
Cadence Design Systems Negative Ballot Comment on
Accellera SystemVerilog 3.1

Cadence Design Systems, Inc.
Contributors: Jay Lawrence, Francoise Martinolle, Steven Sharp, Erich Marschner

4/24/03

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 2 4/24/2003

Table of Contents
1 Overview .. 5
2 General Comments .. 6
2.1 Lack of Specific Commitment for IEEE 1364 Coordination........ 6
2.2 Content Has Suffered from Immovable Deadlines................. 6
2.3 Lack of General Extension Philosophy and Requirements......... 7
2.4 Layering vs. Integration; Implementation vs. Design........... 8
2.5 Missing Functionality... 8
2.5.1 No SDF Specification...................................... 8
2.5.2 No VPI interfaces... 8

3 Technical Comments .. 9
3.1 Section 1 - Overview.. 9
3.2 Section 2 - Literal Values................................... 10
3.2.1 Array and Structural Literal Syntax...................... 10

3.3 Section 3 - Data Types....................................... 10
3.3.1 Data type syntax... 10
3.3.2 Integer data types....................................... 11
3.3.3 Real data types.. 12
3.3.4 Void data type... 12
3.3.5 String data type... 12
3.3.6 Event data type.. 13
3.3.7 Enumeration types.. 13
3.3.8 Structures and Unions.................................... 14
3.3.9 Classes.. 14

3.4 Section 4 - Arrays... 15
3.4.1 Longest Static Prefix.................................... 15
3.4.2 Dynamic Arrays... 15
3.4.3 Associative Arrays....................................... 16

3.5 Section 5 - Data Declarations................................ 17
3.5.1 Data Declaration Syntax.................................. 17
3.5.2 Constants.. 17
3.5.3 Variable Initialization.................................. 17
3.5.4 Automatic Variables...................................... 18
3.5.5 Variables in Unnamed Blocks.............................. 19

3.6 Section 6 - Attributes....................................... 19
3.7 Section 7 - Operators and Expressions........................ 19
3.7.1 Assignments in expressions............................... 19
3.7.2 Increment (++) and Decrement (--) in expressions......... 20
3.7.3 Built-in methods... 20
3.7.4 Literal expressions...................................... 21

3.8 Section 8 - Procedural Statements and Control Flow........... 21
3.8.1 Unique/Priority Keywords................................. 21
3.8.2 Performance of Unique.................................... 22
3.8.3 Final blocks... 22

3.9 Section 9 - Processes.. 23
3.9.1 Ordering requirement on final blocks..................... 23
3.9.2 Always_comb, always_latch, always_ff as semantic checks.. 23
3.9.3 Always_comb sensitivity.................................. 24
3.9.4 Always_comb overlap with @(*)............................ 24

3.10 Section 10 - Tasks and Functions............................. 25
3.10.1 Function output and inout argument modes................. 25
3.10.2 Functions as statements.................................. 25
3.10.3 Void functions... 25
3.10.4 Implicit task and function lifetime...................... 25
3.10.5 Lack of shared library support in DPI naming............. 26

3.11 Section 11 - Classes... 26

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 3 4/24/2003

3.11.1 Additional common keywords............................... 26
3.11.2 Parameterized class types................................ 26
3.11.3 Differences in struct and class.......................... 26

3.12 Section 12 - Random Constraints.............................. 27
3.12.1 Limitation to randomizing classes........................ 27
3.12.2 Rand, randc in a class declaration....................... 28
3.12.3 Constrain, inside, dist, extends, with, solve, before.... 28
3.12.4 Implementation of $urandom(), $urandom_range, $srandom(). 28

3.13 Section 13 - Inter-Process Synchronization................... 29
3.13.1 Semaphores... 29
3.13.2 Mailboxes.. 29
3.13.3 Named Events... 30

3.14 Section 14 - SV 3.1 Scheduling Semantics..................... 30
3.14.1 Property Evaluation...................................... 30
3.14.2 Delaying of Pass/Fail Code............................... 31

3.15 Section 15 - Clocking Domains................................ 32
3.15.1 Verbosity of declarations................................ 32
3.15.2 #1step will create non-deterministic IP.................. 32
3.15.3 #0 semantics are misleading.............................. 32

3.16 Section 16 - Program Block................................... 33
3.16.1 Functional overlap with module........................... 33
3.16.2 Modeling restrictions.................................... 33
3.16.3 Reactive semantics....................................... 34
3.16.4 Termination of all simulation through $exit()............ 34

3.17 Section 17 - Assertions...................................... 35
3.17.1 Complexity... 35
3.17.2 Timing Alignment... 35
3.17.3 Clocks... 36
3.17.4 Syntax... 37
3.17.5 Documentation.. 37

3.18 Section 18 - Hierarchy....................................... 38
3.18.1 Does not address program blocks.......................... 38
3.18.2 $root.. 38
3.18.3 Namespaces... 39

3.19 Section 19 - Interfaces...................................... 40
3.19.1 Overlap with modules..................................... 40
3.19.2 Overlap with classes..................................... 40
3.19.3 Lack of decomposition.................................... 41

3.20 Section 20 - Parameters...................................... 42
3.20.1 Parameterized types...................................... 42

3.21 Section 21 - Configuration libraries......................... 42
3.22 Section 22 - System Tasks and System Functions............... 42
3.22.1 $asserton, $assertoff, $assertkill....................... 42

3.23 Section 23 - VCD Data.. 43
3.24 Section 24 - Compiler Directives............................. 43
3.25 Section 25 - Features Under Consideration for Removal........ 43
3.26 Section 26 - Direct Programming Interface.................... 43
3.26.1 Mix of direct and abstract interface..................... 44
3.26.2 Two possible representations for packed (vector) types... 44
3.26.3 Source and binary portability............................ 44
3.26.4 Overlap and redundant functionality with VPI and PLI..... 45
3.26.5 Many library access functions............................ 45
3.26.6 C data type mapping...................................... 46
3.26.7 Open array arguments..................................... 46
3.26.8 SystemVerilog context and pure qualifiers................ 47
3.26.9 DPI object code inclusion................................ 48

3.27 Section 27 - SystemVerilog Assertion API..................... 48

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 4 4/24/2003

3.27.1 Static information model of assertions................... 48
3.27.2 Callbacks.. 49
3.27.3 Assertion Control.. 50

3.28 Section 28 - SystemVerilog Coverage API...................... 50
3.28.1 Pragma usage... 50

4 Conclusions .. 50

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 5 4/24/2003

Executive Summary

Cadence believes that Verilog needs to be extended in order to support
hardware design and verification within the Verilog environment. We
have been actively involved in the SystemVerilog Accellera process for
the last year with representatives on all relevant committees. We
believe extensions in the areas of data types, constraints and
randomization, direct interfaces, and assertions are important to the
productivity of the industry.

Many of the concepts included in SystemVerilog 3.1 move Verilog in this
direction, but Cadence believes that the draft 5 LRM is not coherent
and complete enough to be considered by the Board of Directors as a
proposed Accellera standard. The remainder of this document provides
detail on the issues Cadence has with the draft 5 LRM. Cadence is
providing this feedback because we are absolutely committed to
enhancing Verilog in a manner that will provide the capabilities the
industry needs, while preserving the users’ and vendors’ extensive
investment in IEEE 1364 Verilog.

1 Overview

This document is being provided by Cadence Design Systems to all
Accellera SystemVerilog technical committees and the Accellera Board of
Directors as the Negative Ballot Comment on SystemVerilog 3.11. Although
Accellera bylaws do not strictly call for such a ballot comment,
Cadence believes that it is an important part of the IEEE balloting
process and that the justification for any negative ballot should be
provided.

Throughout the SystemVerilog 3.1 standardization process, Cadence has
participated at the Board of Directors level and in all technical
subcommittees. We have repeatedly raised both procedural and technical
objections related to the Accellera compliance to its own bylaws, the
relationship of SystemVerilog to the IEEE Verilog 1364 standard, and
the technical content of SystemVerilog. This document focuses on the
technical content of SystemVerilog chapter by chapter.

It has been noted in email communication to the Board from the
Accellera Technical Chairperson that because these objections were
heard, voted on, and defeated, that Cadence should now support
SystemVerilog 3.1 and vote in the affirmative. We respectfully
disagree. There are major problems with the Accellera SystemVerilog
technical content that we feel it is our responsibility as founding
members of Accellera to point out. Accordingly, we have voted in the
negative. We also do not feel that such a negative ballot violates our
responsibility as a member to cooperatively and proactively promote the
purpose of Accellera. We do not believe that promotion includes an
affirmative vote on all issues.

The IEEE balloting process would require a formal response from the
technical committees to a negative ballot comment of this sort that

1 All references to the SystemVerilog LRM refer to the content of the
Draft 5 LRM.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 6 4/24/2003

contains both specific and unspecific comments on the draft standard2.
Since this is not a part of the Accellera bylaws we do not expect any
such formal response, however, we would hope that other Board members
and technical contributors consider these objections when placing their
own vote on SystemVerilog 3.1.

2 General Comments
This section documents some general comments on the overall process and
actions that were taken that we believe have led to an unacceptable
standard at this time. These are brought out explicitly here because
they will be referred to in the comments on individual chapters in the
following sections.

2.1 Lack of Specific Commitment for IEEE 1364 Coordination
The goal of Accellera is to accelerate the specification and adoption
of standards for language-based electronic design. As such, we and many
other committee members participate in the SystemVerilog development
process with the expressed belief that the effort would be tightly
coordinated with IEEE 1364 and that a clear roadmap would be followed
to donate to 1364. Only through this planned, clear communication
between the groups will the definitive 1364 standard be accelerated and
a divergent Accellera standard will be avoided. This document lays out
numerous issues that we believe exist in SystemVerilog today that will
be modified when the IEEE process is undertaken.

