Cadence Design Systems Negative Ballot Comment on
Accellera SystemVerilog 3.1

Cadence Design Systems, Inc.
Contributors: Jay Lawrence, Francoise Martinolle, Steven Sharp, Erich Marschner
4/24/03

=

Cadence Negative Ballot Comment on SystenVerilog 3.1

Table of Contents

OV B Vi BW . o e 5
General CoMTENL S 6
2.1 Lack of Specific Commitnent for | EEE 1364 Coordination........ 6
2.2 Content Has Suffered from I movable Deadlines................. 6
2.3 Lack of General Extension Philosophy and Requirenments......... 7
2.4 Layering vs. Integration; I|Inplenentation vs. Design........... 8
2.5 Mssing Functionality.......... i 8
2.5.1 No SDF Specification......... 8
2.5.2 No VPI interfaces. e 8
Technical COMTENLS e e 9
3.1 Section 1 - OVerVIi BW. . ..ot e 9
3.2 Section 2 - Literal Values....... 10
3.2.1 Array and Structural Literal Syntax...................... 10
3.3 Section 3 - Data Types. 10
3.3.1 Data type syntax. e 10
3.3.2 Integer data types. e 11
3.3.3 Real data types....... ... e 12
3.3.4 Void data type. 12
3.3.5 String data type. 12
3.3.6 Event data type. 13
3.3.7 Enumerati on types. 13
3.3.8 Structures and Uni ONS. e 14
3.3.9 Ol ASS S, L ot 14
3.4 SECtI ON 4 - AT aAYS. o it 15
3.4.1 Longest Static Prefix....... 15
3.4.2 Dy Nam C AN T Ay S. ot ottt 15
3.4.3 ASSOCT At i Ve ArraysS. . ..ot e e e 16
3.5 Section 5 - Data Declarations.......... 17
3.5.1 Data Declaration Syntax..............u i, 17
3.5.2 CoONSt ANt S. . .. o 17
3.5.3 Variable Initialization....... 17
3.5.4 Automatic Variables. 18
3.5.5 Variables in Unnamed Blocks......... 19
3.6 Section 6 - Attributes....... 19
3.7 Section 7 - Operators and Expressions........................ 19
3.7.1 Assignments in eXpressSiONS.t 19
3.7.2 Increment (++) and Decrenment (--) in expressions......... 20
3.7.3 Built-in methods. 20
3.7.4 Literal expressions........... ... 21
3.8 Section 8 - Procedural Statenents and Control Flow........... 21
3.8.1 Unique/Priority Keywords., 21
3.8.2 Performance of Unique.......... 22
3.8.3 Final blocks. 22
3.9 Section 9 - ProCesSSes. 23
3.9.1 Ordering requirenent on final blocks..................... 23
3.9.2 Al ways_conb, always_latch, always ff as semantic checks.. 23
3.9.3 Always_comb sensitivity. 24
3.9. 4 Al ways_conmb overlap with @*).......... 24
3.10 Section 10 - Tasks and Functions............... 25
3.10.1 Function output and inout argunent nodes................. 25
3.10.2 Functions as statements......... 25
3.10.3 Void functions. 25
3.10.4 Inplicit task and function lifetine...................... 25
3.10.5 Lack of shared library support in DPlI naming............. 26
3.11 Section 11 - €l aSSeS. .ottt e 26

Cadence Design Systens, Inc. Page 2 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

3.11.1 Additional commDn keywords............. ..., 26
3.11.2 Paraneterized class types.......... ... 26
3.11.3 Differences in struct and class............. 26
3.12 Section 12 - Random Constraints............ ... oo, 27
3.12.1 Limtation to randomizing classes........................ 27
3.12.2 Rand, randc in a class declaration....................... 28
3.12.3 Constrain, inside, dist, extends, with, solve, before.... 28
3.12.4 Inplenmentation of $urandon(), $urandom range, $srandon(). 28
3.13 Section 13 - Inter-Process Synchronization................... 29
3.13. 1 SEemMBPNOr ES. . oo 29
3.13.2 Ml boXes. ... 29
3.13.3 Nanmed BEvents.. 30
3.14 Section 14 - SV 3.1 Scheduling Semantics..................... 30
3.14.1 Property Evaluation......... e 30
3.14.2 Delaying of Pass/Fail Code.............. 31
3.15 Section 15 - Clocking Domains. 32
3.15.1 Verbosity of declarations............., 32
3.15.2 #lstep will create non-determnistic IP.................. 32
3.15.3 #0 semantics are misleading............. 32
3.16 Section 16 - Program BlocCK. 33
3.16.1 Functional overlap with module.............. 33
3.16.2 Modeling restricCtions.......... 33
3.16.3 Reactive SEmBNtiCS. 34
3.16.4 Termnation of all sinmulation through $exit()............ 34
3.17 Section 17 - ASSErtioNnS....... 35
3.17.1 Conpl eXity. .. 35
3.17.2 Timng Alignment. e 35
3.17.3 O OCKS. ..o 36
3. 17,4 SNt @K, o e it 37
3.17.5 Documentati ON. 37
3.18 Section 18 - Hierarchy...... i 38
3.18.1 Does not address programblocks.......................... 38
3. 18, 2 B0t . .. 38
3.18. 3 NaMBSPACES. . ottt 39
3.19 Section 19 - Interfaces....... 40
3.19.1 Overlap with modules......... 40
3.19.2 Overlap with classes. 40
3.19.3 Lack of deconposition..........., 41
3.20 Section 20 - ParamBt ersS.t 42
3.20.1 Paraneterized typeS. 42
3.21 Section 21 - Configuration libraries......................... 42
3.22 Section 22 - System Tasks and System Functions............... 42
3.22.1 S$asserton, $assertoff, $assertkill....................... 42
3.23 Section 23 - VCD Data.iii e 43
3.24 Section 24 - Conpiler Directives......... 43
3.25 Section 25 - Features Under Consideration for Renoval........ 43
3.26 Section 26 - Direct Progranming Interface.................... 43
3.26.1 Mx of direct and abstract interface..................... 44
3.26.2 Two possible representations for packed (vector) types... 44
3.26.3 Source and binary portability........... 44
3.26.4 Overlap and redundant functionality with VPl and PLI..... 45
3.26.5 Many library access functions............................ 45
3.26.6 Cdata type mMBPPIiNg. . ..ot e 46
3.26.7 QOpen array argumBNLS. . ..ttt 46
3.26.8 SystemVerilog context and pure qualifiers................ 47
3.26.9 DPlI object code inclusion........... 48
3.27 Section 27 - SystenVerilog Assertion APl..................... 48
Cadence Design Systens, Inc. Page 3 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

3.27.1 Static informati on nodel of assertions................... 48
3.27.2 Cal | bacKs. . . . 49
3.27.3 Assertion Control 50
3.28 Section 28 - SystenWerilog Coverage APl 50
3.28.1 Pragmb USaAge.ttt 50

4 ConCl UST ONS . ..t e 50

Cadence Design Systens, Inc. Page 4 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

Executive Summary

Cadence believes that Verilog needs to be extended in order to support
har dwar e design and verification within the Verilog environment. W
have been actively involved in the SystenVeril og Accellera process for
the last year with representatives on all relevant conmttees. W
believe extensions in the areas of data types, constraints and

random zation, direct interfaces, and assertions are inportant to the
productivity of the industry.

Many of the concepts included in SystenVerilog 3.1 nove Verilog in this
direction, but Cadence believes that the draft 5 LRMis not coherent
and conpl ete enough to be considered by the Board of Directors as a
proposed Accellera standard. The remai nder of this docunent provides
detail on the issues Cadence has with the draft 5 LRM Cadence is
providing this feedback because we are absolutely commtted to
enhancing Verilog in a manner that will provide the capabilities the

i ndustry needs, while preserving the users’ and vendors’ extensive

i nvestment in | EEE 1364 Veril og.

1 Overview

Thi s docunment is being provided by Cadence Design Systens to al
Accel l era SystenVeril og technical commttees and the Accellera Board of
Directors as the Negative Ballot Comment on SystenVerilog 3.1 Al though
Accel l era byl aws do not strictly call for such a ballot conment,

Cadence believes that it is an inportant part of the | EEE balloting
process and that the justification for any negative ballot should be
provi ded.

Thr oughout the SystenWVerilog 3.1 standardizati on process, Cadence has
participated at the Board of Directors level and in all technica
subcomm ttees. We have repeatedly rai sed both procedural and technica
objections related to the Accellera conpliance to its own bylaws, the
rel ati onship of SystenVerilog to the |EEE Verilog 1364 standard, and
the technical content of SystemVerilog. This document focuses on the
techni cal content of SystenVerilog chapter by chapter

It has been noted in email conmunication to the Board fromthe
Accel | era Techni cal Chairperson that because these objections were
heard, voted on, and defeated, that Cadence shoul d now support
SystenVerilog 3.1 and vote in the affirmative. W respectfully

di sagree. There are nmajor problens with the Accellera SystenVeril og
technical content that we feel it is our responsibility as founding
menbers of Accellera to point out. Accordingly, we have voted in the
negative. W also do not feel that such a negative ballot violates our
responsibility as a nmenber to cooperatively and proactively pronote the
pur pose of Accellera. W do not believe that pronotion includes an
affirmative vote on all issues.

The | EEE bal |l oting process would require a formal response fromthe
technical comrmittees to a negative ballot comment of this sort that

LAl references to the SystenVerilog LRMrefer to the content of the
Draft 5 LRM

Cadence Design Systens, Inc. Page 5 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

contains both specific and unspecific coments on the draft standard?.
Since this is not a part of the Accellera bylaws we do not expect any
such formal response, however, we would hope that other Board nenbers
and technical contributors consider these objections when placing their
own vote on SystenWVerilog 3. 1.

2 General Comments

Thi s section docunments sonme general coments on the overall process and
actions that were taken that we believe have |l ed to an unacceptabl e
standard at this time. These are brought out explicitly here because
they will be referred to in the comments on individual chapters in the
foll owi ng sections.

2.1 Lack of Specific Commitment for IEEE 1364 Coordination

The goal of Accellera is to accelerate the specification and adoption
of standards for |anguage-based el ectronic design. As such, we and nmany
other comittee nenbers participate in the SystenVeril og devel opnent
process with the expressed belief that the effort would be tightly
coordinated with | EEE 1364 and that a clear roadmap woul d be foll owed
to donate to 1364. Only through this planned, clear comrunication
between the groups will the definitive 1364 standard be accel erated and
a divergent Accellera standard will be avoided. This docunent |ays out
numer ous i ssues that we believe exist in SystenVerilog today that will
be nodified when the | EEE process is undertaken

Cadence believes there have been three specific opportunities where
this comm tnment could have been shown by the Board of Directors, and
such a conmitnment was not nade.

Upon conpl eti on and approval of the SystenVerilog 3.0 donation in June
2002 the standard shoul d have been noved to the | EEE. The lack of this
donation serves only to delay the I EEE process. |If SystenVerilog 3.0
was sufficiently unstable that it was unfit for donation to the | EEE
then it should not have been approved as an Accell era.

Agai n on January 16 2003, Cadence attenpted to get a clarification of
intent fromthe Accellera Board of Directors. A notion for a
SystenVerilog 3.0 donation inmediately was defeated 6 negative, 4
positive, 1 abstain by the 11 nenber board.

At that sanme Board neeting, a notion was passed committing only to a
donation at an unspecified future time to an unspecified |EEE committee
| eaving too much of a lack of commitnent to accelerating the 1364

st andar d.

2.2 Content Has Suffered from Immovable Deadlines

The Accel l era technical chairperson has laid out milestones for
conpleting various activities that are required to happen before a new
standard i s produced. Such m | estones are absolutely necessary,

2 The | EEE process for a negative ballot response is explained in The
| EEE St andards Conpani on - Annex B

Cadence Design Systens, Inc. Page 6 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

especi ally when working with an organi zati on conposed primarily of

vol unteers. Wthout them standards work woul d al ways take second pl ace
to other activities and progress would be brutally slow However, we
believe that the m | estones should be treated as checkpoints at which
one can neasure the progress, not immovable dates that nust be net at
the expense of the quality of the standard.

The deadlines for the SystenmVerilog 3.1 Draft 4 LRM were constructed to
coincide with the DVCon conference. The notivation for this was to be
abl e to announce conpletion of the draft standard in a very public way.
Despite diligent effort by many contributors this deadline was not net.
Thi s shoul d have been an indication that the tineline for the fina
standard was in jeopardy and the dates should be re-exam ned. However,
this did not happen.

The deadlines for the final draft that will be voted on by the Board of
Directors are set such that the vote will occur before DAC 2003. Again,
this is notivated by being able to nake a marketing statement at DAC
about the acceptance of the standard (assuming it is approved). In the
rush to neet this nmilestone the final LRMreview period between the
Draft 4 and Draft 5 LRM was shortened to 2 weeks. During this short
peri od over 258 recorded issues were raised by reviewers. In the one
week review period between Draft 5 and Draft 6 an additional 88 issues
were identified. Each of these should have been individually addressed
by the committees. Instead a quick triage of the incom ng issues was
performed by a single engineer, and any non-trivial issues were
forwarded to a single “chanmpion” in each of the conmmittees.

This triage and chanpi on process was a conpl ete breakdown of the
establ i shed procedures of presenting issues, com ng to consensus and
having a comrittee vote on the content. The specific individuals

i nvol ved did a phenonenal job of attenpting to end up with reasonabl e
content given this rate of input, but the process was certainly out of
control with the sole justification being conpletion of the standards
process prior to DAC. No nenber conpany woul d accept such a conplete
breakdown of the established decision nmaking processes. W believe
Accel l era shoul d not accept it either.

2.3 Lack of General Extension Philosophy and Requirements

Ext endi ng a ubi quitous | anguage |i ke Verilog nmust be done extrenely
carefully with backward-conpatibility being the forenost concern. W
believe that the first step in extending Verilog should be consensus on
the techni ques that should be used, and possibly fundanmental changes to
the | anguage to permt future extension.

