV er-

ilog function declarations aways occur in instantiable scopes, hence giving rise to a multiplicity of associated
function instances in the simulator’s database. Thus, there is no such thing as a non-context export function.

40 Copyright 2003 Accellera. All rights reserved.

dwarmke
"SV" should be "SystemVerilog"

dwarmke
"imported declaration" should be "import declaration"

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

All export function calls must have their execution scope specified in advance by use of a context-setting API
function.

A.8.2 Context of imported and export functions

DPI imported and export functions may be declared anywhere a normal SystemVerilog function may be
declared. Specificaly, this means that they can be declared in nodul e, program interface, or
gener at e declarative scope.

A context imported function executes in the context of the instantiated scope surrounding its declaration. This
means that such functions can see other variables in that scope without qualification. As explained in section
A.8.1, this should not be confused with the context of the function’s call site, which may actually be anywhere
in the SystemVerilog design hierarchy. The context of an imported or exported function corresponds to the
fully qualified name of the function, minus the function name itself.

Note that context is transitive through imported and export context functions. That is, if an imported function
isrunning in acertain context, and if it in turn calls an exported function, the exported function will inherit the
context from the imported function. For example, consider a SystemVerilog call to a native function f(), which
in turn calls a native function g(). Now replace the native function f() with an equivalent imported context C
function, f'(). The system will behave identically regardless if f() or f'() isin the call chain above g(). g() has
the proper execution context in both cases.

A.8.3 Working with DPI context functions in C code

DPI defines a small set of functions to help programmers work with DPI context functions. The term scopeis
used in the function names for consistency with other SystemVerilog terminology. The terms scope and con-
text are equivalent for DPI functions.

@* Functions for working with DPI context functions */

/* Retrieve the active instance scope currently associated with the executing
i nported function.
Unless a prior call to svSetScope has occured, this is the scope of the
function’s declaration site, not call site.
Returns NULL if called fromC code that is *not* an inported function. */
svScope svGet Scope();

/* Set context for subsequent export function execution.
This function nust be called before calling an export function, unless
the export function is called while executing an extern function. In that
case the export function will inherit the scope of the surrounding extern
function. This is known as the “default scope”.
The return is the previous active scope (as per svGetScope) */

svScope svSet Scope(const svScope scope);

/* CGets the fully qualified nane of a scope handle */
const char* svGet NameFr onScope(const svScope);

/* Retrieve svScope to instance scope of an arbitrary function decl aration.
(WI1l be either nodule, program interface, or generate scope) */
svScope svGet ScopeFromNane(const char* scopeNane);

/* Set arbitrary user data pointer into specified instance scope */
voi d svPut User Dat a(const svScope scope, void* userData);

/* Retrieve arbitrary user data from specified instance scope */
voi d* svGet User Dat a(const svScope scope);

Copyright 2003 Accellera. All rights reserved. 41

dwarmke
I will send a separate ASCII email with instructions for modifying this section based on our latest compromise on handling user data.

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

/ * Returns the file and line nunber in the SV code fromwhich the extern call
was made. |If this information available, returns TRUE and updates fil eName and
li neNunber to the appropriate values. Behavior is unpredictable if fileNane or
l'i neNunber are not appropriate pointers. If this information is not available
r@wn FALSE and contents of fileNane and |ineNunber not nodified. Wiether this
iLIZrmation is available or not is inplenmentation specific. Note that the
string provided (if any) is owed by the SV inplenentation and is valid only
until the next call to any SV function. Applications must not nodify this
string or free it */

int svGetCallerlnfo(char **fileName, int *lineNunber);

A.8.4 Example 1 — Using DPI context functions

SV Si de:
/1 Declare an inported context sensitive C function with cnane “MCFunc”
inmport “DPI” context MyCFunc = function integer MaplD(int portlD);

| de:
@ // Define the function and nodel class on the C++ side:
cl ass MyCwvbdel {

private:
int |ocallyMapped(int portlD); // Does sonmething interesting...
public:

/1 Constructor
MyCMbdel (const char* instancePath) {
| svScope svScope = svCet ScopeByNane(i nstancePat h);

/'l Associate “this” with SV scope (avoids a hash in C++ code)
svPut User Dat a(svScope, this);

}

friend int MyCFunc(int portlD);
H

| /1 1nplenentation of inported context function callable in SV
int MyCFunc(int portlD {
/1l Retrieve SV instance scope (i.e. this function's context).
| svScope = svGet Scope();

/1 Retrieve and nake use of user data stored in SV scope

| MyCMWbdel * nme = (MyCModel *) svGet User Dat a(svScope) ;
return me->| ocal | yMapped(portlD);

A.8.5 Relationship between DPI and VPI/PLI interfaces

DPI alows C code to run in the context of a SystemVerilog simulation, thusiit is natural for users to consider
| using VPI/PLI C code from within imported functions.

There is no specific relationship defined between DPI and the existing Verilog programming interfaces (VPI
and PLI). Programmers must make no assumptions about how DPI and the other interfaces interact. In particu-
lar, note that a vpiHandle is not equivalent to an dle, and the two must not be interchanged and passed
between functions defined in two different interf andards.

| !f auser wantsto call VPI or PLI functions from within an imported function, the imported function must be
flagged with the context qualifier.

| Notal VPI or PLI functionality is available from within DPI context imported functions. For example, a Sys-

| 42 Copyright 2003 Accellera. All rights reserved.

dwarmke
It would be nice to format this comment more cleanly - i.e. with good indentation like the other comments in this area.

dwarmke
I will send ASCII via email that should replace this example.

dwarmke
Didn't we rename svHandle to svOpenArrayHandle? Please adjust this area accordingly. Maybe we need to state that a vpiHandle is not equivalent to a svScope.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

temV erilog imported function is not a system task, and thus making the following call from within an imported
function would result in an error:
/* Get handle to systemtask call site in preparation for argument scan */
vpi Handl e nmyHandl e = vpi _handl e(vpi SysTf Cal |, NULL);

Similarly, receiving ni sct f callbacks and other activities associated with system tasks are not supported
inside DPI imported functions. Users should use VPI or PLI if they wish to accomplish such actions.

However, the following kind of code is guaranteed to work from within DPI context imported functions:
/* Prepare to scan all top level nodules */
vpi Handl e nmyHandl e = vpi _iterate(vpi Modul e, NULL);

A.9 Include files

The C-layer of the Direct Programming Interface defines two include files. The main include file, . h,
isimplementation-independent and defines the canonical representation, all basic types, and all interface func-
tions. The second include file, . h, defines only the actual representation of packed arrays and,
hence, is implementation-dependent. Both files are shown in Annex B.

Applications which do not need to include . h are binary-level compatible.

A.9.1 Binary compatibility include file .h

Applications which use the Direct Programming | nterface with C code usually need this main include file. The
includefile . h defines the types for canonical representation of 2-state (bi t) and 4-state (I ogi ¢) val-
ues and passing references to SystemVerilog data objects, provides function headers, and defines a number of
helper macros and constants.

This document fully defines the . h file. The content of . h does not depend on any particular
implementation or platform; al simulators shall use the same file. The following subsections (and
section A.10.3.1) detail the contents of the . hfile.