Cadence believes there have been three specific opportunities where
this commitment could have been shown by the Board of Directors, and
such a commitment was not made.

Upon completion and approval of the SystemVerilog 3.0 donation in June
2002 the standard should have been moved to the IEEE. The lack of this
donation serves only to delay the IEEE process. If SystemVerilog 3.0
was sufficiently unstable that it was unfit for donation to the IEEE
then it should not have been approved as an Accellera.

Again on January 16 2003, Cadence attempted to get a clarification of
intent from the Accellera Board of Directors. A motion for a
SystemVerilog 3.0 donation immediately was defeated 6 negative, 4
positive, 1 abstain by the 11 member board.

At that same Board meeting, a motion was passed committing only to a
donation at an unspecified future time to an unspecified IEEE committee
leaving too much of a lack of commitment to accelerating the 1364
standard.

2.2 Content Has Suffered from Immovable Deadlines

The Accellera technical chairperson has laid out milestones for
completing various activities that are required to happen before a new
standard is produced. Such milestones are absolutely necessary,

2 The IEEE process for a negative ballot response is explained in The
IEEE Standards Companion - Annex B.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 7 4/24/2003

especially when working with an organization composed primarily of
volunteers. Without them, standards work would always take second place
to other activities and progress would be brutally slow. However, we
believe that the milestones should be treated as checkpoints at which
one can measure the progress, not immovable dates that must be met at
the expense of the quality of the standard.

The deadlines for the SystemVerilog 3.1 Draft 4 LRM were constructed to
coincide with the DVCon conference. The motivation for this was to be
able to announce completion of the draft standard in a very public way.
Despite diligent effort by many contributors this deadline was not met.
This should have been an indication that the timeline for the final
standard was in jeopardy and the dates should be re-examined. However,
this did not happen.

The deadlines for the final draft that will be voted on by the Board of
Directors are set such that the vote will occur before DAC 2003. Again,
this is motivated by being able to make a marketing statement at DAC
about the acceptance of the standard (assuming it is approved). In the
rush to meet this milestone the final LRM review period between the
Draft 4 and Draft 5 LRM was shortened to 2 weeks. During this short
period over 258 recorded issues were raised by reviewers. In the one
week review period between Draft 5 and Draft 6 an additional 88 issues
were identified. Each of these should have been individually addressed
by the committees. Instead a quick triage of the incoming issues was
performed by a single engineer, and any non-trivial issues were
forwarded to a single “champion” in each of the committees.

This triage and champion process was a complete breakdown of the
established procedures of presenting issues, coming to consensus and
having a committee vote on the content. The specific individuals
involved did a phenomenal job of attempting to end up with reasonable
content given this rate of input, but the process was certainly out of
control with the sole justification being completion of the standards
process prior to DAC. No member company would accept such a complete
breakdown of the established decision making processes. We believe
Accellera should not accept it either.

2.3 Lack of General Extension Philosophy and Requirements

Extending a ubiquitous language like Verilog must be done extremely
carefully with backward-compatibility being the foremost concern. We
believe that the first step in extending Verilog should be consensus on
the techniques that should be used, and possibly fundamental changes to
the language to permit future extension.

During the SystemVerilog review process every time a new functional
operation was required the debate began on whether it should be a
keyword, an operator, a system task, a method, or something else. This
debate was undertaken for every single change individually and as a
result these concepts were applied inconsistently in different places.
Instead a fundamental discussion of when each of these techniques is
appropriate and whether additional new techniques could be used should
have been the first and only discussion on this topic. The rules
established by such a process for classifying when operators, system

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 8 4/24/2003

tasks, methods, or keywords are appropriate could then just have been
followed, not revisited on every feature.

In the section 3 of this analysis many examples of this lack of basic
agreement on philosophy and requirements are found surrounding not only
operators but keywords, attributes, and pragmas.

2.4 Layering vs. Integration; Implementation vs. Design

Much of the content of SystemVerilog 3.0 and 3.1 is derived from the
donation to Accellera of portions of SuperLog and Vera. These languages
were certainly technological progress in system-level modeling and
verification arenas. However, the mantra throughout the committee work
processing these donations has been “It was implemented that way in
Superlog (Vera) and therefore it is good”. This has resulted in a
language where much of the ongoing activity has been to layer the
content of these languages on top of what already existed in Verilog
rather than to integrate the content into the language. Often very
similar concepts had different keywords in the languages (sometimes in
all three of Verilog, Superlog, and Vera) and instead of agreeing that
one of them would survive and be extended to satisfy the capabilities
of the other languages, all of them were added to the language creating
duplicate functionality, increased complexity and unnecessary keywords.

2.5 Missing Functionality

In the process of extending Verilog one must be careful to extend all
relevant portions of the language. Although SystemVerilog has extended
the syntax of the language, it neglected to update SDF, VPI, or VCD for
the extended language features.

2.5.1 No SDF Specification

System-level models are written (among other things) to verify
functionality and system-level throughput. A critical component of
system-level throughput is delays in and between components. SDF is
capable of expressing these delays with arbitrary precisions. Allowing
SDF annotation of system-level models would allow these performance
tuning parameters to be modified simply by changing SDF and not the
design, exactly as it is done for gate-level models.

Defining SDF for delays through interfaces, clocking domains, and
program blocks would allow this sort of use of SDF. However no
discussion of how SDF applies to these constructs is given in the
SystemVerilog LRM. While expanding this would be one solution, the
remedy preferred by Cadence is to collapse modules, interfaces,
clocking domains, and program blocks into the existing module construct
and simply using the existing SDF specification (and eliminate more
keywords along the way).

2.5.2 No VPI interfaces

One of the top reasons for the success of Verilog as an HDL is the
existence of PLI and VPI. It allows users to write their own simulation

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 9 4/24/2003

extensions, design rule checkers, and internal tools. It also promotes
a strong breeding ground for EDA startups to add significant value to
the end-user by piggy-backing interesting new functionality on top of
standard simulation interfaces.

Some claim that it is standard practice for the VPI to lag behind the
specification of the language extensions. This is indeed the case while
IEEE committee work is ongoing. First new language additions are
discussed by the Behavioral Task Force, and then the PLI Task Force
follows along with a VPI data model for it. However, the 1364 standard
was not deemed to be ready for a ballot until the VPI had caught up and
was complete.

Some committee members also claim that the new Direct Programming
Interface (DPI) will minimize the need for VPI. This is simply not
true. VPI provides for walking the entire elaborated model. DPI only
provides a facility calling back and forth to ‘C’ at simulation
runtime. A Direct Programming Interface is useful but does not in any
way supplant the need for VPI for every language construct.

3 Technical Comments

This section contains a subsection for each chapter of the
SystemVerilog LRM. Although we do not have comments on each chapter
this organization will make it simpler for readers to cross-reference
to the actual draft LRM. Only the top section corresponds to the
specification chapter, not each sub-section.

Many of the points brought out in these sections have already been
discussed in detail in Accellera committee work and on the email
reflectors, therefore in many cases detailed descriptions of many of
these issues are not provided. These sections simply point out the
areas where Cadence believes there are unresolved issues with a brief
description of the problem and/or our position.

3.1 Section 1 - Overview

This section provides only informative content that describes the
content of SystemVerilog 3.1; therefore there is no specific technical
feedback on this section. However, this section does emphasize that
SystemVerilog 3.1 is an extension of the IEEE Verilog 1364 standard.
Cadence continues to believe that this very process of Accellera
extending an existing IEEE standard outside of the IEEE working groups
is an unwise decision. Accellera’s work as an incubator for standards
where no industry standard exists is important work, but the creation
of committees separate from the IEEE committees for existing IEEE
standards can only serve to create divergence and confusion.

Accellera does provide an important role in the support of IEEE
standardization work through the funding of editing, conferences, web
space, and publicity activities. This is a very important role to
promote industry wide standards adoption that Cadence whole-heartedly
supports.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 10 4/24/2003

3.2 Section 2 - Literal Values
The section on literal values extends literals in the language to be
able to express the new data types in SystemVerilog. Note there is no
mention of how literals relate to the new class types at all.

3.2.1 Array and Structural Literal Syntax
References: 2.7, 2.8

As of the Draft 5 LRM available when committee members are being asked
to vote, there is no BNF given for the syntax of an array or structural
literal

Both the array and structure literals borrow initialization syntax from
‘C’. The examples given use {} as in ‘C’ which creates a syntactic
ambiguity with the existing 1364 concatenation operator. This is an
example of where the integration of Verilog content from another
language is being layered rather than integrated.

3.3 Section 3 - Data Types
One of the most significant contributions of SystemVerilog is the
extension of data types. Cadence believes that data types in Verilog
should certainly be extended, but that this should occur through a
careful specification of a type system that:

o Allows data types on both variables and nets
o Defines a small number of basic types
o Defines mechanisms for creating aggregate types from the

basic types
o Defines standard-defined types composed of the basic types

using the same mechanisms that are utilized for user-
defined types

SystemVerilog data type’s extensions do none of these things. Content
was taken from ‘C’, Superlog, and Vera and layered onto the 1364
language without begin integrated. This has created numerous technical
and stylistic problems for which descriptions are given below.

3.3.1 Data type syntax
References: 3.2

The syntax for data types has been extended in two different ways. The
first is to define a mechanism for creating composite or aggregate data
types. These include structures, unions, enumerations, arrays, and
classes. Although we have some specific comments below on how this
could be accomplished with fewer keywords and better integration
between these type extensions, there is clearly a need for more
complete composite type support in Verilog and SystemVerilog makes
progress in this area.