During the SystenVeril og review process every tinme a new functiona
operation was required the debate began on whether it should be a
keyword, an operator, a systemtask, a nmethod, or something else. This
debate was undertaken for every single change individually and as a
result these concepts were applied inconsistently in different places.
Instead a fundanental discussion of when each of these techniques is
appropriate and whet her additional new techni ques coul d be used shoul d
have been the first and only discussion on this topic. The rules
established by such a process for classifying when operators, system

Cadence Design Systens, Inc. Page 7 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

tasks, methods, or keywords are appropriate could then just have been
foll owed, not revisited on every feature.

In the section 3 of this analysis many exanples of this lack of basic
agreenent on phil osophy and requirenments are found surroundi ng not only
operators but keywords, attributes, and pragnas.

2.4 Layering vs. Integration; Implementation vs. Design

Much of the content of SystenVerilog 3.0 and 3.1 is derived fromthe
donation to Accellera of portions of SuperLog and Vera. These | anguages
were certainly technol ogical progress in systemlevel nodeling and
verification arenas. However, the mantra throughout the commttee work
processi ng these donations has been “It was inplenmented that way in
Superlog (Vera) and therefore it is good”. This has resulted in a

| anguage where nuch of the ongoing activity has been to |ayer the
content of these | anguages on top of what already existed in Verilog
rather than to integrate the content into the | anguage. Often very
simlar concepts had different keywords in the | anguages (sonetines in
all three of Verilog, Superlog, and Vera) and i nstead of agreeing that
one of them woul d survive and be extended to satisfy the capabilities
of the other |anguages, all of them were added to the | anguage creating
duplicate functionality, increased conplexity and unnecessary keywords.

2.5 Missing Functionality

In the process of extending Verilog one nust be careful to extend al

rel evant portions of the |anguage. Although SystenVeril og has extended
the syntax of the |anguage, it neglected to update SDF, VPI, or VCD for
t he extended | anguage features.

2.5.1 No SDF Specification

System | evel nodels are witten (anong other things) to verify
functionality and system|level throughput. A critical conponent of
system | evel throughput is delays in and between conponents. SDF is
capabl e of expressing these delays with arbitrary precisions. Al ow ng
SDF annot ation of system|evel nodels would allow these performance
tuni ng parameters to be nodified sinply by changing SDF and not the
design, exactly as it is done for gate-level nodels.

Defining SDF for delays through interfaces, clocking domains, and
program bl ocks would allow this sort of use of SDF. However no

di scussi on of how SDF applies to these constructs is given in the
SystenVerilog LRM Wil e expanding this would be one solution, the
remedy preferred by Cadence is to collapse nodul es, interfaces,

cl ocki ng donmi ns, and program bl ocks into the existing nodul e construct
and sinply using the existing SDF specification (and elimnate nore
keywords al ong t he way).

2.5.2 No VPI interfaces

One of the top reasons for the success of Verilog as an HDL is the
exi stence of PLI and VPI. It allows users to wite their own sinulation

Cadence Design Systens, Inc. Page 8 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

ext ensi ons, design rule checkers, and internal tools. It also pronotes
a strong breeding ground for EDA startups to add significant value to

t he end-user by piggy-backing interesting new functionality on top of

standard simul ation interfaces.

Sone claimthat it is standard practice for the VPI to | ag behind the
speci fication of the |anguage extensions. This is indeed the case while
| EEE cormittee work is ongoing. First new | anguage additions are

di scussed by the Behavioral Task Force, and then the PLI Task Force
follows along with a VPI data nodel for it. However, the 1364 standard
was not deened to be ready for a ballot until the VPI had caught up and
was conpl et e.

Sone conmittee nmenbers also claimthat the new Direct Programmng
Interface (DPI) will mnimze the need for VPI. This is sinply not
true. VPI provides for walking the entire el aborated nodel. DPI only
provides a facility calling back and forth to ‘C at sinulation
runtime. A Direct Programring Interface is useful but does not in any
way supplant the need for VPI for every | anguage construct.

3 Technical Comments

This section contains a subsection for each chapter of the
SystenVerilog LRM Al though we do not have coments on each chapter
this organization will make it sinpler for readers to cross-reference
to the actual draft LRM Only the top section corresponds to the
speci fication chapter, not each sub-section

Many of the points brought out in these sections have al ready been

di scussed in detail in Accellera committee work and on the emi
reflectors, therefore in many cases detail ed descriptions of many of
these issues are not provided. These sections sinply point out the
areas where Cadence believes there are unresolved issues with a brief
description of the problem and/or our position.

3.1 Section 1 - Overview

This section provides only informative content that describes the
content of SystenVerilog 3.1; therefore there is no specific technica
feedback on this section. However, this section does enphasize that
SystenVerilog 3.1 is an extension of the I EEE Veril og 1364 standard.
Cadence continues to believe that this very process of Accellera
extending an existing | EEE standard outsi de of the | EEE working groups
is an unwi se decision. Accellera’ s work as an incubator for standards
where no industry standard exists is inportant work, but the creation
of conmittees separate fromthe | EEE comrittees for existing |EEE
standards can only serve to create divergence and confusion

Accel | era does provide an inportant role in the support of |EEE

st andardi zati on work through the funding of editing, conferences, web
space, and publicity activities. This is a very inportant role to
promote i ndustry wi de standards adopti on that Cadence whol e-heartedly
supports.

Cadence Design Systens, Inc. Page 9 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

3.2 Section 2 - Literal Values

The section on literal values extends literals in the | anguage to be
able to express the new data types in SystenVerilog. Note there is no
mention of howliterals relate to the new class types at all

3.2.1 Array and Structural Literal Syntax
Ref er ences: 2.7, 2.8

As of the Draft 5 LRM avail abl e when conm ttee nmenbers are being asked
to vote, there is no BNF given for the syntax of an array or structura
literal

Both the array and structure literals borrow initialization syntax from
‘C . The exanples given use {} as in ‘C which creates a syntactic
anbiguity with the existing 1364 concatenation operator. This is an
exanpl e of where the integration of Verilog content from another

| anguage is being |layered rather than integrated.

3.3 Section 3 - Data Types

One of the nost significant contributions of SystemVerilog is the
extensi on of data types. Cadence believes that data types in Verilog
shoul d certainly be extended, but that this should occur through a
careful specification of a type systemthat:

o Allows data types on both variables and nets

o Defines a small number of basic types

o Defines nechanisnms for creating aggregate types fromthe
basi c types

o Defines standard-defined types conposed of the basic types
using the same mechani snms that are utilized for user-
defined types

SystenVerilog data type's extensions do none of these things. Content
was taken from*‘C , Superlog, and Vera and | ayered onto the 1364

| anguage wi t hout begin integrated. This has created nunmerous technica
and stylistic problens for which descriptions are given bel ow.

3.3.1 Data type syntax

Ref er ences: 3.2

The syntax for data types has been extended in two different ways. The
first is to define a mechanismfor creating conposite or aggregate data
types. These include structures, unions, enunerations, arrays, and

cl asses. Although we have sone specific comments bel ow on how this
coul d be acconplished with fewer keywords and better integration

bet ween these type extensions, there is clearly a need for nore

conpl ete conposite type support in Verilog and SystenVeril og nakes
progress in this area.

The second nechanismis to define nunmerous new predefined types which
are defined as new keywords. These include: byte, shortint, int,

I ongint, bit, logic, void, shortreal, string and mail box. This addition
of new data types as keywords has numerous probl ens.

Cadence Design Systens, Inc. Page 10 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

The syntax defines these data types as specifying both the kind of
object (a variable), and the value the object can hold (an 8-bit 2-
state value for instance). This is consistent with how Veril og-1364
defines the basic reg and integer types, but as the use of types
increase in Verilog it is entirely too restrictive. In particular it
will quickly be necessary to allow these types to occur on nets as wel
as vari abl es.

Nets provide two inportant pieces of functionality. They all ow
resolution of multiple drivers, and they allow values to be schedul ed
with delay. We believe that it is beyond the current extensions to
Verilog to define resolution of conposite values (a la VHDL), but it is
not beyond scope to allow conposite values to occur on nets for
schedul i ng purposes. It will be extrenely natural to create a net of a
conposite value that represents interconnect between two systemleve
nodels. In particular the ability to schedule a delay for this value to
propagate will be extrenmely useful for performance and throughput

anal ysi s.

Foll owi ng the extension techniques in SystenVerilog today, if data
types were to be added to nets, then entirely new nanes for the types
will have to be created as was done by Verilog-AMS for the weal type.
This will only further conpound the problem of expl odi ng nunber of
keywords in the |anguage.

By defining these as new keywords a non-sustai nabl e | anguage extension
mechani smis being utilized. Instead, we would prefer to see these
necessary types defined as standard-defined types using the sane
extension nmechanismas is available to users. For instance:

typedef logic [7:0] byte;

Along with extensions to "include discussed |ater, these types could
then be “included in nmodul es where they are needed and nade visible. In
nodul es where they are not necessary they are not "included and
therefore do not pollute the identifier nanmespace or create backward-
conpatibility issues.

3.3.2 Integer data types
Ref er ences: 3.3

The i nteger data types (byte, shortint, int, longint, etc) in
SystenVerilog are notivated by the desire to add ‘C -like integer data
to Verilog. We agree with the need for this addition, but the nechanism
of addi ng new keywords as discussed in the previous section is not

mai ntai nable. It also has the sane failing the ‘C types do in the
presence of different width data types on different conpilers/operating
systems. Verilog integer data, in general, will be of a known nmaxi mum
width. Allowing the conpiler or OS to change this width will lead to
the sane portability issues that ‘'C prograns have across 32 and 64-bit
pl at forns.

The need to pass these data types fromVerilog to ‘C is well-

under st ood, but sinply using the sanme identifier for them does not
solve the problem An interface that defines the actual representation

Cadence Design Systens, Inc. Page 11 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

of these objects in Verilog so that they can be mani pul at ed
meani ngfully in *C is necessary. More comrents on this concept are
given in the section on DPlI (see 3.26) bel ow

This section goes on to state that 2-state types are at least in part
notivated for the desire for faster sinulation. Cadence absolutely
supports the addition of a basic 2-state data type, but cautions

agai nst setting the expectation that they will sinulate significantly
faster than 4-state data types. The overwhelm ng factor in sinulation
performance is the actual |oading of a data value. On today’s conputer
architectures, if a value is available in cache then the load is very
fast, if not then it can take a significant nunber of clock cycles.
Arithmetic conputations on data once they are |oaded into |ocal caches
or registers are extrenely fast on today’s processors; the arithnetic
operators conme alnost for free. The w despread use of 2-state data may
decrease the total menory footprint, having an effect on the cachi ng of
data, and therefore an inpact on capacity and performance, but the
performance fromdoing | ess arithmetic calculations on a 2-state val ue
will be nininal

3.3.3 Real data types

Ref er ences: 3.5

The new keywords for new real data types suffer fromexactly the same
probl ems created by new integer data types. Instead a system for
defining floating point and fixed point representations should be
constructed so that users can define the real nunbers they need. An
excel | ent paper was presented at DVCon 2003 on this topic and should be
consi dered as a nechanism for extending the floating point nunber
system The work in this area can be found at http://ww.eda. org/fphdl

3.3.4 Void data type

Ref er ences: 3.6

The void data type is notivated by the changes to the definition of
Verilog functions. In particular if a function returns no value or if a
function is used as a statenent and the returned value is to be

di scarded (i.e. cast to void) then this type is necessary. Cadence
believes that the SystenWVeril og extensions to functions to be used in
this way are not a good extension of Verilog as expl ai ned bel ow (see
3.10). If these extensions are not made, then the void type is
unnecessary and its renoval elinm nates yet another keyword.

3.3.5 String data type

Ref er ences: 3.8

One of the general issues discussed above was the |ack of a consistent
application of extension technology. Strings and the nethods defined on
themare a classic exanple. If strings are being added as a fundanenta
data type then operators or systemtasks should be defined to operate
on themas is done for all other Verilog data types. The extension of
met hod syntax to objects that are not defined as classes creates a
situation where it is difficult for a user to renenber how the
extension was made. This nakes the | anguage harder to wite and |earn
Ei ther strings should be defined as a new standard-defined class and

Cadence Design Systens, Inc. Page 12 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

that class would contain these nethods, or the operators on strings
shoul d be defined as system functions.

There is also not sufficient integration of the string type into the
direct programm ng interface. The relationship to a ‘C char * is not
sufficiently specified. For instance is a SystenVerilog string
termnated by a ‘\0" character?

3.3.6 Event data type

Ref er ences: 3.9

SystenVeril og extends naned events by pronoting themto a full-blown
data type including assi gnnent and conpari son operators. Allow ng an
event as a variable is a fine extension of Verilog and is required to
all ow events to be enbedded in other data types such as a struct.
However, SystenVerilog defines events as a “handle to a synchronization
object”. The new events are in effect a new dynam cally allocated
object to which the user is given a handle. These handles are a hybrid
bet ween the dynam ¢ behavi or now defined in classes and the statically
al l ocated behavi or of all other data types.

This is a further exanple of where an idea, in this case dynamc
allocation, is only included in SystenVerilog in |imted contexts

(cl asses, strings, events). Instead we would prefer to see the
specification of how all types can be both statically and dynam cally
all ocated and the interaction of these techniques cleanly defined. The
pi eceneal addition in limted contexts nmakes the definition very
difficult and will require revisiting the issue later to define dynam c
allocation for all other types.

3.3.7 Enumeration types
Ref er ences: 3.11

Enunmerations in SystenVeril og have been dealt with in two separate
committees. The sv-bc has been attenpting to clarify the meaning in
SystenVerilog 3.0, while the sv-ec has been extendi ng enunerati on types
to correspond with how they were dealt with in the Vera donation. This
has |l ed to endl ess debate about the intent of enuneration types. The
LRM still contains | anguage |ike “SystenVeril og enunerated types are
strongly typed”. However, they are also allowed to be assigned into

uni ons, and casts can assign out-of-range values into an enumeration

Cadence believes that Verilog should not contain any “strongly-typed”
i ntegral values. Enunerations should sinply be treated as a set of
named constants that nmke designs easier to read and allow explicit
encodi ngs of pneumpnic identifiers. It will be incredibly common for
val ues specified as enunerations to be assigned into other integer
obj ects, registers, or assigned onto nets. Therefore, creating any
guarantee that the opposite assignnment will always be legally in the
range of an enuneration will create an inplenentation burden to

guar antee that non-consecutive encodi ngs of an enuneration val ue are
checked on assignnent. As a debug or lint check, this sort of runtinme
checking may or may not be enabled by a vendor, but it is not in the

Cadence Design Systens, Inc. Page 13 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

spirit of Verilog to do this on every assignment and coul d have
signi ficant performance inpact.

