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Section 1
Direct Programming Interface (DPI)

This chapter highlights the Direct Programming Interface and provides a detailed description of the SysteVer-
ilog layer of the interface. The C layer is defined in Annex A.

1.1 Overview

DPI is an interface between SystemVerilog and a foreign programming language. It consists of two separate
layers: the SystemVerilog layer and a foreign language layer. Both sides of DPI are fully isolated. Which pro-
gramming language is actually used as the foreign language is transparent and irrelevant for the SystemVerilog
side of this interface. Neither SystemVerilog compiler nor the foreign language compiler is required to analyze
the source code in the other’s language. Different programming languages can be used and supported with the
same intact SystemVerilog layer. For now, however, SystemVerilog 3.1 defines a foreign language layer only
for the C programming language. See Annex A for more details.

The motivation for this interface is two-fold. The methodological requirement is that the interface should allow
a heterogeneous system to be built (a design or a testbench) in which some components may be written in a
language (or more languages) other than SystemVerilog, hereinafter called the foreign language. On the other
hand, there is also a practical need for an easy and efficient way to connect existing code, usually written in C
or C++, without the knowledge and the overhead of PLI or VPI.

DPI follows the principle of a black box: the specification and the implementation of a component is clearly
separated and the actual implementation is transparent to the rest of the system. Therefore, the actual program-
ming language of the implementation is also transparent, though this standard defines only C linkage seman-
tics. The separation between SystemVerilog code and the foreign language is based on using functions as the
natural encapsulation unit in SystemVerilog. By and large, any function can be treated as a black box and
implemented either in SystemVerilog or in the foreign language in a transparent way, without changing its
calls.

1.1.1 Functions

DPI allows direct inter-language function calls between the languages on either side of the interface. Specifi-
cally, functions implemented in a foreign language can be called from SystemVerilog; such functions are
referred to as imported functions. SystemVerilog functions that are to be called from a foreign code shall be
specified in export declarations (see section 1.6 for more details). DPI allows for passing SystemVerilog
data between the two domains through function arguments and results. There is no intrinsic overhead in this
interface.

All functions used in DPI are assumed to complete their execution instantly and consume 0 (zero) simulation
time, just as normal SystemVerilog functions. DPI provides no means of synchronization other than by data
exchange and explicit transfer of control.

Every imported function needs to be declared. A declaration of an imported function is referred to as an import
declaration. Import declarations are very similar to SystemVerilog function declarations. Import declarations
may occur anywhere where SystemVerilog function definitions are permitted. An import declaration is consid-
ered to be a definition of a SystemVerilog function with a foreign language implementation. The same foreign
function can be used to implement multiple SystemVerilog functions (this can be a useful way of providing
differing default argument values for the same basic function), but a given SystemVerilog name can only be
defined once per scope. Imported functions can have zero or more formal input, output, and inout argu-
ments, and they can return a result or be defined as void functions.

DPI is based entirely upon SystemVerilog constructs. The usage of imported functions is identical as for native
SystemVerilog functions. With few exceptions imported functions and native functions are mutually
exchangeable. Calls sites of imported functions are indistinguishable from calls of SystemVerilog functions.
This facilitates ease-of-use and minimizes the learning curve.
Copyright 2003 Accellera. All rights reserved. 1
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1.1.2 Data types

SystemVerilog data types are the sole data types that can cross the boundary between SystemVerilog and a for-
eign language in either direction (i.e., when an imported function is called from SystemVerilog code or an
exported SystemVerilog function is called from a foreign code). It is not possible to import the data types or
directly use the type syntax from another language. With some restrictions and with some notational exten-
sions, most SystemVerilog data types are allowed in the DPI interface. Function result types are restricted to
small values, however (see section 1.4.5).

Formal arguments of an imported function can be specified as open arrays. A formal argument is an open
array when a range of one or more of its dimensions, packed or unpacked, is unspecified (denoted by using
empty square brackets ([])). This is solely a relaxation of the argument-matching rules. An actual argument
shall match the formal one regardless of the range(s) for its corresponding dimension(s), which facilitates writ-
ing generalized code that can handle SystemVerilog arrays of different sizes. See section 1.4.6.1.

1.1.2.1 Data representation

DPI does not add any constraints on how SystemVerilog-specific data types are actually implemented. Optimal
representation can be platform dependent. The layout of 2- or 4-state packed structures and arrays is imple-
mentation- and platform-dependent.

The implementation (representation and layout) of 4-state values, structures, and arrays is irrelevant for Sys-
temVerilog semantics, and can only impact the foreign side of the interface.

1.2 Two layers of the DPI

DPI consists of two separate layers: the SystemVerilog layer and a foreign language layer. The SystemVerilog
layer does not depend on which programming language is actually used as the foreign language. Although dif-
ferent programming languages can be supported and used with the intact SystemVerilog layer, SystemVerilog
3.1 defines a foreign language layer only for the C programming language. Nevertheless, SystemVerilog code
shall look identical and its semantics shall be unchanged for any foreign language layer.

1.2.1 DPI SystemVerilog layer

The SystemVerilog side of DPI does not depend on the foreign programming language. In particular, the actual
function call protocol and argument passing mechanisms used in the foreign language are transparent and irrel-
evant to SystemVerilog. SystemVerilog code shall look identical regardless of what code the foreign side of the
interface is using. The semantics of the SystemVerilog side of the interface is independent from the foreign
side of the interface.

This chapter does not constitute a complete interface specification. It only describes the functionality, seman-
tics and syntax of the SystemVerilog layer of the interface. The other half of the interface, the foreign language
layer, defines the actual argument passing mechanism and the methods to access (read/write) formal arguments
from the foreign code. See Annex A for more details.

1.2.2 DPI foreign language layer

The foreign language layer of the interface (which is transparent to SystemVerilog) shall specify how actual
arguments are passed, how they can be accessed from the foreign code, how SystemVerilog-specific data types
(such as logic and packed) are represented, and how to translate them to and from some predefined C-like
types. 

The data types allowed for formal arguments and results of imported functions or exported functions are gen-
erally SystemVerilog types (with some restrictions and with notational extensions for open arrays). The user is
responsible for specifying in their foreign code the native types equivalent to the SystemVerilog types used in
imported declarations or export declarations. EDA Software tools, like a SystemVerilog compiler, can facili-
tate the mapping of SystemVerilog types onto foreign native types by generating the appropriate function
headers.
2 Copyright 2003 Accellera. All rights reserved.
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The SystemVerilog compiler or simulator shall generate and/or use the function call protocol and argument
passing mechanisms required for the intended foreign language layer. The same SystemVerilog code (com-
piled accordingly) shall be usable with different foreign language layers, regardless of the data access method
assumed in a specific layer. Annex A defines DPI foreign language layer for the C programming language.

1.3 Global name space of imported and exported functions

Every function imported to SystemVerilog must eventually resolve to a global symbol. Similarly, every func-
tion exported from SystemVerilog defines a global symbol. Thus the functions imported to and exported from
SystemVerilog have their own global name space, different from $root name space. Global names of
imported and exported functions must be unique (no overloading is allowed ) and shall follow C conventions
for naming; specifically, such names must start with a letter or underscore, and may be followed by alphanu-
meric characters or undersores. Exported and imported functions, however, may be declared with local Sys-
temVerilog names. Import and export declarations allow users to specify a global name for a function in
addition to its declared name. If a global name is not explicitly given, it will be the same as the SystemVerilog
function name. Example:

export “DPI” foo_plus = function \foo+ ; // “foo+” exported as “foo_plus”
export “DPI” function foo; // “foo” exported under its own name
import “DPI” init_1 = function void \init[1] (); // “init_1” is a global name

The same global function may be referred to in multiple import declarations in different scopes or/and with
different SystemVerilog names, see section 1.4.4. 

Multiple export declarations are allowed with the same cname, explicit or implicit, as long as they are in differ-
ent scopes and have the same type signature (as defined in section 1.4.4 for imported functions). Multiple
export declarations with the same cname in the same scope are forbidden.

1.4 Imported functions

The usage of imported functions is similar as for native SystemVerilog functions.

1.4.1 Required properties of imported functions - semantic constraints

This section defines the semantic constraints imposed on imported functions. Some semantic restrictions are
shared by all imported functions. Other restrictions depend on whether the special properties pure (see
section 1.4.2) or context (see section 1.4.3) are specified for an imported function. A SystemVerilog com-
piler is not able to verify that those restrictions are observed and if those restrictions are not satisfied, the
effects of such imported function calls can be unpredictable.

1.4.1.1 Instant completion

Imported functions shall contain no timing control whatsoever, directly or indirectly. imported functions shall
be non-blocking; they shall complete their execution instantly and consume zero-simulation time, i.e., no sim-
ulation time passes during the execution of imported function. similarly to native functions.

1.4.1.2 input and output arguments

Imported functions can have input and output arguments. The formal input arguments shall not be mod-
ified. If such arguments are changed within a function, the changes shall not be visible outside the function; the
actual arguments shall not be changed.

The imported function shall not assume anything about the initial values of formal output arguments. The
initial values of output arguments are undetermined and implementation-dependent.

1.4.1.3 Special properties pure and context

Special properties can be specified for an imported function: as pure or as context (see also section 1.4.2
or section 1.4.3 ). 
Copyright 2003 Accellera. All rights reserved. 3
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A function whose result depends solely on the values of its input arguments and with no side effects may be
specified as pure. This will usually allow for more optimizations and thus may result in improved simulation
performance. Section section 1.4.2 details the rules that must be obeyed by pure functions.

An imported function that is intended to call exported functions or to access SystemVerilog data objects other
then its actual arguments (e.g. via VPI or PLI calls) must be specified as context. Calls of context func-
tions are specially instrumented and may impair SystemVerilog compiler optimizations; therefore simulation
performance may decrease if the context property is used specified when not necessary. A function not
specified as context shall not read or write any data objects from SystemVerilog other then its actual argu-
ments. For functions not specified as context, the effects of calling PLI, VPI, or exported SystemVerilog
functions can be unpredictable and can lead to unexpected behavior; such calls can even crash. Section
section 1.4.3 details the restrictions that must be obeyed by non-context functions.

1.4.1.4 Memory management

The memory spaces owned and allocated by the foreign code and SystemVerilog code are disjoined. Each side
is responsible for its own allocated memory. Specifically, an imported function shall not free the memory allo-
cated by SystemVerilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the mem-
ory allocated by the foreign code (or the foreign compiler). This does not exclude scenarios where foreign code
allocates a block of memory, then passes a handle (i.e., a pointer) to that block to SystemVerilog code, which in
turn calls an imported function (e.g. C standard function free) which directly or indirectly frees that block. 

NOTE—In this last scenario, a block of memory is allocated and freed in the foreign code, even when the standard func-
tions malloc and free are called directly from SystemVerilog code.

1.4.2 Pure functions

A pure function call can be safely eliminated if its result is not needed or if the previous result for the same
values of input arguments is available somehow and can be reused without needing to recalculate. Only non-
void functions with no output or inout arguments can be specified as pure. Functions specified as pure
shall have no side effects whatsoever; their results need to depend solely on the values of their input argu-
ments. Calls to such functions can be removed by SystemVerilog compiler optimizations or replaced with the
values previously computed for the same values of the input arguments.

Specifically, a pure function is assumed not to directly or indirectly (i.e., by calling other functions):

— perform any file operations

— read or write anything in the broadest possible meaning, includes i/o, environment variables, objects from 
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

1.4.3 Context functions

Some DPI imported functions require that the context of their call is known. It takes special instrumentation of
their call instances to provide such context; for example, an internal variable referring to the “current instance”
might need to be set. To avoid any unnecessary overhead, imported function calls in SystemVerilog code are
not instrumented unless the imported function is specified as context.

All DPI exported functions require that the context of their call is known. This occurs since SystemVerilog
function declarations always occur in instantiable scopes, hence allowing a multiplicity of unique function
instances.

For the sake of simulation performance, an imported function call shall not block SystemVerilog compiler
optimizations. An imported function not specified as context shall not access any data objects from System-
Verilog other than its actual arguments. Only the actual arguments can be affected (read or written) by its call.
4 Copyright 2003 Accellera. All rights reserved.
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Therefore, a call of non-context function is not a barrier for optimizations. A context imported function,
however, can access (read or write) any SystemVerilog data objects by calling PLI/VPI, or by calling an export
function. Therefore, a call to a context function is a barrier for SystemVerilog compiler optimizations.

Only calls of context imported functions are properly instrumented and cause conservative optimizations;
therefore, only those functions can safely call all functions from other APIs, including PLI and VPI functions
or exported SystemVerilog functions. For imported functions not specified as context, the effects of calling
PLI, VPI, or SystemVerilog functions can be unpredictable and such calls can crash if the callee requires a
context that has not been properly set. However note that declaring an import context function does not auto-
matically make any other simulator interface automatically available. For VPI access (or any other interface
access) to be possible, the appropriate implementation defined mechanism must still be used to enable these
interface(s). Note also that DPI calls do not automatically create or provide any handles or any special environ-
ment that may be needed by those other interfaces. It is the user’s responsibility to create, manage or otherwise
manipulate the required handles/environment(s) needed by the other interfaces.

Context functions are always implicitly supplied a scope representing the fully qualified instance name within
which the import declaration was present. This scope defines which exported SystemVerilog functions may be
called directly from the imported function; only functions defined and exported from the same scope as the
import can be called directly. To call any other exported SystemVerilog functions, the imported function will
first have to modify its current scope, in essence performing the foreign language equivalent of a SystemVer-
ilog hierarchical function call.

Special DPI utility functions exist that allow external functions to retrieve and operate on their scope. See
Annex A for more details.

1.4.4 Import declarations

������������	
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���������
����������	������
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Each imported function shall be declared. Such declaration are referred to as import declarations. The syntax
of an import declaration is similar to the syntax of SystemVerilog function prototypes.

Imported functions are similar to SystemVerilog functions. Imported functions can have zero or more formal
input, output, and inout arguments. Imported functions can return a result or be defined as void func-
tions.

Syntax:
import_dpi_decl ::= import “DPI” [pure|context] [cname=] <named_function_proto>;

where named_function_proto is as defined in section A.2.6 of SV 3.1 BNF

�������� !�"#������$�%��& �''� �(� �)&���'�)�&�''� *���

An import declaration specifies the function name, function result type, and types and directions of formal
arguments. It can also provide optional default values for formal arguments. Formal argument names are
optional unless argument passing by name is needed. An import declaration can also specify an optional func-
tion property: context or pure.

Note that an import declaration is equivalent to defining a function of that name in the SystemVerilog scope in
which the import declaration occurs, and thus multiple imports of the same function name into the same scope
are forbidden. Note that this declaration scope is particularly important in the case of imported context func-
tions, see section 1.4.3; for non-context imported functions the declaration scope has no other implications
other than defining the visibility of the function.

cname provides the linkage name for this function in the foreign language. If not provided, this defaults to the
same identifier as the SystemVerilog function name. In either case, this linkage name must conform to C iden-
tifier syntax. An error will occur if the cname, either directly or indirectly, does not conform to these rules.

For any given cname (whether explicitly defined with cname=, or automatically determined from the func-
Copyright 2003 Accellera. All rights reserved. 5
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tion name), all declarations, regardless of scope, must have exactly the same type signature. Thesignature
includes the return type and the number, order, direction and types of each and every argument. Type includes
dimensions and bounds of any arrays or array dimensions. Signature also includes the pure/context qualifiers
that may be associated with an extern definition.

Note that multiple declarations of the same imported function in different scopes may vary argument names
and default values, provided the type compatibility constraints are met.

A formal argument name is required to separate the packed and the unpacked dimensions of an array.

The qualifier ref can not be used in external declarations. The actual implementation of argument passing
depends solely on the foreign language layer and its implementation and shall be transparent to the SystemVer-
ilog side of the interface.