The second mechanism is to define numerous new predefined types which
are defined as new keywords. These include: byte, shortint, int,
longint, bit, logic, void, shortreal, string and mailbox. This addition
of new data types as keywords has numerous problems.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 11 4/24/2003

The syntax defines these data types as specifying both the kind of
object (a variable), and the value the object can hold (an 8-bit 2-
state value for instance). This is consistent with how Verilog-1364
defines the basic reg and integer types, but as the use of types
increase in Verilog it is entirely too restrictive. In particular it
will quickly be necessary to allow these types to occur on nets as well
as variables.

Nets provide two important pieces of functionality. They allow
resolution of multiple drivers, and they allow values to be scheduled
with delay. We believe that it is beyond the current extensions to
Verilog to define resolution of composite values (a la VHDL), but it is
not beyond scope to allow composite values to occur on nets for
scheduling purposes. It will be extremely natural to create a net of a
composite value that represents interconnect between two system-level
models. In particular the ability to schedule a delay for this value to
propagate will be extremely useful for performance and throughput
analysis.

Following the extension techniques in SystemVerilog today, if data
types were to be added to nets, then entirely new names for the types
will have to be created as was done by Verilog-AMS for the wreal type.
This will only further compound the problem of exploding number of
keywords in the language.

By defining these as new keywords a non-sustainable language extension
mechanism is being utilized. Instead, we would prefer to see these
necessary types defined as standard-defined types using the same
extension mechanism as is available to users. For instance:

 typedef logic [7:0] byte;

Along with extensions to `include discussed later, these types could
then be `included in modules where they are needed and made visible. In
modules where they are not necessary they are not `included and
therefore do not pollute the identifier namespace or create backward-
compatibility issues.

3.3.2 Integer data types
References: 3.3

The integer data types (byte, shortint, int, longint, etc) in
SystemVerilog are motivated by the desire to add ‘C’-like integer data
to Verilog. We agree with the need for this addition, but the mechanism
of adding new keywords as discussed in the previous section is not
maintainable. It also has the same failing the ‘C’ types do in the
presence of different width data types on different compilers/operating
systems. Verilog integer data, in general, will be of a known maximum
width. Allowing the compiler or OS to change this width will lead to
the same portability issues that ‘C’ programs have across 32 and 64-bit
platforms.

The need to pass these data types from Verilog to ‘C’ is well-
understood, but simply using the same identifier for them does not
solve the problem. An interface that defines the actual representation

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 12 4/24/2003

of these objects in Verilog so that they can be manipulated
meaningfully in ‘C’ is necessary. More comments on this concept are
given in the section on DPI (see 3.26) below.

This section goes on to state that 2-state types are at least in part
motivated for the desire for faster simulation. Cadence absolutely
supports the addition of a basic 2-state data type, but cautions
against setting the expectation that they will simulate significantly
faster than 4-state data types. The overwhelming factor in simulation
performance is the actual loading of a data value. On today’s computer
architectures, if a value is available in cache then the load is very
fast, if not then it can take a significant number of clock cycles.
Arithmetic computations on data once they are loaded into local caches
or registers are extremely fast on today’s processors; the arithmetic
operators come almost for free. The widespread use of 2-state data may
decrease the total memory footprint, having an effect on the caching of
data, and therefore an impact on capacity and performance, but the
performance from doing less arithmetic calculations on a 2-state value
will be minimal.

3.3.3 Real data types
References: 3.5

The new keywords for new real data types suffer from exactly the same
problems created by new integer data types. Instead a system for
defining floating point and fixed point representations should be
constructed so that users can define the real numbers they need. An
excellent paper was presented at DVCon 2003 on this topic and should be
considered as a mechanism for extending the floating point number
system. The work in this area can be found at http://www.eda.org/fphdl.

3.3.4 Void data type
References: 3.6

The void data type is motivated by the changes to the definition of
Verilog functions. In particular if a function returns no value or if a
function is used as a statement and the returned value is to be
discarded (i.e. cast to void) then this type is necessary. Cadence
believes that the SystemVerilog extensions to functions to be used in
this way are not a good extension of Verilog as explained below (see
3.10). If these extensions are not made, then the void type is
unnecessary and its removal eliminates yet another keyword.

3.3.5 String data type
References: 3.8

One of the general issues discussed above was the lack of a consistent
application of extension technology. Strings and the methods defined on
them are a classic example. If strings are being added as a fundamental
data type then operators or system tasks should be defined to operate
on them as is done for all other Verilog data types. The extension of
method syntax to objects that are not defined as classes creates a
situation where it is difficult for a user to remember how the
extension was made. This makes the language harder to write and learn.
Either strings should be defined as a new standard-defined class and

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 13 4/24/2003

that class would contain these methods, or the operators on strings
should be defined as system functions.

There is also not sufficient integration of the string type into the
direct programming interface. The relationship to a ‘C’ char * is not
sufficiently specified. For instance is a SystemVerilog string
terminated by a ‘\0’ character?

3.3.6 Event data type
References: 3.9

SystemVerilog extends named events by promoting them to a full-blown
data type including assignment and comparison operators. Allowing an
event as a variable is a fine extension of Verilog and is required to
allow events to be embedded in other data types such as a struct.
However, SystemVerilog defines events as a “handle to a synchronization
object”. The new events are in effect a new dynamically allocated
object to which the user is given a handle. These handles are a hybrid
between the dynamic behavior now defined in classes and the statically
allocated behavior of all other data types.

This is a further example of where an idea, in this case dynamic
allocation, is only included in SystemVerilog in limited contexts
(classes, strings, events). Instead we would prefer to see the
specification of how all types can be both statically and dynamically
allocated and the interaction of these techniques cleanly defined. The
piecemeal addition in limited contexts makes the definition very
difficult and will require revisiting the issue later to define dynamic
allocation for all other types.

3.3.7 Enumeration types
References: 3.11

Enumerations in SystemVerilog have been dealt with in two separate
committees. The sv-bc has been attempting to clarify the meaning in
SystemVerilog 3.0, while the sv-ec has been extending enumeration types
to correspond with how they were dealt with in the Vera donation. This
has led to endless debate about the intent of enumeration types. The
LRM still contains language like “SystemVerilog enumerated types are
strongly typed”. However, they are also allowed to be assigned into
unions, and casts can assign out-of-range values into an enumeration.

Cadence believes that Verilog should not contain any “strongly-typed”
integral values. Enumerations should simply be treated as a set of
named constants that make designs easier to read and allow explicit
encodings of pneumonic identifiers. It will be incredibly common for
values specified as enumerations to be assigned into other integer
objects, registers, or assigned onto nets. Therefore, creating any
guarantee that the opposite assignment will always be legally in the
range of an enumeration will create an implementation burden to
guarantee that non-consecutive encodings of an enumeration value are
checked on assignment. As a debug or lint check, this sort of runtime
checking may or may not be enabled by a vendor, but it is not in the

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 14 4/24/2003

spirit of Verilog to do this on every assignment and could have
significant performance impact.

Enumerations are another case where new operators were defined as
methods on objects that are not classes. Either this should be adopted
for all data types and retrofitted into existing Verilog types or
limited only to classes.

3.3.8 Structures and Unions
References: 3.12

The addition of a struct type is absolutely a required addition to
Verilog and Cadence supports its addition. We do however have some
objections to some of the specific content.

Special considerations are given for 2-state and 4-state vectors in
unions. If an object contains two overlapping union members, one of
which is a 2-state object and one of which is a 4-state value, then
they are specified as being interchangeable. For instance you can write
into the 4-state value and read it out as a 2-state value. If the
original value contained no ‘X’ or ‘Z’ values then you should get the
same value out. This special case poses an extreme implementation
burden and just does not make sense. The purpose of 2-state is, at
least in part, to allow a more compact representation. This special
case would cause a vendor to have two separate implementations of 2-
state based on how the object overlaid 4-state objects.

A second consideration, related to the next section on classes, is the
lack of a method of dynamically allocating structure objects (or any
type for that matter). As soon as a struct type is added to the
language, then you immediately have the power to construct complex data
types that require some form of dynamic allocation. During the
SystemVerilog development process different versions of “handles”,
“references”, and “pointers” were discussed. Regardless of the
terminology used, the creation of dynamic data structures should be a
fundamental extension of structs. The best solution for this, in our
opinion, is to unify the struct and class into a single extension
mechanism as discussed in the next section.

Finally, the specification of struct implies compatibility with ‘C’.

”An unpacked structure has an implementation-dependent
packing, normally matching the C compiler.”

The sv-cc committee prepared a more detailed description which was
never discussed in the sv-bc committee. No resolution has been made to
date therefore this leaves this section poorly defined: what does
“normally” mean? The sentence about unpacked structs should either be
removed or a complete description for all complex data types should be
added in the ‘C’ API section where it matters.

3.3.9 Classes
References: 3.13

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 15 4/24/2003

Classes form a fundamental extension to the type system by allowing
dynamic memory allocation, single inheritance and data specific
methods. The success of languages such as ‘e’ and Vera has shown how
these concepts are extremely useful in verification environments. The
fundamental issue Cadence has with classes today is that they are
restricted to being dynamically allocated. All other data types in
Verilog are statically allocated. We believe that if an allocation
mechanism for structs is created and a semantic for static classes is
defined, then the two types can be merged into a single construct.
Structs are simply classes that do not inherit from any other class,
and do not define any methods.