Enuner ati ons are another case where new operators were defined as

net hods on objects that are not classes. Either this should be adopted
for all data types and retrofitted into existing Verilog types or
limted only to cl asses.

3.3.8 Structures and Unions
Ref er ences: 3.12

The addition of a struct type is absolutely a required addition to
Veril og and Cadence supports its addition. We do however have sone
obj ections to some of the specific content.

Speci al considerations are given for 2-state and 4-state vectors in
unions. |If an object contains two overl appi ng uni on nmenbers, one of
which is a 2-state object and one of which is a 4-state value, then
they are specified as being interchangeable. For instance you can wite
into the 4-state value and read it out as a 2-state value. |If the
original value contained no ‘X or “Z values then you should get the
same val ue out. This special case poses an extrene inplenentation
burden and just does not make sense. The purpose of 2-state is, at
least in part, to allow a nore conpact representation. This specia
case woul d cause a vendor to have two separate inplenentations of 2-
state based on how the object overlaid 4-state objects.

A second consideration, related to the next section on classes, is the
| ack of a method of dynamically allocating structure objects (or any
type for that matter). As soon as a struct type is added to the

| anguage, then you i medi ately have the power to construct conplex data
types that require some form of dynamic allocation. During the
SystenVeril og devel opment process different versions of “handles”,
“references”, and “pointers” were discussed. Regardl ess of the
term nol ogy used, the creation of dynam c data structures should be a
fundanment al extension of structs. The best solution for this, in our
opinion, is to unify the struct and class into a single extension
mechani sm as di scussed in the next section.

Finally, the specification of struct inplies conpatibility with ‘C .

"An unpacked structure has an inplenentation-dependent
packing, norrmally matching the C conpiler.”

The sv-cc conmittee prepared a nore detail ed description which was
never discussed in the sv-bc conmrittee. No resolution has been nade to
date therefore this | eaves this section poorly defined: what does
“normal | y” nmean? The sentence about unpacked structs should either be
renmoved or a conplete description for all conplex data types should be
added in the ‘C APl section where it matters.

3.3.9 Classes

Ref er ences: 3.13

Cadence Design Systens, Inc. Page 14 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

Cl asses form a fundanental extension to the type system by all ow ng
dynam ¢ nmenory all ocation, single inheritance and data specific

met hods. The success of | anguages such as ‘e’ and Vera has shown how
these concepts are extrenely useful in verification environnents. The
fundamental issue Cadence has with classes today is that they are
restricted to being dynamically allocated. Al other data types in
Verilog are statically allocated. W believe that if an allocation
mechani sm for structs is created and a semantic for static classes is
defined, then the two types can be nerged into a single construct.
Structs are sinply classes that do not inherit fromany other class,
and do not define any nethods.

This unification will be nobst useful when you consider systeml eve
nodel s instead of just testbenches. Today with classes and structs as
separate itens the user nust choose the |anguage construct based on the
type of nenory allocation they want. If they begin by nodeling with

cl asses to get dynamic nenory for a specific data structure (perhaps an
infinite |l ength queue) at sone point they will have to change to a
struct type as they refine the design to a fixed Iength, statically

al l ocated piece of menory. If classes were allowed to be statically
decl ared, and structs dynanically allocated, then the user would

i nstead make the nore intuitive decision on whether they wanted to
utilize object-oriented programm ng techniques and then could stick
with that decision as they refined frominfinite to fixed | ength.

3.4 Section 4 - Arrays

Ref er ences: 4

For the nost part, the content of the chapter on arrays is non-
controversial and extends existing 1364 in a reasonable way. There are
a few outstanding i ssues that the conmittees have di scussed that we
bel i eve need further resol ution

3.4.1 Longest Static Prefix
Ref er ences: 4

The concept of the sensitivity of a process when an array is a part of
the sensitivity list can have both performance and conplexity of

i mpl enmentati on considerations. There was significant debate in the sv-
bc comrittee around what the rules for deternmining the |ongest static
prefix of an array and the effect on expressive power and

i mpl enent ati on conpl exity/ performance. The final resolution was that
this concept was left unspecified; this will create ambi guous
interpretations in different inplenentations which will hinder vendor
interoperability.

3.4.2 Dynamic Arrays

Ref er ences: 4.6

In SystenVerilog 3.1, dynamic arrays were introduced through Vera and
were restricted to be one dinensional arrays. The array size is all owed
to be set or changed at runtine. They can be decl ared anywhere and
allocated with the new nethod. The LRM al so says that:

Cadence Design Systens, Inc. Page 15 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

"A subroutine that accepts a dynam c array can be passed a
dynanmic array of a conpatible type or a one-dinensional fixed-
size array of a conpatible type."

The DPI interface adds the concept of "open arrays" for denoting
unconstrained array types which can only be the type of DPlI function
formal argunents. This allows one to wite general purpose ‘C
functions which can handl e arrays of any size. Open arrays have the
same syntax as dynamic arrays ([]) but allow open sizes for any and

mul tiple array dinmensions. The size of the open dinmension is detern ned
at runtinme by the actual argunments to the function call

This i ssue of open versus dynam c arrays was discussed at length in the
sv-cc comittee. The sv-cc comittee felt that the current restrictions
on dynanmic arrays should be renopved and felt that the nanme dynamc
array was a msnonmer, when the dynamc array syntax [] appeared as a
task/function formal argument. Renobving the restriction on the nunber
of di nensions and changi ng the name of dynamic to open arrays was

di scussed.

This illustrates the |lack of synchronizati on between the sub-technica
comrittees resulting in inconsistency in the LRM If both dynam c and
open array term nology stay in the standard and use the sane syntax,

users will be terribly confused. In one case, such an array wl |
represent a dynamically allocated one-di nensional array, in the other
(with the same syntax) it will refer to an unconstrained formal array
t ype.

Not e that Cadence does not necessarily believe that it should be the
purpose of a direct Cinterface to deal with generic open arrays (see
section 3.26.7 for details). Such open arrays have to be accessed in an
abstract way through DPlI query and access functions which causes
overlap with existing VPI functionality.

3.4.3 Associative Arrays
Ref er ences: 4.9

Associ ative arrays are defined with limtations on the data types that
can be used to index the array. The allowed types are integral, string,
cl ass, packed arrays, and packed structs. This is another exanple of
l[imting what could have been defined as a generic | anguage extension
Defining associative arrays such that any type can be used as the index
woul d actually have been a sinpler process than restricting it and
woul d be extrenmely useful for systemlevel nodels. In particular

i mpl ementing content-addressabl e menory where the items being stored
may be any arbitrary type would be extrenely hel pful. There are sone

i mpl ementation concerns but in a sufficiently abstract nodel the
expressive benefit and sinplicity outweigh the inplenmentation

conpl exity.

Associ ative arrays indexed by class al so have an issue that we believe
nust be addressed. The traversal order of iterating across all the
items in the array is specified as “deterministic but arbitrary”. In
conmittee discussions this was deenmed to nean that the same sinul ator
will do the traversal the same way every tinme, but different sinulators
mght yield different orders. We believe that this will be a ngjor

Cadence Design Systens, Inc. Page 16 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

probl em for custoners utilizing nore than one vendor’s sinulation
tools. Just like $randomin the 1364 standard, custonmers will expect a
way to get determnistic results across all vendors.

Finally, Associative arrays are also another |ocation where nethods are
defi ned on non-cl ass data.

3.5 Section 5 - Data Declarations

3.5.1 Data Declaration Syntax

Ref er ences: 5.2, 10.2

SystenVerilog 3.1 has allowed the use of static as a lifetine
declaration in automatic tasks and functions. This exact functionality
was consi dered and rejected by the | EEE 1364 wor ki ng group. Note that
this is not a case where 1364 rejected the functionality because there
was just no good definition of what it would do, or there was
insufficient tine to consider the proposal. The exact sanme content was
proposed, voted on, and rejected. The construct in question allows a
variable to be declared as static in an automatic function or task. It
is always possible to sinply declare the variable outside the
function/task in a nodule and then reference it in the function/task.
This places the static object where it belongs (i.e. in the nodule) and
the automatic data where it belongs (i.e. in the task/function).

This is the kind of extension that Cadence expects will be revisited by
the EEE and that their original decision on this issue will stand.

Until this issue is vetted by the 1364 group a user adopting this style
is in danger of having their code not work in the future 1364 standard.

3.5.2 Constants
Ref er ences: 5.3

A new form of constant that can exist in tasks and functions has been
added to SystenVerilog. This in general is a harm ess addition and does
add sone expressive power; however the specification is inconplete when
tal king about initialization of constants. The specification explicitly
all ows the use of hierarchical names when specifying the value of a
constant but does not properly guard against circular references

bet ween constant initializations. Due to defparans, Verilog already
suffers fromthis anbiguity in definition of constants so this adds no
addi ti onal anbiguity; however, it would have been nice to avoid this
known probl em by nmeking hierarchical circularity illegal in this case.

3.5.3 Variable Initialization
Ref er ences: 5.4

The specification of variable initialization in SystenVerilog is:

“I'n Verilog-2001, an initialization value specified as part of
the declaration is executed as if the assignnment were nade
froman initial block, after simulation is started. Therefore,
the initialization nmay cause an event on that variable at
simulation time zero.

Cadence Design Systens, Inc. Page 17 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

In SystenVerilog, setting the initial value of a static
variable as part of the variable declaration shall occur
before any initial or always blocks are started, and so does
not generate an event.”

The argunent nmade in favor of this change is that it sinply makes the
use of variable initialization in a procedural context determnistic.
Thi s argunment has nothing to do with why we believe this is a non-
backward conpati bl e change. The problemw th this change of
initialization is that in the Verilog-2001 nmethod an event is
generated. In the SystenVerilog nethod, no event is generated. This
difference, as explicitly given in the LRM above, has a severe inpact
on gate-level nodels and the behavi or of continuous assignnments, not
procedural contexts as argued.

Consi der the followi ng exanpl e:

module init;
integer var_i = 1; /[A variable with an initial value
wire [31:0] wire_i; // A wire

assign wire_i = var_i; // Continuously assign the wire the variable’s value

initial #1 $display("wire_i is %d\n", wire_i); // display the wire
endmodule

In Verilog 1364, the initial value on var_i is guaranteed to produce an
event. This event is critical because it causes the continuous
assignnment to the wire wire_i to execute. Wthout this event, the

conti nuous assi gnment does not execute at time O and therefore the
initial value of the variable would not propagate to the wire, |eaving
the wire at the default value of 32'bz. The exact sane problem woul d
occur if a gate were substituted for the continuous assignnment above.

In Verilog 1364 the code sni ppet above would produce a 1 on the wire_i,
in SystenVerilog a 32'bz would be produced.

This is not a trivial problem The vast mpjority of Verilog nodul es
have this style of code wherein an internal value is cal cul ated and
stored in a register and then the value is propagated either through a
conti nuous assignment, buffer, or port onto a wire. Any of these forns
of interconnect would not propagate the initial value in SystenVeril og.
This woul d cause nost devices to propagate the default value of ‘z’ on
a wire instead | eading to catastrophic sinulation failures.

3.5.4 Automatic Variables
Ref er ences: 5.5, 10.2

In addition to reintroducing the previously rejected static keyword in
tasks and functions, SystenVerilog also allows explicit declaration of
sonme data elenments as automatic. Cadence sees absolutely no need for
this extension. Variables in automatic tasks and functions are al ready
automatic so no explicit indication is necessary. Having autonmatic
variables in any other static context just does not make sense. What
does it nmean to call a static task and have sone of the data in it

al l ocated automatically? The only purposes we can possibly imagine are

Cadence Design Systens, Inc. Page 18 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

to make the data not available as a hierarchical reference, or to
ensure that the itemis initialized each tine the function/task is
called. If a way to create data that cannot be referenced
hierarchically is desired then we should extend Verilog to have public
and private data. This has al ready begun in the section on classes.
Initialization is also easily handled by just initializing the data
procedurally in the task or function.

Note that the autonmatic declaration is even allowed in initial and
al ways bl ocks. We have no idea why these purely static contexts need to
have automatic data

3.5.5 Variables in Unnamed Blocks
Ref er ences: 5.5

SystenVeril og adds the capability to declare objects in unnaned bl ocks
as well as in named bl ocks. This data is visible to the unnamed bl ock
and any nested bl ocks below it. Hierarchical references cannot be used
to access this data by nane.

We have several objections to this. First, the behavior of Verilog such
as VCD dunping, $display (%mn etc. is not described with respect to

t hese variables. Secondly, the original intent for allow ng variables
decl ared in unnanmed bl ocks was to be able to hide data decl arati ons
from scopes above. The sane concept is brought into the | anguage

t hrough cl asses which have the possibility of declaring public,
protected or private data declarations. These two nmethods of declaring
private data should be reconcil ed.

3.6 Section 6 - Attributes

Ref er ences: 6

The purpose of this section is to define attributes on interfaces and
nodports. Cadence has no issues with the content of this section. W do
believe this section is probably conmpletely unnecessary as attributes
shoul d just be defined in the syntax for interfaces and nodports.

3.7 Section 7 - Operators and Expressions

SystenVeril og borrows many operator and expression concepts from*‘C .
Whi |l e some of these concepts are useful and allow for nore succinct
code, others actually introduce coding styles that can lead to

m sunder st andi ngs or even anbi guous behavi or between different

i mpl ementations. Specific exanples are given bel ow.