The following are examples of external declarations.

import “DPI” function void myInit();
// from standard math library 
import “DPI” pure function real sin(real);
// from standard C library: memory management
import “DPI” function handle malloc(int size); // standard C function
import “DPI” function void free(handle ptr); // standard C function
// abstract data structure: queue
import “DPI” function handle newQueue(input string name_of_queue);
// Note the following import uses the same foreign function for
// implementation as the prior import, but has different SystemVerilog name
// and provides a default value for the argument.
import “DPI” newQueue=function handle newAnonQueue(input string s=NULL);
import “DPI” function handle newElem(bit [15:0]);
import “DPI” function void enqueue(handle queue, handle elem);
import “DPI” function handle dequeue(handle queue);
// miscellanea
import “DPI” function bit [15:0] getStimulus();
import “DPI” context function void processTransaction(handle elem,

output logic [64:1] arr [0:63]);

1.4.5 Function result

Function result types are restricted to small values. The following SystemVerilog data types are allowed for
imported function results:

— void, byte, shortint, int, longint, real, shortreal, handle, and string

— packed bit arrays up to 32 bits and all types that are eventually equivalent to packed bit arrays up to 32 
bits.

The same restrictions apply for the result types of exported functions.

1.4.6 Types of formal arguments

With some restrictions and with notational extensions, all SystemVerilog data types are allowed for formal
arguments of imported functions.

— Enumerated data types are not supported directly. Instead, an enumerated data type is interpreted as the 
type associated with that enumerated type.

— SystemVerilog does not specify the actual memory representation of packed structures or any arrays, 
packed or unpacked. Unpacked structures have an implementation-dependent packing, normally matching 
the C compiler.
6 Copyright 2003 Accellera. All rights reserved.
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— The actual memory representation of SystemVerilog data types is transparent for SystemVerilog semantics 
and irrelevant for SystemVerilog code. It can be relevant for the foreign language code on the other side of 
the interface, however; a particular representation of the SystemVerilog data types can be assumed. This 
shall not restrict the types of formal arguments of imported functions, with the exception of unpacked 
arrays. SystemVerilog implementation can restrict which SystemVerilog unpacked arrays are passed as 
actual arguments for a formal argument which is a sized array, although they can be always passed for an 
unsized (i.e., open) array. Therefore, the correctness of an actual argument might be implementation-
dependent. Nevertheless, an open array provides an implementation-independent solution.

1.4.6.1 Open arrays

The size of the packed dimension, the unpacked dimension, or both dimensions can remain unspecified; such
cases are referred to as open arrays (or unsized arrays). Open arrays allow the use of generic code to handle
different sizes. 

Formal arguments of imported functions can be specified as open arrays. (Exported SystemVerilog functions
cannot have formal arguments specified as open arrays.) A formal argument is an open array when a range of
one or more of its dimensions is unspecified (denoted by using square brackets ([])). This is solely a relax-
ation of the argument-matching rules. An actual argument shall match the formal one regardless of the range(s)
for its corresponding dimension(s), which facilitates writing generalized code that can handle SystemVerilog
arrays of different sizes. 

Although the packed part of an array can have an arbitrary number of dimensions, in the case of open arrays
only a single dimension is allowed for the packed part. This is not very restrictive, however, since any packed
type is eventually equivalent to one-dimensional pack
Copyright 2003 Accellera. All rights reserved. 7
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1.5 Calling imported functions

The usage of imported functions is identical as for native SystemVerilog functions. The usage and syntax for
calling imported functions is identical as for native SystemVerilog functions. Specifically, arguments with
default values can be omitted from the call; arguments can be passed by name, if all fomal arguments are
named.

1.5.1 Argument passing

Arguments passing for imported functions is ruled by the WYSIWYG principle: What You Specify Is What You
Get, see section 1.5.1.1. The evaluation order of formal arguments follows general SystemVerilog rules. 

Argument compatibility and coercion rules are the same as for native SystemVerilog functions. If a coercion is
needed, a temporary variable is created and passed as the actual argument. For input and inout arguments,
the temporary variable is initialized with the value of actual argument with the appropriate coercion; for out-
put or inout arguments, the value of the temporary variable is assigned to the actual argument with the
appropriate conversion. The assignments between a temporary and the actual argument follow general System-
Verilog rules for assignments and automatic coercion. 

On the SystemVerilog side of the interface, the values of actual arguments for formal input arguments of
imported functions shall not be affected by the callee; the initial values of formal output arguments of imported
functions are unspecified (and can be implementation-dependent), and the necessary coercions, if any, are
applied as for assignments. imported functions shall not modify the values of their input arguments. 

For the SystemVerilog side of the interface, the semantics of arguments passing is as if input arguments are
passed by copy-in, output arguments are passed by copy-out, and inout arguments were passed by copy-in,
copy-out. The terms copy-in and copy-out do not impose the actual implementation, they refer only to “hypo-
thetical assignment”. 

The actual implementation of argument passing is transparent to the SystemVerilog side of the interface. In
particular, it is transparent to SystemVerilog whether an argument is actually passed by value or by reference.
The actual argument passing mechanism is defined in the foreign language layer. See Annex A for more
details.

1.5.1.1 “What You Specify Is What You Get” principle

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by import declaration; they shall have ranges of packed or unpacked arrays
exactly as specified in the import declaration. Only the declaration site of the imported function is relevant for
such formal arguments.

Another way to state this is that no compiler (either C or SystemVerilog) can make argument coercions
between a caller’s declared formals and the callee’s declared formals. This is because the callee’s formal argu-
ments are declared in a different language than the caller’s formal arguments; hence there is no visible rela-
tionship between the two sets of formals. Users are expected to understand all argument relationships and
provide properly matched types on both sides of the interface.

Formal arguments defined as open arrays have the size and ranges of the corresponding actual arguments, i.e.,
have the ranges of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of
open arrays are determined at a call site; the rest of type information is specified at the import declaration.

So, if a formal argument is declared as bit [15:8] b [], then it is the import declaration which specifies
the formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument
used at a particular call site defines the bounds for the unpacked part for that call.
8 Copyright 2003 Accellera. All rights reserved.
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1.5.2 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for output and inout arguments.
Such changes shall be detected and handled after control returns from imported functions to SystemVerilog
code.

For output and inout arguments, the value propagation (i.e., value change events) happens as if an actual
argument was assigned a formal argument immediately after control returns from imported functions. If there
is more than one argument, the order of such assignments and the related value change propagation follows
general SystemVerilog rules.

1.6 Exported functions

DPI allows calling SystemVerilog functions from another language. However, such functions must adhere to
the same restrictions on argument types and results as are imposed on imported functions. It is an error to
export a unction that does not satisfy such constraints.

SystemVerilog functions that can be called from a foreign code need to be specified in export declarations.
Export declarations are allowed to occur only in the scope in which the function being exported is defined.
Only one export declaration per function is allowed in a given scope.

Note that class member functions may not be exported, but all other SystemVerilog functions may be
exported.

Similar to import declarations, export declarations can define an optional cname to be used in the foreign
language when calling an exported function.

Syntax:

export_dpi_decl ::= export “DPI” [cname=] function fname ;

cname is optional here, it defaults to fname. For rules describing cname, see section 1.3. Note that all export
functions are always context functions. No two functions in the same SystemVerilog scope may be exported
with the same explicit or implicit cname. The export declaration and the definition of the corresponding Sys-
temVerilog function can occur in any order. Only one export declaration is permitted per SystemVerilog func-
tion
Copyright 2003 Accellera. All rights reserved. 9
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Section 2
SystemVerilog Assertion API

This chapter defines the Assertion Application Programming Interface (API) in SystemVerilog 3.1/draft 2.

2.1 Requirements

SystemVerilog 3.1/draft 2 provides assertion capabilities to enable:

— a user’s C code to react to assertion events,
Copyright 2002 Accellera. All rights reserved. 11
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2.2.2 Object properties

This section lists the object property VPI calls. The VPI reserved range for these call is 700 - 729.

/* Directives as properties */

#define vpiSequenceAssertion 701
#define vpiAssertAssertion 702
#define vpiAssumeAssertion 703
#define vpiRestrictAssertion 704
#define vpiCoverAssertion 705
#define vpiCheckAssertion 705 /* inlined behavior assertion */
#define vpiOtherDirectiveAssertion 706 /* placeholder for other assertion 
directive */

2.2.3 Callbacks

This section lists the system callbacks. The VPI reserved range for these call is 700 - 719.

1) Assertion

#define cbAssertionStart 700
#define cbAssertionSuccess 701
#define cbAssertionFailure 702
#define cbAssertionStepSuccess 703
#define cbAssertionStepFailure 704
#define cbAssertionDisable 705
#define cbAssertionEnable 706
#define cbAssertionReset 707
#define cbAssertionKill 708

2) “Assertion system”

#define cbAssertionSysInitialized709
#define cbAssertionSysStart 710
#define cbAssertionSysStop 711
#define cbAssertionSysEnd 712
#define cbAssertionSysReset 713

2.2.4 Control constants

This section lists the system control constant callbacks. The VPI reserved range for these call is 730 - 759.

1) Assertion

#define vpiAssertionDisable 730
#define vpiAssertionEnable 731
#define vpiAssertionReset 732
#define vpiAssertionKill 733
#define vpiAssertionEnableStep 734
#define vpiAssertionDisableStep 735

2) Assertion stepping

#define vpiAssertionClockSteps 736

3) “Assertion system”

#define vpiAssertionSysStart 737
#define vpiAssertionSysStop 738
#define vpiAssertionSysEnd 739
12 Copyright 2002 Accellera. All rights reserved.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
#define vpiAssertionSysReset 740

2.3 Static information

This section defines how to obtain assertion handles and other static assertion information.

2.3.1 Obtaining assertion handles

SystemVerilog 3.1/draft 2 extends the VPI module iterator model (i.e., the instance) to encompass assertions,
as shown in Figure 2-1—. **Revise this xref w/ Stu; also check/revise variable settings, etc.**

The following steps highlight how to obtain the assertion handles for named assertions.

Figure 2-1—Encompassing assertions

1) Iterate all assertions in the design: use a NULL reference handle (ref) to vpi_iterate(), e.g.,

itr = vpi_iterate(vpiAssertion, NULL);
 while (assertion = vpi_scan(itr)) {
 /* process assertion */
 }

2) Iterate all assertions in an instance: pass the appropriate instance handle as a reference handle to
vpi_iterate(), e.g.,

itr = vpi_iterate(vpiAssertion, instanceHandle);
 while (assertion = vpi_scan(itr)) {
 /* process assertion */
 }

3) Obtain the assertion by name: extend vpi_handle_by_name to also search for assertion names in
the appropriate scope(s), e.g.,

vpiHandle = vpi_handle_by_name(assertName, scope)

4) /* room for expanding iteration later, filtering based on "object property" e.g. 

itr = vpi_iterate_property(vpiAssertion, /* property_here: e.g. 
vpiCheckAssertion*/, NULL); 
while (assertion = vpi_scan(itr)) {
/* process assertion *

module property 

all other module ->> object iterators 
from IEEE 1364-2001, section 26.6.1 page 634 
Copyright 2002 Accellera. All rights reserved. 13
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}

NOTES

1—As with all VPI handles, assertion handles are handles to a specific instance of a specific assertion.

2—These iterators return both assertions and immediate non-temporal checks.

3—Unnamed assertions cannot be found by name.

2.3.2 Obtaining static assertion information

The following information about an assertion is considered to be "static".

— Assertion name

— Instance in which the assertion occurs

— Module definition containing the assertion

— Assertion directive

1) assert

2) check

3) assume

4) cover

5) sequence

6) Any assertion updates from the SV-AC.

— Assertion source information: the file, line, and column where the assertion is defined.

— Assertion clocking domain/expression2

2.3.2.1 Using vpi_get_assertion_info

Static information can be obtained directly from an assertion handle by using
vpi_get_assertion_info, as shown below.

typedef struct t_vpi_source_info {
 PLI_BYTE* *fileName;
PLI_INT32 startLine;
PLI_INT32 startColumn;
PLI_INT32 endLine;
PLI_INT32 endColumn;
} s_vpi_source_info, *p_vpi_source_info;
typedef struct t_vpi_assertion_info {
 PLI_BYTE8 *name;     /* name of assertion */

vpiHandle instance; /* instance containing assertion */
PLI_BYTE8 modname;   /* name of module/interface containing

assertion */

vpiHandle clock; /* clocking expression */
PLI_INT32 directive; /* vpiAssume, ... */

s_vpi_source_info sourceInfo;
s_vpi_assertion_info, *p_vpi_assertion_info;

int vpi_get_assertion_info (assert_handle, p_vpi_assertion_info);
14 Copyright 2002 Accellera. All rights reserved.
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This call obtains all the static information associated with an assertion.

The inputs are a valid handle to an assertion and a pointer to an existing s_vpi_assertion_info data
structure. On success, the function returns TRUE and the s_vpi_assertion_info data structure is filled
in as appropriate. On failure, the function returns FALSE and the contents of the assertion data structure are
unpredictable.

Assertions can occur in modules and interfaces: assertions defined in modules (by using VPI) shall have
instance information; assertions in interfaces shall have a NULL instance handle. In either case, modname is
the definition name.

NOTES

1—The assertion clock is an event expression supplied as the clocking expression to the assertion declaration, i.e., this is a
handle to an arbitrary Verilog event expression.

2—A single call returns all the information for efficiency reasons.

2.3.2.2 Extending vpi_get() and vpi_get_str()

In addition to vpi_get_assertion_info, the following existing VPI functions are also extended:

vpi_get(), vpi_get_str()

vpi_get() can be used to query the following VPI properties from a handle to an assertion.

vpiAssertionDirective
returns one of vpiAssertProperty or vpiCheckProperty.

vpiLineNo
returns the line number where the assertion is declared.

vpi_get_str() can be used to obtain the following VPI properties from an assertion handle.

vpiFileName
returns the filename of the source file where the assertion was declared.

vpiName
returns the name of the assertion.

vpiFullName
returns the fully qualified name of the assertion.

2.4 Dynamic information

This section defines how to place assertion system and assertion callbacks.

2.4.1 Placing assertion “system” callbacks

Use vpi_register_cb(), setting the cb_rtn element to the function to be invoked and the reason ele-
ment of the s_cb_data structure to one of the following values, to place an assertion system callback.

cbAssertionSysInitialized 
occurs after the system has initialized. No assertion-specific actions can be performed until this callback
completes. The assertion system can initialize before cbStartOfSimulation does or afterwards.

cbAssertionSysStart 
the assertion system has become active and starts processing assertion attempts. This always occur after
cbAssertionSysInitialized. By default, the assertion system is “started” on simulation startup,
but the user can delay this by using assertion system control actions.
Copyright 2002 Accellera. All rights reserved. 15
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cbAssertionSysStop
the assertion system has been temporarily suspended. While stopped no assertion attempts are processed
and no assertion-related callbacks occur. The assertion system can be stopped and resumed an arbitrary
number of times during a single simulation run.

cbAssertionSysEnd 
occurs when all assertions have completed and no new attempts will start. Once this callback occurs no
more assertion-related callbacks shall occur and assertion-related actions shall have no further effect. This
typically occurs after the end of simulation.

cbAssertionSysReset
occurs when the assertion system is reset, e.g., due to a system control action.

The callback routine invoked follows the normal VPI callback prototype and is passed an s_cb_data con-
taining the callback reason and any user data provided to the vpi_register_cb() call.

2.4.2 Placing assertions callbacks

Use vpi_register_assertion_cb() to place an assertion callback; the prototype is:

vpiHandle vpi_register_assertion_cb(
   vpiHandle, /* handle to assertion */
   PLI_INT32 event,/* event for which callbacks needed */
   PLI_INT32 (*cb_rtn)(       /* callback function */
       PLI_INT32 event,
       vpiHandle assertion, 
       p_vpi_attempt_info info,
       PLI_BYTE8 *userData),
   PLI_BYTE8 *user_data/* user data to be supplied to cb */
);
typedef struct t_vpi_assertion_step_info {
   PLI_INT32 matched_expression_count;
   vpiHandle *matched_exprs;  /* array of expressions */
   p_vpi_source_info *exprs_source_info;  /* array of source info */
   PLI_INT32 stateFrom, stateTo;/* identify transition */
} s_vpi_assertion_step_info, *p_vpi_assertion_step_info;
typedef struct t_vpi_attempt_info {
   union {
      vpiHandle failExpr;
      p_vpi_assertion_step_info step;
   } detail;
   s_vpi_time attemptTime,
} s_vpi_attempt_info, *p_vpi_attempt_info;

where event is any of the following.

cbAssertionStart
an assertion attempt has started. For most assertions one attempt starts each and every clock tick.

cbAssertionSuccess
when an assertion attempt reaches a success state.

cbAssertionFailure
when an assertion attempt fails to reach a success state.

cbAssertionStepSucess
the progress of one “thread” along an attempt. By default, step callbacks are not enabled on any asser-
tions; they are enabled on a per-assertion/per-attempt basis, rather than on a per-assertion basis.
16 Copyright 2002 Accellera. All rights reserved.
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cbAssertionStepFailure
failure to progress along one “thread” along an attempt. By default, step callbacks are not enabled on any
assertions; they are enabled on a per-assertion/per-attempt basis, rather than on a per-assertion basis.

cbAssertionDisable
whenever the assertion is disabled (e.g., as a result of a control action).

cbAssertionEnable
whenever the assertion is enabled.

cbAssertionReset
whenever the assertion is reset.

cbAssertionKill
when an attempt is killed (e.g., as a result of a control action).