This unification will be most useful when you consider system-level
models instead of just testbenches. Today with classes and structs as
separate items the user must choose the language construct based on the
type of memory allocation they want. If they begin by modeling with
classes to get dynamic memory for a specific data structure (perhaps an
infinite length queue) at some point they will have to change to a
struct type as they refine the design to a fixed length, statically
allocated piece of memory. If classes were allowed to be statically
declared, and structs dynamically allocated, then the user would
instead make the more intuitive decision on whether they wanted to
utilize object-oriented programming techniques and then could stick
with that decision as they refined from infinite to fixed length.

3.4 Section 4 - Arrays
References: 4
For the most part, the content of the chapter on arrays is non-
controversial and extends existing 1364 in a reasonable way. There are
a few outstanding issues that the committees have discussed that we
believe need further resolution.

3.4.1 Longest Static Prefix
References: 4

The concept of the sensitivity of a process when an array is a part of
the sensitivity list can have both performance and complexity of
implementation considerations. There was significant debate in the sv-
bc committee around what the rules for determining the longest static
prefix of an array and the effect on expressive power and
implementation complexity/performance. The final resolution was that
this concept was left unspecified; this will create ambiguous
interpretations in different implementations which will hinder vendor
interoperability.

3.4.2 Dynamic Arrays
References: 4.6

In SystemVerilog 3.1, dynamic arrays were introduced through Vera and
were restricted to be one dimensional arrays. The array size is allowed
to be set or changed at runtime. They can be declared anywhere and
allocated with the new method. The LRM also says that:

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 16 4/24/2003

"A subroutine that accepts a dynamic array can be passed a
dynamic array of a compatible type or a one-dimensional fixed-
size array of a compatible type."

The DPI interface adds the concept of "open arrays" for denoting
unconstrained array types which can only be the type of DPI function
formal arguments. This allows one to write general purpose ‘C’
functions which can handle arrays of any size. Open arrays have the
same syntax as dynamic arrays ([]) but allow open sizes for any and
multiple array dimensions. The size of the open dimension is determined
at runtime by the actual arguments to the function call.

This issue of open versus dynamic arrays was discussed at length in the
sv-cc committee. The sv-cc committee felt that the current restrictions
on dynamic arrays should be removed and felt that the name dynamic
array was a misnomer, when the dynamic array syntax [] appeared as a
task/function formal argument. Removing the restriction on the number
of dimensions and changing the name of dynamic to open arrays was
discussed.

This illustrates the lack of synchronization between the sub-technical
committees resulting in inconsistency in the LRM. If both dynamic and
open array terminology stay in the standard and use the same syntax,
users will be terribly confused. In one case, such an array will
represent a dynamically allocated one-dimensional array, in the other
(with the same syntax) it will refer to an unconstrained formal array
type.

Note that Cadence does not necessarily believe that it should be the
purpose of a direct C interface to deal with generic open arrays (see
section 3.26.7 for details). Such open arrays have to be accessed in an
abstract way through DPI query and access functions which causes
overlap with existing VPI functionality.

3.4.3 Associative Arrays
References: 4.9

Associative arrays are defined with limitations on the data types that
can be used to index the array. The allowed types are integral, string,
class, packed arrays, and packed structs. This is another example of
limiting what could have been defined as a generic language extension.
Defining associative arrays such that any type can be used as the index
would actually have been a simpler process than restricting it and
would be extremely useful for system-level models. In particular
implementing content-addressable memory where the items being stored
may be any arbitrary type would be extremely helpful. There are some
implementation concerns but in a sufficiently abstract model the
expressive benefit and simplicity outweigh the implementation
complexity.

Associative arrays indexed by class also have an issue that we believe
must be addressed. The traversal order of iterating across all the
items in the array is specified as “deterministic but arbitrary”. In
committee discussions this was deemed to mean that the same simulator
will do the traversal the same way every time, but different simulators
might yield different orders. We believe that this will be a major

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 17 4/24/2003

problem for customers utilizing more than one vendor’s simulation
tools. Just like $random in the 1364 standard, customers will expect a
way to get deterministic results across all vendors.

Finally, Associative arrays are also another location where methods are
defined on non-class data.

3.5 Section 5 - Data Declarations

3.5.1 Data Declaration Syntax
References: 5.2, 10.2
SystemVerilog 3.1 has allowed the use of static as a lifetime
declaration in automatic tasks and functions. This exact functionality
was considered and rejected by the IEEE 1364 working group. Note that
this is not a case where 1364 rejected the functionality because there
was just no good definition of what it would do, or there was
insufficient time to consider the proposal. The exact same content was
proposed, voted on, and rejected. The construct in question allows a
variable to be declared as static in an automatic function or task. It
is always possible to simply declare the variable outside the
function/task in a module and then reference it in the function/task.
This places the static object where it belongs (i.e. in the module) and
the automatic data where it belongs (i.e. in the task/function).

This is the kind of extension that Cadence expects will be revisited by
the IEEE and that their original decision on this issue will stand.
Until this issue is vetted by the 1364 group a user adopting this style
is in danger of having their code not work in the future 1364 standard.

3.5.2 Constants
References: 5.3

A new form of constant that can exist in tasks and functions has been
added to SystemVerilog. This in general is a harmless addition and does
add some expressive power; however the specification is incomplete when
talking about initialization of constants. The specification explicitly
allows the use of hierarchical names when specifying the value of a
constant but does not properly guard against circular references
between constant initializations. Due to defparams, Verilog already
suffers from this ambiguity in definition of constants so this adds no
additional ambiguity; however, it would have been nice to avoid this
known problem by making hierarchical circularity illegal in this case.

3.5.3 Variable Initialization
References: 5.4

The specification of variable initialization in SystemVerilog is:

“In Verilog-2001, an initialization value specified as part of
the declaration is executed as if the assignment were made
from an initial block, after simulation is started. Therefore,
the initialization may cause an event on that variable at
simulation time zero.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 18 4/24/2003

In SystemVerilog, setting the initial value of a static
variable as part of the variable declaration shall occur
before any initial or always blocks are started, and so does
not generate an event.”

The argument made in favor of this change is that it simply makes the
use of variable initialization in a procedural context deterministic.
This argument has nothing to do with why we believe this is a non-
backward compatible change. The problem with this change of
initialization is that in the Verilog-2001 method an event is
generated. In the SystemVerilog method, no event is generated. This
difference, as explicitly given in the LRM above, has a severe impact
on gate-level models and the behavior of continuous assignments, not
procedural contexts as argued.

Consider the following example:

 module init;
 integer var_i = 1; // A variable with an initial value
 wire [31:0] wire_i; // A wire

 assign wire_i = var_i; // Continuously assign the wire the variable’s value

 initial #1 $display("wire_i is %d\n", wire_i); // display the wire
 endmodule

In Verilog 1364, the initial value on var_i is guaranteed to produce an
event. This event is critical because it causes the continuous
assignment to the wire wire_i to execute. Without this event, the
continuous assignment does not execute at time 0 and therefore the
initial value of the variable would not propagate to the wire, leaving
the wire at the default value of 32’bz. The exact same problem would
occur if a gate were substituted for the continuous assignment above.

In Verilog 1364 the code snippet above would produce a 1 on the wire_i,
in SystemVerilog a 32’bz would be produced.

This is not a trivial problem. The vast majority of Verilog modules
have this style of code wherein an internal value is calculated and
stored in a register and then the value is propagated either through a
continuous assignment, buffer, or port onto a wire. Any of these forms
of interconnect would not propagate the initial value in SystemVerilog.
This would cause most devices to propagate the default value of ‘z’ on
a wire instead leading to catastrophic simulation failures.

3.5.4 Automatic Variables
References: 5.5, 10.2

In addition to reintroducing the previously rejected static keyword in
tasks and functions, SystemVerilog also allows explicit declaration of
some data elements as automatic. Cadence sees absolutely no need for
this extension. Variables in automatic tasks and functions are already
automatic so no explicit indication is necessary. Having automatic
variables in any other static context just does not make sense. What
does it mean to call a static task and have some of the data in it
allocated automatically? The only purposes we can possibly imagine are

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 19 4/24/2003

to make the data not available as a hierarchical reference, or to
ensure that the item is initialized each time the function/task is
called. If a way to create data that cannot be referenced
hierarchically is desired then we should extend Verilog to have public
and private data. This has already begun in the section on classes.
Initialization is also easily handled by just initializing the data
procedurally in the task or function.

Note that the automatic declaration is even allowed in initial and
always blocks. We have no idea why these purely static contexts need to
have automatic data.

3.5.5 Variables in Unnamed Blocks
References: 5.5

SystemVerilog adds the capability to declare objects in unnamed blocks
as well as in named blocks. This data is visible to the unnamed block
and any nested blocks below it. Hierarchical references cannot be used
to access this data by name.

We have several objections to this. First, the behavior of Verilog such
as VCD dumping, $display (%m) etc. is not described with respect to
these variables. Secondly, the original intent for allowing variables
declared in unnamed blocks was to be able to hide data declarations
from scopes above. The same concept is brought into the language
through classes which have the possibility of declaring public,
protected or private data declarations. These two methods of declaring
private data should be reconciled.

3.6 Section 6 - Attributes
References: 6

The purpose of this section is to define attributes on interfaces and
modports. Cadence has no issues with the content of this section. We do
believe this section is probably completely unnecessary as attributes
should just be defined in the syntax for interfaces and modports.

3.7 Section 7 - Operators and Expressions
SystemVerilog borrows many operator and expression concepts from ‘C’.
While some of these concepts are useful and allow for more succinct
code, others actually introduce coding styles that can lead to
misunderstandings or even ambiguous behavior between different
implementations. Specific examples are given below.