3.7.1 Assignments in expressions
Ref er ences: 7.3

SystenVeril og now all ows assignments in expressions. The specific
exanple of given in the LRMfor this construct is:

If ((a=b)) b=(a+=1);

Note that this single line assigns two values to ‘a’ and tests it.
Cadence believes this sort of shorthand is borrow ng sone of the worst

Cadence Design Systens, Inc. Page 19 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

features of ‘C . Mst ‘C coding styles guidelines explicitly disallow
this formof assignment in ‘C and adding it to SystenVerilog adds no
expressi ve power.

3.7.2 Increment (++) and Decrement (--) in expressions
Ref er ences: 7.3

Al so brought from®‘C are the increnent and decrenent operators. In
general, Cadence believes these are a reasonable addition as statenents
in the | anguage, but there inclusion in expressions creates syntax that
is easily interpreted anmbi guously. The SystenWVeril og LRM says

“The ordering of assignment operations relative to any other

operation within an expression is undefined. An inplenmentation

may warn whenever a variable is both witten and read-or-

written within an integral expression or in other contexts

where an inplenentation cannot guarantee order of evaluation.”

We believe that if this new construct is so ill-defined that it nust
have such a caveat explicitly attached to it in the LRM then it should
not be added in the |anguage. Auto-increnent and auto-decrenent in
expressi ons shoul d be disall owed.

3.7.3 Built-in methods
Ref er ences: 7.10

The concept of built-in nethods deserves recognition for creating a
construct that extends the |anguage wi thout creating conflicts with the
exi sting operators; however there are sonme issues with built-in nmethod
definitions.

The first issue is that the existing hierarchical ‘.’ operator is used
to separate an object from nethods called on the object. This foll ows
t he conventions in ‘C++ and Java, but the pervasive nature of

hi erarchi cal references in Verilog nmake it nmore confusing in Veril og.
This problemis conpounded by the fact that nethods which take no
argunents have been allowed to have the parenthesis be optional when
the nethod is called. An expression such as:

r=a.b.c

Coul d either be a hierarchical reference or a call of a nethod on the
object a.b. In the nmost extrenme case, this could be a call to a nethod

on the object a, followed by either a hierarchical reference to ‘c’ or
anot her nethod call. These options could be witten as:
r=a.b.c()
or
r=a.b().c
or
r=a.b().c()

This anbiguity could have been clarified either by making the method

operator sonething other than “.’, or by requiring the () on nul
argunent |ists.

Cadence Design Systens, Inc. Page 20 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

The second issue with built-in nethods is that they are not

differentiated in any way from user-defined methods. In future Veril og
revi sions new methods will certainly be added by the standard. A unique
nanmespace for the methods defined by the standard should be created so

that they will not conflict with user-defined nethods. The standard
shoul d prefix all standard-defined nmethods with a unique character such
as ‘'$, or ‘_'. User-defined nmethods should be precluded from using

these identifiers for nmethods thereby ensuring that conflicts in the
future will be conpletely avoi ded.

3.7.4 Literal expressions
Ref er ences: 7.12, 7.13, 7.14

There are three sections that define how unpacked array expressions,
structure expressions, and aggregate expressions are dealt with. Al of
these expression forns use the {} notation to formthe expression. No
BNF syntax description for these expression types is given in the LRM
This is essentially the sanme omi ssion as was nentioned previously by
not providing the BNF for structure or array initialization
expressions. W expect that when BNF for these expressions is provided
that there will be a syntactic ambiguity between these three classes of
initializers and the existing Verilog concatenation and replication
operators.

A statenment such as
x={1, 0, 1};

could either be a concatenation being assignhed to any packed type, an
assignment to an unpacked struct, or an assignment to an unpacked
array. Only by exam ning the left-hand side of the assignment can the
context be determ ned. This problemis even worse when a literal is
used as an argunent to a task.

T({10 1})

In this case, only after el aboration when the specific task being
called is resolved and its argunments can be exanmi ned can the neani ng of
the literal be deternmined. This will lead to error nmessages very late
in the conpile flow and could inpair optimzations because such
deci si ons nust be deferred.

3.8 Section 8 - Procedural Statements and Control Flow
Ref er ences: 8

SystenVeril og adds sonme of the procedural statenents that exist in ‘C
but that are not available in Verilog. Sone of these such as
‘continue’, and ‘return’ are sinple changes supported by Cadence;
however the behavioral extensions go far beyond these sinple extensions
and create keywords where they are unnecessary, and have possibly very
signi ficant negative perfornmance inpact.

3.8.1 Unique/Priority Keywords

Ref er ences: 8.4

Cadence Design Systens, Inc. Page 21 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

SystenVeril og adds the keywords unique and priority in front of if and
case statenments to indicate that the individual branches should have
specific relationships. The unique relationship indicates that the
branches do not overlap, and the priority relationship indicates that
they should be evaluated in priority order. These are roughly
equivalent to the comonly used parallel and full case pragnas.

This is a case where keywords are bei ng overused. Verilog already
contai ns a nechani sm whereby informati on can be associated with a given
statenment. That mechanismis attributes. A reasonable way of adding
lint-1ike semantic checks to any statenent is to add standard-defined
attributes that nust be interpreted by tools. For instance if a

conpl etely new nanespace canme into existence for standard-defined
attributes, it mght begin with % So if a %unique attribute was
defined for SystenVerilog then instead of:

unique if (XXX)
t he synt ax
(* %unique *) if (XXX)

could be used. Since this alternative adds no keywords it is a
significantly better enhancenment to the | anguage while capturing al
the sane information. Simlar to extending standard-defined nethods,
t he establishnment of standard-defined attributes allows themto be
created in a new private nanespace so that they will never conflict
with user-defined attributes or identifiers of any kind.

The uni que and priority keywords are the first exanples thus far that
add lint-like capability into Verilog in the form of keywords. Cadence
believes that this is inappropriate due to the inpact on backward
conpatibility, and that standard-defined attributes or pragmas could be
used equal ly as effectively with many fewer conflicts.

3.8.2 Performance of Unique
Ref er ences: 8.4

A second concern with the unique keyword is that it can have a
potentially severe inpact on simulation performance. In the worst case,
in order to detect conflicts between each and every branch of an
if/case statenent, every condition in every branch would have to be
eval uated every tinme the statenment is encountered. Sonetinmes static
anal ysis of the branches could be used to limt this inpact but the
conplexity of this optimzation is substantial and often all branches
woul d need to be eval uated.

3.8.3 Final blocks

Ref er ences: 8.7

SystenVeril og adds an interesting feature, the final block. The fina

bl ock executes at the end of simulation and is provided to allow a user
or application to summarize behavior or coverage prior to exiting
simulation. This is certainly a worthwhile addition to the | anguage.
Cadence believes that the specification of these blocks is inconplete.

Cadence Design Systens, Inc. Page 22 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

Fi nal bl ocks are not prohibited fromassigning to registers or wires in
any way and if they do performthese assignnents, the behavior is
undefined. If final blocks are allowed to do assignnents (even in zero-
del ay) then they may actual trigger additional simulation cycles such
that the summary i nformati on gathered nmay be inaccurate.

Fi nal bl ocks should be defined at a m ninumas not allow ng assignnents
to any object to which any other construct is currently sensitive.

3.9 Section 9 - Processes

SystenVeril og defines new forns of processes that extend the
functionality available in always and initial blocks. W believe that
nost of these are inproperly forned extensions that could have been
acconpl i shed by adding infornmation to the existing constructs rather
than inventing entirely new forms. The details are provided bel ow

3.9.1 Ordering requirement on final blocks
Ref er ences: 9.1

SystenVerilog contains the follow ng statenent:

“SystemVeril og does not specify the ordering [of fina
bl ocks], but inplenmentations should define rules that wll
preserve the ordering between runs.”

Cadence is unclear on exactly what we are being required to inplenent
here. Between which runs are we required to preserve the ordering of
final blocks: nultiple runs of the same design with no changes; runs
where only behavi or changes are made; runs where structural changes are
made; runs where one previously sinulated block is conpletely subsuned
i n another block? W believe that if the |anguage can not define an
ordering, then no nention of the ordering should be nade at all

3.9.2 Always_comb, always_latch, always_ff as semantic checks

Ref er ences: 9.2, 9.3, 9.4

SystenVeril og adds three new forns of always bl ock by introducing new
keywords. These new forns inply a coding style that the block is
conbinatorial logic, a latch, or a flip-flop. Identifying the intent of
an always block in this way does allow static and dynam c checks to be
performed to ensure that a design criteria is being nmet, and nay all ow
both sinmulation and synthesis tools to optim ze the block and achieve
better quality of results. However, using a keyword for this purpose is
i nappropriate. It adds unnecessary keywords, and is not a long-term
sust ai nabl e nmet hod of extendi ng the | anguage.

Once again, we would return to the existing attribute nechanismto
associ ate additional information with a statenent. That is exactly what
attributes are for; Verilog should begin to use them as standard-
defined attributes. In this case sonething |ike:

(* %comb *) always
(* %latch *) always
(* %ff *) always

coul d be used.

Cadence Design Systens, Inc. Page 23 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

We call the keyword method a non-sustainable method for extension
because it does not allow nmultiple characteristics to be associ ated
with the same bl ock. For instance, inagine a future extension that
woul d all ow an always block to run in a specific region of a sinmulation
cycle. Instead of introducing a new keyword (such as al ways_observe) to
do this, an attribute on the block could be used.

(* %bserve *) al ways

Then if you had a bl ock which was both schedul ed and conbi natori al
both attributes could be associated with it.

(* %bserve, %onb *) al ways

In the keyword nethod you woul d have to further expand the keyword
space with sonmething silly |ike always_observe_conb.

3.9.3 Always_comb sensitivity
Ref er ences: 9.2

Simlar to the @*) functionality of 1364, the always_conb block is
inmplicitly sensitive to all of the objects on the right-hand side of
any statenments in the bl ock. However, SystenVerilog takes this one step
further and requires an analysis of any functions called fromthe bl ock
and a tool nust create sensitivity to any objects referenced globally
by those functions. Note that this process is recursive so that any
functions called by those functions nust always be considered as wel |l
ad infinitum

The only case where a function can add to the sensitivity of the
always _conb is if it references an object as a hierarchical reference.
This is a dangerous coding style that adds side-effects to functions.
Because function calls thenselves can be hierarchical references that
may not resolved until after elaboration, a tool has no idea where a
given function definition is used when that definition is parsed. In
order to add this check to always_conb, every function would be
required to keep a list of any objects that are referenced

hi erarchically. Then at code generation tine, all possible call chains
woul d need to be anal yzed recursively to detect if a function with a
side-effect is called and that hierarchical reference would need to be
added to the sensitivity list.

Cadence believes that the inplenentation conplexity of this additiona
sensitivity check is not justified by the expressive power added to the
| anguage. We woul d prefer to sinply produce a warni ng when we detect
functions with side-effects and if a user calls a function with side-
effects froman always_conb they will have a potential source of error

3.9.4 Always_comb overlap with @(*)

Ref er ences: 9.2
The new al ways_conb statement is extrenely simlar to the existing @?*)

sensitivity in Verilog 2001. It has simlar sensitivity semantics as
di scussed in the previous section. However, always conb adds a |lint-

Cadence Design Systens, Inc. Page 24 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

like capability to ensure that the contents of the always block are in
fact combinatorial logic. We believe that the sensitivity should be
expressed in the sensitivity list as is done with the @*) syntax in
1364 and that the lint-1ike capability should be added as an attribute
as defined above.

In our opinion, the IEEE will al nbst certainly reconcile these two
different forms into one.

3.10Section 10 - Tasks and Functions
SystenVeril og makes maj or changes to functions by bringing a

signi ficant amount of ‘C -like content into Verilog. ‘C is a |anguage
that only has functions, there is no concept of a task. Sinply
nodi fyi ng functions semantics significantly “because ‘C allows it”, is

not sufficient justification. The sections bel ow enunerate specific
obj ecti ons.

3.10.1 Function output and inout argument modes
Ref er ences: 10.3

Functions execute in zero tine and, except for hierarchical references,
can not have side-effects; their only effect is through their return
val ue. SystenwVerilog allows the nodes output and inout on function
argunments. This change blurs the line between tasks and functions in
Veril og and adds significant opportunity to have function side-effects.
If a subprogramis supposed to nodify rmultiple argunments then it should
be witten as a task or an automatic task.

3.10.2 Functions as statements
Ref er ences: 10. 3.1

A function is a mechanismin Verilog to create an operand that can
exi st in expressions. Wth the addition of automatic tasks in Verilog
2001, the sanme scope and lifetinme can easily be achieved. There is

sinmply no need for this change other than to be nmore ‘C -1ike.
3.10.3 Void functions
Ref er ences: 10.3.1, 10.3.2

Void functions are only necessary if functions have output argunents
and therefore act |like tasks. Since we object to addi ng output and
i nout argunments to functions, this change is sinply unnecessary.

3.10.4 Implicit task and function lifetime

Ref er ences: 10. 4

SystenVerilog allows the lifetinme specifier automatic and static to be
pl aced on a nodule, interface, and program bl ock declaration in order
to indicate that all tasks declared in that nodule will have the
specified lifetine. Placing this specifier on a nodule may be viewed as
a conveni ent shortcut, but it creates a non-local syntax that has
severe effects on the behavior of tasks declared in that nmodule. If for
i nstance, a nodule is declared in this fashion and then a utility task

Cadence Design Systens, Inc. Page 25 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

made visible in the nmodul e through a “include, then the task becones
automatic even though it was originally intent was static.

The lifetime of a task is a property purely of the task and the syntax
should be limted specifically to the task, not inherited from
el sewhere

3.10.5 Lack of shared library support in DPI naming

Ref er ences: 10. 6

The specification of the name for a function inported from*‘C to
SystenVeril og should include a conponent that represents a shared
library nane. Applications will commonly want to provide ‘C functions
in shared libraries as this is a common distribution mechanismin ‘C .
This will also serve to mnimze nane conflicts between nultiple
applications all running in the sane sinmulation

3.11Section 11 - Classes

Cl asses are a solid extension of Verilog. Languages such as e and Vera
have denonstrated the power that they can bring to verification
environnents. The only issue Cadence has with classes as they exist in
SystenVerilog is a lack of integration with the overall |anguage as
expl ai ned bel ow and in previous sections.