These callbacks are specific to a given assertion; placing such a callback on one assertion does not cause the
callback to trigger on an event occurring on a different assertion. If the callback is successfully placed, a han-
dle to the callback is returned. This handle can be used to remove the callback via vpi_remove_cb(). If
there were errors on placing the callback, a NULL handle is returned. As with all other calls, invoking this
function with invalid arguments has unpredictable effects.

Once the callback is placed, the user-supplied function shall be called each time the specified event occurs on
the given assertion. The callback shall continue to be called whenever the event occurs until the callback is
removed.

The callback function shall be supplied the following arguments:

1) the event that caused the callback

2) the handle for the assertion

3) a pointer to an attempt information structure

4) a reference to the user data supplied when the callback was placed.

The attempt information structure contains details relevant to the specific event that occurred.

— On disable, enable, reset and kill events, the info field is absent (a NULL pointer is given as the value 
of info).

— On start and success events, only the attempt time field is valid.

— On a failure event, the attempt time and detail.failExpr are valid.

— On a step callback, the attempt time and detail.step elements are valid.

On a step callback, the detail describes the set of expressions matched in satisfying a step along the asser-
tion, along with the corresponding source references. In addition, the step also identifies the source and des-
tination “states” needed to uniquely identify the path being taken through the assertion. State ids are just
integers, with 0 identifying the origin state, 1 identifying an accepting state, and any other number represent-
ing some intermediate point in the assertion. It is possible for the number of expressions in a step to be 0
(zero), which represents an unconditional transition. In the case of a failing transition, the information pro-
vided is just as that for a successful one, but the last expression in the array represents the expression where the
transition failed.

NOTES

1—In a failing transition, there shall always be at least one element in the expression array.

2—Placing a step callback results in the same callback function being invoked for both success and failure steps.
Copyright 2002 Accellera. All rights reserved. 17
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2.5 Control functions

This section defines how to obtain assertion system control and assertion control information.

2.5.1 Assertion system control

Use vpi_control(), with one of the following operators and no other arguments, to obtain assertion sys-
tem control information.

Usage example: vpi_control(vpiAssertionSysReset)

vpiAssertionSysReset
discards all attempts in progress for all assertions and restore the entire assertion system to its initial state.

Usage example: vpi_control(vpiAssertionSysStop)

vpiAssertionSysStop
considers all attempts in progress as unterminated and disable any further assertions from being started.

Usage example: vpi_control(vpiAssertionSysStart)

vpiAssertionSysStart
restarts the assertion system after it was stopped (e.g., due to vpiAssertionSysStop). Once started,
attempts shall resume on all assertions.

Usage example: vpi_control(vpiAssertionSysEnd)

vpiAssertionSysEnd
discard all attempts in progress and disable any further assertions from starting.

2.5.2 Assertion control

Use vpi_control(), with one of the following operators, to obtain assertion control information.

— For the following operators, the second argument shall be a valid assertion handle.

Usage example: vpi_control(vpiAssertionReset, assertionHandle)

vpiAssertionReset
discards all current attempts in progress for this assertion and resets this assertion to its initial state.

Usage example: vpi_control(vpiAssertionDisable, assertionHandle)

vpiAssertionDisable
disables the starting of any new attempts for this assertion. This has no effect on any existing attempts. or
if the assertion already disabled. By default, all assertions are enabled.

Usage example: vpi_control(vpiAssertionEnable, assertionHandle)

vpiAssertionEnable
enables starting new attempts for this assertion. This has no effect if assertion already enabled or on any
existing attempts.

— For the following operators, the second argument shall be a valid assertion handle and the third argument 
shall be an attempt start-time (as a pointer to a correctly initialized s_vpi_time structure).

Usage example: vpi_control(vpiAssertionKill, assertionHandle, attempt)

vpiAssertionKill
discards the given attempts, but leaves the assertion enabled and does not reset any state used by this
assertion (e.g., past() sampling).
18 Copyright 2002 Accellera. All rights reserved.
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Usage example: vpi_control(vpiAssertionDisableStep, assertionHandle, attempt)

vpiAssertionDisableStep
disables step callbacks for this assertion. This has no effect if stepping not enabled or it is already dis-
abled.

— For the following operator, the second argument shall be a valid assertion handle, the third argument shall 
be an attempt start-time (as a pointer to a correctly initialized s_vpi_time structure) and the fourth argu-
ment shall be a “step control” constant.

Usage example: vpi_control(vpiAssertionEnableStep, assertionHandle, attempt,
vpiAssertionClockSteps)

vpiAssertionEnableStep
enables step callbacks to occur for this assertion attempt. By default, stepping is disabled for all asser-
tions. This call has no effect if stepping is already enabled for this assertion and attempt, other than possi-
bly changing the stepping mode for the attempt if the attempt has not occurred yet. The stepping mode of
any particular attempt cannot be modified after the assertion attempt in question has started.

NOTE—In this release, the only step control constant available is vpiAssertionClockSteps, indicating call-
backs on a per assertion/clock-tick basis. The assertion clock is the event expression supplied as the clocking expression to
the assertion declaration. The assertion shall “advance” whenever this event occurs and, when stepping is enabled, such
events shall also cause step callbacks to occur.
Copyright 2002 Accellera. All rights reserved. 19
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Section 3
SystemVerilog Coverage API

3.1 Requirements

This chapter defines the Coverage Application Programming Interface (API) in SystemVerilog 3.1/draft 4.

3.1.1 SystemVerilog API

The following criteria are used within this API.

1) This API shall be similar for all coverages
There are a wide number of coverage types available, with possibly different sets offered by different
vendors. Maintaining a common interface across all the different types enhances portability and ease
of use.

2) At a minimum, the following types of coverage shall be supported:

a) statement coverage

b) toggle coverage

c) fsm coverage

i) fsm states

ii) fsm transitions

d) assertion coverage

3) Coverage APIs shall be extensible in a transparent manner, i.e., adding a new coverage type shall not
break any existing coverage usage.

4) This API shall provide means to obtain coverage information from specific sub-hierarchies of the
design without requiring the user to enumerate all instances in those hierarchies.

3.1.2 Naming conventions

All elements added by this interface shall conform to the Verilog Procedural Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi.

— All type names shall start with vpi, followed by initially capitalized words with no separators, e.g., 
vpiCoverageStmt.

— All callback names shall start with cb, followed by initially capitalized words with no separators, e.g., 
cbAssertionStart.

— All function names shall start with vpi_, followed by all lowercase words separated by underscores (_), 
e.g., vpi_control().

3.1.3 Nomenclature

The following terms are used in this standard.

Statement coverage — whether a statement has been executed or not, where statement is anything defined
as a statement in the LRM. Covered means it executed at least once. Some implementations also permit
Copyright 2003 Accellera. All rights reserved. 21
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querying the execution count. The granularity of statement coverage can be per-statement or per-state-
ment block (however defined).

FSM coverage — the number of states in a finite state machine (FSM) that this simulation reached. This
standard does not require FSM automatic extraction, but a standard mechanism to force specific extrac-
tion is available via pragmas.

Toggle coverage — for each bit of every signal (wire and register), whether that bit has both a 0 value and
a 1 value. Full coverage means both are seen; otherwise, some implementations can query for partial
coverage. Some implementations also permit querying the toggle count of each bit.

Assertion coverage — for each assertion, whether it has had at least one success. Implementations permit
querying for further details, such as attempt counts, success counts, failure counts and failure coverage.

These terms define the “primitives” for each coverage type. Over instances or blocks, the coverage number is
merely the sum of all contained primitives in that instance or block.

3.2 SystemVerilog real-time coverage access

This section ...

3.2.1 Predefined coverage constants in SystemVerilog

The following predefine ‘defines represent basic real-time coverage capabilities accessible directly from
SystemVerilog.

— Coverage control

‘define SV_COV_START 0
‘define SV_COV_STOP 1
‘define SV_COV_RESET 2
‘define SV_COV_QUERY 3

— Scope definition (hierarchy traversal/accumulation type)

‘define SV_COV_MODULE 10
‘define SV_COV_HIER 11

— Coverage type identification

‘define SV_COV_ASSERTION 20
‘define SV_COV_FSM_STATE 21
‘define SV_COV_STATEMENT 22
‘define SV_COV_TOGGLE 23

— Status results

‘define SV_COV_OVERFLOW -2
‘define SV_COV_ERROR -1
‘define SV_COV_NOCOV 0
‘define SV_COV_OK 1
‘define SV_COV_PARTIAL 2

3.2.2 Built-in coverage access system functions

This section ...
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3.2.2.1 $coverage_control

$coverage_control(control_constant,
 coverage_type,

scope_def,
modules_or_instance)

This function enables, disables, resets or queries the availability of coverage information for the specified por-
tion of the hierarchy. The return value is a ‘defined name, with the value indicating the success of the
action.

‘SV_COV_OK
the request is successful. When querying, if starting, stopping, or resetting this means the desired effect
occurred, coverage is available. A successful reset clears all coverage (i.e., using a ...get() == 0 after
a successful …reset()).

‘SV_COV_ERROR
the call failed with no action, typically due to errors in the arguments, such as a non-existing module or
instance specifications.

‘SV_COV_NOCOV
coverage is not available for the requested portion of the hierarchy.

‘SV_COV_PARTIAL
coverage is only partially available in the requested portion of the hierarchy (i.e., some instances have the
requested coverage information, some don’t).

Starting, stopping, or resetting coverage multiple times in succession for the same instance(s) has no further
effect if coverage has already been started, stopped, or reset for that/those instance(s). 

The hierarchy(ies) being controlled or queried are specified as follows.

‘SV_MODULE_COV, “unique module def name” 
provides coverage of all instances of the given module (the unique module name is a string), excluding
any child instances in the instances of the given module. The module definition name can use special
notation to describe nested module definitions.

‘SV_COV_HIER, “module name” 
provides coverage of all instances of the given module, including all the hierarchy below.

‘SV_MODULE_COV, instance_name 
provides coverage of the one named instance. The instance is specified as a normal Verilog hierarchical
path.

‘SV_COV_HIER, instance_name 
provides coverage of the named instance, plus all the hierarchy below it.

All the permutations are summarized in Table 3-1 on page 23. 
**Revise this xref w/ Stu; also check/revise variable settings, etc.** 

Table 3-1: Instance coverage permutations

Control/query “Definition name” instance.name

‘SV_COV_MODULE The sum of coverage for all 
instances of the named module, 
excluding any hierarchy below 
those instances.

Coverage for just the named 
instance, excluding any hierar-
chy in instances below that 
instance.
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NOTE—Definition names are represented as strings, whereas instance names are referenced by hierarchical paths. A hier-
archical path need not include any . if the path refers to an instance in the current context (i.e., normal Verilog hierarchical
path rules apply).

Example 3-1Hierarchical instance example

If coverage is enabled on all instances shown in Example 3-1, then:

$coverage_control(‘SV_COV_CHECK, ‘SV_COV_TOGGLE, ‘SV_COV_HIER, $root)
checks all instances to verify they have coverage and, in this case, returns ‘SV_COV_OK.

$coverage_control(‘SV_COV_RESET, ‘SV_COV_TOGGLE, ‘SV_COV_MODULE,
“DUT”)

‘SV_COV_HIER The sum of coverage for all 
instances of the named module, 
including all coverage for all 
hierarchy below those instances.

Coverage for the named instance 
and any hierarchy below it.

Table 3-1: Instance coverage permutations (continued)

Control/query “Definition name” instance.name

module component
instance comp

module control
instance ctrl

module DUT
instance unit1

module component
instance comp

module control
instance ctrl

module DUT
instance unit2

module TestBench
instance tb

module BusWatcher
instance watch

$root
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resets coverage collection on both instances of the DUT, specifically, $root.tb.unit1 and
$root.tb.unit2, but leaves coverage unaffected in all other instances.

$coverage_control(‘SV_COV_RESET, ‘SV_COV_TOGGLE, ‘SV_COV_MODULE,
$root.tb.unit1)

resets coverage of only the instance $root.tb.unit1, leaving all other instances unaffected.

$coverage_control(‘SV_COV_STOP, ‘SV_COV_TOGGLE, ‘SV_COV_HIER,
$root.tb.unit1)

resets coverage of the instance $root.tb.unit1 and also reset coverage for all instances below it,
specifically $root.tb.unit1.comp and $root.tb.unit1.ctrl.

$coverage_control(`SV_COV_START, `SV_COV_TOGGLE, `SV_COV_HIER, “DUT”)
starts coverage on all instances of the module DUT and of all hierarchy(ies) below those instances. In this
design, coverage is started for the instances $root.tb.unit1, $root.tb.unit1.comp,
$root.tb.unit1.ctrl, $root.tb.unit2, $root.tb.unit2.comp, and
$root.tb.unit2.ctrl.

3.2.2.2 $coverage_get_max

$coverage_get_max(coverage_type, scope_def, modules_or_instance)

This function obtains the value representing 100% coverage for the specified coverage type over the specified
portion of the hierarchy. This value shall remain constant across the duration of the simulation. 

NOTE—This value is proportional to the design size and structure, so it also needs to be constant through multiple inde-
pendent simulations and compilations of the same design, assuming any compilation options do not modify the coverage
support or design structure.

The return value is an integer, with the following meanings.

-2 (‘SV_COV_OVERFLOW) 
the value exceeds a number that can be represented as an integer.

-1 (‘SV_COV_ERROR) 
an error occurred (typically due to using incorrect arguments).

0 (‘SV_COV_NOCOV) 
no coverage is available for that coverage type on that/those hierarchy(ies).

+pos_num 
the maximum coverage number (where pos_num > 0), which is the sum of all coverable items of that
type over the given hierarchy(ies).

The scope of this function is specified as per $coverage_control (see section 3.2.2.1).

3.2.2.3 $coverage_get

$coverage_get(coverage_type, scope_def, modules_or_instance)

This function obtains the current coverage value for the given coverage type over the given portion of the hier-
archy. This number can be converted to a coverage percentage by use of the equation: 

The return value follows the same pattern as $coverage_get_max (see section 3.2.2.2), but with the
pos_num number representing the current coverage level, i.e., the number of the coverable items that have
been covered in this/these hierarchy(ies).

The scope of this function is specified as per $coverage_control (see section 3.2.2.1).

100*
max()__cov

()_cov
%cov

geterage

geterage
erage =
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The return value is an integer, with the following meanings.

-2 (‘SV_COV_OVERFLOW) 
the value exceeds a number that can be represented as an integer.

-1 (‘SV_COV_ERROR) 
an error occurred (typically due to using incorrect arguments).

0 (‘SV_COV_NOCOV) 
no coverage is available for that coverage type on that/those hierarchy(ies).

+pos_num 
the maximum coverage number (where pos_num > 0), which is the sum of all coverable items of that
type over the given hierarchy(ies).

3.2.2.4 $coverage_merge

$coverage_merge(coverage_type, “name”)

This function loads and merges coverage data for the specified coverage into the simulator. name is an arbi-
trary string used by the tool, in an implementation-specific way, to locate the appropriate coverage database,
i.e., tools are allowed to store coverage files any place they want with any extension they want as long as the
user can retrieve the information by asking for a specific saved name from that coverage database. If name
does not exist or does not correspond to a coverage database from the same design, an error shall occur. If an
error occurs during loading, the coverage numbers generated by this simulation might not be meaningful.