3.7.1 Assignments in expressions
References: 7.3

SystemVerilog now allows assignments in expressions. The specific
example of given in the LRM for this construct is:

 If ((a = b)) b = (a += 1);

Note that this single line assigns two values to ‘a’ and tests it.
Cadence believes this sort of shorthand is borrowing some of the worst

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 20 4/24/2003

features of ‘C’. Most ‘C’ coding styles guidelines explicitly disallow
this form of assignment in ‘C’ and adding it to SystemVerilog adds no
expressive power.

3.7.2 Increment (++) and Decrement (--) in expressions
References: 7.3

Also brought from ‘C’ are the increment and decrement operators. In
general, Cadence believes these are a reasonable addition as statements
in the language, but there inclusion in expressions creates syntax that
is easily interpreted ambiguously. The SystemVerilog LRM says

“The ordering of assignment operations relative to any other
operation within an expression is undefined. An implementation
may warn whenever a variable is both written and read-or-
written within an integral expression or in other contexts
where an implementation cannot guarantee order of evaluation.”

We believe that if this new construct is so ill-defined that it must
have such a caveat explicitly attached to it in the LRM, then it should
not be added in the language. Auto-increment and auto-decrement in
expressions should be disallowed.

3.7.3 Built-in methods
References: 7.10

The concept of built-in methods deserves recognition for creating a
construct that extends the language without creating conflicts with the
existing operators; however there are some issues with built-in method
definitions.

The first issue is that the existing hierarchical ‘.’ operator is used
to separate an object from methods called on the object. This follows
the conventions in ‘C++’ and Java, but the pervasive nature of
hierarchical references in Verilog make it more confusing in Verilog.
This problem is compounded by the fact that methods which take no
arguments have been allowed to have the parenthesis be optional when
the method is called. An expression such as:

 r = a.b.c

Could either be a hierarchical reference or a call of a method on the
object a.b. In the most extreme case, this could be a call to a method
on the object a, followed by either a hierarchical reference to ‘c’ or
another method call. These options could be written as:

 r = a.b.c()
or
 r = a.b().c
or
 r = a.b().c()

This ambiguity could have been clarified either by making the method
operator something other than ‘.’, or by requiring the () on null
argument lists.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 21 4/24/2003

The second issue with built-in methods is that they are not
differentiated in any way from user-defined methods. In future Verilog
revisions new methods will certainly be added by the standard. A unique
namespace for the methods defined by the standard should be created so
that they will not conflict with user-defined methods. The standard
should prefix all standard-defined methods with a unique character such
as ‘$’, or ‘_’. User-defined methods should be precluded from using
these identifiers for methods thereby ensuring that conflicts in the
future will be completely avoided.

3.7.4 Literal expressions
References: 7.12, 7.13, 7.14

There are three sections that define how unpacked array expressions,
structure expressions, and aggregate expressions are dealt with. All of
these expression forms use the {} notation to form the expression. No
BNF syntax description for these expression types is given in the LRM.
This is essentially the same omission as was mentioned previously by
not providing the BNF for structure or array initialization
expressions. We expect that when BNF for these expressions is provided
that there will be a syntactic ambiguity between these three classes of
initializers and the existing Verilog concatenation and replication
operators.

A statement such as

 x = {1, 0, 1};

could either be a concatenation being assigned to any packed type, an
assignment to an unpacked struct, or an assignment to an unpacked
array. Only by examining the left-hand side of the assignment can the
context be determined. This problem is even worse when a literal is
used as an argument to a task.

 T ({1, 0, 1});

In this case, only after elaboration when the specific task being
called is resolved and its arguments can be examined can the meaning of
the literal be determined. This will lead to error messages very late
in the compile flow and could impair optimizations because such
decisions must be deferred.

3.8 Section 8 - Procedural Statements and Control Flow
References: 8

SystemVerilog adds some of the procedural statements that exist in ‘C’
but that are not available in Verilog. Some of these such as
‘continue’, and ‘return’ are simple changes supported by Cadence;
however the behavioral extensions go far beyond these simple extensions
and create keywords where they are unnecessary, and have possibly very
significant negative performance impact.

3.8.1 Unique/Priority Keywords
References: 8.4

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 22 4/24/2003

SystemVerilog adds the keywords unique and priority in front of if and
case statements to indicate that the individual branches should have
specific relationships. The unique relationship indicates that the
branches do not overlap, and the priority relationship indicates that
they should be evaluated in priority order. These are roughly
equivalent to the commonly used parallel and full case pragmas.

This is a case where keywords are being overused. Verilog already
contains a mechanism whereby information can be associated with a given
statement. That mechanism is attributes. A reasonable way of adding
lint-like semantic checks to any statement is to add standard-defined
attributes that must be interpreted by tools. For instance if a
completely new namespace came into existence for standard-defined
attributes, it might begin with %. So if a %unique attribute was
defined for SystemVerilog then instead of:

 unique if (XXX)

the syntax

 (* %unique *) if (XXX)

could be used. Since this alternative adds no keywords it is a
significantly better enhancement to the language while capturing all
the same information. Similar to extending standard-defined methods,
the establishment of standard-defined attributes allows them to be
created in a new private namespace so that they will never conflict
with user-defined attributes or identifiers of any kind.

The unique and priority keywords are the first examples thus far that
add lint-like capability into Verilog in the form of keywords. Cadence
believes that this is inappropriate due to the impact on backward
compatibility, and that standard-defined attributes or pragmas could be
used equally as effectively with many fewer conflicts.

3.8.2 Performance of Unique
References: 8.4

A second concern with the unique keyword is that it can have a
potentially severe impact on simulation performance. In the worst case,
in order to detect conflicts between each and every branch of an
if/case statement, every condition in every branch would have to be
evaluated every time the statement is encountered. Sometimes static
analysis of the branches could be used to limit this impact but the
complexity of this optimization is substantial and often all branches
would need to be evaluated.

3.8.3 Final blocks
References: 8.7

SystemVerilog adds an interesting feature, the final block. The final
block executes at the end of simulation and is provided to allow a user
or application to summarize behavior or coverage prior to exiting
simulation. This is certainly a worthwhile addition to the language.
Cadence believes that the specification of these blocks is incomplete.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 23 4/24/2003

Final blocks are not prohibited from assigning to registers or wires in
any way and if they do perform these assignments, the behavior is
undefined. If final blocks are allowed to do assignments (even in zero-
delay) then they may actual trigger additional simulation cycles such
that the summary information gathered may be inaccurate.

Final blocks should be defined at a minimum as not allowing assignments
to any object to which any other construct is currently sensitive.

3.9 Section 9 - Processes
SystemVerilog defines new forms of processes that extend the
functionality available in always and initial blocks. We believe that
most of these are improperly formed extensions that could have been
accomplished by adding information to the existing constructs rather
than inventing entirely new forms. The details are provided below.

3.9.1 Ordering requirement on final blocks
References: 9.1

SystemVerilog contains the following statement:

“SystemVerilog does not specify the ordering [of final
blocks], but implementations should define rules that will
preserve the ordering between runs.”

Cadence is unclear on exactly what we are being required to implement
here. Between which runs are we required to preserve the ordering of
final blocks: multiple runs of the same design with no changes; runs
where only behavior changes are made; runs where structural changes are
made; runs where one previously simulated block is completely subsumed
in another block? We believe that if the language can not define an
ordering, then no mention of the ordering should be made at all.

3.9.2 Always_comb, always_latch, always_ff as semantic checks
References: 9.2, 9.3, 9.4
SystemVerilog adds three new forms of always block by introducing new
keywords. These new forms imply a coding style that the block is
combinatorial logic, a latch, or a flip-flop. Identifying the intent of
an always block in this way does allow static and dynamic checks to be
performed to ensure that a design criteria is being met, and may allow
both simulation and synthesis tools to optimize the block and achieve
better quality of results. However, using a keyword for this purpose is
inappropriate. It adds unnecessary keywords, and is not a long-term
sustainable method of extending the language.

Once again, we would return to the existing attribute mechanism to
associate additional information with a statement. That is exactly what
attributes are for; Verilog should begin to use them as standard-
defined attributes. In this case something like:

 (* %comb *) always
 (* %latch *) always
 (* %ff *) always

could be used.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 24 4/24/2003

We call the keyword method a non-sustainable method for extension
because it does not allow multiple characteristics to be associated
with the same block. For instance, imagine a future extension that
would allow an always block to run in a specific region of a simulation
cycle. Instead of introducing a new keyword (such as always_observe) to
do this, an attribute on the block could be used.

 (* %observe *) always

Then if you had a block which was both scheduled and combinatorial,
both attributes could be associated with it.

 (* %observe, %comb *) always

In the keyword method you would have to further expand the keyword
space with something silly like always_observe_comb.

3.9.3 Always_comb sensitivity
References: 9.2

Similar to the @(*) functionality of 1364, the always_comb block is
implicitly sensitive to all of the objects on the right-hand side of
any statements in the block. However, SystemVerilog takes this one step
further and requires an analysis of any functions called from the block
and a tool must create sensitivity to any objects referenced globally
by those functions. Note that this process is recursive so that any
functions called by those functions must always be considered as well,
ad infinitum.

The only case where a function can add to the sensitivity of the
always_comb is if it references an object as a hierarchical reference.
This is a dangerous coding style that adds side-effects to functions.
Because function calls themselves can be hierarchical references that
may not resolved until after elaboration, a tool has no idea where a
given function definition is used when that definition is parsed. In
order to add this check to always_comb, every function would be
required to keep a list of any objects that are referenced
hierarchically. Then at code generation time, all possible call chains
would need to be analyzed recursively to detect if a function with a
side-effect is called and that hierarchical reference would need to be
added to the sensitivity list.