A.9.1.1 Scalars of type bit and | ogi c
/* canoni cal representation */

#define sv.0 O
#define sv_1 1
#define sv_z 2 /* representation of 4-st scalar z */
#define sv.x 3 /* representation of 4-st scalar x */

/* common type for 'bit’ and 'logic' scalars. */
typedef unsigned char svScal ar;

typedef svScal ar svBit; /* scalar */
typedef svScal ar svLogic; /* scalar */

A.9.1.2 Canonical representation of packed arrays
/* 2-state and 4-state vectors, nodelled upon PLI’s aval ue/ bval ue */
#define SV_CANONI CAL_SI ZE(W DTH) (((W DTH) +31) >>5)

typedef unsigned int
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;}
svLogi cVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undetermi ned, the follow ng nacros

may be handy */
#define SV_MASK(N) (~(-1<<(N)))

Copyright 2003 Accellera. All rights reserved. 43

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

#define SV_GET_UNSI GNED_BI TS(VALUE, N)\
((N) ==32?(VALUE) : ((VALUE) &_MASK(N)))

#define SV_GET_SI GNED_BI TS(VALUE, N)\
((N) ==32?(VALUE) : \
(((VALUE) & 1<<((N) 1))) 2((VALUE) | ~SV_MASK(N)) : ((VALUE) &SV_MASK(N))))

A.9.1.3 Implementation-dependent representation
/* a handle to a generic object (actually, unsized array) */
| typedef voi d* svOpenArrayHandl e;

/* reference to a standal one packed array */
typedef voi d* svBitPackedArr Ref;
typedef voi d* svLogi cPackedArr Ref;

/* total size in bytes of the sinmulator’s representation of a packed array */
/* width in bits */

int svSizeOfBitPackedArr(int w dth)

int svSizeOf Logi cPackedArr (i nt width)

A.9.1.4 Translation between the actual representation and the canonical representation
/* functions for translation between the representation actually used by
simul ator and the canonical representation */

/* s=source, d=destination, w=width */
/* actual <-- canonical */

voi d svPut Bi t Vec32 (svBi t PackedAr r Ref d, const svBitVec32*
voi d svPut Logi cVec32 (svLogi cPackedArr Ref d, const svlLogi cVec32*

(7]

int w;
int w;

7]

/* canonical <-- actual */
voi d svCet Bi t Vec32 (svBit Vec32* d, const svBitPackedArr Ref s, int w;
voi d svCet Logi cVec32 (svLogi cVec32* d, const svLogi cPackedArrRef s, int w;

The above functions copy the whole array in either direction. The user isresponsible for providing the correct
width and for alocating an array in the canonical representation. The contents of the unused bits is undeter-
mined.

Although the put/get functionality provided for bit and | ogi ¢ packed arrays is sufficient, yet basic, it
reguires unnecessary copying of the whole packed array when perhaps only some bits are needed. For the sake
of the convenience and improved performance, bit selects and limited (up to 32 bits) part selects are also sup-
ported, see section A.10.3.1 and section A.10.3.2.

A.9.2 Source-level compatibility include file . h

Only two symbols are defined: the macros that allow declaring variables to represent the SystemVerilog
packed arrays of typebi t or | ogi c.

#define SV_BI T_PACKED ARRAY(W DTH, NAME)
#define SV_LOG C_PACKED ARRAY(W DTH, NAVE)

| The actual definitions are implementation-specific. For example, a SystemVerilog simulator might
define the later macro as follows.

#define SV _LOG C_PACKED ARRAY(W DTH, NAVE) \
svLogi cVec32 NAVE [SV _CANONI CAL_SI ZE(W DTH)]

| A.9.3 Example 1— binary compatible application

SystemVerilog:

| 44 Copyright 2003 Accellera. All rights reserved.

Accellera
| Extensionsto Verilog-2001 SystemVerilog 3.1/draft 4

typedef struct {int a; int b;} pair;

| import “DPI” function void foo(input int il, pair i2, output logic [63:0] 03);
| export “DPlI” function exported_sv_func
function void exported_sv_func(input int i, output int o [0:7]);
| begin ...
endf uncti on
C:
| #i ncl ude " . h"

typedef struct {int a; int b;} pair;
extern void exported_sv_func(int, int *); /* inmported from SystenVerilog */

void foo(const int il, const pair *i2, svLogi cPackedArrRef 03)

{
svLogi cVec32 arr[SV_CANONI CAL_SI ZE(64)]; /* 2 chunks needed */
int tab[8];

printf("%\n", i1);

arr[1].c i 2->a;

arr[1].d 0;

arr[2].c i 2->b;

arr[2].d 0;

svPut Logi cVec32 (03, arr, 64);

/* call SystenVerilog */
exported_sv_func(il, tab); /* tab passed by reference */

}
| A.9.4 Example 2— source-level compatible application

SystemVerilog:

typedef struct {int a; bit [6:1][1:8] b [65:2]; int c;} triple;
/'l troubl esonme nmix of Ctypes and packed arrays

| import “DPI” function void foo(input triple i);
| export “DPlI” function exported_sv_func
function void exported_sv_func(input int i, output logic [63:0] 0);
| begin ...
endf uncti on
C:
#i ncl ude " . h"
#i nclude " . h"

typedef struct {
int a;
sv_BI T_PACKED ARRAY(6*8, b) [64]; /* inplenmentation specific
representation */
int c;

| Copyright 2003 Accellera. All rights reserved. 45

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

} triple;
/* Note that 'b’ is defined as for "bit [6*8-1:0] b [63:0]" */

extern void exported_sv_func(int, svLogi cPackedArrRef); /* inported from
SystenmVeril og */

void foo(const triple *i)

{ . .
int j;
/* canoni cal representation */
svBitVec32 arr[SV_CANONI CAL_SI ZE(6*8)]; /* 6*8 packed bits */
svLogi cVec32 alL[SV_CANONI CAL_SI ZE(64)] ;

/* inplementation specific representation */
' LOG C_PACKED ARRAY(64, my_tab);

printf("%l %\n", i->a, i->c);
for (j=0; j<64; j++) {
| svGet Bit Vec32(arr, (svBitPackedArrRef)&(i->b[j]), 6*8);

}

/* call SystenVerilog */
exported_sv_func(2, (svLogi cPackedArrRef)&ny_ tab); /* by reference */
svGet Logi cVec32(alL, (svLogi cPackedArrRef)&ny_tab, 64); .}

NOTE—a, b, and ¢ are directly accessed as fields in a structure. In the case of b, which represents unpacked array of
packed arrays, the individual element is accessed viathe library function svGet Bi t Vec32(), by passing its address
to the function.

A.10 Arrays

Normalized ranges are used for accessing SystemVerilog arrays, with the exception of formal arguments spec-
ified as open arrays.

A.10.1 Multidimensional arrays

Packed arrays shall be one-dimensional. Unpacked arrays can have an arbitrary number of dimensions.

A.10.2 Direct access to unpacked arrays

Unpacked arrays, with the exception of formal arguments specified as open arrays, shall have the same layout
as used by a C compiler; they are accessed using C indexing (see section A.6.6).

A.10.3 Access to packed arrays via canonical representation
Packed arrays are accessible via canonical representation; this C-layer interface provides functions for moving
data between implementation representation and canonical representation (any necessary conversion is per-

formed on-the-fly (see section A.9.1.3)), and for bit selects and limited (up to 32-bit) part selects. (Bit selects
do not involve any canonical representation.)

A.10.3.1 Bit selects
| Thissubsection defines the bit selects portion of the . h file (see section A.9.1 for more details).

/* Packed arrays are assuned to be indexed n-1:0,
where 0 is the index of least significant bit */

/* functions for bit select */

| 46 Copyright 2003 Accellera. All rights reserved.

Accellera
| Extensionsto Verilog-2001 SystemVerilog 3.1/draft 4

/* s=source, i=bit-index */
svBit svGet Sel ectBit(const svBitPackedArrRef s, int i);
svLogi ¢ svGet Sel ect Logi c(const svLogi cPackedArrRef s, int i);

/* d=destination, i=bit-index, s=scal ar */
voi d svPut Sel ect Bi t (svBit PackedArrRef d, int i, svBit s);
voi d svPut Sel ect Logi c(svLogi cPackedArrRef d, int i, svLogic s);

A.10.3.2 Part selects

Limited (up to 32-hit) part selects are supported. A part select is a slice of a packed array of types bit or
| ogi c. Array dlices are not supported for unpacked arrays.

Functions for part selects only allow access (read/write) to a narrow subrange of up to 32 bits. A canonical rep-
resentation shall be used for such narrow vectors.

functions for part sel ect

a narrow (<=32 bits) part select is copied between

the inplenentation representation and a single chunk of

canoni cal representation

Nor nal i zed ranges and indexing [n-1:0] are used for both arrays:

the array in the inplenmentation representati on and the canonical array.