The return values from this function are:

‘SV_COV_OK
the coverage data has been found and merged.

‘SV_COV_NOCOV
the coverage data has been found, but did not contain the coverage type requested.

‘SV_COV_ERROR
the coverage data was not found or it did not correspond to this design, or another error.

3.2.2.5 $coverage_save

$coverage_save(coverage_type, “name”)

This function saves the current state of coverage to the tool’s coverage database and associates it with the file
named name. This file name shall not contain any directory specification or extensions. Data saved to the
database shall be retrieved later by using $coverage_merge and supplying the same name. Saving cover-
age shall not have any effect on the state of coverage in this simulation.

The return values from this function are:

‘SV_COV_OK
the coverage data was successfully saved.

‘SV_COV_NOCOV
no such coverage is available in this design (nothing was saved).

‘SV_COV_ERROR
some error occurred during the save. If an error occurs, the tool shall automatically remove the coverage
database entry for name to preserve the coverage database integrity. It is not an error to overwrite a previ-
ously existing name.

NOTES

1—The coverage database format is implementation-dependent.
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2—Mapping of names to actual directories/files is implementation-dependent. There is no requirement that a coverage
name map to any specific set of files or directories.

3.3 FSM recognition

Coverage tools need to have automatic recognition of many of the common FSM coding idioms in Verilog/
SystemVerilog. This standard does not attempt to describe or require any specific automatic FSM recognition
mechanisms. However, the standard does prescribe a means by which non-automatic FSM extraction occurs.
The presence of any of these standard FSM description additions shall override the tool’s default extraction
mechanism.

Identification of an FSM consists of identifying the following items:

1) the state register (or expression)

2) the next state register (this is optional)

3) the legal states.

3.3.1 Specifying the signal that holds the current state

**This section reads a bit like a user’s guide; convert this into an annex??

Use the following pragma to identify the vector signal that holds the current state of the FSM:

/* tool state_vector signal_name */

**let’s define these terms (in the next draft)**

where tool and state_vector are required keywords. This pragma needs to be specified inside the mod-
ule definition where the signal is declared. 

Another pragma is also required, to specify an enumeration name for the FSM. This enumeration name is also
specified for the next state and any possible states, associating them with each other as part of the same FSM.
There are two ways to do this:

— Use the same pragma:

/* tool state_vector signal_name enum enumeration_name */

— Use a separate pragma in the signal’s declaration:

/* tool state_vector signal_name */
reg [7:0] /* tool enum enumeration_name */ signal_name;

In either case, enum is a required keyword; if using a separate pragma, tool is also a required keyword and
the pragma needs to be specified immediately after the bit-range of the signal.

3.3.2 Specifying the part-select that holds the current state

A part-select of a vector signal can be used to hold the current state of the FSM. When cmView displays or
reports FSM coverage data, it names the FSM after the signal that holds the current state. If a part-select holds
the current state in the user’s FSM, the user needs to also specify a name for the FSM that cmView can use.
The FSM name is not the same as the enumeration name.

Specify the part-select by using the following pragma:

/* tool state_vector signal_name[n:n] FSM_name enum enumeration_name */
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3.3.3 Specifying the concatenation that holds the current state

Like specifying a part-select, a concatenation of signals can be specified to hold the current state (when includ-
ing an FSM name and an enumeration name):

/* tool state_vector {signal_name , signal_name, ...} FSM_name enum
enumeration_name */

The concatenation is composed of all the signals specified. Bit-selects or part-selects of signals cannot be used
in the concatenation.

3.3.4 Specifying the signal that holds the next state

The signal that holds the next state of the FSM can also be specified with the pragma that specifies the enumer-
ation name:

reg [7:0] /* tool enum enumeration_name */
signal_name

This pragma can be omitted if, and only if, the FSM does not have a signal for the next state.

3.3.5 Specifying the current and next state signals in the same declaration

The tool assumes the first signal following the pragma holds the current state and the next signal holds the next
state when a pragma is used for specifying the enumeration name in a declaration of multiple signals, e.g.,

/* tool state_vector cs */
reg [1:0] /* tool enum myFSM */ cs, ns, nonstate;

In this example, the tool assumes signal cs holds the current state and signal ns holds the next state. It
assumes nothing about signal nonstate.

3.3.6 Specifying the possible states of the FSM

The possible states of the FSM can also be specified with a pragma that includes the enumeration name:

parameter /* tool enum enumeration_name */
S0 = 0,
s1 = 1,
s2 = 2,
s3 = 3;

Put this pragma immediately after the keyword parameter, unless a bit-width for the parameters is used, in
which case, specify the pragma immediately after the bit-width:

parameter [1:0] /* tool enum enumeration_name */
S0 = 0,
s1 = 1,
s2 = 2,
s3 = 3;

3.3.7 Pragmas in one-line comments

These pragmas work in both block comments, between the /* and */ character strings, and one-line com-
ments, following the // character string, e.g.,

parameter [1:0] // tool enum enumeration_name
S0 = 0,
s1 = 1,
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s2 = 2,
s3 = 3;

3.3.8 Example

Example 3-2FSM specified with pragmas

3.4 VPI coverage extensions

This section ...

3.4.1 VPI entity/relation diagrams related to coverage

This section ...

3.4.2 Extensions to VPI enumerations

— Coverage control

#define vpiCoverageStart
#define vpiCoverageStop
#define vpiCoverageReset
#define vpiCoverageCheck
#define vpiCoverageMerge
#define vpiCoverageSave

— VPI properties

1) Coverage type properties

#define vpiAssertCoverage
#define vpiFsmStateCoverage
#define vpiStatementCoverage
#define vpiToggleCoverage

2) Coverage status properties

#define vpiCovered
#define vpiCoverMax
#define vpiCoveredCount

module m3;

reg[31:0] cs;
reg[31:0] /* tool enum MY_FSM */ ns;
reg[31:0] clk;
reg[31:0] rst;

// tool state_vector cs enum MY_FSM

parameter // tool enum MY_FSM
p1=10,
p2=11,
p3=12;

endmodule // m3

Signal ns holds the next state

Signal cs holds the current state

p1, p2, and p3 are possible states
of the FSM
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3) Assertion-specific coverage status properties

#define vpiAssertAttemptCovered
#define vpiAssertSuccessCovered
#define vpiAssertFailureCovered

4) FSM-specific methods

#define vpiFsmStates 
#define vpiFsmStateExpression

— FSM handle types (vpi types)

#define vpiFsm
#define vpiFsmHandle

3.4.3 Obtaining coverage information

All **what?? use vpi_get() along with the appropriate properties and object handles.

coverage type, instance 
the number of covered items in the given instance.

vpiCovered, handle 
the number of items of the handle type is covered. This is only applicable to: statement handles, signal
(wire/reg) handles, assertion handles, and FSM handles.

vpiCoveredCount, handle 
the number of times each item of the handle type is covered. This is only easily interpretable when handle
points to a unique coverable item (otherwise this is the sum of counts of all contained items).

vpiCoveredMax, handle 
the total possible coverable items in the given handle. Handle types limited as per above. vpiCovered-
Max is only really useful when handle is a handle to an object potentially containing more than one cov-
erable item.

— Use vpi_iterate(vpiFsm, instance-handle) to get the iterator to all FSMs in an instance.

— Use vpi_handle(vpiFsmStateExpression, fsm-handle) to get the handle to the signal or 
expression encoding the FSM state.

— Use vpi_iterate(vpiFsmStates, fsm-handle) to get the iterator to all states of an FSM.

— Use vpi_get_value(fsm_state_handle, state-handle) to get the value of a state.

3.4.4 Controlling coverage

**Revise similar to Assertions**

vpi_control()
has three arguments: coverage control (start, stop, reset, query), coverage type, and the handle
to the appropriate instance or assertion. Statement, toggle, and FSM coverage are not individually con-
trollable (i.e., they are controllable only at the instance level, not on a per statement/signal/FSM). The
semantics and behavior are specified as per the equivalent system function $coverage_control
(see section 3.2.2.1).

vpi_control()
has three arguments: coverage control (merge, save), coverage type, and name. This merges coverage
into the current simulation. The semantics and behavior are specified as per the equivalent system func-
tions $coverage_merge (see section 3.2.2.4) and $coverage_save (see section 3.2.2.5).
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Annex A
DPI C-layer

A.1 Overview

The SystemVerilog Direct Programming Interface (DPI) allows direct inter-language function calls between
SystemVerilog and any foreign programming language with a C function call protocol and linking model:

— Functions implemented in C and given import declarations in SystemVerilog can be called from System-
Verilog; such functions are referred to as imported functions.

— Functions implemented in SystemVerilog and specified in export declarations can be called from C; such 
functions are referred to as exported functions.

The SystemVerilog DPI supports only SystemVerilog data types, which are the sole data types that can cross
the boundary between SystemVerilog and a foreign language in either direction. On the other hand, the data
types used in C code shall be C types; hence, the duality of types. 

A value that is passed through the Direct Programming Interface is specified in SystemVerilog code as a value
of SystemVerilog type, while the same value shall be specified in C code as a value of C type. Therefore, a pair
of matching type definitions is required to pass a value through DPI: the SystemVerilog definition and the C
definition.

It is the user’s responsibility to provide these matching definitions. A tool (such as a SystemVerilog compiler)
can facilitate this by generating C type definitions for the SystemVerilog definitions used in DPI for imported
and exported functions.

Some SystemVerilog types are directly compatible with C types; defining a matching C type for them is
straightforward. There are, however, SystemVerilog-specific types, namely packed types (arrays, structures,
and unions), 2-state or 4-state, which have no natural correspondence in C. DPI does not require any particular
representation of such types and does not impose any restrictions on SystemVerilog implementations. This
allows implementors to choose the layout and representation of packed types that best suits their simulation
performance.

While not specifying the actual representation of packed types, this C-layer interface defines a canonical repre-
sentation of packed 2-state and 4-state arrays. This canonical representation is actually based on legacy Verilog
Programming Language Interface’s (PLI’s) avalue/bvalue representation of 4-state vectors. Library func-
tions provide the translation between the representation used in a simulator and the canonical representation of
packed arrays. There are also functions for bit selects and limited part selects for packed arrays, which do not
require the use of the canonical representation.

Formal arguments in SystemVerilog can be specified as open arrays solely in import declarations; exported
SystemVerilog functions can not have formal arguments specified as open arrays. A formal argument is an
open array when a range of one or more of its dimensions is unspecified (denoted in SystemVerilog by using
empty square brackets ([])). This corresponds to a relaxation of the DPI argument-matching rules (section
1.5.1). An actual argument shall match the corresponding formal argument regardless of the range(s) for its
corresponding dimension(s), which facilitates writing generalized C code that can handle SystemVerilog
arrays of different sizes.

The C-layer of DPI basically uses normalized ranges. Normalized ranges mean [n-1:0] indexing for the
packed part (packed arrays are restricted to one dimension) and [0:n-1] indexing for a dimension in the
unpacked part of an array. Normalized ranges are used for the canonical representation of packed arrays in C
and for System Verilog arrays passed as actual arguments to C, with the exception of actual arguments for open
arrays. The elements of an open array can be accessed in C by using the same range of indices as defined in
System Verilog for the actual argument for that open array and the same indexing as in SystemVerilog.

Function arguments are generally passed by some form of reference, or by value. All formal arguments, except
open arrays, are passed by direct reference or value, and, therefore, are directly accessible in C code. Only
small values of SystemVerilog input arguments (see section A.7.7) are passed by value. Formal arguments
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declared in SystemVerilog as open arrays are passed by a handle (type svOpenArrayHandle) and are
accessible via library functions. Array-querying functions are provided for open arrays.

Depending on the data types used for imported or exported functions, either binary level or C-source level
compatibility is granted. Binary level is granted for all data types that do not mix SystemVerilog packed and
unpacked types and for open arrays which can have both packed and unpacked parts. If a data type that mixes
SystemVerilog packed and unpacked types is used, then the C code needs to be re-compiled using the imple-
mentation-dependent definitions provided by the vendor.

The C-layer of the Direct Programming Interface provides two include files. The main include file, svdpi.h,
is implementation-independent and defines the canonical representation, all basic types, and all interface func-
tions. The second include file, svdpi_src.h, defines only the actual representation of packed arrays and,
hence, its contents are implementation-dependent. Applications that do not need to include this file are binary-
level compatible.

A.2 Naming conventions
All names introduced by this interface shall conform to the following conventions.

— All names defined in this interface are prefixed with sv or SV_.

— Function and type names start with sv, followed by initially capitalized words with no separators, e.g., 
svBitPackedArrRef.

— Names of symbolic constants start with sv_, e.g., sv_x.

— Names of macro definitions start with SV_, followed by all upper-case words separated by a underscore 
(_), e.g., SV_CANONICAL_SIZE.

A.3 Portability

Depending on the data types used for the imported or exported functions, the C code can be binary-level or
source-level compatible. Applications that do not use SystemVerilog packed types are always binary compati-
ble. Applications that don’t mix SystemVerilog packed and unpacked types in the same data type can be writ-
ten to guarantee binary compatibility. Open arrays with both packed and unpacked parts are also binary
compatible.

The values of SystemVerilog packed types can be accessed via interface functions using the canonical repre-
sentation of 2-state and 4-state packed arrays, or directly through pointers using the implementation represen-
tation. The former mode assures binary level compatibility; the latter one allows for tool-specific,
performance-oriented tuning of an application, though it also requires recompiling with the implementation-
dependent definitions provided by the vendor and shipped with the simulator.

A.3.1 Binary compatibility

Binary compatibility means an application compiled for a given platform shall work with every SystemVerilog
simulator on that platform. 

A.3.2 Source-level compatibility

Source-level compatibility means an application needs to be re-compiled for each SystemVerilog simulator and
implementation-specific definitions shall be required for the compilation.

A.4 Include files

The C-layer of the Direct Programming Interface defines two include files corresponding to these two levels of
compatibility: svdpi.h and svdpi_src.h.

Binary compatibility of an application depends on the data types of the values passed through the interface. If
all corresponding type definitions can be written in C without the need to include the svdpi_src.h file,
then an application is binary compatible. If the svdpi_src.h file is required, then the application is not
binary compatible and needs to be recompiled for each simulator of choice.
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Applications that pass solely C-compatible data types or standalone packed arrays (both 2-state and 4-state)
require only the svdpi.h file and, therefore, are binary compatible with all simulators. Applications that use
complex data types which are constructed of both SystemVerilog packed arrays and C-compatible types also
require the svdpi_src.h file and, therefore, are not binary compatible with all simulators. They are source-
level compatible, however. If an application is tuned for a particular vendor-specific representation of packed
arrays and therefore needs vendor specific include files, then such an application is not source-level compati-
ble.

A.4.1 svdpi.h include file

Applications which use the Direct Programming Interface with C code usually need this main include file. The
include file svdpi.h defines the types for canonical representation of 2-state (bit) and 4-state (logic) val-
ues and passing references to SystemVerilog data objects. The file also provides function headers and defines a
number of helper macros and constants.

This document fully defines the svdpi.h file. The content of svdpi.h does not depend on any particular
implementation or platform; all simulators shall use the same file. For more details on svdpi.h, see
section A.9.1.

Applications which only use svdpi.h shall be binary-compatible with all SystemVerilog simulators.

A.4.2 svdpi_src.h include file

This is an auxiliary include file. svdpi_src.h defines data structures for implementation-specific represen-
tation of 2-state and 4-state SystemVerilog packed arrays. The in
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Thus, in each case of an interlanguage function call, either C to SystemVerilog or SystemVerilog to C, the
compilers expect but cannot enforce that the types on either side are compatible. It is therefore the user’s
responsibility to ensure that the imported/exported function types exactly match the types of the corresponding
functions in the foreign language.

A.5.1 Types of formal arguments

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by imported declaration; they shall have ranges of packed or unpacked arrays
exactly as specified in the imported declaration. Only the SystemVerilog declaration site of the imported func-
tion is relevant for such formal arguments.