Cadence believes that the implementation complexity of this additional
sensitivity check is not justified by the expressive power added to the
language. We would prefer to simply produce a warning when we detect
functions with side-effects and if a user calls a function with side-
effects from an always_comb they will have a potential source of error.

3.9.4 Always_comb overlap with @(*)
References: 9.2

The new always_comb statement is extremely similar to the existing @(*)
sensitivity in Verilog 2001. It has similar sensitivity semantics as
discussed in the previous section. However, always_comb adds a lint-

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 25 4/24/2003

like capability to ensure that the contents of the always block are in
fact combinatorial logic. We believe that the sensitivity should be
expressed in the sensitivity list as is done with the @(*) syntax in
1364 and that the lint-like capability should be added as an attribute
as defined above.

In our opinion, the IEEE will almost certainly reconcile these two
different forms into one.

3.10 Section 10 - Tasks and Functions
SystemVerilog makes major changes to functions by bringing a
significant amount of ‘C’-like content into Verilog. ‘C’ is a language
that only has functions, there is no concept of a task. Simply
modifying functions semantics significantly “because ‘C’ allows it”, is
not sufficient justification. The sections below enumerate specific
objections.

3.10.1 Function output and inout argument modes
References: 10.3

Functions execute in zero time and, except for hierarchical references,
can not have side-effects; their only effect is through their return
value. SystemVerilog allows the modes output and inout on function
arguments. This change blurs the line between tasks and functions in
Verilog and adds significant opportunity to have function side-effects.
If a subprogram is supposed to modify multiple arguments then it should
be written as a task or an automatic task.

3.10.2 Functions as statements
References: 10.3.1

A function is a mechanism in Verilog to create an operand that can
exist in expressions. With the addition of automatic tasks in Verilog
2001, the same scope and lifetime can easily be achieved. There is
simply no need for this change other than to be more ‘C’-like.

3.10.3 Void functions
References: 10.3.1, 10.3.2

Void functions are only necessary if functions have output arguments
and therefore act like tasks. Since we object to adding output and
inout arguments to functions, this change is simply unnecessary.

3.10.4 Implicit task and function lifetime
References: 10.4
SystemVerilog allows the lifetime specifier automatic and static to be
placed on a module, interface, and program block declaration in order
to indicate that all tasks declared in that module will have the
specified lifetime. Placing this specifier on a module may be viewed as
a convenient shortcut, but it creates a non-local syntax that has
severe effects on the behavior of tasks declared in that module. If for
instance, a module is declared in this fashion and then a utility task

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 26 4/24/2003

made visible in the module through a `include, then the task becomes
automatic even though it was originally intent was static.

The lifetime of a task is a property purely of the task and the syntax
should be limited specifically to the task, not inherited from
elsewhere.

3.10.5 Lack of shared library support in DPI naming
References: 10.6

The specification of the name for a function imported from ‘C’ to
SystemVerilog should include a component that represents a shared
library name. Applications will commonly want to provide ‘C’ functions
in shared libraries as this is a common distribution mechanism in ‘C’.
This will also serve to minimize name conflicts between multiple
applications all running in the same simulation.

3.11 Section 11 - Classes

Classes are a solid extension of Verilog. Languages such as e and Vera
have demonstrated the power that they can bring to verification
environments. The only issue Cadence has with classes as they exist in
SystemVerilog is a lack of integration with the overall language as
explained below and in previous sections.

3.11.1 Additional common keywords
References: 11.2

The definition of classes adds the keywords this, new, super, and
class. These are all common, short English words that will most likely
conflict with identifiers in existing designs. A careful unification
with records and substituting operators for some of these could
eliminate most if not all of these keywords.

3.11.2 Parameterized class types
References: 11.22

Classes allow the parameterization of the type of objects declared
within a class. This is similar to C++ templates and Ada generic
packages. Although this does add significant modeling power, it also
adds extremely high complexity in implementation. Cadence believes that
this tradeoff was not considered strongly enough in the addition of
classes of a parameterized type. This construct will have a potentially
serious negative impact on compile time and simulation runtime.

3.11.3 Differences in struct and class
References: 11.24

The SystemVerilog LRM dedicates a section to explaining the differences
between structs and classes. They are listed as (edited for brevity):

1) SystemVerilog struct are strictly static objects …
SystemVerilog objects (i.e. class instances) are
exclusively dynamic …

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 27 4/24/2003

2) SystemVerilog structs are type compatible so long as their
bit sizes are the same, thus copy structs of different
composition but equal size is allowed. In constrast,
SystemVerilog objects are strictly strongly-typed…

3) SystemVerilog objects are implemented using handles,
thereby providing C-like pointer functionality. But,
SystemVerilog disallows casting handles onto other data
types, thus, unlike C, SystemVerilog handles are guaranteed
to be safe.

4) SystemVerilog objects form the basis of an Object-Oriented
framework that provides true polymorphism. Class
inheritance, abstract classes, and dynamic casting are
powerful mechanisms that go way beyond the mere
encapsulation mechanism provided by structs

Taking each one of these points individually, the first is simply an
artifact of the limited way in which struct and class are defined.
Unification could make both be static and/or dynamic, essentially
unifying them as a single language construct. A struct would simply be
a class with no inheritance or methods specified.

The second is partly untrue. Only packed structs have the capability of
being assigned based solely on width and this is a feature of a packed
struct. A class whose data elements are packed in the same way would be
a powerful modeling capability for vector-like objects with unique
field names. Cadence views the fact that classes are strongly typed in
this way as a problem, not a benefit. For unpacked data, structs are
not assignment compatible based purely on width, but neither are
structs assignable to classes even if the data members are identical;
each member must be individually assigned. This makes refining from a
class-level specification to a struct-level realization in hardware
very difficult.

The third is not a difference between structs and classes at all. It is
simply a statement that it is possible to have relatively safe memory
allocation compared to ‘C’. Dynamic allocation of other SystemVerilog
types could follow this exact same paradigm and have exactly the same
level of safety.

The last is really just a statement that specifies that no attempt was
made to integrate classes into the type framework that exists in
SystemVerilog, rather a new kind of type was invented that is
assignment incompatible with all other object types.

3.12 Section 12 - Random Constraints
In support of directed random testing techniques, SystemVerilog has
added capabilities for constraints and randomization. These are
certainly necessary extensions which Cadence supports. We do however
have a few issues with the details of the specification.

3.12.1 Limitation to randomizing classes
References: 12

In SystemVerilog, constraints and randomization can only be tied to
objects of a class type. Cadence believes that it should be possible to

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 28 4/24/2003

constrain and randomize any variable in a SystemVerilog design. It
should not be required to adopt classes and inheritance in order to get
constraints and randomization. Note that limited randomization is
heavily used today on non-class variables through $random(), adding the
ability to constrain these in conjunction with $random() would add
signification power.

3.12.2 Rand, randc in a class declaration
References: 12.3

When a class and the members of that class are declared in
SystemVerilog, the individual members that are to be randomized must be
declared with the keyword rand or randc. We believe that statically
associating the ability to randomize with the declaration of the type
is a mistake. In a given simulation it may be desirable to randomize
some members of a class and then randomize other members in a different
simulation. It may also be that given two objects of the same type you
want to randomize different members in the two different objects.

In order to randomizing different members in different simulation (or
different members in the same simulation) you would either need to
redeclare the class specifying different rand/randc members, or declare
all the members that might possibly be randomized as rand/randc and
then use $rand_mode() to turn off randomization of the specific members
you do not want randomized.

We would prefer to have the ability to randomize a particular variable
dynamically as is done with constraints. In that way it is not
necessary to redeclare a class or over-specify randomization in order
to have a flexible specification.

When this was discussed in committee the rationalization was that there
are compile-time optimizations that can be applied by knowing in
advance that these particular members would be randomized. Similar
information could be derived from that fact that members were actually
constrained or passed to system tasks that perform the randomization.

Another alternative would be to place a standard-defined attribute on
the object to inform the compiler that it may be randomized. This would
limit the keyword pollution and convey the same information.

3.12.3 Constrain, inside, dist, extends, with, solve, before
References: 12

All of these are examples of operators that have been added as
keywords. They are also short English words that have a significant
chance of overlapping with identifiers already used in designs.

3.12.4 Implementation of $urandom(), $urandom_range,
$srandom()

References: 12.10

SystemVerilog adds three new random number generator system functions.
These provide thread and object stability for random number generation.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 29 4/24/2003

The LRM states that these are deterministic in that the same seed will
produce the same values in each simulation. This is an important
characteristic for regression testing. The LRM does not however provide
the specific algorithm or ‘C’ code for the generator. This missing
portion of the LRM will cause the generators to not be deterministic
across multiple vendors making it extremely difficult for a given
customer to use more than one simulator.

Note that this problem originally existed in IEEE 1364 and the $random
code was donated by Cadence so that all vendors could utilize the exact
same function and thereby guarantee stability even across vendors.
Synopsys has been requested to provide the same level of detail by the
SystemVerilog committee and has refused to do so. A lack of
clarification in this area has been shown to lead to tests that are not
portable across multiple vendors. Synopsys claims in responses to the
sv-ec that this $random style is no longer prevalent. We disagree.

3.13 Section 13 - Inter-Process Synchronization
This section adds to the synchronization primitives of Verilog. The
capabilities added are semaphore, mailbox, and changes to named events.