@ource, d=destination, i=starting bit index, w=w dth
like for variable part selects; limtations: w <= 32
/

E R I I . T S R .

NOTE—For the sake of symmetry, acanonical representation (i.e., an array) isused both for bi t and| ogi ¢, although a
simpler i Nt can be used for bi t -part selects (<= 32-hits):

/* canoni cal <-- actual */
voi d svGetPart Sel ectBit (svBitVec32* d, const svBitPackedArrRef s, int i,
int w;

voi d svGet Part Sel ect Logi c(svLogi cVec32* d, const svLogi cPackedArrRef s, int i,
int w;

/* actual <-- canonical */

voi d svPut Part Sel ect Bi t (svBi t PackedArrRef d, const svBitVec32 s, int i,
int w;

voi d svPut Part Sel ect Logi c(svLogi cPackedArr Ref d, const svLogicVec32 s, int i,
int w;

A.11 Open arrays
| Formal arguments specified as open arrays allows passing actual arguments of different sizes (i.e., different
range and/or different number of elements), which facilitates writing a more general C code that can handle

SystemVerilog arrays of different sizes. The elements of an open array can be accessed in C by using the same
range of indices and the same indexing as in SystemVerilog. Plus, inquiries about the dimensions and the orig-

| Copyright 2003 Accellera. All rights reserved. 47

dwarmke
This kind of block comment reads the most professionally and looks the best, IMO. We should standardize on this style (or if not this one, some agreed-upon alternative) everywhere block comments are made in examples and include files.

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

inal boundaries of SystemVerilog actual arguments are supported for open arrays.
NOTE—Both packed and unpacked array dimensions can be unsized.

All formal arguments declared in SystemVerilog as open arrays are passed by handle (type svOpenAr r ay-
Handl e), regardless of the direction of a SystemVerilog formal argument. Such arguments are accessible via
interface functions.

A.11.1 Actual ranges

The forma arguments defined as open arrays have the size and ranges of the actual argument, as determined
on a per-call basis. The programmer shall aways have a choice whether to specify a formal argument as a
sized array or as an open (unsized) array.

In the former case, all indices are normalized on the C side (i.e., 0 and up) and the programmer needs to know
the size of an array and be capable of determining how the ranges of the actual argument map onto C-style
ranges (see section A.6.6).

Tip: programmers may decideto stick to[n: 0] nane[0: k] stylerangesin SystemVerilog.

In the later case, i.e., an open array, individual elements of a packed array are accessible via interface func-
tions, which facilitate the SystemVerilog-style of indexing with the original boundaries of the actual argument.

If aformal argument is specified as a sized array, then it shall be passed by reference, with no overhead, and is
directly accessible as a normalized array. If aformal argument is specified as an open (unsized) array, then it
shall be passed by handle, with some overhead, and is mostly indirectly accessible, again with some overhead,
although it retains the original argument boundaries.

NOTE—This provides some degree of flexibility and allows the programmer to control the trade-off of performance vs.
convenience.

The following example shows the use of sized vs. unsized arraysin SystemVerilog code.

/1 both unpacked arrays are 64 by 8 el enents, packed 16-bit each
logic [15: 0] a_64x8 [63:0][7:0];
logic [31:16] b_64x8 [64:1][-1:-8];

import “DPI” function void foo(input logic [] i [][]);
/1 2-di nensional unsized unpacked array of unsized packed | ogic

i mport “DPI” function void boo(input logic [31:16] i [64:1][-1:-8]);
/1 2-dimensional sized unpacked array of sized packed | ogic

foo(a_64x8);
foo(b_64x8); // C code may use original ranges [31:16][64:1][-1:-8]

boo(b_64x8); // C code nmust use nornalized ranges [15:0][0:63][0: 7]
A.11.2 Array querying functions

These functions are modelled upon the SystemVerilog array querying functions and use the same semantics
(see Systemverilog 3.0 LRM 16.3).

If the dimension is O, then the query refers to the packed part (which is one-dimensional) of an array, and
dimensions > O refer to the unpacked part of an array.

/* h= handl e to open array, d=di nension */

int svLeft(const svQpenArrayHandle h, int d);
int svRi ght (const svQOpenArrayHandle h, int d);
int svLowm const svQpenArrayHandle h, int d);

48 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

int svH gh(const svQpenArrayHandle h, int d);

int svlncrement (const svOpenArrayHandl e h, int d);
int svLength(const svOpenArrayHandl e h, int d);

i nt svDi nensi ons(const svOpenArrayHandl e h);

A.11.3 Access functions

Similarly to sized arrays, there are functions for copying data between the ssimulator representation and the
canonical representation and to obtain the actual address of SystemVerilog data object or of an individual ele-
ment of an unpacked array. Thisinformation might be useful for simulator-specific tuning of the application.

Depending on the type of an element of an unpacked array, different access methods shall be used when work-
ing with elements.

— Packed arrays (bi t or | ogi ¢) are accessed via copying to or from the canonical representation.
— Scalars (1-bit value of typebi t or | ogi c) are accessed (read or written) directly.

— Other types of values (e.g., structures) are accessed via generic pointers; alibrary function calculates an
address and the user needs to provide the appropriate casting.

— Scalars and packed arrays are accessible via pointers only if the implementation supports this functionality
(per array), e.g., one array can be represented in aform that allows such access, while another array might
use a compacted representation which renders this functionality unfeasible (both occurring within the same
simulator).

SystemVerilog allows arbitrary dimensions and, hence, an arbitrary number of indices. To facilitate this, a vari-
able argument list functions shall be used. For the sake of performance, the specialized versions of all indexing
functions are provided for 1, 2, or 3 indices.

A.11.4 Access to the actual representation

The following functions provide an actual address of the whole array or of itsindividual elements. These func-
tions shall be used for accessing elements of arrays of types compatible with C. These functions are also
useful for the vendors, because they provide access to the actual representation for all types of arrays.

If the actual layout of the SystemVerilog array passed as an argument for an open unpacked array is different
than the C layout, then it is not be possible to access such an array as awhole; therefore, the address and size of
such an array shall be undefined (zero (0), to be exact). Nonethel ess, the addresses of individual elements of an
array shall be always supported.

NOTE—No specific representation of an array is assumed here; hence, all functions use a generic pointer voi d *.

/* a pointer to the actual representation of the whole array of any type */
/* NULL if not in Clayout */
voi d *svGet ArrayPtr(const svQOpenArrayHandl e);

int svSi zeO Array(const svQpenArrayHandle); /* total size in bytes or 0 if not
inC
| ayout */

/* Return a pointer to an elenment of the array
or NULL if index outside the range or null pointer */

void *svGet ArrEl enPtr(const svOpenArrayHandl e, int indxl, ...);

/* specialized versions for 1-, 2- and 3-di nensi onal arrays: */

voi d *svGet ArrEl enPtr1(const svOpenArrayHandl e, int indxl);

voi d *svGet ArrEl enPtr2(const svOpenArrayHandl e, int indx1l, int indx2);
voi d *svGet ArrEl enPt r3(const svQpenArrayHandl e, int indx1l, int indx2, int
i ndx3);

Copyright 2003 Accellera. All rights reserved. 49

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

Accessto an individual array element via pointer makes sense only if the representation of such an element is
the same as it would be for an individual value of the same type. Representation of array elements of type
scal ar or packed value isimplementation-dependent; the above functions shall return NULL if the represen-
tation of the array elements differs from the representation of individual values of the same type.

A.11.5 Access to elements via canonical representation
This group of functions is meant for accessing elements which are packed arrays (bi t or | ogi c¢).

The following functions copy a single vector from a canonical representation to an element of an open array or
other way round. The element of an array is identified by indices, bound by the ranges of the actual argument,
i.e., theorigina SystemVerilog ranges are used for indexing.