Formal arguments defined as open arrays have the size and ranges of the actual argument, i.e., have the ranges
of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of open arrays are
determined at a call site; the rest of the type information is specified at the import declaration. See also section
A.6.1.

So, if a formal argument is declared as bit [15:8] b [], then it is the import declaration which specifies
the formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument
used at a particular call site defines the bounds for the unpacked part for that call.

A.5.2 input arguments

Formal arguments specified in SystemVerilog as input must not be modified by the foreign language code.
See also section 1.4.1.2

A.5.3 output arguments

The initial values of formal arguments specified in SystemVerilog as output are undetermined and imple-
mentation-dependent. See also section 1.4.1.2

A.5.4 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for output and inout arguments.
Such changes shall be detected and handled after the control returns from C code to SystemVerilog code.

A.5.5 context and non-context functions

Also refer to section 1.4.3

Some DPI imported functions or other interface functions called from them require that the context of their call
be known. It takes special instrumentation of their call instances to provide such context; for example, a vari-
able referring to the “current instance” might need to be set. To avoid any unnecessary overhead, imported
function calls in SystemVerilog code are not instrumented unless the imported function is specified as con-
text in its SystemVerilog import declaration.

All DPI export functions require that the context of their call is known. This occurs since SystemVerilog func-
tion declarations always occur in instantiable scopes, hence allowing a multiplicity of unique function
instances in the simulator’s elaborated database. Thus, there is no such thing as a non-context export function.

For the sake of simulation performance, an non-context imported function call shall not block SystemVerilog
compiler optimizations. An imported function not specified as context shall not access any data objects
from SystemVerilog other then its actual arguments. Only the actual arguments can be affected (read or writ-
ten) by its call. Therefore, a call of non-context imported function is not a barrier for optimizations. A
context imported function, however, can access (read or write) any SystemVerilog data objects by calling
PLI/VPI, nor by calling an embedded export function. Therefore, a call to a context function is a barrier for
SystemVerilog compiler optimizations.

Only the calls of context imported functions are properly instrumented and cause conservative optimiza-
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tions; therefore, only those functions can safely call all functions from other APIs, including PLI and VPI
functions or exported SystemVerilog functions. For imported functions not specified as context, the effects
of calling PLI, VPI, or SystemVerilog functions can be unpredictable and such calls can crash if the callee
requires a context that has not been properly set.

Special DPI utility functions exist that allow imported functions to retrieve and operate on their context. For
example, the C implementation of an imported function may use svGetScope() to retrieve an svScope cor-
responding to the instance scope of its corresponding SystemVerilog import declaration. See section A.8 for
more details.

A.5.6 pure functions

See also 1.4.2

Only non-void functions with no output or inout arguments can be specified as pure. Functions specified
as pure in their corresponding SystemVerilog import declarations shall have no side effects; their results need
to depend solely on the values of their input arguments. Calls to such functions can be removed by SystemVer-
ilog compiler optimizations or replaced with the values previously computed for the same values of the input
arguments.

Specifically, a pure function is assumed not to directly or indirectly (i.e., by calling other functions):

— perform any file operations

— read or write anything in the broadest possible meaning, includes i/o, environment variables, objects from 
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

A.5.7 Memory management

See also section 1.4.1.4

The memory spaces owned and allocated by C code and SystemVerilog code are disjoined. Each side is
responsible for its own allocated memory. Specifically, C code shall not free the memory allocated by System-
Verilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the memory allocated by
C code (or the C compiler). This does not exclude scenarios in which C code allocates a block of memory, then
passes a handle (i.e., a pointer) to that block to SystemVerilog code, which in turn calls a C function that
directly (if it is the standard function free) or indirectly frees that block. 

NOTE—In this last scenario, a block of memory is allocated and freed in C code, even when the standard functions 
malloc and free are called directly from SystemVerilog code.

A.6 Data types

This section defines the data types of the C-layer of the Direct Programming Interface.

A.6.1 Limitations

Packed arrays can have an arbitrary number of dimensions; though they are eventually always equivalent to a
one-dimensional packed array and treated as such. If the packed part of an array in the type of a formal argu-
ment in SystemVerilog is specified as multi-dimensional, the SystemVerilog compiler linearizes it. Although
the original ranges are generally preserved for open arrays, if the actual argument has a multidimensional
packed part of the array, it will be normalized into an equivalent one-dimensional packed array.

NOTE—The actual argument can have both packed and unpacked parts of an array; either can be multidimensional.

A.6.2 Duality of types: SystemVerilog types vs. C types
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A value that crosses the Direct Programming Interface is specified in SystemVerilog code as a value of Sys-
temVerilog type, while the same value shall be specified in C code as a value of C type. Therefore, each data
type that is passed through the Direct Programming Interface requires two matching type definitions: the Sys-
temVerilog definition and C definition.

The user needs to provide such matching definitions. Specifically, for each SystemVerilog type used in the
import declarations or export declarations in SystemVerilog code, the user shall provide the equivalent type
definition in C reflecting the argument passing mode for the particular type of SystemVerilog value and the
direction (input, output, or inout) of the formal SystemVerilog argument. For values passed by refer-
ence, a generic pointer void * can be used (conveniently typedefed in svdpi.h or svdpi_src.h)
without knowing the actual representation of the value.

A.6.3 Data representation

DPI imposes the following additional restrictions on the representation of SystemVerilog data types.

— SystemVerilog types that are not packed and that do not contained packed elements have C compatible rep-
resentation.

— Basic integer and real data types are represented as defined in section A.6.4.

— Enumeration types are represented as the types associated with them. Enumerated names are not available 
on C side of interface.

— Representation of packed types is implementation-dependent.

— Unpacked arrays embedded in a structure have C compatible layout regardless of the type of elements. 
Similarly, standalone arrays passed as actuals to a sized formal argument have C compatible representa-
tion.

— Standalone array passed as an actual to an open array formal

— iif the element type is scalar or packed then the representation is implementation dependent

— otherwise the representation is C compatible. Therefore an element of an array shall have the same rep-
resentation as an individual value of the same type. Hence, an array’s elements can be accessed from C 
code via normal C array indexing similarly to doing so for individual values.

— The natural order of elements for each dimension in the layout of an unpacked array shall be used, i.e., ele-
ments with lower indices go first. For SystemVerilog range [L:R], the element with SystemVerilog index 
min(L,R) has the C index 0 and the element with SystemVerilog index max(L,R) has the C index 
abs(L-R).

NOTE—This does not actually impose any restrictions on how unpacked arrays are implemented; it only says an array that
does not satisfy this condition shall not be passed as an actual argument for a formal argument which is a sized array; it can
be passed, however, for a formal argument which is an unsized (i.e., open) array. Therefore, the correctness of an actual
argument might be implementation-dependent. Nevertheless, an open array provides an implementation-independent solu-
tion; this seems to be a reasonable trade-off.

A.6.4 Basic types

Table A1 on page 36 defines the mapping between the basic SystemVerilog data types and the corresponding
C types. 
**Revise this xref w/ Stu; also check/revise variable settings, etc.** 

Table A1—Mapping data types

SystemVerilog type C type

byte char

shortint short int
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The representation of SystemVerilog-specific data types like packed bit and logic arrays is implementa-
tion-dependent and generally transparent to the user. Nevertheless, for the sake of performance, applications
can be tuned for a specific implementation and make use of the actual representation used by that implementa-
tion; such applications shall not be binary compatible, however.

A.6.5 Normalized ranges

Packed arrays are treated as one-dimensional; the unpacked part of an array can have arbitrary number of
dimensions. Normalized ranges mean [n-1:0] indexing for the packed part and [0:n-1] indexing for a
dimension of the unpacked part of an array. Normalized ranges are used for accessing all arguments but open
arrays. The canonical representation of packed arrays also uses normalized ranges.

A.6.6 Mapping between SystemVerilog ranges and normalized ranges

The SystemVerilog ranges for a formal argument specified as an open array are those of the actual argument
for a particular call. Open arrays are accessible, however, by using their original ranges and the same indexing
as in the SystemVerilog code.

For all other types of arguments, i.e., all arguments but open arrays, the SystemVerilog ranges are defined in
the corresponding SystemVerilog import or export declaration. Normalized ranges are used for accessing such
arguments in C code. The mapping between SystemVerilog ranges and normalized ranges is defined as fol-
lows.

1) If a packed part of an array has more than one dimension, it is linearized as specified by the
equivalence of packed types (see section ??).

2) A packed array of range [L:R] is normalized as [abs(L-R):0]; its most significant bit has a
normalized index abs(L-R) and its least significant bit has a normalized index 0.

3) The natural order of elements for each dimension in the layout of an unpacked array shall be used, i.e.,
elements with lower indices go first. For SystemVerilog range [L:R], the element with
SystemVerilog index min(L,R) has the C index 0 and the element with SystemVerilog index
max(L,R) has the C index abs(L-R).

NOTE—The above range mapping from SystemVerilog to C applies to calls made in both directions, i.e., SystemVerilog-
calls to C and C-calls to SystemVerilog.

For exampl4  
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the Verilog legacy PLI’s avalue/bvalue representation of 4-state vectors. Library functions provide the
translation between the representation used in a simulator and the canonical representation of packed arrays.

A packed array is represented as an array of one or more elements (of type svBitVec32 for 2-state values
and svLogicVec32 for 4-state values), each element representing a group of 32 bits.The first element of an
array contains the 32 least-significant bits, next element contains the 32 more-significant bits, and so on. The
last element may contain a number of unused bits. The contents of these unused bits is undetermined and the
user is responsible for the masking or the sign extension (depending on the sign) for the unused bits.

Table A2 on page 38 defines the encoding used for a packed logic array represented as svLogicVec32. 

A.7 Argument passing modes

This section defines the ways to pass arguments in the C-layer of the Direct Programming Interface.

A.7.1 Overview

Imported and exported function arguments are generally passed by some form of a reference, with the excep-
tion of small values of SystemVerilog input arguments (see section A.7.7), which are passed by value. Simi-
larly, the function result, which is restricted to small values, is passed by value, i.e., directly returned.

The Actual arguments passed by reference typically are passed without changing their representation from the
one used by a simulator. There is no inherent copying of arguments (other than any copying resulting from
coercing).

The Access to packed arrays via the canonical representation involves copying arguments and does incur some
overhead, however. Alternatively, for the sake of performance the application can be tuned for a particular tool
and access the packed arrays directly through pointers using implementation representation, which could com-
promise binary and/or source compatibility. Data can be, however, moved around (copied, stored, retrieved)
without using canonical representation while preserving binary or source level compatibility at the same time.
This is possible by using pointers and size of data and when the detailed knowledge of the data representation
is not required.

NOTE—This provides some degree of flexibility and allows the user to control the trade-off of performance vs. portability.

Formal arguments, except open arrays, are passed by direct reference or value, and, therefore, are directly
accessible in C code. Formal arguments declared in SystemVerilog as open arrays are passed by a handle (type
svOpenArrayHandle) and are accessible via library functions.

A.7.2 Calling SystemVerilog functions from C

There is no difference in argument passing between calls from SystemVerilog to C and calls from C to System-
Verilog. Functions exported from SystemVerilog can not have open arrays as arguments. Apart from this
restriction, the same types of formal arguments can be declared in SystemVerilog for exported functions and
imported functions. A function exported from SystemVerilog shall have the same function header in C as
would an imported function with the same function result type and same formal argument list. In the case of
arguments passed by reference, an actual argument to SystemVerilog function called from C shall be allocated
using the same layout of data as SystemVerilog uses for that type of argument; the caller is responsible for the

Table A2—Encoding of bits in svLogicVec32

c d Value

0 0 0

0 1 1

1 0 z

1 1 x
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allocation. It can be done while preserving the binary compatibility, see section A.7.5 and section A.11.11.

A.7.3 Argument passing by value

Only small values of formal input arguments (see section A.7.7) are passed by value. Function results are also
directly passed by value. The user needs to provide the C-type equivalent to the SystemVerilog type of a for-
mal argument if an argument is passed by value.

A.7.4 Argument passing by reference

For arguments passed by reference, their original simulator-defined representation shall be used and a refer-
ence (a pointer) to the actual data object is passed. The actual argument is usually allocated by a caller. The
caller can also pass over a reference to an object already allocated somewhere else, for example, its own for-
mal argument passed by reference.

If an argument of type T is passed by reference, the formal argument shall be of the type T*. However, packed
arrays can also be passed using generic pointers void* (typedefed accordingly to svBitPackedAr-
rRef or svLogicPackedArrRef).

A.7.5 Allocating actual arguments for SystemVerilog-specific types

This is relevant only for calling exported SystemVerilog functions from C code. The caller is responsible for
allocating any actual arguments that are passed by reference.

Static allocation requires the knowledge of the relevant data type. If such a type involves SystemVerilog
packed arrays, their actual representation needs to be known to C code; thus, the file svdpi_src.h needs to
be included, which makes the C code implementation-dependent and not binary compatible.

Sometimes the binary compatibility can be achieved by using dynamic allocation functions. The functions
svSizeOfLogicPackedArr() and svSizeOfBitPackedArr() provide the size of the actual repre-
sentation of a packed array, which can be used for the dynamic allocation of an actual argument without com-
promising the portability (see section A.11.11). Such a technique does not work if a packed array is a part of
another type.

A.7.6 Argument passing by sv_handle - open arrays

Arguments specified as open (unsized) arrays are always passed by a handle, regardless of direction of the Sys-
temVerilog formal argument, and are accessible via library functions. The actual implementation of a handle is
simulator-specific and transparent to the user. A handle is represented by the generic pointer void * (type-
defed to sv_handle). Arguments passed by handle shall always have a const qualifier, because the user
shall not modify the contents of a handle.

A.7.7 input arguments

input arguments of imported functions implemented in C shall always have a const qualifier.

input arguments, with the exception of open arrays, are passed by value or by reference, depending on the
size. ‘Small’ values of formal input arguments are passed by value. The following data types are considered
small:

— byte, shortint, int, longint, real, shortreal

— handle, string

— bit (i.e., 2-state) packed arrays up to 64 [previously 32] -bit (canonical representation shall be used, like 
for a function result).
[There is a problem here: ‘int’ is the same as svBitVec32, long long is not the same as svBitVec32[2], 
so how to return a value in the canonical representation as a function result, if this value is between 
33 and 64 bits?]

input arguments of other types are passed by reference.
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If an input argument is a packed bit array passed by value, its value shall be represented using the canoni-
cal representation svBitVec32. If the size is smaller than 32 bits, the most significant bits are unused and
their contents are undetermined. The user is responsible for the masking or the sign extension, depending on
the sign, for the unused bits.

A.7.8 inout and output arguments

inout and output arguments, with the exception of open arrays, are always passed by reference. The same
rules about unused bits apply as in section A.7.7

A.7.9 Function result

Types of a function result are restricted to the following SystemVerilog data types (see Table A1 on page 36 for
the corresponding C type):

— byte, shortint, int, longint, real, shortreal, handle, string

— packed bit arrays up to 32 bits.

If the function result type is a packed bit array, the returned value shall be represented using the canonical
representation svBitVec32. If a packed bit array is smaller than 32 bits, the most significant bits are
unused and their contents are undetermined.

A.8 Context functions

Some DPI imported functions require that the context of their call is known. For example, those calls may be
associated with instances of C models that have a one-to-one correspondence with instances of SystemVerilog
modules that are making the calls. Alternatively, a DPI imported function may need to access or modify simu-
lator data structures using PLI or VPI calls, or by making a call back into SystemVerilog via an export func-
tion. Context knowledge is required for such calls to function properly. It may take special instrumentation of
their call to provide such context.

To avoid any unnecessary overhead, imported function calls in SystemVerilog code are not instrumented
unless the imported function is specified as context in its SystemVerilog import declaration. A small set of
DPI utility functions is available to assist programmers when working with context functions (See section
A.8.3). If those utility functions are used with any non-context function, a system error will result.

A.8.1 Overview of DPI and VPI context

Both DPI functions and VPI/PLI functions may need to understand their context. However, the meaning of the
term is different for the two categories of functions.