3.11.1 Additional common keywords
Ref er ences: 11.2

The definition of classes adds the keywords this, new, super, and
class. These are all common, short English words that will nost |ikely
conflict with identifiers in existing designs. A careful unification
with records and substituting operators for sone of these could
elimnate nost if not all of these keywords.

3.11.2 Parameterized class types
Ref er ences: 11.22

Cl asses allow the paraneterization of the type of objects declared
within a class. This is simlar to C++ tenplates and Ada generic
packages. Although this does add significant nodeling power, it also
adds extrenely high conplexity in inplenmentation. Cadence believes that
this tradeoff was not considered strongly enough in the addition of

cl asses of a parameterized type. This construct will have a potentially
seri ous negative inpact on conpile tine and simulation runtine.

3.11.3 Differences in struct and class
Ref er ences: 11. 24

The SystenVerilog LRM dedicates a section to explaining the differences
between structs and classes. They are listed as (edited for brevity):
1) SystenVerilog struct are strictly static objects
SystenVerilog objects (i.e. class instances) are
exclusively dynamc ..

Cadence Design Systens, Inc. Page 26 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

2) SystenVerilog structs are type conpatible so long as their
bit sizes are the same, thus copy structs of different
conposition but equal size is allowed. In constrast,
SystenmVeril og objects are strictly strongly-typed...

3) SystenVeril og objects are inplenented using handl es,
thereby providing Clike pointer functionality. But,
SystenVeril og disallows casting handl es onto other data
types, thus, unlike C, SystenVerilog handl es are guaranteed
to be safe.

4) SystemVeril og objects formthe basis of an Object-Oiented
framework that provides true pol ynorphism C ass
i nheritance, abstract classes, and dynami c casting are
power ful mechani sms that go way beyond the nere
encapsul ati on nechani sm provi ded by structs

Taki ng each one of these points individually, the first is sinply an
artifact of the limted way in which struct and class are defi ned.
Unification could make both be static and/or dynam c, essentially

uni fying them as a single | anguage construct. A struct would sinply be
a class with no inheritance or methods specified.

The second is partly untrue. Only packed structs have the capability of
bei ng assi gned based solely on width and this is a feature of a packed
struct. A class whose data elenments are packed in the sane way woul d be
a powerful nodeling capability for vector-like objects with unique
field nanes. Cadence views the fact that classes are strongly typed in
this way as a problem not a benefit. For unpacked data, structs are
not assi gnment conpatible based purely on width, but neither are
structs assignable to classes even if the data nenmbers are identical
each menber nust be individually assigned. This nmakes refining froma
class-1level specification to a struct-level realization in hardware
very difficult.

The third is not a difference between structs and classes at all. It is
sinply a statenent that it is possible to have relatively safe nmenory
all ocation conpared to ‘C . Dynanic allocation of other SystenVeril og
types could follow this exact same paradi gm and have exactly the sane

| evel of safety.

The last is really just a statenment that specifies that no attenpt was
made to integrate classes into the type framework that exists in
SystenVerilog, rather a new kind of type was invented that is
assignment inconpatible with all other object types.

3.12 Section 12 - Random Constraints

In support of directed randomtesting techni ques, SystenVeril og has
added capabilities for constraints and randoni zation. These are
certainly necessary extensions which Cadence supports. W do however
have a few issues with the details of the specification

3.12.1 Limitation to randomizing classes
Ref er ences: 12

In SystenVeril og, constraints and random zation can only be tied to
obj ects of a class type. Cadence believes that it should be possible to

Cadence Design Systens, Inc. Page 27 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

constrain and random ze any variable in a SystemVeril og design. It
shoul d not be required to adopt classes and inheritance in order to get
constraints and random zation. Note that |imted random zation is
heavily used today on non-class variables through $random(), adding the
ability to constrain these in conjunction with $random() woul d add
signification power.

3.12.2 Rand, randc in a class declaration
Ref er ences: 12.3

When a class and the nenbers of that class are declared in
SystenVeril og, the individual nenbers that are to be random zed nust be
declared with the keyword rand or randc. We believe that statically
associating the ability to random ze with the declaration of the type
is a mstake. In a given simulation it may be desirable to randoni ze
some nmenbers of a class and then randoni ze other menbers in a different
simulation. It may al so be that given two objects of the sane type you
want to random ze different nmenbers in the two different objects.

In order to random zing different nmenbers in different simulation (or
different nmenbers in the same sinulation) you would either need to
redecl are the class specifying different rand/randc memnbers, or declare
all the nmenbers that m ght possibly be random zed as rand/randc and
then use $rand_node() to turn off randoni zation of the specific nenbers
you do not want random zed.

We woul d prefer to have the ability to randonize a particular variable
dynamically as is done with constraints. In that way it is not
necessary to redeclare a class or over-specify random zation in order
to have a flexible specification

VWhen this was discussed in conmittee the rationalization was that there
are conpile-tinme optim zations that can be applied by knowi ng in
advance that these particular nenbers would be random zed. Sinmlar

i nformati on could be derived fromthat fact that nenbers were actually
constrai ned or passed to systemtasks that performthe random zati on.

Anot her alternative would be to place a standard-defined attribute on
the object to informthe conpiler that it may be random zed. This would
[imt the keyword pollution and convey the same information.

3.12.3 Constrain, inside, dist, extends, with, solve, before
Ref er ences: 12

All of these are exanples of operators that have been added as
keywords. They are al so short English words that have a significant
chance of overlapping with identifiers already used in designs.

3.12.4 Implementation of $urandom(), $urandom_range,
$srandomy()
Ref er ences: 12. 10

SystenVeril og adds three new random nunber generator system functions.
These provide thread and object stability for random nunber generation.

Cadence Design Systens, Inc. Page 28 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

The LRM states that these are determnistic in that the same seed will
produce the same values in each sinulation. This is an inportant
characteristic for regression testing. The LRM does not however provide
the specific algorithmor ‘C code for the generator. This m ssing
portion of the LRMw Il cause the generators to not be determnistic
across nultiple vendors nmaking it extrenely difficult for a given
customer to use nore than one simulator.

Note that this problemoriginally existed in | EEE 1364 and the $random
code was donated by Cadence so that all vendors could utilize the exact
same function and thereby guarantee stability even across vendors.
Synopsys has been requested to provide the sane |evel of detail by the
SystenVerilog commttee and has refused to do so. A |l ack of
clarification in this area has been shown to lead to tests that are not
portabl e across nultiple vendors. Synopsys clainms in responses to the
sv-ec that this $randomstyle is no | onger prevalent. W disagree.

3.13 Section 13 - Inter-Process Synchronization

This section adds to the synchronization primtives of Verilog. The
capabilities added are semaphore, mail box, and changes to naned events.

3.13.1 Semaphores

Ref er ences: 13.2

The addition of semaphores as a built-in class begins to slide down the
slippery slope of how far built-in data types can go. Cadence concurs
that the semaphore semantics nust be defined as a primtive
synchroni zer because it can not be otherw se expressed in Verilog. It

al so adds required functionality. However, we believe that these should
not be defined as new | anguage keywords. These shoul d be defined by
providing the class definition including prototypes for the nmethods in
the class in SystenWVerilog source form The definition of the behavior
of the nethods can be given in prose formin the LRMsince it is not
expressible in SystenVeril og.

The SystemdVerilog 3.1 standard includes the new specification of a
“include nechani smthat references portions of the standard defined in
header files. This nechani smwas introduced to support the List class
defined in Annex C. The prototypes for the Semaphore class shoul d be
simlarly defined in a new header file (such as Semaphore.vh) and
nodel s whi ch require semaphores should “include this header. This

avoi ds the addition of the keyword and allows for future extension of
Verilog using this extension nechani sm

3.13.2 Mailboxes
Ref er ences: 13.3, 13.4

The mail box is a second built-in class. The behavi or of nmil boxes is
conpl etely expressible in SystenVeril og. The LRM i ncl udes 4 pages of
prose that attenpt to specify the behavior a conpliant sinulator nust
have for mmil boxes. Cadence believes that this entire class definition
and the inplementation of the nethods should just be included as a
standard library elenment avail able using the new "include nechani sm
This woul d conpl etely di sanbi guate the inplenmentation of a mail box. The

Cadence Design Systens, Inc. Page 29 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

standard should specify that this is a reference definition of the
class and that vendors can provide a different inplementation as |ong
as the semantics renmain unchanged. This would allow highly optinmn zed

i npl ementati ons of mail boxes without introduci ng new keywords but with
i ncreased semantic specificity.

Note that this would al so provide the opportunity for other users or
vendors to provide alternative nail box inplenentations that nay be
annotated with val ue-added capabilities such as statistics gathering
and cover age anal ysi s.

3.13.3 Named Events
Ref er ences: 13.5, 13.7

Veril og named events have been extended to include a persistent state
that is testable throughout a simulation tine. The assi gnment and
conpari son operators are also now defined. This extension has confused
many revi ewers who where not a part of the SystenWVeril og Enhancenent
Committee. The LRM states “SystenVerilog events act as handles to
synchroni zati on queues”. These are defined as dynam cally allocated
gueues that conme into existence explicitly through the decl aration of
an event, and can be deallocated inplicitly when the event is no | onger
referenced. This dynam ¢ menmpory behavior is exactly the same behavi or
as objects of a class type, so rather than nodifying the existing
static named event nechanism a new class should have been brought into
exi stence with the specified functionality. The new triggered nethod
could then be declared as a nethod in that class. The functionality of
triggered would still need to be predefined because there is no way to
express it in native SystenVeril og.

3.14 Section 14 - SV 3.1 Scheduling Semantics

The Systemderilog LRM provides a nmuch better specification of the
Verilog simulation semantics. This new definition provides for a
partial ordering of execution regions into which each |anguage
construct can be scheduled. This flexible specification nodel allows
for future extension of the | anguage semantics by addi ng new regions
relative to these regions within the partial order. Wthin any given
region, the order of execution of statenents is not specified,
reflecting the existing non-determnismin Verilog. In general, this
section is exactly how we would like to see the simulation senmantics
speci fied. We do have a few specific coments bel ow.

3.14.1 Property Evaluation

Ref er ences: 14. 3

The LRM says:
“The observed region is for the evaluation of the property
expressi ons when they are triggered. It is essential that the
signal s feeding and producing all the clocks to the property
expressi ons have stabilized, so that the next state of the
property expressions can be cal cul ated determnistically.”

This is over-specified with respect to the content of Section 17

Assertions. In Section 17, it is specified that all variables and nets
referenced in a property are sanpled inplicitly at the beginning of a

Cadence Design Systens, Inc. Page 30 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

simul ati on cycle, thereby guaranteeing that properties always have a
stable value for all inputs. Cadence objects to this inplicit sanpling
of all inputs as given later (see References:), but it is a part of
the |l anguage as it stands today. In the presence of this sanpling it is
not necessary to delay evaluation of properties to the observe region
Si nce the val ues have been sanpl ed, the execution of the property can
happen at any tinme and the result will be exactly the same. This

del ayed execution places an undue burden on the inplenentation to
conformto an over-constrai ned reference al gorithm

3.14.2 Delaying of Pass/Fail Code

An assertion statement can have pass/fail code associated with the
assertion. The scheduling semantics say that this code is scheduled in
the reactive region of the sinmulation cycle. Cadence believes this code
shoul d be executed whenever the property is evaluated to ensure that
its execution matches the sinulation state precisely. Possible

m smat ches can occur through this del ayed execution. Assertions are
executed in the observe region. Between this region and the reactive
region, multiple sinulation cycles can occur and therefore the val ues
of sinulation objects can change. Wen conbined with inplicit sanpling,
this can lead to actually seeing at |least three potentially different
val ues for the sane variable: the value inplicitly sanpled, the val ue
when the property executes, and the value when the pass/fail code wakes
up in the reactive region. For instance:

typedef enum (S_UNKNOWN, S_ACTIVE, S_DONE, S_ERROR) state_g;
state_e state;

state_e next_state;

reg [31:0] data;

always @(posedge clk)
begin
Al : next_state = UNKNOWN; // Initialize next_state

case (state) /I compute next_state
S_UNKNOWN:
begin
next_state = S_ACTIVE;
assert property (|data!==1'bx) // assert the data has no Xs
else $display(“state: %d, next_state %d, data %d\n”,
state, next_state, data);

end
endcase
state = next_state; /I assign next_state to state

end

In this partial exanple, the values referenced in the assertion are
‘data’ and (through inference) ‘state’. These variables will be
implicitly sanpled prior to this sinmulation cycle and the val ue stored.
When the assertion executes it will use these sanpled val ues; however
when the $display statement is executed in the reactive region, the
current val ues, not the sanpled values, will be displayed. Between the
execution of the assertion and the $display, the variable ‘state’ wll
be reassigned due to the |ast assignment in this always bl ock, so

Cadence Design Systens, Inc. Page 31 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

‘state’ will always equal ‘next_state’, and sonme other process may have
assigned a different value to ‘data’

Assertion pass/fail code nust execute whenever the property is
evaluated in order to cone even close to accurately reflecting the
state of the simulation. Even with this, the fact that the assertion
uses inmplicitly sanpled data will nmake this difficult.

3.15Section 15 - Clocking Domains

Cl ocki ng domai ns add a powerful nechanismfor interacting with a design
in a cycle accurate manner. This concept originally was donated as a
part of Vera and therefore this chapter concentrates on their use in

t est benches. Cadence believes that this enphasis should be renoved as
they add a very powerful general nodeling capability; testbenches are
just one exanple of how this could be used. In general, we are highly
supportive of the capabilities provided but have sone comments bel ow on
specific content.

3.15.1 Verbosity of declarations

Ref er ences: 15

The cl ocki ng donmain requires that all variables and nets to be
referenced in the clocking domain are explicitly redeclared in the

cl ocking domain. This will quickly lead to cases, in a synchronous
codi ng style, where every variable or net is declared both inside and
out side the cl ocking domain. Some formof inplicit declaration or
nanespace inheritance should be included to nmake this |ess repetitious
(something simlar to “.*” and “@").