/* functions for translation between sinulator and canonical representations*/
/* s=source, d=destination */
/* actual <-- canonical */

| voi d svPutBitArrEl enVec32 (const svQpenArrayHandl e d, const svBitVec32* s
int indx1, ...);
| voi d svPutBitArrEl enlVec32(const svQpenArrayHandl e d, const svBitVec32* s
int indxl);
| voi d svPutBit Arr El enRVec32(const svQpenArrayHandl e d, const svBitVec32* s,
int indxl,
int indx2);
| voi dsvPut Bi t Arr El enBVec32(const svOpenArrayHandl e d, const svBi t Vec32* s,
int indx1, int indx2, int indx3);
| voi d svPut Logi cArrEl emec32 (const svOpenArrayHandl e d, const svLogi cVec32*
S,
int indx1, ...);
| voi d svPut Logi cArrEl emlVec32(const svOpenArrayHandl e d, const svLogi cVec32*
S,
int indxl);
| voi d svPut Logi cArr El em2Vec32(const svOpenArrayHandl e d, const svLogi cVec32*
S,
int indx1, int indx2);
| voi d svPut Logi cArr El enBVec32(const svOpenArrayHandl e d, const svLogi cVec32*
S,

int indx1, int indx2, int indx3);

/* canonical <-- actual */

| void svGetBitArrEl enVec32 (svBitVec32* d, const svOpenArrayHandle s, int
indx1, ...);
| voi d svGetBitArrEl enlVec32(svBitVec32* d, const svOpenArrayHandle s, int
i ndx1);
| voi d svGetBitArrEl en2Vec32(svBitVec32* d, const svQpenArrayHandle s, int
i ndx1,
int indx2);
| voi d svGetBit ArrEl enBVec32(svBitVec32* d, const svOpenArrayHandle s,
int indx1, int indx2, int indx3);
| voi d svGet Logi cArrEl emec32 (svLogi cVec32* d, const svQpenArrayHandle s, int
i ndx1,
o)
| voi d svCet Logi cArrEl emlVec32(svLogi cVec32* d, const svOpenArrayHandle s, int
i ndx1);
| voi d svGet Logi cArr El em2Vec32(svLogi cVec32* d, const svQpenArrayHandle s, int
i ndx1,
int indx2);

| 50 Copyright 2003 Accellera. All rights reserved.

Accellera
| Extensionsto Verilog-2001 SystemVerilog 3.1/draft 4

| voi d svCGet Logi cArr El enBVec32(svLogi cVec32* d, const svQpenArrayHandle s,
int indx1, int indx2, int indx3);

The above functions copy the whole packed array in either direction. The user is responsible for alocating an
array in the canonical representation.

A.11.6 Access to scalar elements (bit and | ogi c)

Another group of functionsis needed for scalars (i.e., when an element of an array isasimple scalar, bi t , or
| ogi c):

SVBi t svGetBit ArrEl em (const svOpenArrayHandle s, int indxl, ...);

SVBi t svGet Bit ArrEl eml(const svQpenArrayHandl e s, int indxl);

SVBi t svGet Bi t Arr El en2(const svOpenArrayHandle s, int indxl, int indx2);
SsvBi t svGet Bit Arr El enB(const svOpenArrayHandle s, int indxl, int indx2, int
i ndx3);

svLogi ¢ svGetLogi cArrEl em (const svOpenArrayHandle s, int indxl, ...);
svLogi c svGetLogi cArrEl enl(const svOpenArrayHandle s, int indxl);

svLogi ¢ svGetLogi cArrEl en2(const svOpenArrayHandle s, int indxl, int indx2);
svLogi ¢ svGetLogi cArrEl enB(const svOpenArrayHandle s, int indx1, int indx2,

int indx3);
| voi d svPut Logi cArrEl em (const svQpenArrayHandl e d, svLogic val ue, int indxl,
)
voi d svPut Logi cArrEl enll(const svOpenArrayHandl e d, svLogic val ue, int indxl);
voi d svPut Logi cArrEl em2(const svQpenArrayHandl e d, svLogic value, int indxl,
int indx2);
| voi d svPut Logi cArrEl emB(const svQpenArrayHandl e d, svLogic value, int indxl,
int indx2,
int indx3);
voi d svPutBit ArrEl em (const svOpenArrayHandl e d, svBit value, int indx1, ...);
voi d svPutBitArrEl enil(const svOpenArrayHandle d, svBit value, int indxl);
voi d svPutBitArrEl en2(const svOpenArrayHandle d, svBit value, int indxl, int
i ndx2);
| voi d svPutBitArrEl enB(const svOpenArrayHandl e d, svBit value, int indxl, int
i ndx2,

int indx3);
A.11.7 Access to array elements of other types
If an array’s elements are of atype compatible with C, thereisno need to use canonical representation. In such

situations, the elements are accessed via pointers, i.e., the actual address of an element shall be computed first
and then used to access the desired element.

| A.11.8 Example 3— two-dimensional open array
SystemVerilog:
typedef struct {int i; ... } MType;

import “DPI” function void foo(input MyType i []1[]); /* 2-dinensional unsized
unpacked array
of MyType */

MyType a_10x5 [11:20][6:2];
MyType a_64x8 [64:1][-1:-8];

foo(a_10x5);

| Copyright 2003 Accellera. All rights reserved. 51

Accellera
| SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

foo(a_64x8);

C:
| #i ncl ude " . h"
typedef struct {int i; ... } MType;
| voi d foo(const svQpenArrayHandl e h)
{
MyType ny_val ue;
int i, j;
int 1ol = svLow(h, 1);
int hil = svHi gh(h, 1);
int 102 = svLow(h, 2);
int hi2 = svHi gh(h, 2);
for (i =10l; i <= hil; i++) {
for (j =102; j <= hi2; j++) {
my_value = *(MyType *)svGetArrEl enPtr2(h, i, j);
*(MyType *)svGetArrElenPtr2(h, i, j) = ny_val ue;
}

| A.11.9 Example 4— open array

SystemVerilog:
typedef struct { ... } MType;
| import “DPl” function void foo(input MyType i [], output MyType o []);

MyType source [11:20];
MyType target [11:20];

foo(source, target);

C:
| #i ncl ude " . h"
typedef struct ... } MType;
| voi d foo(const svQpenArrayHandl e hin, const svQpenArrayHandl e hout)
{ i nt count svLength(hin, 1);

M/ Type *s
M Type *d

(MyType *)svGet ArrayPtr (hin);
(MyType *)svGet ArrayPtr (hout);

if (s & d) { /* both arrays have C | ayout */

/* an efficient solution using pointer arithnetic */
whil e (count--)

| 52 Copyright 2003 Accellera. All rights reserved.

Accellera
| Extensionsto Verilog-2001 SystemVerilog 3.1/draft 4

*d++ = *s++;

/* even nore efficient:
mencpy(d, s, svSizeOArray(hin));
*/

} else { /* less efficient yet inplenmentation independent */

int i = svLowmhin, 1);
int j = svLowm hout, 1);
while (i <= svHigh(hin, 1)) {
*(MyType *)svGetArrEl enPtrl(hout, j++) =
*(M/Type *)svGet ArrEl enPtr1(hin, i++);

}
| A.11.10 Example 5 — access to packed arrays

SystemVerilog:

import “DPI” function void foo(input logic [127:0]);
import “DPlI” function void boo(input logic [127:0] i []);// open array of 128-

bi t
C:
| #i ncl ude " . h"
/* one 128-bit packed vector */
voi d foo(const svLogi cPackedArr Ref packed_vec_128 hit)
{
svLogi cVec32 arr[SV_CANONI CAL_SI ZE(128)]; /* canonical representation */
svGet Logi cVec32(arr, packed_vec_128 bit, 128);
}
/* open array of 128-bit packed vectors */
| voi d boo(const svQpenArrayHandl e h)
{
int i;
svLogi cVec32 arr[SV_CANONI CAL_SI ZE(128)]; /* canonical representation */
for (i = svLlowh, 1); i <= svHi gh(h, 1); i++) {
svLogi cPackedArr Ref ptr = (svLogi cPackedArrRef)svGetArrEl enPtr1(h, i);
/* user need not know the vendor representation! */
svGet Logi cVec32(arr, ptr, 128);
}
}

A.11.11 Example 6 — binary compatible calls of exported functions

This example demonstrates the source compatibility include file . h isnot needed if a C function

| Copyright 2003 Accellera. All rights reserved. 53

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

dynamically allocates the data structure for smulator representation of a packed array to be passed to an
exported SystemVerilog function.