DPI imported functions are essentially proxies for native SystemVerilog functions. Native SystemVerilog
functions always operate in the scope of their declaration site. For example, a native SystemVerilog function
f() may be declared in a module m which is instantiated as top.i1_m. The top.i1_m instance of f()
may be called via hierarchical reference from code in a distant design region. Function f() is said to execute
in the context (aka. instantiated scope) of top.i1_m, since it has unqualified visibility only for variables local
to that specific instance of m. Function f() does not have unqualified visibility for any variables in the calling
code’s scope.

DPI imported functions follow the same model as native SystemVerilog functions. They execute in the context
of their surrounding declarative scope, rather than the context of their call sites. This type of context is termed
DPI context.

This is in contrast to VPI and PLI functions. Such functions execute in a context associated with their call sites.
The VPI/PLI programming model relies on C code’s ability to retrieve a context handle associated with the
associated system task’s call site, and then work with the context handle to glean information about arguments,
items in the call site’s surrounding declarative scope, etc. This type of context is termed VPI context.

Note that all DPI export functions require that the context of their call is known. This occurs since SystemVer-
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function instances in the simulator’s database. Thus, there is no such thing as a non-context export function.
All export function calls must have their execution scope specified in advance by use of a context-setting API
function.

A.8.2 Context of imported and export functions

DPI imported and export functions may be declared anywhere a normal SystemVerilog function may be
declared. Specifically, this means that they can be declared in module, program, interface, or
generate declarative scope.

A context imported function executes in the context of the instantiated scope surrounding its declaration. This
means that such functions can see other variables in that scope without qualification. As explained in section
A.8.1, this should not be confused with the context of the function’s call site, which may actually be anywhere
in the SystemVerilog design hierarchy. The context of an imported or exported function corresponds to the
fully qualified name of the function, minus the function name itself.

Note that context is transitive through imported and export context functions. That is, if an imported function
is running in a certain context, and if it in turn calls an exported function, the exported function will inherit the
context from the imported function. For example, consider a SystemVerilog call to a native function f(), which
in turn calls a native function g(). Now replace the native function f() with an equivalent imported context C
function, f’(). The system will behave identically regardless if f() or f’() is in the call chain above g(). g() has
the proper execution context in both cases.

A.8.3 Working with DPI context functions in C code

DPI defines a small set of functions to help programmers work with DPI context functions. The term scope is
used in the function names for consistency with other SystemVerilog terminology. The terms scope and con-
text are equivalent for DPI functions.

There are functions that allow the user to retrieve and manipulate the current operational scope.  It is an error
to use these functions with any C code that is not executing under a call to a DPI context imported function. 

   There are also functions that provide users with the power to set data specific to C models into the System-
Verilog simulator for later retrieval.  These are the "put" and "get" user data functions, which are similar to
facilities provided in VPI and PLI.

   The put and get user data functions are flexible and allow for a number of use models.  Users may wish to
share user data across multiple context imported functions defined in the same SV scope. Users may wish to
have unique data storage on a per function basis. Shared or unique data storage is controllable by a user-
defined key. 

   To achieve shared data storage, a related set of context imported functions should all use the same userKey.
To achieve unique data storage, a context import function should use a unique key.  Note that it is a require-
ment on the user that such a key be truly unique from all other keys that could possibly be used by C code. This
includes completely unknown C code that could be running in the same simulation.  It is suggested that taking
addresses of static C symbols (such as a function pointer, or address of some static C data) always be done for
user key generation.  Generating keys based on arbitrary integers is not a safe practice.

   Note that it is never possible to share user data storage across different contexts.  For example, if a Verilog
module 'm' declares a context imported function 'f', and 'm' is instantiated more than once in the SystemVerilog
design, then 'f' will execute under different values of svScope.  No such executing instances of 'f' can share
user data with each other, at least not using the system-provided user data storage area accessible via svPu-
tUserData().

/* Functions for working with DPI context functions */

/* Retrieve the active instance scope currently associated with the executing
* imported function.
* Unless a prior call to svSetScope has occured, this is the scope of the
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* function’s declaration site, not call site.
* The return value is undefined if this function is invoked from a non-context
* imported function.
*/ 

svScope svGetScope();

/* Set context for subsequent export function execution.
* This function must be called before calling an export function, unless
* the export function is called while executing an extern function. In that
* case the export function will inherit the scope of the surrounding extern
* function. This is known as the “default scope”.
* The return is the previous active scope (as per svGetScope)
*/

svScope svSetScope(const svScope scope);

/* Gets the fully qualified name of a scope handle */
const char* svGetNameFromScope(const svScope);

/* Retrieve svScope to instance scope of an arbitrary function declaration.
* (Will be either module, program, interface, or generate scope)
* The return value will be NULL for unrecognized scope names.
*/

svScope svGetScopeFromName(const char* scopeName);

/* Store an arbitrary user data pointer for later retrieval by svGetUserData()
* The userKey is generated by the user. It must be guaranteed by the user to
* be unique from all other userKey’s for all unique data storage requirements
* It is recommended that the address of static functions or variables in the
* user’s C code be used as the userKey.
* It is illegal to pass in NULL values for either the scope or userData
* arguments. It is also an error to call svPutUserData() with an invalid
* svScope. This function returns -1 for all error cases, 0 upon success. It is
* suggested that userData values of 0 (NULL) not be used as otherwise it will
* be impossible to discern error status returns when calling svGetUserData()

int svPutUserData(const svScope scope, void *userKey, void* userData);

/* Retrieve an arbitrary user data pointer that was previously
 * stored by a call to svPutUserData().  See the comment above
 * svPutUserData() for an explanation of userKey, as well as
 * restrictions on NULL and illegal svScope and userKey values.
 * This function returns NULL for all error cases, 0 upon success.
* This function also returns NULL in the event that a prior call

 * to svPutUserData() was never made.
void* svGetUserData(const svScope scope, void* userKey);

/* Returns the file and line number in the SV code from which the extern call
* was made. If this information available, returns TRUE and updates fileName 
* and lineNumber to the appropriate values. Behavior is unpredictable if
* fileName or lineNumber are not appropriate pointers. If this information is 
* not available return FALSE and contents of fileName and lineNumber not
* modified. Whether this information is available or not is implementation
* specific. Note that the string provided (if any) is owned by the SV
* implementation and is valid only until the next call to any SV function.
* Applications must not modify this string or free it
*/

int svGetCallerInfo(char **fileName, int *lineNumber);

A.8.4 Example 1 — Using DPI context functions
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SV Side:
// Declare an imported context sensitive C function with cname “MyCFunc”
import “DPI” context MyCFunc = function integer MapID(int portID);

C Side:
// Define the function and model class on the C++ side:
class MyCModel {
private:

int locallyMapped(int portID); // Does something interesting...
public:

// Constructor
MyCModel(const char* instancePath) {

svScope svScope = svGetScopeByName(instancePath);

// Associate “this” with the corresponding SystemVerilog scope
// for fast retrieval during runtime.
svPutUserData(svScope, (void*) MyCFunc, this);

}

friend int MyCFunc(int portID);
};

// Implementation of imported context function callable in SV
int MyCFunc(int portID) {

// Retrieve SV instance scope (i.e. this function’s context).
svScope = svGetScope();

// Retrieve and make use of user data stored in SV scope
MyCModel* me = (MyCModel*)svGetUserData(svScope, (void*) MyCFunc);
return me->locallyMapped(portID);

}

A.8.5 Relationship between DPI and VPI/PLI interfaces

DPI allows C code to run in the context of a SystemVerilog simulation, thus it is natural for users to consider
using VPI/PLI C code from within imported functions.

There is no specific relationship defined between DPI and the existing Verilog programming interfaces (VPI
and PLI). Programmers must make no assumptions about how DPI and the other interfaces interact. In particu-
lar, note that a vpiHandle is not equivalent to an svHandle, and the two must not be interchanged and passed
between functions defined in two different interface standards.

If a user wants to call VPI or PLI functions from within an imported function, the imported function must be
flagged with the context qualifier.

Not all VPI or PLI functionality is available from within DPI context imported functions. For example, a Sys-
temVerilog imported function is not a system task, and thus making the following call from within an imported
function would result in an error:

/* Get handle to system task call site in preparation for argument scan */
vpiHandle myHandle = vpi_handle(vpiSysTfCall, NULL);

Similarly, receiving misctf callbacks and other activities associated with system tasks are not supported
inside DPI imported functions. Users should use VPI or PLI if they wish to accomplish such actions.

However, the following kind of code is guaranteed to work from within DPI context imported functions:
/* Prepare to scan all top level modules */
vpiHandle myHandle = vpi_iterate(vpiModule, NULL);
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A.9 Include files

The C-layer of the Direct Programming Interface defines two include files. The main include file, svdpi.h,
is implementation-independent and defines the canonical representation, all basic types, and all interface func-
tions. The second include file, svdpi_src.h, defines only the actual representation of packed arrays and,
hence, is implementation-dependent. Both files are shown in Annex B.

Applications which do not need to include svdpi_src.h are binary-level compatible.

A.9.1 Binary compatibility include file svdpi.h

Applications which use the Direct Programming Interface with C code usually need this main include file. The
include file svdpi.h defines the types for canonical representation of 2-state (bit) and 4-state (logic) val-
ues and passing references to SystemVerilog data objects, provides function headers, and defines a number of
helper macros and constants.

This document fully defines the svdpi.h file. The content of svdpi.h does not depend on any particular
implementation or platform; all simulators shall use the same file. The following subsections (and
section A.10.3.1) detail the contents of the svdpi.h file.

A.9.1.1 Scalars of type bit and logic
/* canonical representation */

#define sv_0 0 
#define sv_1 1 
#define sv_z 2 /* representation of 4-st scalar z */ 
#define sv_x 3 /* representation of 4-st scalar x */

/* common type for ’bit’ and ’logic’ scalars. */ 
typedef unsigned char svScalar;

typedef svScalar svBit; /* scalar */ 
typedef svScalar svLogic; /* scalar */

A.9.1.2 Canonical representation of packed arrays
/* 2-state and 4-state vectors, modelled upon PLI’s avalue/bvalue */ 
#define SV_CANONICAL_SIZE(WIDTH) (((WIDTH)+31)>>5)

typedef unsigned int 
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;} /* as in VCS */ 
svLogicVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undetermined, the following macros 
may be handy */ 
#define SV_MASK(N) (~(-1<<(N)))

#define SV_GET_UNSIGNED_BITS(VALUE,N)\
((N)==32?(VALUE):((VALUE)&SV_MASK(N)))

#define SV_GET_SIGNED_BITS(VALUE,N)\
((N)==32?(VALUE):\
 (((VALUE)&(1<<((N)1)))?((VALUE)|~SV_MASK(N)):((VALUE)&SV_MASK(N))))

A.9.1.3 Implementation-dependent representation
/* a handle to a generic object (actually, unsized array) */ 
typedef void* svOpenArrayHandle;

/* reference to a standalone packed array */ 
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typedef void* svBitPackedArrRef; 
typedef void* svLogicPackedArrRef; 

/* total size in bytes of the simulator’s representation of a packed array */ 
/* width in bits */ 
int svSizeOfBitPackedArr(int width); 
int svSizeOfLogicPackedArr(int width);

A.9.1.4 Translation between the actual representation and the canonical representation
/* functions for translation between the representation actually used by

simulator and the canonical representation */

/* s=source, d=destination, w=width */

/* actual <-- canonical  */ 
void svPutBitVec32   (svBitPackedArrRef   d, const svBitVec32*   s, int w); 
void svPutLogicVec32 (svLogicPackedArrRef d, const svLogicVec32* s, int w);

/* canonical <-- actual  */ 
void svGetBitVec32   (svBitVec32*   d, const svBitPackedArrRef   s, int w); 
void svGetLogicVec32 (svLogicVec32* d, const svLogicPackedArrRef s, int w);

The above functions copy the whole array in either direction. The user is responsible for providing the correct
width and for allocating an array in the canonical representation. The contents of the unused bits is undeter-
mined.

Although the put/get functionality provided for bit and logic packed arrays is sufficient, yet basic, it
requires unnecessary copying of the whole packed array when perhaps only some bits are needed. For the sake
of the convenience and improved performance, bit selects and limited (up to 32 bits) part selects are also sup-
ported, see section A.10.3.1 and section A.10.3.2.

A.9.2 Source-level compatibility include file svdpi_src.h

Only two symbols are defined: the macros that allow declaring variables to represent the SystemVerilog
packed arrays of type bit or logic.

#define SV_BIT_PACKED_ARRAY(WIDTH,NAME) ... 
#define SV_LOGIC_PACKED_ARRAY(WIDTH,NAME) ...

The actual definitions are implementation-specific. For example, VCS a SystemVerilog simulator might
define the later macro as follows.

#define SV_LOGIC_PACKED_ARRAY(WIDTH,NAME) \                                
svLogicVec32 NAME [ SV_CANONICAL_SIZE(WIDTH) ]

A.9.3 Example 1— binary compatible application

SystemVerilog: 

typedef struct {int a; int b;} pair; 
import “DPI” function void foo(input int i1, pair i2, output logic [63:0] o3);

export “DPI” function exported_sv_func;

function void exported_sv_func(input int i, output int o [0:7]); 
begin ... end

endfunction

C: 
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#include "svdpi.h"

typedef struct {int a; int b;} pair;

extern void exported_sv_func(int, int *); /* imported from SystemVerilog */

void foo(const int i1, const pair *i2, svLogicPackedArrRef o3) 
{

svLogicVec32 arr[SV_CANONICAL_SIZE(64)]; /* 2 chunks needed */
int tab[8];

printf("%d\n", i1);
arr[1].c = i2->a;
arr[1].d = 0;
arr[2].c = i2->b;
arr[2].d = 0;
svPutLogicVec32 (o3, arr, 64);

/* call SystemVerilog */   
exported_sv_func(i1, tab); /* tab passed by reference */   
... 

}

A.9.4  Example 2— source-level compatible application

SystemVerilog: 

typedef struct {int a; bit [6:1][1:8] b [65:2]; int c;} triple; 
// troublesome mix of C types and packed arrays

import “DPI” function void foo(input triple i);

export “DPI” function exported_sv_func;

function void exported_sv_func(input int i, output logic [63:0] o); 
begin ... end

endfunction

C: 

#include "svdpi.h" 
#include "svdpi_src.h"

typedef struct { 
int a; 
sv_BIT_PACKED_ARRAY(6*8, b) [64]; /* implementation specific

representation */ 
int c; 
} triple;

/* Note that ’b’ is defined as for ’bit [6*8-1:0] b [63:0]’ */

extern void exported_sv_func(int, svLogicPackedArrRef); /* imported from
SystemVerilog */

void foo(const triple *i) 
{

int j;
/* canonical representation */ 
svBitVec32  arr[SV_CANONICAL_SIZE(6*8)]; /* 6*8 packed bits */ 
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svLogicVec32 aL[SV_CANONICAL_SIZE(64)];

/* implementation specific representation */
SV_LOGIC_PACKED_ARRAY(64, my_tab);

printf("%d %d\n", i->a, i->c);
for (j=0; j<64; j++) {

svGetBitVec32(arr, (svBitPackedArrRef)&(i->b[j]), 6*8); 
...

} 
... 
/* call SystemVerilog */
exported_sv_func(2, (svLogicPackedArrRef)&my_tab); /* by reference */  
svGetLogicVec32(aL, (svLogicPackedArrRef)&my_tab, 64);   ... }

NOTE—a, b, and c are directly accessed as fields in a structure. In the case of b, which represents unpacked array of
packed arrays, the individual element is accessed via the library function svGetBitVec32(), by passing its address
to the function.

A.10 Arrays

Normalized ranges are used for accessing SystemVerilog arrays, with the exception of formal arguments spec-
ified as open arrays.

A.10.1 Multidimensional arrays

Packed arrays shall be one-dimensional. Unpacked arrays can have an arbitrary number of dimensions.

A.10.2 Direct access to unpacked arrays

Unpacked arrays, with the exception of formal arguments specified as open arrays, shall have the same layout
as used by a C compiler; they are accessed using C indexing (see section A.6.6).

A.10.3 Access to packed arrays via canonical representation

Packed arrays are accessible via canonical representation; this C-layer interface provides functions for moving
data between implementation representation and canonical representation (any necessary conversion is per-
formed on-the-fly (see section A.9.1.3)), and for bit selects and limited (up to 32-bit) part selects. (Bit selects
do not involve any canonical representation.)