3.15.2 #1step will create non-deterministic IP
Ref er ences: 15.3

Anewtine literal step was introduced to handl e sanpling in clocking
domai ns. A #lstep sanple is defined by: “An input skew of 1step

i ndicates that the signal is to be sanpled at the end of the previous
time step.” This is a necessary semantic to have in clocking domains.
The problem cones fromthe fact that the #lstep literal itself is
defined as: “The step tinme unit is equal to the global tine precision.”

Since, step is a new general tinme literal, it can be used anywhere in a
description, for instance in a blocking assignnent. The value of this
delay will actually change depending on the design in which this nodule

is instantiated.

3.15.3 #0 semantics are misleading

Ref er ences: 15.3

A sampling input skew of #0 would intuitively be interpreted as a
sanpling at the beginning of the sinulation cycle; however this is
really the semantic of the #lstep skew. A #0 skew waits until the
observe region of the current sinulation cycle and then sanples the

val ues. This occurs after non-bl ocki ng assignnents have executed for
this simulation time. We believe it will be a conmmon error for users to
utilize #0 where they intend #lstep and get difficult to debug

simul ation errors. W also can not think of an exanpl e where observe
region sanpling is actually useful, therefore #0 shoul d be defined as

Cadence Design Systens, Inc. Page 32 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

t he beginning of this time and a special case should be created for the
unusual semantics of sanpling during the observe region

3.16Section 16 - Program Block

The program block is a prinme exanple of layering rather than
integrating functionality. The program bl ock was the construct
equivalent to nmodule in Vera. It provides a declarative scope for
shared objects and initial blocks to encapsulate the testbench. It also
inmplies a sinmulation semantic where all objects declared in the program
bl ock are delayed in their execution until the reactive region of

simul ation. This entire construct should have just been subsuned into
the existing nodule construct for the reasons given in the sections

bel ow.

3.16.1 Functional overlap with module
Ref er ences: 16. 1

As with the ‘interface’ discussed earlier, program bl ocks overl ap

al nost entirely with nodul es. They have ports, paraneters, create a
decl arative region, and can contain executable code. This is exactly
what nodul es do. The only difference froma nodule is that the only
behavi oral constructs they can contain are initial blocks and
tasks/functions, and that they have del ayed sinul ati on semantics. The
sections which foll ow show Cadence’s objections to these restrictions
in program bl ocks which, if renoved, will nmake nodul es and program

bl ocks i denti cal

3.16.2 Modeling restrictions
Ref er ences: 16. 2

Program bl ocks are limted to containing initial blocks and
task/function declarations to express their functionality. This concept
comes from Vera where all prograns were dynam ¢ objects and had to be
because they were integrated during sinulation by executing a PLI task
at runtinme. When integrating this into Verilog, this restriction is not
necessary; they will be el aborated and can be brought into existence
statically if that is the user’'s desire.

A test environment, when expressed in native Verilog, is expressed as a
system | evel nodel surrounding the device under test. This relationship
is naturally expressed by using hierarchy in the testbench itself as
well as in the nodel. Restricting program bl ocks by not all ow ng

hi erarchy in a program block will nmake this inpossible. This
restriction is just a legacy from Vera and adds no expressive power; it
just limts the user’s flexibility.

Simlarly, always blocks are the natural way to express a static
process that waits for sonething to happen. In Vera, all processes had
to be dynam cally brought into existence, therefore a single initia

bl ock whi ch spawned nultiple threads was natural. However, when this is
integrated into native Verilog, sonetines a static nodel created by an
al ways block is nore convenient. Again, this restriction is just a

| egacy from Vera and adds no expressive power; it merely linmts the
user’'s flexibility.

Cadence Design Systens, Inc. Page 33 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

3.16.3 Reactive semantics
Ref er ences: 16. 4

Any initial blocks or tasks defined in a program bl ock execute during a
special simulation region named the ‘reactive’ region. This executes
when all other events are conplete for this sinmulation cycle, but can
generate new events. This concept is simlar to the Read/ Wite
Synchroni ze cal | back available from PLI. Although we think having
access to this region from Verilog code is a reasonabl e extension, the
schedul i ng behavior is functionality relative to a process (always

bl ock, initial block, or task), not hierarchy. Creating a mechani sm
that allows a specific process to be reactive is the nore natural place
to add this concept, not by replicating and restricting the entire
concept of a nodule to get the behavior

This reactive behavior is also introduced in an attenpt to |et
testbenches “run last” in the sinmulation cycle. Over the years, nany
applications have wanted this functionality. A problem always occurs
however because no one construct can assunme it is running |ast when
nore than one is allowed to nake this request. Specifying this specia
status for program blocks is conpletely artificial and we believe it
can actually create verification problenms not solutions. A testbench
shoul d be coded to act exactly like a systemlevel nodel stinulating a
device under test. If the testbench is scheduled with specia
semantics, then it is not exactly enulating a device stinulating this
obj ect. When the device under test is enbedded in another nmodel it will
not be stimulated by objects with this special semantic therefore it
has not been accurately verified.

3.16.4 Termination of all simulation through $exit()
Ref er ences: 16.6.1

An initial block in a program block can signal it is done executing by
calling the new systemtask $exit(). When all program bl ocks present
have called $exit(), then this sinmulation ternm nates. W believe this
wi |l cause some sinmulations to prematurely exit unless users are very
careful. Imagine a situation where a user has an existing Verilog test
environnent, if they adopt SystenWVerilog and begin writing program

bl ocks they may have only a single program bl ock. When this one program
bl ock is done the user may call $exit(). Since it is the only program
bl ock the simulation will exit at this point even if the existing
Verilog part of their test has not conpleted.

The addition of $exit gives a single initial block an extreme form of
gl obal influence. By indicating that this one process is conplete it
can ternminate the entire sinmulation. If this initial block has enough
gl obal state information to know that this can safely be done, then
that initial block should call $finish and term nate sinmulation. If it
does not have that global state then it should only have influence over
its own environnent, not the entire sinulation

Once again, this is an artifact of Vera where the user utilized only
Vera for the testbench environnent and this may have been a natural way
of specifying conpl eteness. This however becones very dangerous when
integrated into native Veril og.

Cadence Design Systens, Inc. Page 34 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

3.17Section 17 - Assertions

Ref er ences: 17

The sections that follow contain Cadence comrents on SystenVeril og
assertions. They do not follow the convention of section by section
conment because our issues are nore about the interoperability of the
different assertion content than about the specific sections.

3.17.1 Complexity

Assertions are abstractions of behavior. They are intended to provide
a way to nodel behavior nore sinply, with | ess concern for the detail ed
i mpl enmentation. This allows the user to specify intent nore clearly,
and gives a reference nodel for behavior agai nst which the actual
detailed inplenmentation can be conpared. But System Veril og assertions
have lost this notion of simplicity. The definition is extrenely
conplex, tied to an underlying notion of how synthesis should be
performed, and tied to a new sinulation nodel that has added
significant conplexity to the | anguage. The rules for clock inference
are conplicated and provide nmany opportunities for errors in what
shoul d be a sinpler, nore abstract specification of behavior. Overall,
System Veril og assertions appear to be much nmore difficult to use than
plain Verilog (as in OVL), with little or no additional benefit.

3.17.2 Timing Alignment

Assertions are an abstraction of hardware. They should act |ike
hardware, but nore abstractly. |f the hardware design responds to a
clock in a given way, then the assertion needs to respond in the sane
way. Oherwi se the assertions and the hardware are out-of-phase with
respect to each other, and the assertion cannot function as an
abstraction of the hardware.

The sanpling semantics for concurrent assertions causes these
assertions to be out-of-phase with the actual hardware bl ock they are
abstracting. What's worse is the fact that this out-of-phaseness is
mandated by the | anguage, and it is difficult to undo the effect.
Furthernore, a nuch sinpler way of achieving this out-of-phaseness (if
it is actually desired by the user) is available - sinply delay
slightly the clock used hardware design with repect to the clock used
in the assertion, rather than pre-fetching all the signals in the
assertion. This approach is user-controllable, affects only the clock
signals, does not require an expensive and conpl ex data sanpling
semantics, and works within current Veril og.

The fact that SVA concurrent assertion semantics are defined so that
they are required to be out-of-phase with respect to the hardware
virtually guarantees that semantic alignnment of PSL and SVA will not be
possible. PSL assertions are defined in a manner that is consistent
with the execution of Verilog, VHDL, and other event-driven hardware
description | anguages. This enables abstract specification of behavior
i ndependent of the | anguage used to express the behavior, which will in
turn enabl e assertion-based specification and design. SystenVerilog's
out - of - phase definition will inhibit it's use for abstract

Cadence Design Systens, Inc. Page 35 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

specification and design, and Iimt it to sinple checking |ogic
enmbedded in System Verilog code.

The adaptation of assertion semantics to deal with sanpled val ues
represents a forced intermngling of functional and timng concerns.
For a | anguage that purports to be useful for systemlevel design, this
failure to abstract away timng is odd. The nore usual approach is to
separate timng and functional verification, to enable nore efficient
verification at nore abstract |evels of design.

The attenpt to avoid race conditions by using sanpled values al so

rai ses the possibility of false positives — the assertion, |ooking at
sanpl ed values, may fail to catch a race condition that will actually
affect the hardware. This will be the case unless the assertion and
the hardware bl ock the assertion represents both | ook at the sane
signals at the sane tine. |f the designer wants to make use of System
Verilog clock domains to cause the HDL code to sanple certain signals
before the clock edge, then the designer should wite assertions that
sanpl e those signals in the same manner, for consistency. |If
assertions were allowed in clock domains, this consistency would be
acconplished trivially.

3.17.3 Clocks

There is a major issue with the definition of clocks. System Veril og
concurrent assertions are only defined with respect to a clock edge.
Even a conbinational invariant concurrent assertion only has neaning at
the edges of the relevant clock. So given the concurrent assertion

"never clkl && clk2"

to attenpt to say that two clocks are nutually exclusive, there nust

al so be a global clock that controls '"sanpling' of these two specific
clocks, and the assertion will only be checked at ticks of that gl oba
clock. The fact that System Veril og concurrent assertions are not
defined for the base case of an uncl ocked system neans that invariants
such as this do not really express what we think they nmean. This is a
fundanental flaw.

Note that the formal semantics docunent does define rewite rules that
express the semantics of clocked concurrent assertions in terns of
equi val ent uncl ocked concurrent assertions, but the LRM does not all ow
users to wite unclocked concurrent assertions. Instead, it clearly
states that concurrent assertions are evaluated only at clock ticks:

(in Section 17.4)
"Concurrent assertions describe behavior that spans over
time. The eval uation nodel is based on a clock such that a
concurrent assertion is evaluated only at the occurrence of a
clock tick. The values of variables used in the evaluation are
the sanpl ed val ues. "

(and later in the sane section)

“An expression is always tied to a clock definition. The
sanpl ed val ues are used to eval uate val ue change expressions

Cadence Design Systens, Inc. Page 36 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

or bool ean sub-expressions that are required to deternine a
match with respect to a sequence expression. "

In general, the mapping fromthe fornmal semantics docunent to the LRM
semantics description is left undefined. |In particular, the mapping
fromthe (level-sensitive) boolean clock conditions in the forma
semantics to the (edge-sensitive) event controls used to specify clocks
in the LRMis not specified. The fact that this mapping is required
restricts the fornmal semantic definition, which is nore general than

t he LRM | anguage.

3.17.4 Syntax

The decision to use '##n' as the separator between elenents of a
sequence i s needlessly verbose, and in fact it nmakes sequences
difficult to read

The decision to use the sanme operator (##) with different delay val ues
for overl appi ng concatenati on and non-overl appi ng concatenati on (##0,
##1) means that both operations nust necessarily have the sane
precedence. This leads to non-intuitive semantics resulting from
associativity of ## determ ning which of the two is executed first.

The syntax for property_spec appears to require 'not' in conjunction
with a multi_clock_property_expr. This would nean that the foll ow ng
is not |egal

property P;

@a) |[=> @b);
endproperty;

3.17.5 Documentation

The LRM only vaguely defines the term nol ogy used to describe the
semantics of assertions. Wile a formal semantics has been defined by
the semantics group, it is not part of the LRM and the connection
between the LRM and the formal semantics is not at all clear

Consider the following text (in section 17.5, Sequences):

"A sequence is a list of SystenVerilog bool ean expressions in
a |linear order of increasing time. These bool ean expressions
must be true at those specific points in tinme for the sequence
to be true over tinme. A boolean expression at a point in tinme
is a sinple case of a sequence with tinme |ength of one unit.
To deternine a match of a sequence, the bool ean expressions
are eval uated at each successive sanple point to satisfy the
sequence. |If all expressions are true, then a match of the
sequence occurs."

In these two paragraphs, the followi ng term nology is used:

- true (applied to a bool ean)

Cadence Design Systens, Inc. Page 37 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

- true (applied to a sequence)
- match (applied to a sequence)
- satisfy (applied to a sequence)

This appears to define three different ternms relating to the evaluation
of a sequence — true, match, and satisfy — all apparently neaning the
same thing. Yet none of the definitions is conplete, since none of the
definitions consider the neaning of the repetition, counting, and

nt h_event operators.

Later, in 17.7.3, an additional termis introduced:

"The two operands of and are sequence expressions. The
requi renent for the success of the and operation is that both
the operand expressions nust succeed.”

'Success' here seens to nean the same thing as 'matched'. O does it?
The foll owi ng paragraph is either unclear or circular

“The context in which a sequence occurs deterni nes when the
sequence is evaluated. The first elenment in a sequence is
checked at the first occurrence of the clock at or after the
el ement that triggered evaluation of the sequence. Each
successive elenent (if any) in the sequence is checked at the
next subsequent occurrence of the clock."

What is "the element that triggered evaluation of" a sequence that is
t he begi nning of a concurrent assertion? For that matter, what is an
"element"? This termis undefined.

The LRM interm xes references to 'evaluating an expression at a clock
tick' and an expression 'being true at the nth sanple'. Such
i nconsi stency clouds the intent and confuses readers.