SystemVerilog:
export“DPl” function myfunc

function void nyfunc (output logic [31:0] r);

#i ncl ude " . h"
extern void nyfunc (svLogi cPackedArrRef r); /* exported from SV */

/* output |ogic packed 32-bits */

svLogi cVec32 ny_r[SV_CANONI CAL_SI ZE(32)];
/* ny array, canonical representation */

/* allocate nenory for |ogic packed 32-bits in sinmulator's representation */
svLogi cPackedArrRef r =
(svLogi cPackedArr Ref) mal | oc(svSi zeOf Logi cPackedArr (32));
myfunc(r);
/* canonical <-- actual */
svGet Logi cVec32(ny_r, r, 32);
/* will use only the canonical representation fromnow on */
free(r); /* don't need any nore */

54 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Annex B
Include files

This annex shows the contents of the and include files.
B.1 Binary-level compatibility include file
/* canoni cal representation */

#define sv.0 O
#define sv_1 1
#define sv_z 2 /* representation of 4-st scalar z */
#define sv.x 3 /* representation of 4-st scalar x */

/* common type for 'bit’ and 'logic' scalars. */
typedef unsigned char svScal ar;

typedef svScal ar svBit; /* scalar */
typedef svScal ar svLogic; /* scalar */

/* Canoni cal representation of packed arrays */
/* 2-state and 4-state vectors, nodelled upon PLI's aval ue/ bval ue */
#define SV_CANONI CAL_SI ZE(W DTH) (((W DTH) +31) >>5)

typedef unsigned int
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;} /*-asin VCS*/
svLogi cVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undetermi ned, the follow ng nacros
may be handy */
#defi ne " MASK(N) (~(-1<<(N)))

#define SV_GET_UNSI GNED_BI TS(VALUE, N)\
((N) ==32?(VALUE) : ((VALUE) &_MASK(N)))

#define SV_GET_SI GNED_BI TS(VALUE, N)\
((N) ==32?(VALUE) : \
(((VALUE) &(1<<((N) 1))) 2((VALUE) | ~SV_MASK(N)) : ((VALUE) &SV_MASK(N))))

/* inplenentation-dependent representation */
/* a handle to a generic object (actually, unsized array) */
typedef voi d* ;

/* reference to a standal one packed array */
typedef voi d* svBitPackedArr Ref;
typedef void* svLogi cPackedArr Ref;

/* total size in bytes of the sinmulator’s representation of a packed array */
/* width in bits */

int svSizeOrBitPackedArr(int wdth);

int svSi zeOf Logi cPackedArr (int width);

/* Transl ati on between the actual representation and the canoni cal
representation*/

Copyright 2003 Accellera. All rights reserved. 51

Accellera

SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

52

/* functions for translation between the representation actually used by
simul ator and the canonical representation */

/* s=source, d=destination, w=width */

/* actual <-- canonical */

voi d svPut Bi t Vec32 (svBi t PackedAr r Ref d, const svBitVec32* s, int w;
voi d svPut Logi cVec32 (svLogi cPackedArrRef d, const svLogicVec32* s, int w;
/* canoni cal <-- actual */

voi d svGet Bi t Vec32 (svBit Vec32* d, const svBitPackedArr Ref s, int w;
voi d svCet Logi cVec32 (svLogi cVec32* d, const svLogi cPackedArrRef s, int w;

/* Bit selects */

/* Packed arrays are assuned to be indexed n-1:0,
where 0 is the index of least significant bit */

/* functions for bit select */

/* s=source, i=bit-index */
svBit svGet Sel ectBit(const svBitPackedArrRef s, int i);
svLogi ¢ svGet Sel ect Logi c(const svLogi cPackedArrRef s, int i);

/* d=destination, i=bit-index, s=scal ar */
voi d svPut Sel ect Bi t (svBit PackedArrRef d, int i, svBit s);
voi d svPut Sel ect Logi c(svLogi cPackedArrRef d, int i, svlLogic s);

/*

* functions for part select

*

* a narrow (<=32 bhits) part select is copied between

* the inplenmentation representati on and a single chunk of

* canoni cal representation

* Normalized ranges and indexing [n-1:0] are used for both arrays:
* the array in the inplenentation representation and the canonical array.
*

* s=source, d=destination, i=starting bit index, w=width

* |ike for variable part selects; limtations: w<= 32

*/

/* canonical <-- actual */
voi d svCGetPart Sel ectBit (svBitVec32* d, const svBitPackedArrRef s, int i,
int w;
voi d svGet Part Sel ect Logi c(svLogi cVec32* d, const svlLogi cPackedArrRef s, int i,
int w;

/* actual <-- canonical */

voi d svPut Part Sel ect Logi c(svLogi cPackedArr Ref d, const svLogicVec32 s, int i,
int w;
/* Array querying functions */

/* These functions are nodel | ed upon the SystemVerilog array querying functions
and use the same senmantics*/

Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

/* |f the dinension is O,
one-di mensi onal) of an array,

an array. */

/* h= handl e to open array, d=di nension */

int svLeft(const h, int d);

i nt svRi ght (const h, int d);

int svLow const h, int d);

int svHi gh(const h, int d);

i nt svlncrenment (const h, int d);
i nt svLength(const h, int d);

i nt svDi mensi ons(const h);

/* a pointer to the actua

/* NULL if not in Clayout */

SystemVerilog 3.1/draft 4

then the query refers to the packed part (which is
and di nensions > 0 refer to the unpacked part of

representation of the whole array of any type */

voi d *svGet ArrayPtr (const);
int svSi zeOr Array(const); /* total size in bytes or O if not
inC

| ayout */

/* Return a pointer to an elenent of the array

or NULL if index outside the range or null pointer */
voi d *svGet Arr El enPt r (const , int indx1, L)

/* specialized versions for 1-, 2- and 3-di nensi onal arrays: */
voi d *svGet ArrEl enPt r 1(const , int indx1);
voi d *svGet Arr El enPt r 2(const , int indxl, int indx2);
voi d *svGet Arr El enPt r 3(const , int indx1, int indx2, int
i ndx3);

/* Functions for translation between sinulator and canonical representations*/
/* These functions copy the whol e packed array in either direction. The user is

responsi ble for allocating an array in the canonica

/* s=source, d=destination */
/* actual <-- canonical */

representation. */

voi d svPutBitArrEl enVec32 (const d, const svBitVec32* s,

int indx1, ...);
voi d svPut Bi t Arr El emlVec32(const d, const svBitVec32* s, int
i ndx1);
voi d svPut Bi t Arr El em2Vec32(const d, const svBitVec32* s, int
i ndx1,

int indx2);

voi dsvPut Bi t Arr El enBVec32(const

d, const svBi t Vec32* s,

int indx1, int indx2, int indx3);

voi d svPut Logi cArr El emVec32 (const d,

voi d svPut Logi cArr El emlVec32(const

S,

int indx1, ...);

int indx1);

voi d svPut Logi cArr El enRVec32(const d,

int indx1, int indx2);

voi d svPut Logi cArr El enBVec32(const d,

/* canoni cal <--

int indx1l, int indx2, int

actual */

Copyright 2003 Accellera. All rights reserved.

d,

const svlLogi cVec32* s,

const svlLogi cVec32*

const svlLogi cVec32* s,

const svlLogi cVec32* s,
i ndx3);