A.10.3.1 Bit selects

This subsection defines the bit selects portion of the svdpi.h file (see section A.9.1 for more details).

/* Packed arrays are assumed to be indexed n-1:0,
where 0 is the index of least significant bit */

/* functions for bit select */ 

/* s=source, i=bit-index */
svBit svGetSelectBit(const svBitPackedArrRef s, int i); 
svLogic svGetSelectLogic(const svLogicPackedArrRef s, int i);

/* d=destination, i=bit-index, s=scalar */
void svPutSelectBit(svBitPackedArrRef d, int i, svBit s); 
void svPutSelectLogic(svLogicPackedArrRef d, int i, svLogic s);

A.10.3.2 Part selects

Limited (up to 32-bit) part selects are supported. A part select is a slice of a packed array of types bit or
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logic. Array slices are not supported for unpacked arrays. Additionally, 64-bit wide part select can be read as
a single value of type long long.

Functions for part selects only allow access (read/write) to a narrow subrange of up to 32 bits. A canonical rep-
resentation shall be used for such narrow vectors. If the specified range of part select is not fully contained
within the normalized range of an array, the behaviour is indetermined. .

For the convenience, bit type part selects are returned as a function result. In addition to a general function for
narrow part selects (<= 32-bits), there are two specialized functions for 32 and 64 bits.

/*
* functions for part select  
*  
* a narrow (<=32 bits) part select is copied between  
* the implementation representation and a single chunk of  
* canonical representation  
* Normalized ranges and indexing [n-1:0] are used for both arrays:
* the array in the implementation representation and the canonical array.
* 
* s=source, d=destination, i=starting bit index, w=width  
* like for variable part selects; limitations: w <= 32  
*/

NOTE—For the sake of symmetry, a canonical representation (i.e., an array) is used both for bit and logic, although a
simpler int can be used for bit-part selects (<= 32-bits):

/* canonical <-- actual */
void svGetPartSelectBit(svBitVec32* d, const svBitPackedArrRef s, int i, 

int w);
svBitVec32 svGetBits(const svBitPackedArrRef s, int i, int w);
svBitVec32 svGet32Bits(const svBitPackedArrRef s, int i); // 32-bits
long long svGet64Bits(const svBitPackedArrRef s, int i); // 64-bits
void svGetPartSelectLogic(svLogicVec32* d, const svLogicPackedArrRef s, int i, 

int w);

/* actual <-- canonical */
void svPutPartSelectBit(svBitPackedArrRef d, const svBitVec32 s, int i, 

int w); 
void svPutPartSelectLogic(svLogicPackedArrRef d, const svLogicVec32 s, int i, 

int w);

A.11 Open arrays

Formal arguments specified as open arrays allows passing actual arguments of different sizes (i.e., different
range and/or different number of elements), which facilitates writing a more general C code that can handle
SystemVerilog arrays of different sizes. The elements of an open array can be accessed in C by using the same
range of indices and the same indexing as in SystemVerilog. Plus, inquiries about the dimensions and the orig-
inal boundaries of SystemVerilog actual arguments are supported for open arrays.

NOTE—Both packed and unpacked array dimensions can be unsized.

All formal arguments declared in SystemVerilog as open arrays are passed by handle (type svOpenArray-
Handle), regardless of the direction of a SystemVerilog formal argument. Such arguments are accessible via
interface functions.

A.11.1 Actual ranges

The formal arguments defined as open arrays have the size and ranges of the actual argument, as determined
on a per-call basis. The programmer shall always have a choice whether to specify a formal argument as a
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sized array or as an open (unsized) array.

In the former case, all indices are normalized on the C side (i.e., 0 and up) and the programmer needs to know
the size of an array and be capable of determining how the ranges of the actual argument map onto C-style
ranges (see section A.6.6).

Tip: programmers may decide to stick to [n:0]name[0:k] style ranges in SystemVerilog.

In the later case, i.e., an open array, individual elements of a packed array are accessible via interface func-
tions, which facilitate the SystemVerilog-style of indexing with the original boundaries of the actual argument.

If a formal argument is specified as a sized array, then it shall be passed by reference, with no overhead, and is
directly accessible as a normalized array. If a formal argument is specified as an open (unsized) array, then it
shall be passed by handle, with some overhead, and is mostly indirectly accessible, again with some overhead,
although it retains the original argument boundaries.

NOTE—This provides some degree of flexibility and allows the programmer to control the trade-off of performance vs.
convenience.

The following example shows the use of sized vs. unsized arrays in SystemVerilog code.

// both unpacked arrays are 64 by 8 elements, packed 16-bit each         
logic [15: 0] a_64x8 [63:0][7:0];         
logic [31:16] b_64x8 [64:1][-1:-8]; 
        
import “DPI” function void foo(input logic [] i [][]);                 

// 2-dimensional unsized unpacked array of unsized packed logic 

import “DPI” function void boo(input logic [31:16] i [64:1][-1:-8]);                 
// 2-dimensional sized unpacked array of sized packed logic 

foo(a_64x8);         
foo(b_64x8); // C code may use original ranges [31:16][64:1][-1:-8] 
        
boo(b_64x8); // C code must use normalized ranges [15:0][0:63][0:7] 

A.11.2 Array querying functions

These functions are modelled upon the SystemVerilog array querying functions and use the same semantics
(see SystemVerilog 3.0 LRM 16.3).

If the dimension is 0, then the query refers to the packed part (which is one-dimensional) of an array, and
dimensions > 0 refer to the unpacked part of an array.

/* h= handle to open array, d=dimension */ 
int svLeft(const svOpenArrayHandle h, int d); 
int svRight(const svOpenArrayHandle h, int d); 
int svLow(const svOpenArrayHandle h, int d); 
int svHigh(const svOpenArrayHandle h, int d); 
int svIncrement(const svOpenArrayHandle h, int d); 
int svLength(const svOpenArrayHandle h, int d); 
int svDimensions(const svOpenArrayHandle h);

A.11.3 Access functions

Similarly to sized arrays, there are functions for copying data between the simulator representation and the
canonical representation and to obtain the actual address of SystemVerilog data object or of an individual ele-
ment of an unpacked array. This information might be useful for simulator-specific tuning of the application.

Depending on the type of an element of an unpacked array, different access methods shall be used when work-
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ing with elements.

— Packed arrays (bit or logic) are accessed via copying to or from the canonical representation.

— Scalars (1-bit value of type bit or logic) are accessed (read or written) directly.

— Other types of values (e.g., structures) are accessed via generic pointers; a library function calculates an 
address and the user needs to provide the appropriate casting.

— Scalars and packed arrays are accessible via pointers only if the implementation supports this functionality 
(per array), e.g., one array can be represented in a form that allows such access, while another array might 
use a compacted representation which renders this functionality unfeasible (both occurring within the same 
simulator).

SystemVerilog allows arbitrary dimensions and, hence, an arbitrary number of indices. To facilitate this, a vari-
able argument list functions shall be used. For the sake of performance, the specialized versions of all indexing
functions are provided for 1, 2, or 3 indices.

A.11.4 Access to the actual representation

The following functions provide an actual address of the whole array or of its individual elements. These func-
tions shall be used for accessing elements of the arrays of types compatible with C. These functions are also
useful for the vendors, because they provide access to the actual representation for all types of arrays.

If the actual layout of the SystemVerilog array passed as an argument for an open unpacked array is different
than the C layout, then it is not be possible to access such an array as a whole; therefore, the address and size of
such an array shall be undefined (zero (0), to be exact). Nonetheless, the addresses of individual elements of an
array shall be always supported.

NOTE—No specific representation of an array is assumed here; hence, all functions use a generic pointer void *. 

/* a pointer to the actual representation of the whole array of any type */ 
/* NULL if not in C layout */ 
void *svGetArrayPtr(const svOpenArrayHandle);

int svSizeOfArray(const svOpenArrayHandle); /* total size in bytes or 0 if not 
in C 

layout */

/* Return a pointer to an element of the array    
or NULL if index outside the range or null pointer */

void *svGetArrElemPtr(const svOpenArrayHandle, int indx1, ...);

/* specialized versions for 1-, 2- and 3-dimensional arrays: */ 
void *svGetArrElemPtr1(const svOpenArrayHandle, int indx1); 
void *svGetArrElemPtr2(const svOpenArrayHandle, int indx1, int indx2); 
void *svGetArrElemPtr3(const svOpenArrayHandle, int indx1, int indx2, int 
indx3);

Access to an individual array element via pointer makes sense only if the representation of such an element is
the same as it would be for an individual value of the same type. Representation of array elements of type
scalar or packed value is implementation-dependent; the above functions shall return NULL if the represen-
tation of the array elements differs from the representation of individual values of the same type.

A.11.5 Access to elements via canonical representation

This group of functions is meant for accessing elements which are packed arrays (bit or logic).

The following functions copy a single vector from a canonical representation to an element of an open array or
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other way round. The element of an array is identified by indices, bound by the ranges of the actual argument,
i.e., the original SystemVerilog ranges are used for indexing.

 
/* functions for translation between simulator and canonical representations*/
/* s=source, d=destination */
/* actual <-- canonical  */ 
void svPutBitArrElemVec32 (const svOpenArrayHandle  d, const svBitVec32* s, 

int indx1, ...); 
void svPutBitArrElem1Vec32(const svOpenArrayHandle  d, const svBitVec32* s, 
int indx1); 
void svPutBitArrElem2Vec32(const svOpenArrayHandle  d, const svBitVec32* s, 
int indx1, 

int indx2); 
void svPutBitArrElem3Vec32(const svOpenArrayHandle  d, const svBitVec32* s,                                              

int indx1, int indx2, int indx3);

void svPutLogicArrElemVec32 (const svOpenArrayHandle  d, const svLogicVec32* 
s, 

int indx1, ...); 
void svPutLogicArrElem1Vec32( const svOpenArrayHandle  d, const svLogicVec32* 
s, 

int indx1); 
void svPutLogicArrElem2Vec32(const svOpenArrayHandle  d, const svLogicVec32* 
s, 

int indx1, int indx2); 
void svPutLogicArrElem3Vec32(const svOpenArrayHandle  d, const svLogicVec32* 
s, 

int indx1, int indx2, int indx3);

/* canonical <-- actual  */ 
void svGetBitArrElemVec32 (svBitVec32* d, const svOpenArrayHandle  s, int 
indx1, ...); 
void svGetBitArrElem1Vec32(svBitVec32* d, const svOpenArrayHandle  s, int 
indx1); 
void svGetBitArrElem2Vec32(svBitVec32* d, const svOpenArrayHandle  s, int 
indx1, 

int indx2);
void svGetBitArrElem3Vec32(svBitVec32* d, const svOpenArrayHandle  s, 

int indx1, int indx2, int indx3);

void svGetLogicArrElemVec32 (svLogicVec32* d, const svOpenArrayHandle  s, int 
indx1,

...); 
void svGetLogicArrElem1Vec32(svLogicVec32* d, const svOpenArrayHandle  s, int 
indx1); 
void svGetLogicArrElem2Vec32(svLogicVec32* d, const svOpenArrayHandle  s, int 
indx1, 

int indx2); 
void svGetLogicArrElem3Vec32(svLogicVec32* d, const svOpenArrayHandle  s, 

int indx1, int indx2, int indx3);

The above functions copy the whole packed array in either direction. The user is responsible for allocating an
array in the canonical representation.

A.11.6 Access to scalar elements (bit and logic)

Another group of functions is needed for scalars (i.e., when an element of an array is a simple scalar, bit, or
logic):
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svBit   svGetBitArrElem (const svOpenArrayHandle  s, int indx1, ...); 
svBit   svGetBitArrElem1(const svOpenArrayHandle  s, int indx1); 
svBit   svGetBitArrElem2(const svOpenArrayHandle  s, int indx1, int indx2); 
svBit   svGetBitArrElem3(const svOpenArrayHandle  s, int indx1, int indx2, int 
indx3);

svLogic svGetLogicArrElem (const svOpenArrayHandle  s, int indx1, ...); 
svLogic svGetLogicArrElem1(const svOpenArrayHandle  s, int indx1); 
svLogic svGetLogicArrElem2(const svOpenArrayHandle  s, int indx1, int indx2); 
svLogic svGetLogicArrElem3(const svOpenArrayHandle  s, int indx1, int indx2, 
int indx3);

void svPutLogicArrElem (const svOpenArrayHandle  d, svLogic value, int indx1, 
...); 
void svPutLogicArrElem1(const svOpenArrayHandle  d, svLogic value, int indx1); 
void svPutLogicArrElem2(const svOpenArrayHandle  d, svLogic value, int indx1, 

int indx2); 
void svPutLogicArrElem3(const svOpenArrayHandle  d, svLogic value, int indx1, 
int indx2, 

int indx3);

void svPutBitArrElem (const svOpenArrayHandle  d, svBit value, int indx1, ...); 
void svPutBitArrElem1(const svOpenArrayHandle  d, svBit value, int indx1); 
void svPutBitArrElem2(const svOpenArrayHandle  d, svBit value, int indx1, int 
indx2); 
void svPutBitArrElem3(const svOpenArrayHandle  d, svBit value, int indx1, int 
indx2, 

int indx3);

A.11.7 Access to array elements of other types

If an array’s elements are of a type compatible with C, there is no need to use canonical representation. In such
situations, the elements are accessed via pointers, i.e., the actual address of an element shall be computed first
and then used to access the desired element.

A.11.8 Example 3— two-dimensional open array

SystemVerilog: 

typedef struct {int i; ... } MyType;

import “DPI” function void foo(input MyType i [][]); /* 2-dimensional unsized 
unpacked array

 unpacked array of MyType */

MyType a_10x5 [11:20][6:2]; 
MyType a_64x8 [64:1][-1:-8];

foo(a_10x5); 
foo(a_64x8);

 C: 

#include "svdpi.h"

typedef struct {int i; ... } MyType;

void foo(const svOpenArrayHandle  h)
{

MyType my_value;
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D
[“M)13.3DPI” function;
int i, j;
int lo1 = svLow(h, 1);
int hi1 = svHigh(h, 1);
int lo2 = svLow(h, 2);
int hi2 = svHigh(h, 2);

for (i = lo1; i <= hi1; i++) { 
for (j = lo2; j <= hi2; j++) {

my_value = *(MyType *)svGetArrElemPtr2(h, i, j);
... 
*(MyType *)svGetArrElemPtr2(h, i, j) = my_value;
... 
} 

...
} 

}

A.11.9 Example 4— open array

SystemVerilog: 

e8(es., )13.3struct...} (M)13.3(yTyp(;)]TJ
0 -2.44 TD(import. )Tj
0.105 g4.92 0 T
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*(MyType *)svGetArrElemPtr1(hout, j++) = 
*(MyType *)svGetArrElemPtr1(hin, i++);

}

}

}

A.11.10  Example 5 — access to packed arrays

SystemVerilog: 

import “DPI” function void foo(input logic [127:0]);
import “DPI” function void boo(input logic [127:0] i []);// open array of 128-
bit

 C: 

#include "svdpi.h"

/* one 128-bit packed vector */
void foo(const svLogicPackedArrRef packed_vec_128_bit)
{

svLogicVec32 arr[SV_CANONICAL_SIZE(128)]; /* canonical representation */

svGetLogicVec32(arr, packed_vec_128_bit, 128);
...

}

/* open array of 128-bit packed vectors */
void boo(const svOpenArrayHandle  h)
{

int i;
svLogicVec32 arr[SV_CANONICAL_SIZE(128)]; /* canonical representation */

for (i = svLow(h, 1); i <= svHigh(h, 1); i++) {

svLogicPackedArrRef ptr = (svLogicPackedArrRef)svGetArrElemPtr1(h, i); 
/* user need not know the vendor representation! */

svGetLogicVec32(arr, ptr, 128); 
... 

}
...

}

A.11.11 Example 6 — binary compatible calls of exported functions

This example demonstrates the source compatibility include file svdpi_src.h is not needed if a C function
dynamically allocates the data structure for simulator representation of a packed array to be passed to an
exported SystemVerilog function.