3.18Section 18 - Hierarchy

SystenVerilog 3.0 introduced new hierarchy concepts which cane in

t hrough the introduction of Superlog content. These include $root and
nest ed nodul es. These are yet again exanples of layering rather than
i ntegration as expl ai ned bel ow

3.18.1 Does not address program blocks
Ref er ences: 18

A general coment on this section is that it often refers to both
nodul es and interfaces. Statements such as “All nodul es and interfaces
nust be parsed before el aboration” are comon throughout the chapter
SystenVeril og now adds program bl ocks and they nust be included in each
of these places. Rather than repeat this in all places, Cadence would
prefer if both interfaces and program bl ocks were nerged wi th nodul es,
but as long as they are not, these references should be fixed.

3.18.2 $root

Ref er ences: 18. 2

Cadence Design Systens, Inc. Page 38 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

The $root scope creates a single top-level scope in Verilog. W believe
this is a disastrous addition to Veril og.

3.1821 Separatecompilation

Many simul ation vendors and all synthesis vendors are now supporting
separate conpilation of Verilog source files. Using this technique,
only portions of a Verilog design are provided to the conpiler at any
one time. These pre-conpiled units can then be conbined | ater during
el aboration into a single hierarchy. The primary capability of Veril og
that allows this nethodology is that all objects are contained in
nmodul es. The addition of $root breaks this paradigm |f objects or
statements are declared in the $root scope, then it becones extrenely
difficult to all ow separate conpilation. Exanples of the issues are:

o Were in a library systemshould this content be stored?

o \When el aborating a hierarchy, what $root content should be

included? Al information every preconpiled into $root?

The solution for any of these issues is to take the objects in $root
and put themin a nodule so that they have a nane and can be explicitly
brought into a hierarchy.

3.18.2.2 Global name conflictsvishbility

The addition of $root creates a gl obal declarative region for objects.
When a design is assenbl ed, many pieces are brought together from

di fferent designers and even conpanies. As this assenbly process takes
place if the sanme name has been used they will conflict and one of the
designs will need to be nodified. This situation is actually rather
comon in other |anguages such as ‘C that allow this sort of gl oba
scope and shoul d be avoi ded by design in extending Verilog. Declaring
objects in a nodul e and then referencing through this nane neans that
only the nodul e nanes need to be kept unique, not every single object.

3.18.3 Namespaces
Ref er ences: 18.9

The entire content of this section is baffling to Cadence. Verilog 2001
defines 7 name spaces, SystenVerilog defines only 5. There is no

expl anati on of what the difference between these nanespaces is or why
this portion of Verilog was nodified at all. The term nane space is
ill-defined in Verilog. In nost |anguages, there is a difference

bet ween a nanespace and a declarative region. A namespace is a set of
identifiers. For instance, macros are distinct fromsystemtasks
because macros begin with the back tick character (°) and systemtasks
begin with the dollar sign ($). A declarative region is a lexica

region where identifiers are declared such as nodul es, ports, and
attributes. Verilog makes no such distinction and this section attenpts
to address both concepts.

In discussing this chapter in coommittee, Cadence suggested that instead
of creating content that conflicts with the | EEE definition and
continues to overload the neaning of the term nanespace, we should

i nstead define the nanespaces and the declarative regions to clean up
the definitions. It was suggested by the conmttees that instead of
addressing it in SystenVerilog we should instead take this to the | EEE
Errata Task Force. We still believe that this chapter should just be

Cadence Design Systens, Inc. Page 39 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

renoved fromthe LRM as it adds no value and just conflicts with 1364.
We will address these issues during the upcom ng 1364 revision process.

3.19Section 19 - Interfaces
Ref er ences: 19

Interfaces provide a powerful means of passing an entire description
hi erarchically through a design. In the introduction to this section in
the LRM the major benefits are:

0 to encapsul ate the communication between bl ocks, allowi ng a
snmooth migration fromabstract systemlevel design through
successive refinement down to | ower-1level register-transfer
and structural views of the design.

o an interface is a naned bundle of nets or variables. The
interface is instantiated in a design and can be passed
through a port as a single item and the conponent nets or
vari abl es referenced where needed.

0 Additional power of the interface conmes fromits ability to
encapsul ate functionality as well as connectivity, makingan
interface, at its highest level, more like a class templ ate.

0o In addition to task/function nmethods, an interface can al so
contain processes (i.e. initial or always bl ocks) and continuous
assignments, which are useful for system-level modeling and test bench testbench

applications.
3.19.1 Overlap with modules
Ref er ences: 19

Cadence believes that the interface defines a nodeling style that is
enforced by defining a new | anguage construct. This continues the thene
of layering on capability rather than integrating it. The basic
capabilities of an interface declare ports, parameters, tasks,
functions, and always/initial blocks to describe communication. This is
all identical to the content of a nodule. The nobre advanced capability
of passing interfaces instances through ports, defining multiple port
lists (nodports), and inporting/exporting task and function definitions
woul d all be excellent additions to the general definition of nodul es
and do not require a new top-level |anguage construct.

The uni que benefit of interfaces is the ability to pass them
hierarchically through a design. This allows a hierarchical nane for
the interface to be witten that can determnistically refer to the
interface even when this block is noved around a design or enbedded at
a different hierarchical path. This would be very useful for nodules in
gener al

O her pieces of functionality described in this section as unique
benefits are really derived fromthis fundamental concept.

3.19.2 Overlap with classes

Interfaces are described as allowi ng an abstract interface to a device
where the objects in the interface can be viewed as class nenbers and

Cadence Design Systens, Inc. Page 40 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

the tasks and functions in the interface can be viewed as cl ass
nmet hods.

First of all, this is not newin Verilog. For years, users have defined
nodul es with tasks that represent a devices behavior and then interact
with the module by calling these tasks. It is sinply made nore conven-
ent by being able to develop the hierarchical path through a port.

In SystenVerilog 3.0, there was no class nechani sm so di scussi ng use of
interfaces with a class-1ike nmetaphor nade sense. In SystemVerilog 3.1
there is now a class nmechanismthat satisfies the need for object
oriented extensions. This further notivates merging interfaces and
nmodul es to enphasi ze their structural nature and rel egating object
oriented progranm ng to true cl asses.

3.19.3 Lack of decomposition

Interfaces can only contain procedural constructs such as al ways bl ocks
and initial blocks. They can not contain gate-level nodels or hierarchy
underneath them So despite the introduction to this section, they do
not support hierarchical refinement well

The argunment commonly made for restricting interfaces is that they
nodel pure conmuni cation, not hardware. There are many places where
this nodeling style is very useful in systemlevel nodels where the
conmuni cation is abstract, or not realized in hardware. However, the
exanpl es given for interfaces all denonstrate nodeling conmuni cati on on
a bus. Busses when inplenented are hardware, and the behavior of the
bus is created by hardware devices connected to the bus such as pads
and/ or nuxes.

If a designer begins to nodel his interconnect abstractly using a
SystenVerilog interface, then he creates the interconnect in a very
stylized fashion where the interface itself is passed through the

hi erarchy. This is an excellent extension to Verilog (and we believe it
shoul d be expanded to nodul es as well). The probl em cones when the

desi gner now wants to refine the comrunication on his bus. This
refinement should be acconplished only by changing the interface
representing the bus, not by changing every single device which uses
the bus. However, since interfaces have been arbitrarily restricted to
not contain gates you can never conpletely refine the bus to hardware
wi t hout changi ng every single device connected to the bus. Furthernore,
all devices connected to the bus nmust be sinultaneously changed so no

i ncrenmental refinenment is possible; all devices driving the bus nust be
nodel ed at the sanme | evel of abstraction.

Interfaces provide an excellent mechani smfor encapsul ating

comuni cation and allowing rmultiple devices to conmuni cate. They al so
have an ingenious forkjoin task and inport/export mechani sm which

pl aces an obligation on a device using the interface to provide its own
slave functionality. Al of this works beautifully with a behaviora
description. Allowing interfaces to contain any Verilog nodeling
construct and having a simlar inport/export nechanismfor portions of
actual hardware (as opposed to just tasks), would allow themto be
refined without renpdeling the comunicating devices.

Cadence Design Systens, Inc. Page 41 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

Once interfaces are extended in this necessary fashion, then there is
so little difference between an interface and a nodule that the two
constructs should just be nerged into one by addi ng nodports and the
ot her extensions to all nodul es.

3.20Section 20 - Parameters

The SystemdVerilog LRMincludes an entire section on paraneters that
nmostly just explains the functionality of paraneters in Verilog 2001
This section should only contain the extensions and not reiterate the
content from 1364.

3.20.1 Parameterized types

Ref er ences: 20.2

The maj or extension to paraneters is allow ng paraneterized types to a
nodul e. Whi | e Cadence understands the expressive power of paraneterized
types we believe it is an unw se extension of Verilog. This is an
extremely difficult and conplex thing to inplenent for functionality
that can be gained in other ways. Mddeling styles where nmacros are used
for types can provide simlar capability, or the addition of a generic
handl e type to allow nodeling of externally |inked data structures
woul d both be possible alternatives. An exanple of the difficulty of
this can be found in the C++ world where type tenplates existed in the
standard for years before any conpiler vendors supported them

3.21Section 21 - Configuration libraries
Ref er ences: 21

This section is extrenely brief and sinply specifies that library nmap

i nformati on can be specified in $root instead of in a library map file.
Since we object to the addition of $root at all, we obviously do not
support this addition. If this information is set globally in $root,
then it would be visible for all configurations. During integration of
IP fromdifferent sources this would be yet another form of globa
conflict created by $root.

3.22Section 22 - System Tasks and System Functions

This section docunents new system tasks and functions that have been
added to SystenVerilog. In general there is very little specific
feedback on this section other than reiterating the previous coments
that in many places systemtasks, operators and now nethods have been
used in arbitrary places without any particular rationale for when one
was used over the others.

3.22.1 $asserton, $assertoff, $assertkill
Ref er ences: 22.6

These functions are used to enable or disable assertion execution
during sinulation. These functions are extrenely dangerous in many
cases. Assertions that contain enabling conditions or sequences nust
mai ntain state information and match nulti ple sequences sinultaneously.
If these sequences are enabled and di sabled by the user this state may
be tracked inaccurately and result in either false firings, or nore

Cadence Design Systens, Inc. Page 42 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

likely, missed firings of an assertion. We would prefer to see these
functions only control the reporting of assertion failures or coverage
data, but they would continue to track the state of the sinulation
accurately.

3.23Section 23 - VCD Data

Ref er ences: 23

This section points out that VCD data has not been extended to dea
with all the new SystenVerilog data types. We believe this is a major
shortcoming of the standard that should be fixed before this standard
is approved. VCD fornms a tool interchange nediumthat has been
extrenely inportant in the interoperability of Verilog tools in the
past and it should be kept in sync with the standard.

3.24Section 24 - Compiler Directives

Ref er ences: 24

This section makes mnor nodifications to a few conpiler directives
that are in general harnm ess. W would note that this contains an

i mportant extension of the "include nechanismthat now allows the
standard to define parts of the |anguage through | anguage-defi ned
header files. This nechani sm shoul d be used for defining many nore of
t he | anguage extensions for inproved backward conpatibility.

3.25Section 25 - Features Under Consideration for Removal
Ref er ences: 25

The SystemVerilog Basic Committee was chartered with fixing or
clarifying the SystenVerilog 3.0 standard during the creation of
SystenVerilog 3.1. The charter for this group was explicitly that no
content of 3.0 could be deleted. Cadence believes that given this
concern about deleting content froman existing standard that it is
hypocritical to propose any del etions of an existing | EEE standard
under the gui se of Accellera work. Deprecation of functionality should
solely be the work of the 1364 task force.

3.26 Section 26 - Direct Programming Interface
Ref er ences: 26, Annex D

Cadence conpl etely supports the idea of providing a direct foreign

| anguage interface which will allow Verilog object values to be
directly read and updated in ‘C code and ‘C functions to be called
directly in the Verilog code. The original intent of DPI was to
simplify the life of a user who wants to use sone ‘C functions he
wote, in his Verilog design by allowing directly recognition of ‘C
function synbols (wthout conplex registration like in VPI). Another
notivation was also to provide better performance. Better performance
is expected if the ‘C code can deal directly with sinmulation object
val ues. Al so sone optim zations may be allowed if it is known that the
‘C functions used by the Verilog design only may do read and wite to
their arguments. Finally, SystenVerilog with the addition of new 'C
conpati bl e data types should allow the natural definition of a mapping
bet ween any SV data types and ‘C data types and hence the transparent

Cadence Design Systens, Inc. Page 43 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

ability to directly read and update in ‘C the value of a Verilog
object. This should help in facilitating witing nixed
systenC/’ C / C++/ systenVeril og desi gns. However, as dempnstrated in the
follow ng sections, the technical specification either deviated from
the original requirenents or does not strictly fulfill them: for
exanple a m x of abstract/direct access is proposed in the Direct
Programm ng Interface, sonme functionality other than readi ng and
updati ng object values was introduced, and there is not really a true
equi val ence between SystemVerilog ‘C -like data types which are defined
in fixed size manner and ‘C native data types which size depends on
the *C conpiler and platform

Note that section 26 and annexes D, E and F deal with the Direct
Programm ng Interface. The comments in this section cover all these
areas.

3.26.1 Mix of direct and abstract interface
Ref er ences: D.1, include files Section D. 4.1, E. 1

DPI provides direct access to sinulation objects of ‘C conpatible
types such as SV int type, unpacked struct and array types, etc., but
provi des abstract access through library functions to packed types, and
open arrays. In fact, DPlI has not less than 60 interface functions
defined to:
o read and update val ues of whole vectors, part select of
vectors and bit selects.
o query size, dinmensions, left and right bounds of open
arrays.

Open arrays (which denote unconstrained array type formal argunments of
a DPI function) are accessed by handl es and query functions. Cadence
bel i eves that the SystenVerilog DPl abstract interface is unnecessary,;
a handl e- based abstract interface already exists in VPI. DPl shoul d
only focus on providing a canonical representation and provide direct
access to simulation object val ues wi thout handl es.

3.26.2 Two possible representations for packed (vector) types
Ref er ences: Ref: Section D. 6.3, D.6.4, D.6.7

DPI provides either a canonical representation for packed types or the
simul ator internal representation. Either can be used by the ‘C
witer. Better performance is clained to be achievable if the interna
simul ator representation is used but the *C code will not be portable
and nust be reconpiled with each proprietary vendor specific header
file.