53

Accellera

SystemVerilog 3.1/draft 4 Extensions to Verilog-2001
voi d svGetBitArrEl enVec32 (svBitVec32* d, const s, int
indx1, ...);
voi d svGetBitArrEl enlVec32(svBitVec32* d, const s, int
i ndx1);
voi d svGetBitArrEl en2Vec32(svBitVec32* d, const s, int
i ndx1,

int indx2);
voi d svGetBitArrEl enBVec32(svBitVec32* d, const S,
int indx1, int indx2, int indx3);

voi d svGet Logi cArrEl emvec32 (svLogi cVec32* d, const s, int
i ndx1,

)y
voi d svCet Logi cArr El emlVec32(svLogi cVec32* d, const s, int
i ndx1);
voi d svGet Logi cArr El em2Vec32(svLogi cVec32* d, const s, int
i ndx1,

int indx2);
voi d svCet Logi cArr El enBVec32(svLogi cVec32* d, const S,

int indx1, int indx2, int indx3);
svBi t svGet Bit Arr El em (const s, int indx1, ...);
SsvBi t svGet Bi t Arr El eml(const s, int indx1);
SvBi t svGet Bi t Arr El en2(const s, int indx1, int indx2);
SvBi t svGet Bi t Arr El enB(const s, int indx1l, int indx2, int
i ndx3);
svLogi ¢ svGet Logi cArrEl em (const s, int indx1, ...);
svLogi ¢ svGet Logi cArrEl enll(const s, int indx1);
svLogi ¢ svGet Logi cArr El en2(const s, int indx1, int indx2);
svLogi ¢ svGet Logi cArr El enB(const s, int indxl, int indx2,
int indx3);
voi d svPut Logi cArrEl em (const d, svlLogic value, int indx1,
ce)s
voi d svPut Logi cArr El eml(const d, svlLogic value, int indxl);
voi d svPut Logi cArr El em2(const d, svlLogic value, int indx1,

int indx2);
voi d svPut Logi cArr El enB(const d, svlLogic value, int indx1,
int indx2,
int indx3);
voi d svPut Bi t Arr El em (const d, svBit value, int indx1, ...);
voi d svPutBit ArrEl enil(const d, svBit value, int indxl);
voi d svPutBit ArrEl en2(const d, svBit value, int indxl, int
i ndx2);
voi d svPutBit Arr El enB(const d, svBit value, int indxl, int
i ndx2,
int indx3);

/* Functions for working with DPI context functions */

/*@.ri eve the active instance scope currently associated with the executing
i mported function.
Unl ess a prior call to svSetScope has occured, this is the scope of the
function’s declaration site, not call site.
Returns NULL if called fromC code that is *not* an inported function. */
svScope svGet Scope();

54 Copyright 2003 Accellera. All rights reserved.

dwarmke
This area of the file needs to be adjusted as per my forthcoming ASCII email.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

/* Set context for subsequent export function execution.
This function nust be called before calling an export function, unless
the export function is called while executing an extern function. In that
case the export function will inherit the scope of the surrounding extern
function. This is known as the “default scope”.
The return is the previous active scope (as per svGetScope) */

svScope svSet Scope(const svScope scope);

/* Gets the fully qualified nane of a scope handle */
const char* svGet NaneFr onScope(const svScope);

/* Retrieve svScope to instance scope of an arbitrary function decl aration.
(WI1l be either nodule, program interface, or generate scope) */
| svScope svGet ScopeFromNane(const char* scopeNane);

/* Set arbitrary user data pointer into specified instance scope */
| voi d svPut User Dat a(const svScope scope, void* userData);

/* Retrieve arbitrary user data from specified instance scope */
voi d* svGet User Dat a(const svScope scope);

/ * Returns the file and line nunber in the SV code fromwhich the extern call
was nmade. |f this information available, returns TRUE and updates fil eNane and
l'i neNunber to the appropriate values. Behavior is unpredictable if fileName or
I'i neNunber are not appropriate pointers. If this information is not available
return FALSE and contents of fileNanme and |ineNunber not nodified. Whether this
information is available or not is inplenmentation specific. Note that the
string provided (if any) is owed by the SV inplenentation and is valid only
until the next call to any SV function. Applications nmust not nodify this
string or free it */

int svGetCallerlnfo(char **fil eName, int *lineNunber);

| B.2 Source-level compatibility include file

/ * macros for declaring variables to represent the SystemVerilog */

| * packed arraysof typebit orl ogi c */

/* WDTH= nunber of bits, NAME = nane of a declared field/variable */
#define SV_BI T_PACKED ARRAY(W DTH, NAME) / * actual definition will go here */
#define SV_LOG C_PACKED ARRAY(W DTH, NAME) / * actual definition will go here */

Copyright 2003 Accellera. All rights reserved. 55

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

56 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Annex C
Inclusion of Foreign Language Code

This annex describes common guidelines for the inclusion of Foreign Language Code into a SystemVerilog
application. This intention of these guidelines is to enable the redistribution of C binaries in shared object
form.:

Foreign Language Code is functionality that is included into SystemVerilog using the DPI Interface. As a
result, all statements of this annex apply only to code included using this interface; code included by using
other interfaces (e.g., PLI or VPI) is outside the scope of this document. Due to the nature of the DPI Interface,
most Foreign Language Code is usually be created from C or C++ source code, although nothing precludes the
creation of appropriate object code from other languages. This annex adheres to this rule, it's content is inde-
pendent from the actual language used.

In general, Foreign Language Code is provided in the form of object code{compiled for the actual platform) er
seuree-code. The capability to incl ude Fore| gn Language Code in Obj ect code form shall be supported by al
simulators as specmed here RguUag

C.1 Overview

This annex defines how to:

— gpecify the location of the corresponding files within the file system
— gpecify the files to be loaded (in case of object code) or

o s . | . :

— provide the object code (as a shared library or archive)

Although this annex defines guidelines for a common inclusion methodology, it requires multiple implementa-
tions (usually two) of the corresponding facilities. This takes into account that multiple users can have differ-
ent viewpoints and different requirements on the inclusion of Foreign Language Code.

— A vendor that wants to provide his P in form of Foreign Language Code often requires a self-contained
method for the integration, which still permits an integration by athird party. This use-case is often cov-
ered by a bootstrap file approach.

— A project team that specifies acommon, standard set of Foreign Language code, might change the code
depending on technology, selected cells, back-annotation data, and other items. This-use case is often cov-
ered by a set of tool switches, although it might also use the bootstrap file approach.

— An user might want to switch between selections or provide additional code. This-use case is covered by
providing a set of tool switches to define the corresponding information, although it might also use the
bootstrap file approach.

NOTE—This annex defines a set of switch names to be used for a particular functionality. Thisis of informative nature;
the actual naming of switchesis not part of this standard. It might further not be possible to use certain character configura-
tionsin all operating systems or shells. Therefore any switch name defined within this document is a recommendation how
to name a switch, but not arequirement of the language.

Copyright 2003 Accellera. All rights reserved. 55

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

C.2 Location independence

All pathnames specified within this annex are intended to be location-independent, which is accomplished by
using the switch - sv_r oot . It can receive asingle directory pathname as the value, which is then prepended
to any relative pathname that has been specified. In absence of this switch, or when processing relative filena-
mes before any - sv_r oot specification, the current working directory of the user shall be used as the default
value.

C.3 Object code inclusion

Compiled object code is required for cases where the compilation and linking of source code is fully handled
by the user; thus, the created object code only need be loaded to integrate the Foreign Language Code into a
SystemVerilog application. All SystemVerilog applications shall support the integration of Foreign Language
Code in object code form. Figure C1— depicts the inclusion of object code and its relations to the various
stepsinvolved in thisintegration process. ** Revise this xref w/ Stu; also check/revise variable settings, etc.**

Performed by the user Object code
inclusion
Source | ||—p Object Systlem
code |[||—® — - Verilog
I code application
Compile Link

Figure C1— Inclusion of object code into a SystemVerilog application

Compiled object code can be specified by one of the following two methods:

1) by anentry inabootstrap file; see section C.3.1 for more details on thisfile and its content. Itslocation
shall be specified with one instance of the switch - sv_Ii bl i st pat hnane. This switch can be
used multiple times to define the usage of multiple bootstrap files.