SystemVerilog: 

export“DPI” function myfunc; 
... 
function void myfunc (output logic [31:0] r); ... 
... 

C: 
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#include "svdpi.h" 
extern void myfunc (svLogicPackedArrRef r); /* exported from SV */

/* output logic packed 32-bits */ 
... 
svLogicVec32 my_r[SV_CANONICAL_SIZE(32)]; 
/* my array, canonical representation */ 

/* allocate memory for logic packed 32-bits in simulator’s representation */ 
svLogicPackedArrRef r = 

(svLogicPackedArrRef)malloc(svSizeOfLogicPackedArr(32)); 
myfunc(r); 
/* canonical <-- actual */ 
svGetLogicVec32(my_r, r, 32); 
/* will use only the canonical representation from now on */ 
free(r); /* don’t need any more */ 
... 
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Annex B
Include files

This annex shows the contents of the svdpi.h and svdpi_src.h include files.

B.1 Binary-level compatibility include file svdpi.h 

/* canonical representation */

#define sv_0 0 
#define sv_1 1 
#define sv_z 2 /* representation of 4-st scalar z */ 
#define sv_x 3 /* representation of 4-st scalar x */

/* common type for ’bit’ and ’logic’ scalars. */ 
typedef unsigned char svScalar;

typedef svScalar svBit; /* scalar */ 
typedef svScalar svLogic; /* scalar */

/* Canonical representation of packed arrays */
/* 2-state and 4-state vectors, modelled upon PLI’s avalue/bvalue */ 
#define SV_CANONICAL_SIZE(WIDTH) (((WIDTH)+31)>>5)

typedef unsigned int 
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;} /* as in VCS */ 
svLogicVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undetermined, the following macros 
may be handy */ 
#define SV_MASK(N) (~(-1<<(N)))

#define SV_GET_UNSIGNED_BITS(VALUE,N)\
((N)==32?(VALUE):((VALUE)&SV_MASK(N)))

#define SV_GET_SIGNED_BITS(VALUE,N)\
((N)==32?(VALUE):\
 (((VALUE)&(1<<((N)1)))?((VALUE)|~SV_MASK(N)):((VALUE)&SV_MASK(N))))

/* implementation-dependent representation */ 
/* a handle to a generic object (actually, unsized array) */ 
typedef void* svOpenArrayHandle;

/* reference to a standalone packed array */ 
typedef void* svBitPackedArrRef; 
typedef void* svLogicPackedArrRef; 

/* total size in bytes of the simulator’s representation of a packed array */ 
/* width in bits */ 
int svSizeOfBitPackedArr(int width);
int svSizeOfLogicPackedArr(int width); 

/* Translation between the actual representation and the canonical 
representation */ 
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/* functions for translation between the representation actually used by
simulator and the canonical representation */

/* s=source, d=destination, w=width */

/* actual <-- canonical  */ 
void svPutBitVec32   (svBitPackedArrRef   d, const svBitVec32*   s, int w); 
void svPutLogicVec32 (svLogicPackedArrRef d, const svLogicVec32* s, int w);

/* canonical <-- actual  */ 
void svGetBitVec32   (svBitVec32*   d, const svBitPackedArrRef   s, int w); 
void svGetLogicVec32 (svLogicVec32* d, const svLogicPackedArrRef s, int w);

/* Bit selects */ 

/* Packed arrays are assumed to be indexed n-1:0,
where 0 is the index of least significant bit */

/* functions for bit select */ 

/* s=source, i=bit-index */
svBit svGetSelectBit(const svBitPackedArrRef s, int i); 
svLogic svGetSelectLogic(const svLogicPackedArrRef s, int i);

/* d=destination, i=bit-index, s=scalar */
void svPutSelectBit(svBitPackedArrRef d, int i, svBit s); 
void svPutSelectLogic(svLogicPackedArrRef d, int i, svLogic s);

/*
* functions for part select  
*  
* a narrow (<=32 bits) part select is copied between  
* the implementation representation and a single chunk of  
* canonical representation  
* Normalized ranges and indexing [n-1:0] are used for both arrays:
* the array in the implementation representation and the canonical array.
* 
* s=source, d=destination, i=starting bit index, w=width  
* like for variable part selects; limitations: w <= 32  
*/

/* canonical <-- actual */
void svGetPartSelectBit(svBitVec32* d, const svBitPackedArrRef s, int i, 

int w);
void svGetPartSelectLogic(svLogicVec32* d, const svLogicPackedArrRef s, int i, 

int w);

/* actual <-- canonical */
void svGetPartSelectBit(svBitVec32* d, const svBitPackedArrRef s, int i, 
svBitVec32 svGetBits(const svBitPackedArrRef s, int i, int w);
svBitVec32 svGet32Bits(const svBitPackedArrRef s, int i); // 32-bits
long long svGet64Bits(const svBitPackedArrRef s, int i); // 64-bits
void svPutPartSelectLogic(svLogicPackedArrRef d, const svLogicVec32 s, int i, 

int w);

/* Array querying functions */ 
/* These functions are modelled upon the SystemVerilog array querying functions 
and use the same semantics*/ 
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/* If the dimension is 0, then the query refers to the packed part (which is 
one-dimensional) of an array, and dimensions > 0 refer to the unpacked part of 
an array.*/ 

/* h= handle to open array, d=dimension */ 
int svLeft(const svOpenArrayHandle h, int d); 
int svRight(const svOpenArrayHandle h, int d); 
int svLow(const svOpenArrayHandle h, int d); 
int svHigh(const svOpenArrayHandle h, int d); 
int svIncrement(const svOpenArrayHandle h, int d); 
int svLength(const svOpenArrayHandle h, int d); 
int svDimensions(const svOpenArrayHandle h);

/* a pointer to the actual representation of the whole array of any type */ 
/* NULL if not in C layout */ 
void *svGetArrayPtr(const svOpenArrayHandle);

int svSizeOfArray(const svOpenArrayHandle); /* total size in bytes or 0 if not 
in C 

layout */

/* Return a pointer to an element of the array    
or NULL if index outside the range or null pointer */

void *svGetArrElemPtr(const svOpenArrayHandle, int indx1, ...);

/* specialized versions for 1-, 2- and 3-dimensional arrays: */ 
void *svGetArrElemPtr1(const svOpenArrayHandle, int indx1); 
void *svGetArrElemPtr2(const svOpenArrayHandle, int indx1, int indx2); 
void *svGetArrElemPtr3(const svOpenArrayHandle, int indx1, int indx2, int 
indx3);

/* Functions for translation between simulator and canonical representations*/
/* These functions copy the whole packed array in either direction. The user is 
responsible for allocating an array in the canonical representation. */ 
/* s=source, d=destination */
/* actual <-- canonical  */ 
void svPutBitArrElemVec32 (const svOpenArrayHandle d, const svBitVec32* s, 

int indx1, ...); 
void svPutBitArrElem1Vec32(const svOpenArrayHandle d, const svBitVec32* s, int 
indx1); 
void svPutBitArrElem2Vec32(const svOpenArrayHandle d, const svBitVec32* s, int 
indx1, 

int indx2); 
void svPutBitArrElem3Vec32(const svOpenArrayHandle d, const svBitVec32* s,                                              

int indx1, int indx2, int indx3);

void svPutLogicArrElemVec32 (const svOpenArrayHandle d, const svLogicVec32* s, 
int indx1, ...); 

void svPutLogicArrElem1Vec32( const svOpenArrayHandle d, const svLogicVec32* 
s, 

int indx1); 
void svPutLogicArrElem2Vec32(const svOpenArrayHandle d, const svLogicVec32* s, 

int indx1, int indx2); 
void svPutLogicArrElem3Vec32(const svOpenArrayHandle d, const svLogicVec32* s, 

int indx1, int indx2, int indx3);

/* canonical <-- actual  */ 
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void svGetBitArrElemVec32 (svBitVec32* d, const svOpenArrayHandle s, int 
indx1, ...); 
void svGetBitArrElem1Vec32(svBitVec32* d, const svOpenArrayHandle s, int 
indx1); 
void svGetBitArrElem2Vec32(svBitVec32* d, const svOpenArrayHandle s, int 
indx1, 

int indx2);
void svGetBitArrElem3Vec32(svBitVec32* d, const svOpenArrayHandle s, 

int indx1, int indx2, int indx3);

void svGetLogicArrElemVec32 (svLogicVec32* d, const svOpenArrayHandle s, int 
indx1,

...); 
void svGetLogicArrElem1Vec32(svLogicVec32* d, const svOpenArrayHandle s, int 
indx1); 
void svGetLogicArrElem2Vec32(svLogicVec32* d, const svOpenArrayHandle s, int 
indx1, 

int indx2); 
void svGetLogicArrElem3Vec32(svLogicVec32* d, const svOpenArrayHandle s, 

int indx1, int indx2, int indx3);

svBit   svGetBitArrElem (const svOpenArrayHandle s, int indx1, ...); 
svBit   svGetBitArrElem1(const svOpenArrayHandle s, int indx1); 
svBit   svGetBitArrElem2(const svOpenArrayHandle s, int indx1, int indx2); 
svBit   svGetBitArrElem3(const svOpenArrayHandle s, int indx1, int indx2, int 
indx3);

svLogic svGetLogicArrElem (const svOpenArrayHandle s, int indx1, ...); 
svLogic svGetLogicArrElem1(const svOpenArrayHandle s, int indx1); 
svLogic svGetLogicArrElem2(const svOpenArrayHandle s, int indx1, int indx2); 
svLogic svGetLogicArrElem3(const svOpenArrayHandle s, int indx1, int indx2, 
int indx3);

void svPutLogicArrElem (const svOpenArrayHandle d, svLogic value, int indx1, 
...); 
void svPutLogicArrElem1(const svOpenArrayHandle d, svLogic value, int indx1); 
void svPutLogicArrElem2(const svOpenArrayHandle d, svLogic value, int indx1, 

int indx2); 
void svPutLogicArrElem3(const svOpenArrayHandle d, svLogic value, int indx1, 
int indx2, 

int indx3);

void svPutBitArrElem (const svOpenArrayHandle d, svBit value, int indx1, ...); 
void svPutBitArrElem1(const svOpenArrayHandle d, svBit value, int indx1); 
void svPutBitArrElem2(const svOpenArrayHandle d, svBit value, int indx1, int 
indx2); 
void svPutBitArrElem3(const svOpenArrayHandle d, svBit value, int indx1, int 
indx2, 

int indx3);

/* Functions for working with DPI context functions */

/* Retrieve the active instance scope currently associated with the executing
imported function.
Unless a prior call to svSetScope has occured, this is the scope of the
function’s declaration site, not call site.
Returns NULL if called from C code that is *not* an imported function. */ 

svScope svGetScope();
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/* Set context for subsequent export function execution.
This function must be called before calling an export function, unless
the export function is called while executing an extern function. In that
case the export function will inherit the scope of the surrounding extern
function. This is known as the “default scope”.
The return is the previous active scope (as per svGetScope) */

svScope svSetScope(const svScope scope);

/* Gets the fully qualified name of a scope handle */
const char* svGetNameFromScope(const svScope);

/* Retrieve svScope to instance scope of an arbitrary function declaration.
(Will be either module, program, interface, or generate scope) */

svScope svGetScopeFromName(const char* scopeName);

/* Set arbitrary user data pointer into specified instance scope */
void svPutUserData(const svScope scope, void* userData);

/* Retrieve arbitrary user data from specified instance scope */
void* svGetUserData(const svScope scope);

/ * Returns the file and line number in the SV code from which the extern call 
was made. If this information available, returns TRUE and updates fileName and 
lineNumber to the appropriate values. Behavior is unpredictable if fileName or 
lineNumber are not appropriate pointers. If this information is not available 
return FALSE and contents of fileName and lineNumber not modified. Whether this 
information is available or not is implementation specific. Note that the 
string provided (if any) is owned by the SV implementation and is valid only
until the next call to any SV function. Applications must not modify this 
string or free it */
int svGetCallerInfo(char **fileName, int *lineNumber);

B.2 Source-level compatibility include file svdpi_src.h 

/* macros for declaring variables to represent the SystemVerilog */
/* packed arrays of type bit or logic */
/* WIDTH= number of bits,NAME = name of a declared field/variable */
#define SV_BIT_PACKED_ARRAY(WIDTH,NAME)/* actual definition will go here */
#define SV_LOGIC_PACKED_ARRAY(WIDTH,NAME)/* actual definition will go here */
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Code in object code form. Figure C1— depicts the inclusion of object code and its relations to the various
steps involved in this integration process. **Revise this xref w/ Stu; also check/revise variable settings, etc.**

.

Figure C1— Inclusion of object code into a SystemVerilog application

Compiled object code can be specified by one of the following two methods:

1) by an entry in a bootstrap file; see section C.3.1 for more details on this file and its content. Its location
shall be specified with one instance of the switch -sv_liblist pathname. This switch can be
used multiple times to define the usage of multiple bootstrap files.

2) by specifying the file with one instance of the switch -sv_lib
pathname_without_extension (i.e., the filename shall be specified without the platform
specific extension). The SystemVerilog application is responsible for appending the appropriate
extension for the actual platform. This switch can be used multiple times to define multiple libraries
holding object code.

Both methods shall be provided and made available concurrently, to permit any mixture of their usage. Every
location can be an absolute pathname or a relative pathname, where the value of the switch -sv_root is used
to identify an appropriate prefix for relative pathnames (see section C.2 for more details on forming path-
names).
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All compiled object code need to be loaded in the specification order similarly to the above scheme; first the
content of the bootstrap file is processed starting with the first line, then the set of -sv_lib switches is pro-
cessed in order of their occurrence. Any library shall only be loaded once.

C.2.1 Bootstrap file

The object code bootstrap file has the following syntax.

1) The first line contains the string #!SV_LIBRARIES.

2) An arbitrary amount of entries follow, one entry per line, where every entry holds exactly one library
location. Each entry consists only of the pathname_without_extension of the object code file
to be loaded and can be surrounded by an arbitrary number of blanks; at least one blank shall precede
the entry in the line. The value pathname_without_extension is equivalent to the value of the
switch -sv_lib.

3) Any amount of comment lines can be interspersed between the entry lines; a comment line starts with
the character # after an arbitrary (including zero) amount of blanks and is terminated with a newline.

C.2.2 Examples

1) If the pathname root has been set by the switch -sv_root to /home/user and the following object
files need to be included:

/home/user/myclibs/lib1.so
/home/user/myclibs/lib3.so
/home/user/proj1/clibs/lib4.so
/home/user/proj3/clibs/lib2.so

then use either of the methods in Example C-1. Both methods are equivalent.

Example C-1Using a simple bootstrap file or a switch list

2) If the current working directory is /home/user, using the series of switches shown in Example C-2
(left column) result in loading the following files (right column).

Example C-2Using a combination of -sv_lib and -sv_root switches

...
-sv_lib myclibs/lib1
-sv_lib myclibs/lib3
-sv_lib proj1/clibs/lib4
-sv_lib proj3/clibs/lib2
...

Bootstrap file method Switch list method

#!SV_LIBRARIES
 myclibs/lib1
 myclibs/lib3
proj1/clibs/lib4

 proj3/clibs/lib2

Switches Files

-sv_lib svLibrary1
-sv_lib svLibrary2
-sv_root /home/project2/shared_code
-sv_lib svLibrary3
-sv_root /home/project3/code
-sv_lib svLibrary4

/home/user/svLibrary1.so
/home/user/svLibrary2.so

/home/project2/shared_code/svLibrary3.so

/home/project3/code/svLibrary4.so
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3) Further, using the set of switches and contents of bootstrap files shown in Example C-3:

Example C-3Mixing -sv_root and bootstrap files

results in loading the following files:

/home/usr1/lib1.ext
/home/usr1/lib2.ext
/home/usr2/lib3.ext
/common/libx.ext
/home/usr2/lib5.ext

where ext stands for the actual extension of the corresponding file.

#! SV_LIBRARIES
 lib1
 lib2

#! SV_LIBRARIES
 lib3
 /common/libx
 lib5

bootstrap1:

bootstrap2:

-sv_root /home/usr1
-sv_liblist bootstrap1

-sv_root /home/usr2
-sv_liblist /home/mine/bootstrap2
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