We believe that a standard should not provide ways to pronote non

portabl e user code but rather should focus on defining a m niml and
comon portabl e approach acceptable for all vendor inplenentations.

3.26.3 Source and binary portability

Ref er ences: Ref: section D.3

As a consequence of the previous section, the DPI interface proposes
two header files, one which contains the public functions and canonica

Cadence Design Systens, Inc. Page 44 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

data structures and anot her which will contain vendor dependent
internal data structures. If the C code uses packed SystenVerilog data
types (for which 2 representations are possible), the C code witten
will not be source or binary conpatible depending if the interna
representation or the canonical representation was chosen.

We believe that it is not the purpose of a standard to provi de vendor
speci fic header files. A standard should only specify a portable and
common nethod. We believe that this will be strongly opposed when
presented to the | EEE standardi zation entity.

3.26.4 Overlap and redundant functionality with VPl and PLI
Ref er ences: D. 8.3, D.8.5

The current DPlI specification provides additional functionality in
addition to reading and witing of values. This includes saving C user
data in a Verilog specific instance, and getting Verilog nodul e

i nstance handl es.

Cadence truly supports the idea of a pure direct read/wite programr ng
interface but strongly believe that a new standard interface should not
overlap with an existing Verilog standard, nanely the VPl or PLI
interface. W believe such an overlap in scope will not be accepted by
the I EEE. Functions such as svGet Scope, svGet ScopeByNane, svGet User Dat a
etc. are exact duplicates of existing VPl functions. VPl or PLI
functions should be used instead.

Further these DPlI functions return opaque handl e which are not
conpatible with VPI handles. W are afraid that the DPlI interface
functionality will be extended to duplicate even nore of the VPI
functionality since the VPI and DPI handl es are not conpatible. The
following is an extract fromthe section in the SystenVerilog LRM which
cautions the user about VPI and DPI inconpatibility.

"Progranmers nmust nake no assunptions about how DPlI and the
other interfaces interact. In particular, note that a

vpi Handl e is not equivalent to an svOpenArrayHandl e, and the
two nust not be interchanged and passed between functions
defined in two different interface standards. If a user wants
to call VPI or PLI functions fromw thin an inported function
the inmported function nust be flagged with the context
qualifier."

3.26.5 Many library access functions
D.9.1.4, D.10.3.1, D.10.3.2

DPlI has library functions to mani pul ate the values and transformthem
between the native SystenVerilog representation and the canonica
representation. DPlI provides library functions to read/ update the
entire value, a bit select or a partselect of that value. There are 4
variants of the same function with one, two, three and a variable
nunmber of argunments dependi ng on the nunber of dinensions of the array
to deal with. For SystenVerilog types which are C conpatible (like
unpacked arrays and structures), direct access is avail able.

Cadence Design Systens, Inc. Page 45 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

Cadence believes that a library of functions goes against the origina
focus of DPI (providing direct access) and agai nst performance as there
i s inherent overhead in functions calls.

All the nenory allocation for the canonical representations to hold the
value to read or wite nust be done by the C code. We believe that it
woul d be nmore performance efficient and | ess nenory error prone if the
menory al l ocati on was done by the sinulator and a copy of the val ue
woul d be passed to the argument of the DPI function; the C code would
directly access or modify that value. This would avoid user nenory

| eaks. This value copy may be necessary in order to determine if the
val ue was changed by the C code and to wake up the appropriate fan out.
If the object does not have any fanout, a reference to the interna
canoni cal representation can be passed to C.

Furthernore, the library functions proposed are sonetines limted in
functionality. For exanple, DPl access to part selects is linmted to
reading and witing part selects of less than 32 bits. Instead with a
di rect access and user manipul ati on of the defined canonica
representation, there would not have been any restriction

3.26.6 C data type mapping
Ref er ences: D.6.3, D.6.4

The DPI interface naps many of the SystenVerilog data types to a C data
type (SystenVerilog int to a Cint, SystenVerilog byte to a C char),
however this mapping assunes a particular inplenmentation of a C
conpil er where int would be a 32 bit signed integer and char is an 8
bit signed integer. These SystemVerilog C types do not truly nmatch a C
int or a Cchar: size of these types is inplenentation defined in C
Therefore when running a sinulation on a 64 bit platform a
SystenVerilog int object would be 32 bit wide while on certain C
conpiler inplenmentations the int size may be 32 or 64 bits. W believe
that the Verilog Clike data type sizes should instead be paraneterized
and custonized to a given C conpiler inplementation to truly provide
equi val ent types and thus direct access.

The current DPI interface does not support all SV data types: classes,
events, associative arrays, semaphores, and structs/unions of these

types.

3.26.7 Open array arguments
Ref er ences: D.7.6, D 11

DPlI allows one to wite a DPI C function which takes open
(unconstrained) formal array type argunments and provides library
functions to query the actual argunment |ow and hi gh bounds of the
ranges, the dinmensions, the address of the value of entire array or the
address of the value of an array el enent. Fornmal argunments declared in
SystenVeril og as open arrays are passed by a handl e
(svOpenArrayHandl e), and are accessible via DPlI library functions. Open
array argunents allow one to wite in C a general function that may
handl e SystenVerilog arrays of different sizes at the price of sone
performance overhead and at the price of a couple of dozen of library

Cadence Design Systens, Inc. Page 46 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

functi ons.

Cadence believes that if one wants to wite sone general code which is
not susceptible to array di nensions and ranges, the VPl interface is

al ready available and has all the array traversal navigation nethods
avail able. Furthernore, the nunber of VPl methods/properties to do the
equi val ent of the SystenVerilog open arrays functions is nuch smaller
than the one proposed in DPI. Though, VPI for SystenWVerilog needs to be
extended to support traversal and access to arbitrary arrays, structure
and unions. This task has been conpletely put on the side by the
SystenVerilog CC comm ttee because of the time constraints set by an
aggressive schedul e and an al ready overl oaded charter. The result is
that VPl has not been enhanced to support SystenVerilog. This wll
cause serious problens to users or 3rd party tools which have or want
their VPI application to work in a SystenVeril og design.

Cadence strongly believes that if one part of the |anguage is enhanced,
all dependent features of the | anguage such as (VCD, SDF, or VPI) need

to be enhanced in parallel to preserve consistency and integrity in the
| anguage. Failure to do so will result in not only an inconplete

speci fication but also catastrophic flow breakage in our custoner’s

met hodol ogy.

3.26.8 SystemVerilog context and pure qualifiers
Ref er ences: 26.4.1.3, 26.4.2, 26.4.3

DPlI all ows SystenVerilog to invoke DPI C inported functions. DPl also
al l ows SystemVerilog functions to be exported and be callable fromthe
C code including fromw thin a DPlI function. An inport DPlI function
(which is inplemented in C) nust be qualified with the context word if
the DPI function is context sensitive. The function is context
sensitive if the DPI function may call an exported SV function or the C
function calls VPI or PLI and therefore needs know edge of the scope
where the function is either defined or called. If not qualified with
the context keyword, the DPlI specification states that calls to VPl and
PLI functions nmay crash and context DPlI utility functions will not

wor K.

This particular nodel requires that an internal variable be set prior
to the call to a DPI inported context sensitive function. Al DP
exported functions require that the context of their call is known.
This is needed because SystenVerilog function declarations always occur
in instantiatable scopes, hence allowing a multiplicity of unique
function instances. A call to a DPlI exported function requires that the
scope of definition of the exported function instance be set prior to
the call, or it inherits the current default set scope. Therefore the
context of the export function call mnust be deternined dynamically by

t he tool

We believe that there are better alternatives to scope setting which
woul d avoid runtime SystenVeril og export function | ook up. For exanple,
sol utions such as function instance specific export or conbining a
function export declaration export with a C nanme denoting the

hi erarchi cal nane of a specific function instance.

DPI al so provides functions to associate and retrieve C user data from

Cadence Design Systens, Inc. Page 47 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

their context, but there is no provision for these nodels to be saved
and restarted. In fact this issue was brought up but its specification
was postponed to 3.2. W believe that this particular functionality is
i nconpl etely specified.

The pure qualifier is certainly advisable and may hel p opti m zi ng code
if it was known that the function should only be called when its input
changes; note that the Verilog conpiler cannot validate that the C
extern function is really pure and we would be relying on the witer.
The string "DPI" qualifier my also be useful (to the Verilog conpiler)
to qualify the inport or export declaration to be a DPI user function

In any cases, adding qualifiers such as pure, context or string such as
"DPI" to inmport function declaration is yet another way to express a
property of a function. Verilog attributes could have been defined and
used for the sane purpose, elimnating the need for short English words
as new keywords.

3.26.9 DPI object code inclusion
Ref er ences: Annex F

Cadence believes that this annex is a good attenpt to standardi ze on a
foreign code delivery and |inking mechanism However we think that
there are sone problens with the approach presented in this Annex.

First, throughout this annex, switch nanes are provided. Even if these
switch nanmes are provided as informative and non nornmative as pointed
out by the note:

“NOTE—hi s annex defines a set of switch nanes to be used for

a particular functionality. This is of informative nature; the

actual nami ng of switches is not part of this standard. It

m ght further not be possible to use certain character

configurations in all operating systems or shells. Therefore

any switch nanme defined within this docunent is a

recommendati on how to nane a switch, but not a requirenent of

the | anguage.”

Conmand |ine switch nanmes should be avoided in a standard LRM It
shoul d not be nandatory for a tool to provide comrand |ine switches;
for example a GUI driven tool does not have a command |ine. This annex
will have to be conpletely rewitten to avoid nmention of any switch
name when SystenVerilog is folded in the Verilog 1364 as there is no
mention of any switch in the Veril og standard.

Secondly, since the DPI function names do not include the shared
library where the synbol may be defined, DPI function names have to be
gl obal and uni que across all foreign object code. W believe that this
severely constrains object code inclusion and can |lead to errors when
linking if the same name is defined in nultiple libraries.

3.27 Section 27 - SystemVerilog Assertion API

3.27.1 Static information model of assertions
Ref er ences: 27.3, 27.3.1

Cadence Design Systens, Inc. Page 48 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

The static VPl information nodel of property/assertion access is very
limted. Only iteration on assertions is provided, nore detailed access
to the contents of the assertion is not available. Property

decl arati ons, cover statenents, sequence decl arations, concurrent
assertions, and i medi ate assertions are all represented by the

vpi Assertion type. The information nodel was restricted to the m ni num
The current assertion APl is nostly a runtine APl allow ng an
application to interact with the assertion evaluator. W believe that a
nore detail ed property/assertion/cover static information nodel should
al so be provided.

3.27.2 Callbacks

Ref er ences: 27.4.2

A new cal | back registration function was introduced to place an
assertion call back rather than using the existing nmechani sm

vpi _resgister_cb. The user callback function itself has a different
prototype than other regular call back functions. The reason given was
that the callback function needed to return information other than the
assertion handl e, the reason of the call back and the user_data; There
was not an adequate field in the vpis_cb_data structure to store the
vpi _attenpt _info (basically information of the matched expressions,
failed expression and their source line information).

A new cal | back function was invented, vpi_register_assertion_cbh(), to
pl ace an assertion call back; the prototype is:

vpiHandle vpi_register_assertion_cb(
vpiHandle, /* handle to assertion */
PLI_INT32 event, /* event for which callbacks needed */
PLI_INT32 (*cb_rtn)() /* callback function */
PLI_INT32 event,
vpiHandle assertion,
p_vpi_attempt_info info,
PLI_BYTES *userData),
PLI_BYTES *user_data /* user data to be supplied to cb */

)

typedef struct t_vpi_assertion_step_info {
PLI_INT32 matched_expression_count;

vpiHandle *matched_exprs; [* array of expressions */
p_vpi_source_info *exprs_source_info; /* array of source info */
PLI_INT32 stateFrom, stateTo; [* identify transition */

} s_vpi_assertion_step_info, *p_vpi_assertion_step_info;

typedef struct t_vpi_attempt_info {
union {
vpiHandle failExpr;
p_vpi_assertion_step_info step;
} detail;
s_vpi_time attemptTime,
} s_vpi_attempt_info, *p_vpi_attempt_info;

We believe that another better alternative would have been to use the
same registration function and provide another nmethod fromthe

Cadence Design Systens, Inc. Page 49 4/ 24/ 2003

Cadence Negative Ballot Comment on SystenVerilog 3.1

assertion handl e which would return the assertion attenpt info. The
assertion current status would be avail able through this method but
only at the tinme of the call back. That way the user is not confused in
whi ch cal | back functions to use.

3.27.3 Assertion Control

Ref er ences: 27.5

There has been capability added to control through VPl extensions the
assertion system stop all assertion evaluations, restart the assertion
eval uation, etc...We believe that this capability is dangerous in
certain cases for the sane reasons given in section 3.22.1.

3.28 Section 28 - SystemVerilog Coverage API

Cadence believes that the entire coverage APl is ill-conceived. A

| anguage interface can only provide information about constructs that
are explicitly specified in the | anguage. Wthout adding an explicit
nodel for coverage points and the kinds of coverage to be measured into
the Verilog | anguage itself, then a generic coverage APl is

i nappropri ate.

The current coverage APl reflects one vendor’s interpretation of what
coverage information is inplicitly recognizable in a sinulation run.
The inference froma general |anguage structure to this information is
not specified at all

3.28.1 Pragma usage

Ref er ences: 28.3

FSM coverage uses pragnas to specify the current FSM state vector, the
next state and the set of values for a state.

Cadence believes that standard coverage attri butes should have been
defined instead of specifying these itens in conments.
A proposal was made but was postponed to SV 3. 2.

4 Conclusions

I n conclusion, Cadence believes that Verilog needs to be extended in
order to support hardware design and verification within the Veril og
environnent. We believe extensions in the areas of data types,
constraints and randomni zati on, direct interfaces, and assertions are

i mportant to the productivity of the industry. However, as detailed in
this document, there are many reasons why Cadence believes that the
current SystenVerilog specification should not be forwarded to the
Board of Directors for approval as an Accellera standard.

Cadence Design Systens, Inc. Page 50 4/ 24/ 2003