3.13.1 Semaphores
References: 13.2

The addition of semaphores as a built-in class begins to slide down the
slippery slope of how far built-in data types can go. Cadence concurs
that the semaphore semantics must be defined as a primitive
synchronizer because it can not be otherwise expressed in Verilog. It
also adds required functionality. However, we believe that these should
not be defined as new language keywords. These should be defined by
providing the class definition including prototypes for the methods in
the class in SystemVerilog source form. The definition of the behavior
of the methods can be given in prose form in the LRM since it is not
expressible in SystemVerilog.

The SystemVerilog 3.1 standard includes the new specification of a
`include mechanism that references portions of the standard defined in
header files. This mechanism was introduced to support the List class
defined in Annex C. The prototypes for the Semaphore class should be
similarly defined in a new header file (such as Semaphore.vh) and
models which require semaphores should `include this header. This
avoids the addition of the keyword and allows for future extension of
Verilog using this extension mechanism.

3.13.2 Mailboxes
References: 13.3, 13.4

The mailbox is a second built-in class. The behavior of mailboxes is
completely expressible in SystemVerilog. The LRM includes 4 pages of
prose that attempt to specify the behavior a compliant simulator must
have for mailboxes. Cadence believes that this entire class definition
and the implementation of the methods should just be included as a
standard library element available using the new `include mechanism.
This would completely disambiguate the implementation of a mailbox. The

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 30 4/24/2003

standard should specify that this is a reference definition of the
class and that vendors can provide a different implementation as long
as the semantics remain unchanged. This would allow highly optimized
implementations of mailboxes without introducing new keywords but with
increased semantic specificity.

Note that this would also provide the opportunity for other users or
vendors to provide alternative mailbox implementations that may be
annotated with value-added capabilities such as statistics gathering
and coverage analysis.

3.13.3 Named Events
References: 13.5, 13.7

Verilog named events have been extended to include a persistent state
that is testable throughout a simulation time. The assignment and
comparison operators are also now defined. This extension has confused
many reviewers who where not a part of the SystemVerilog Enhancement
Committee. The LRM states “SystemVerilog events act as handles to
synchronization queues”. These are defined as dynamically allocated
queues that come into existence explicitly through the declaration of
an event, and can be deallocated implicitly when the event is no longer
referenced. This dynamic memory behavior is exactly the same behavior
as objects of a class type, so rather than modifying the existing
static named event mechanism, a new class should have been brought into
existence with the specified functionality. The new triggered method
could then be declared as a method in that class. The functionality of
triggered would still need to be predefined because there is no way to
express it in native SystemVerilog.

3.14 Section 14 - SV 3.1 Scheduling Semantics
The SystemVerilog LRM provides a much better specification of the
Verilog simulation semantics. This new definition provides for a
partial ordering of execution regions into which each language
construct can be scheduled. This flexible specification model allows
for future extension of the language semantics by adding new regions
relative to these regions within the partial order. Within any given
region, the order of execution of statements is not specified,
reflecting the existing non-determinism in Verilog. In general, this
section is exactly how we would like to see the simulation semantics
specified. We do have a few specific comments below.

3.14.1 Property Evaluation
References: 14.3

The LRM says:

“The observed region is for the evaluation of the property
expressions when they are triggered. It is essential that the
signals feeding and producing all the clocks to the property
expressions have stabilized, so that the next state of the
property expressions can be calculated deterministically.”

This is over-specified with respect to the content of Section 17
Assertions. In Section 17, it is specified that all variables and nets
referenced in a property are sampled implicitly at the beginning of a

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 31 4/24/2003

simulation cycle, thereby guaranteeing that properties always have a
stable value for all inputs. Cadence objects to this implicit sampling
of all inputs as given later (see References:), but it is a part of
the language as it stands today. In the presence of this sampling it is
not necessary to delay evaluation of properties to the observe region.
Since the values have been sampled, the execution of the property can
happen at any time and the result will be exactly the same. This
delayed execution places an undue burden on the implementation to
conform to an over-constrained reference algorithm.

3.14.2 Delaying of Pass/Fail Code
An assertion statement can have pass/fail code associated with the
assertion. The scheduling semantics say that this code is scheduled in
the reactive region of the simulation cycle. Cadence believes this code
should be executed whenever the property is evaluated to ensure that
its execution matches the simulation state precisely. Possible
mismatches can occur through this delayed execution. Assertions are
executed in the observe region. Between this region and the reactive
region, multiple simulation cycles can occur and therefore the values
of simulation objects can change. When combined with implicit sampling,
this can lead to actually seeing at least three potentially different
values for the same variable: the value implicitly sampled, the value
when the property executes, and the value when the pass/fail code wakes
up in the reactive region. For instance:

 typedef enum (S_UNKNOWN, S_ACTIVE, S_DONE, S_ERROR) state_e;
 state_e state;
 state_e next_state;
 reg [31:0] data;

 always @(posedge clk)
 begin
 A1 : next_state = UNKNOWN; // Initialize next_state

 case (state) // compute next_state
 S_UNKNOWN:
 begin
 next_state = S_ACTIVE;
 assert property (|data !== 1'bx) // assert the data has no Xs
 else $display(“state: %d, next_state %d, data %d\n”,
 state, next_state, data);
 end
 ….
 endcase

 state = next_state; // assign next_state to state
 end

In this partial example, the values referenced in the assertion are
‘data’ and (through inference) ‘state’. These variables will be
implicitly sampled prior to this simulation cycle and the value stored.
When the assertion executes it will use these sampled values; however,
when the $display statement is executed in the reactive region, the
current values, not the sampled values, will be displayed. Between the
execution of the assertion and the $display, the variable ‘state’ will
be reassigned due to the last assignment in this always block, so

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 32 4/24/2003

‘state’ will always equal ‘next_state’, and some other process may have
assigned a different value to ‘data’.

Assertion pass/fail code must execute whenever the property is
evaluated in order to come even close to accurately reflecting the
state of the simulation. Even with this, the fact that the assertion
uses implicitly sampled data will make this difficult.

3.15 Section 15 - Clocking Domains
Clocking domains add a powerful mechanism for interacting with a design
in a cycle accurate manner. This concept originally was donated as a
part of Vera and therefore this chapter concentrates on their use in
testbenches. Cadence believes that this emphasis should be removed as
they add a very powerful general modeling capability; testbenches are
just one example of how this could be used. In general, we are highly
supportive of the capabilities provided but have some comments below on
specific content.

3.15.1 Verbosity of declarations
References: 15
The clocking domain requires that all variables and nets to be
referenced in the clocking domain are explicitly redeclared in the
clocking domain. This will quickly lead to cases, in a synchronous
coding style, where every variable or net is declared both inside and
outside the clocking domain. Some form of implicit declaration or
namespace inheritance should be included to make this less repetitious
(something similar to “.*” and “@*”).

3.15.2 #1step will create non-deterministic IP
References: 15.3

A new time literal step was introduced to handle sampling in clocking
domains. A #1step sample is defined by: “An input skew of 1step
indicates that the signal is to be sampled at the end of the previous
time step.” This is a necessary semantic to have in clocking domains.
The problem comes from the fact that the #1step literal itself is
defined as: “The step time unit is equal to the global time precision.”
Since, step is a new general time literal, it can be used anywhere in a
description, for instance in a blocking assignment. The value of this
delay will actually change depending on the design in which this module
is instantiated.

3.15.3 #0 semantics are misleading
References: 15.3
A sampling input skew of #0 would intuitively be interpreted as a
sampling at the beginning of the simulation cycle; however this is
really the semantic of the #1step skew. A #0 skew waits until the
observe region of the current simulation cycle and then samples the
values. This occurs after non-blocking assignments have executed for
this simulation time. We believe it will be a common error for users to
utilize #0 where they intend #1step and get difficult to debug
simulation errors. We also can not think of an example where observe
region sampling is actually useful, therefore #0 should be defined as

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 33 4/24/2003

the beginning of this time and a special case should be created for the
unusual semantics of sampling during the observe region.

3.16 Section 16 - Program Block
The program block is a prime example of layering rather than
integrating functionality. The program block was the construct
equivalent to module in Vera. It provides a declarative scope for
shared objects and initial blocks to encapsulate the testbench. It also
implies a simulation semantic where all objects declared in the program
block are delayed in their execution until the reactive region of
simulation. This entire construct should have just been subsumed into
the existing module construct for the reasons given in the sections
below.

3.16.1 Functional overlap with module
References: 16.1

As with the ‘interface’ discussed earlier, program blocks overlap
almost entirely with modules. They have ports, parameters, create a
declarative region, and can contain executable code. This is exactly
what modules do. The only difference from a module is that the only
behavioral constructs they can contain are initial blocks and
tasks/functions, and that they have delayed simulation semantics. The
sections which follow show Cadence’s objections to these restrictions
in program blocks which, if removed, will make modules and program
blocks identical.

3.16.2 Modeling restrictions
References: 16.2

Program blocks are limited to containing initial blocks and
task/function declarations to express their functionality. This concept
comes from Vera where all programs were dynamic objects and had to be
because they were integrated during simulation by executing a PLI task
at runtime. When integrating this into Verilog, this restriction is not
necessary; they will be elaborated and can be brought into existence
statically if that is the user’s desire.

A test environment, when expressed in native Verilog, is expressed as a
system-level model surrounding the device under test. This relationship
is naturally expressed by using hierarchy in the testbench itself as
well as in the model. Restricting program blocks by not allowing
hierarchy in a program block will make this impossible. This
restriction is just a legacy from Vera and adds no expressive power; it
just limits the user’s flexibility.