2) by specifying the file with one instance of the switch -sv_lib
pat hname_wi t hout _ext ensi on (i.e, the filename shall be specified without the platform
specific extension). The SystemVerilog application is responsible for appending the appropriate
extension for the actual platform. This switch can be used multiple times to define multiple libraries
holding object code.

Both methods shall be provided and made available concurrently, to permit any mixture of their usage. Every
location can be an absolute pathname or a relative pathname, where the value of the switch- sv_r oot isused
to identify an appropriate prefix for relative pathnames (see section C.2 for more details on forming path-
names).

The following conditions also apply.

— The compiled object code itself shall be provided in form of a shared library having the appropriate exten-
sion for the actual platform.

NOTE—Shared libraries use, for example, . SO for Solarisand . S| for HP-UX; other operating systems might use differ-
ent extensions. In any case, the SystemVerilog application needs to identify the appropriate extension.

— The provider of the compiled code isresponsiblefor any external references specified within these objects.
Appropriate data needs to be provided to resolve all open dependencies with the correct information.

56 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

— The provider of the compiled code shall avoid interferences with other software and ensure the appropriate
software version is taken (e.g., in cases where two versions of the same library are referenced). Similar
problems can arise when there are dependencies on the expected runtime environment in the compiled
object code (e.g., in cases where C++ global objects or static initializers are used).

— The SystemVerilog application need only load object code within a shared library that is referenced by the
SystemVerilog code or by registration functions; loading of additional functions included within a shared
library can interfere with other parts.

In case of multiple occurrences of the same file (files having the same pathname or which can easily be identi-
fied as being identical; e.g., by comparing the inodes of the files to detect cases where links are used to refer
the samefile), the above order aso identifies the precedence of loading; afilelocated by method 1) shall over-
ride files specified by method 2).

All compiled object code need to be loaded in the specification order similarly to the above scheme; first the
content of the bootstrap file is processed starting with the first line, then the set of - sv_1 i b switchesis pro-
cessed in order of their occurrence. Any library shal only be loaded once.

C.3.1 Bootstrap file

The object code bootstrap file has the following syntax.
1) Thefirst line containsthe string #! SV_LI BRARI ES.

2) Anarbitrary amount of entries follow, one entry per line, where every entry holds exactly one library
location. Each entry consists only of the pat hnane_wi t hout _ext ensi on of the object code file
to be loaded and can be surrounded by an arbitrary number of blanks; at |east one blank shall precede
the entry intheline. The value pat hname_wi t hout _ext ensi on is equivaent to the value of the
switch-sv_1|i b.

3) Any amount of comment lines can be interspersed between the entry lines, a comment line starts with
the character # after an arbitrary (including zero) amount of blanks and is terminated with a newline.

C.3.2 Examples

1) If the pathname root has been set by the switch - sv_r oot to/ hone/ user and the following object
files need to be included:

/ hone/ user/nyclibs/libl.so
/ hone/ user/nyclibs/lib3.so
/ honme/ user/proj 1/ clibs/lib4.so
/ home/ user/proj 3/clibs/lib2.so

then use either of the methods in Example C-1. Both methods are equivalent.

#! SV_LI BRARI ES -sv_lib nyclibs/libl
nyclibs/libl -sv_lib nyclibs/lib3
nyclibs/1ib3 -sv_lib projl/clibs/lib4
B:giyg::gz::gg -sv_lib proj3/clibs/lib2

Bootstrap file method Switch list method

Example C-1Using a simple bootstrap file or a switch list

2) If the current working directory is/ honme/ user , using the series of switches shown in Example C-2
(left column) result in loading the following files (right column).

Copyright 2003 Accellera. All rights reserved. 57

Accellera

SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

-sv_lib svLibraryl / home/ user/ svLi braryl. so

-sv_lib svLibrary2 / home/ user/ svLi brary?2. so

-sv_root /hone/project?2/shared_code

-sv_lib svLibrary3 / home/ pr oj ect 2/ shar ed_code/ svLi brary3. so

-sv_root /homre/ project3/code

-sv_lib svLibrary4 / hone/ proj ect 3/ code/ svLi brary4. so
Switches Files

Example C-2Using a combination of -sv_li b and - sv_r oot switches

3) Further, using the set of switches and contents of bootstrap files shown in Example C-3:

-sv_root /home/usrl |y bootstrapl: #! SV_LIBRARIES
-sv_liblist bootstrapl] : [B%
[

-sv_root /hone/usr2
-sv_liblist /home/ m ne/bootstrap2 ——» bootstrap2: #!' SV_LI BRARI ES
lib3

/ common/ | i bx
lib5

Example C-3Mixing - sv_r oot and bootstrap files

results in loading the following files:

/[home/ usr1/1ibl. ext
/[home/ usr1/1ib2. ext
[/ home/ usr 2/ 1i b3. ext
/ common/ | i bx. ext

[/ home/ usr 2/ 1i b5. ext

where ext stands for the actual extension of the corresponding file.

58 Copyright 2003 Accellera. All rights reserved.

dwarmke
I suggest all these strike-throughs be removed in draft 0.8, so that the other committees have an easier time reading through this section.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Object code

Performed by the user _ $
inclusion

Source |||—® Object
code - —F | ode

Compile Link
Sys_tem
/ Source code [performed by the application\ V?_“'OQ
inclusion transparent to the user application
Source |||—{pm = fE—
_| >
-
code I N e _ - -
L — L w
. Intermediate results | ; | di I
_ Compile ™rape™ Link mereiee Lol)

Copyright 2003 Accellera. All rights reserved. 59

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

60 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 4

Copyright 2003 Accellera. All rights reserved. 61

Accellera
SystemVerilog 3.1/draft 4 Extensions to Verilog-2001

62 Copyright 2003 Accellera. All rights reserved.

	Table of Contents
	Section 1 Direct Programming Interface (DPI)
	1.1 Overview
	1.1.1 Functions
	1.1.2 Data types
	1.1.2.1 Data representation

	1.2 Two layers of the DPI interface
	1.2.1 DPI SystemVerilog-layer
	1.2.2 DPI foreign language layer

	1.3 Global name space of imported and exported functions
	1.4 Imported functions
	1.4.1 Required properties of imported functions - semantical constraints
	1.4.1.1 Instant completion
	1.4.1.2 input and output arguments
	1.4.1.3 Special properties pure and context
	1.4.1.4 Memory management

	1.4.2 Pure functions
	1.4.3 Context functions
	1.4.4 Import declarations
	1.4.5 Function result
	1.4.6 Types of formal arguments
	1.4.6.1 Open arrays

	1.5 Imported function calls
	1.5.1 Argument passing
	1.5.1.1 “What You Specify Is What You Get” principle

	1.5.2 Value changes for output and inout arguments

	1.6 Exported functions

	Section 2 SystemVerilog Assertion API
	2.1 Requirements
	2.1.1 Naming conventions
	2.1.2 Nomenclature

	2.2 Extensions to VPI enumerations
	2.2.1 Object types
	2.2.2 Object properties
	2.2.3 Callbacks
	1) Assertion
	2) “Assertion system”

	2.2.4 Control constants
	1) Assertion
	2) Assertion stepping
	3) “Assertion system”

	2.3 Static information
	2.3.1 Obtaining assertion handles
	Figure 2�1— Encompassing assertions
	1) Iterate all assertions in the design: use a NULL reference handle (ref) to vpi_iterate(), e.g.,
	2) Iterate all assertions in an instance: pass the appropriate instance handle as a reference han...
	3) Obtain the assertion by name: extend vpi_handle_by_name to also search for assertion names in ...
	4) /* room for expanding iteration later, filtering based on "object property" e.g.

	2.3.2 Obtaining static assertion information
	1) assert
	2) check
	3) assume
	4) cover
	5) sequence
	6) Any assertion updates from the SV-AC.
	2.3.2.1 Using vpi_get_assertion_info
	2.3.2.2 Extending vpi_get() and vpi_get_str()

	2.4 Dynamic information
	2.4.1 Placing assertion “system” callbacks
	2.4.2 Placing assertions callbacks
	1) the event that caused the callback
	2) the handle for the assertion
	3) a pointer to an attempt information structure
	4) a reference to the user data supplied when the callback was placed.

	2.5 Control functions
	2.5.1 Assertion system control
	2.5.2 Assertion control

	Section 3 SystemVerilog Coverage API
	3.1 Requirements
	3.1.1 SystemVerilog API
	1) This API shall be similar for all coverages There are a wide number of coverage types availabl...
	2) At a minimum, the following types of coverage shall be supported:
	a) statement coverage
	b) toggle coverage
	c) fsm coverage
	i) fsm states
	ii) fsm transitions

	d) assertion coverage
	3) Coverage APIs shall be extensible in a transparent manner, i.e., adding a new coverage type sh...
	4) This API shall provide means to obtain coverage information from specific sub-hierarchies of t...

	3.1.2 Naming conventions
	3.1.3 Nomenclature

	3.2 SystemVerilog real-time coverage access
	3.2.1 Predefined coverage constants in SystemVerilog
	3.2.2 Built-in coverage access system functions
	3.2.2.1 $coverage_control
	Table�3�1: Instance coverage permutations�
	Example�3�1 Hierarchical instance example

	3.2.2.2 $coverage_get_max
	3.2.2.3 $coverage_get
	3.2.2.4 $coverage_merge
	3.2.2.5 $coverage_save

	3.3 FSM recognition
	1) the state register (or expression)
	2) the next state register (this is optional)
	3) the legal states.
	3.3.1 Specifying the signal that holds the current state
	3.3.2 Specifying the part-select that holds the current state
	3.3.3 Specifying the concatenation that holds the current state
	3.3.4 Specifying the signal that holds the next state
	3.3.5 Specifying the current and next state signals in the same declaration
	3.3.6 Specifying the possible states of the FSM
	3.3.7 Pragmas in one-line comments
	3.3.8 Example
	Example�3�2 FSM specified with pragmas

	3.4 VPI coverage extensions
	3.4.1 VPI entity/relation diagrams related to coverage
	3.4.2 Extensions to VPI enumerations
	1) Coverage type properties
	2) Coverage status properties
	3) Assertion-specific coverage status properties
	4) FSM-specific methods

	3.4.3 Obtaining coverage information
	3.4.4 Controlling coverage

	Annex A DPI C-layer
	A.1 Overview
	A.2 Naming conventions
	A.3 Portability
	A.3.1 Binary compatibility
	A.3.2 Source-level compatibility

	A.4 Include files
	A.4.1 svdpi.h include file
	A.4.2 svdpi_src.h include file

	A.5 Semantic constraints
	A.5.1 Types of formal arguments
	A.5.2 input arguments
	A.5.3 output arguments
	A.5.4 Value changes for output and inout arguments
	A.5.5 context and non-context functions
	A.5.6 No consumption of time by imported or export functions
	A.5.7 pure functions
	A.5.8 Memory management

	A.6 Data types
	A.6.1 Limitations
	A.6.2 Duality of types: SystemVerilog types vs. C types
	A.6.3 Data representation
	A.6.4 Basic types
	Table A1— Mapping data types�

	A.6.5 Normalized ranges
	A.6.6 Mapping between SystemVerilog ranges and normalized ranges
	1) If a packed part of an array has more than one dimension, it is linearized as specified by the...
	2) A packed array of range [L:R] is normalized as [abs(L-R):0]; its most significant bit has a no...
	3) The natural order of elements for each dimension in the layout of an unpacked array shall be u...

	A.6.7 Canonical representation of packed arrays
	Table A2— Encoding of bits in svLogicVec32

	A.7 Argument passing modes
	A.7.1 Overview
	A.7.2 Calling SystemVerilog functions from C
	A.7.3 Argument passing by value
	A.7.4 Argument passing by reference
	A.7.5 Allocating actual arguments for SystemVerilog-specific types
	A.7.6 Argument passing by sv_handle - open arrays
	A.7.7 input arguments
	A.7.8 inout and output arguments
	A.7.9 Function result

	A.8 Context functions
	A.8.1 Overview of DPI and VPI context
	A.8.2 Context of imported and export functions
	A.8.3 Working with DPI context functions in C code
	A.8.4 Example 1 — Using DPI context functions
	A.8.5 Relationship between DPI and VPI/PLI interfaces

	A.9 Include files
	A.9.1 Binary compatibility include file svdpi.h
	A.9.1.1 Scalars of type bit and logic
	A.9.1.2 Canonical representation of packed arrays
	A.9.1.3 Implementation-dependent representation
	A.9.1.4 Translation between the actual representation and the canonical representation

	A.9.2 Source-level compatibility include file svdpi_src.h
	A.9.3 Example 1— binary compatible application
	A.9.4 Example 2— source-level compatible application

	A.10 Arrays
	A.10.1 Multidimensional arrays
	A.10.2 Direct access to unpacked arrays
	A.10.3 Access to packed arrays via canonical representation
	A.10.3.1 Bit selects
	A.10.3.2 Part selects

	A.11 Open arrays
	A.11.1 Actual ranges
	A.11.2 Array querying functions
	A.11.3 Access functions
	A.11.4 Access to the actual representation
	A.11.5 Access to elements via canonical representation
	A.11.6 Access to scalar elements (bit and logic)
	A.11.7 Access to array elements of other types
	A.11.8 Example 3— two-dimensional open array
	A.11.9 Example 4— open array
	A.11.10 Example 5 — access to packed arrays
	A.11.11 Example 6 — binary compatible calls of exported functions

	Annex B Include files
	B.1 Binary-level compatibility include file svdpi.h
	B.2 Source-level compatibility include file svdpi_src.h

	Annex C Inclusion of Foreign Language Code
	C.1 Overview
	C.2 Location independence
	C.3 Object code inclusion
	Figure C1— Inclusion of object code into a SystemVerilog application
	1) by an entry in a bootstrap file; see section�C.3.1 for more details on this file and its conte...
	2) by specifying the file with one instance of the switch -sv_lib pathname_without_extension (i.e...

	C.3.1 Bootstrap file
	1) The first line contains the string #!SV_LIBRARIES.
	2) An arbitrary amount of entries follow, one entry per line, where every entry holds exactly one...
	3) Any amount of comment lines can be interspersed between the entry lines; a comment line starts...

	C.3.2 Examples
	1) If the pathname root has been set by the switch -sv_root to /home/user and the following objec...
	Example�C�1 Using a simple bootstrap file or a switch list
	2) If the current working directory is /home/user, using the series of switches shown in Example�...

	Example�C�2 Using a combination of -sv_lib and -sv_root switches
	3) Further, using the set of switches and contents of bootstrap files shown in Example�C�3:

	Example�C�3 Mixing -sv_root and bootstrap files

	C.4 Source code inclusion
	Figure C2— Source code inclusion vs. object code inclusion
	1) by an entry in a bootstrap file; see section�C.4.3 for more details on this file and its conte...
	2) by specifying the file pathname with one instance of the switch -sv_src filepath (including th...

	C.4.1 Invocation
	C.4.2 Overriding compilation settings
	Table C1— Switches for overriding compilation settings�

	C.4.3 Bootstrap file
	1) The first line contains the string #!SV_SOURCES.
	2) An arbitrary amount of entries follow, one entry per line, where every entry holds exactly one...
	3) Any amount of comment lines can be interspersed between the entry lines; a comment line starts...

	C.4.4 Examples
	1) If the following source files are to be included in a simulation:
	Example�C�4 Using a switch list
	2) The bootstrap file also permits a more granular assignment of include directories to source co...

	Example�C�5 Assigning include directories to source code via the bootstrap file
	3) Finally, a highly customized compilation with user-specific options can be obtained by specify...