Similarly, always blocks are the natural way to express a static
process that waits for something to happen. In Vera, all processes had
to be dynamically brought into existence, therefore a single initial
block which spawned multiple threads was natural. However, when this is
integrated into native Verilog, sometimes a static model created by an
always block is more convenient. Again, this restriction is just a
legacy from Vera and adds no expressive power; it merely limits the
user’s flexibility.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 34 4/24/2003

3.16.3 Reactive semant ics
References: 16.4

Any initial blocks or tasks defined in a program block execute during a
special simulation region named the ‘reactive’ region. This executes
when all other events are complete for this simulation cycle, but can
generate new events. This concept is similar to the Read/Write
Synchronize callback available from PLI. Although we think having
access to this region from Verilog code is a reasonable extension, the
scheduling behavior is functionality relative to a process (always
block, initial block, or task), not hierarchy. Creating a mechanism
that allows a specific process to be reactive is the more natural place
to add this concept, not by replicating and restricting the entire
concept of a module to get the behavior.

This reactive behavior is also introduced in an attempt to let
testbenches “run last” in the simulation cycle. Over the years, many
applications have wanted this functionality. A problem always occurs
however because no one construct can assume it is running last when
more than one is allowed to make this request. Specifying this special
status for program blocks is completely artificial and we believe it
can actually create verification problems not solutions. A testbench
should be coded to act exactly like a system-level model stimulating a
device under test. If the testbench is scheduled with special
semantics, then it is not exactly emulating a device stimulating this
object. When the device under test is embedded in another model it will
not be stimulated by objects with this special semantic therefore it
has not been accurately verified.

3.16.4 Termination of all simulation through $exit()
References: 16.6.1

An initial block in a program block can signal it is done executing by
calling the new system task $exit(). When all program blocks present
have called $exit(), then this simulation terminates. We believe this
will cause some simulations to prematurely exit unless users are very
careful. Imagine a situation where a user has an existing Verilog test
environment, if they adopt SystemVerilog and begin writing program
blocks they may have only a single program block. When this one program
block is done the user may call $exit(). Since it is the only program
block the simulation will exit at this point even if the existing
Verilog part of their test has not completed.

The addition of $exit gives a single initial block an extreme form of
global influence. By indicating that this one process is complete it
can terminate the entire simulation. If this initial block has enough
global state information to know that this can safely be done, then
that initial block should call $finish and terminate simulation. If it
does not have that global state then it should only have influence over
its own environment, not the entire simulation.

Once again, this is an artifact of Vera where the user utilized only
Vera for the testbench environment and this may have been a natural way
of specifying completeness. This however becomes very dangerous when
integrated into native Verilog.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 35 4/24/2003

3.17 Section 17 - Assertions
References: 17

The sections that follow contain Cadence comments on SystemVerilog
assertions. They do not follow the convention of section by section
comment because our issues are more about the interoperability of the
different assertion content than about the specific sections.

3.17.1 Complexity

Assertions are abstractions of behavior. They are intended to provide
a way to model behavior more simply, with less concern for the detailed
implementation. This allows the user to specify intent more clearly,
and gives a reference model for behavior against which the actual,
detailed implementation can be compared. But System Verilog assertions
have lost this notion of simplicity. The definition is extremely
complex, tied to an underlying notion of how synthesis should be
performed, and tied to a new simulation model that has added
significant complexity to the language. The rules for clock inference
are complicated and provide many opportunities for errors in what
should be a simpler, more abstract specification of behavior. Overall,
System Verilog assertions appear to be much more difficult to use than
plain Verilog (as in OVL), with little or no additional benefit.

3.17.2 Timing Alignment

Assertions are an abstraction of hardware. They should act like
hardware, but more abstractly. If the hardware design responds to a
clock in a given way, then the assertion needs to respond in the same
way. Otherwise the assertions and the hardware are out-of-phase with
respect to each other, and the assertion cannot function as an
abstraction of the hardware.

The sampling semantics for concurrent assertions causes these
assertions to be out-of-phase with the actual hardware block they are
abstracting. What's worse is the fact that this out-of-phaseness is
mandated by the language, and it is difficult to undo the effect.
Furthermore, a much simpler way of achieving this out-of-phaseness (if
it is actually desired by the user) is available - simply delay
slightly the clock used hardware design with repect to the clock used
in the assertion, rather than pre-fetching all the signals in the
assertion. This approach is user-controllable, affects only the clock
signals, does not require an expensive and complex data sampling
semantics, and works within current Verilog.

The fact that SVA concurrent assertion semantics are defined so that
they are required to be out-of-phase with respect to the hardware
virtually guarantees that semantic alignment of PSL and SVA will not be
possible. PSL assertions are defined in a manner that is consistent
with the execution of Verilog, VHDL, and other event-driven hardware
description languages. This enables abstract specification of behavior
independent of the language used to express the behavior, which will in
turn enable assertion-based specification and design. SystemVerilog’s
out-of-phase definition will inhibit it's use for abstract

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 36 4/24/2003

specification and design, and limit it to simple checking logic
embedded in System Verilog code.

The adaptation of assertion semantics to deal with sampled values
represents a forced intermingling of functional and timing concerns.
For a language that purports to be useful for system-level design, this
failure to abstract away timing is odd. The more usual approach is to
separate timing and functional verification, to enable more efficient
verification at more abstract levels of design.

The attempt to avoid race conditions by using sampled values also
raises the possibility of false positives – the assertion, looking at
sampled values, may fail to catch a race condition that will actually
affect the hardware. This will be the case unless the assertion and
the hardware block the assertion represents both look at the same
signals at the same time. If the designer wants to make use of System
Verilog clock domains to cause the HDL code to sample certain signals
before the clock edge, then the designer should write assertions that
sample those signals in the same manner, for consistency. If
assertions were allowed in clock domains, this consistency would be
accomplished trivially.

3.17.3 Clocks

There is a major issue with the definition of clocks. System Verilog
concurrent assertions are only defined with respect to a clock edge.
Even a combinational invariant concurrent assertion only has meaning at
the edges of the relevant clock. So given the concurrent assertion

 "never clk1 && clk2"

to attempt to say that two clocks are mutually exclusive, there must
also be a global clock that controls 'sampling' of these two specific
clocks, and the assertion will only be checked at ticks of that global
clock. The fact that System Verilog concurrent assertions are not
defined for the base case of an unclocked system means that invariants
such as this do not really express what we think they mean. This is a
fundamental flaw.

Note that the formal semantics document does define rewrite rules that
express the semantics of clocked concurrent assertions in terms of
equivalent unclocked concurrent assertions, but the LRM does not allow
users to write unclocked concurrent assertions. Instead, it clearly
states that concurrent assertions are evaluated only at clock ticks:

(in Section 17.4)

 "Concurrent assertions describe behavior that spans over
time. The evaluation model is based on a clock such that a
concurrent assertion is evaluated only at the occurrence of a
clock tick. The values of variables used in the evaluation are
the sampled values. ..."

(and later in the same section)

 “An expression is always tied to a clock definition. The
sampled values are used to evaluate value change expressions

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 37 4/24/2003

or boolean sub-expressions that are required to determine a
match with respect to a sequence expression. ..."

In general, the mapping from the formal semantics document to the LRM
semantics description is left undefined. In particular, the mapping
from the (level-sensitive) boolean clock conditions in the formal
semantics to the (edge-sensitive) event controls used to specify clocks
in the LRM is not specified. The fact that this mapping is required
restricts the formal semantic definition, which is more general than
the LRM language.

3.17.4 Syntax

The decision to use '##n' as the separator between elements of a
sequence is needlessly verbose, and in fact it makes sequences
difficult to read.

The decision to use the same operator (##) with different delay values
for overlapping concatenation and non-overlapping concatenation (##0,
##1) means that both operations must necessarily have the same
precedence. This leads to non-intuitive semantics resulting from
associativity of ## determining which of the two is executed first.

The syntax for property_spec appears to require 'not' in conjunction
with a multi_clock_property_expr. This would mean that the following
is not legal:

 property P;
 @(a) |=> @(b);
 endproperty;

3.17.5 Documentation

The LRM only vaguely defines the terminology used to describe the
semantics of assertions. While a formal semantics has been defined by
the semantics group, it is not part of the LRM, and the connection
between the LRM and the formal semantics is not at all clear.

Consider the following text (in section 17.5, Sequences):

"A sequence is a list of SystemVerilog boolean expressions in
a linear order of increasing time. These boolean expressions
must be true at those specific points in time for the sequence
to be true over time. A boolean expression at a point in time
is a simple case of a sequence with time length of one unit.
To determine a match of a sequence, the boolean expressions
are evaluated at each successive sample point to satisfy the
sequence. If all expressions are true, then a match of the
sequence occurs."

In these two paragraphs, the following terminology is used:

- true (applied to a boolean)

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 38 4/24/2003

- true (applied to a sequence)
- match (applied to a sequence)
- satisfy (applied to a sequence)

This appears to define three different terms relating to the evaluation
of a sequence – true, match, and satisfy – all apparently meaning the
same thing. Yet none of the definitions is complete, since none of the
definitions consider the meaning of the repetition, counting, and
nth_event operators.

Later, in 17.7.3, an additional term is introduced:

"The two operands of and are sequence expressions. The
requirement for the success of the and operation is that both
the operand expressions must succeed."

'Success' here seems to mean the same thing as 'matched'. Or does it?

The following paragraph is either unclear or circular:

“The context in which a sequence occurs determines when the
sequence is evaluated. The first element in a sequence is
checked at the first occurrence of the clock at or after the
element that triggered evaluation of the sequence. Each
successive element (if any) in the sequence is checked at the
next subsequent occurrence of the clock."

What is "the element that triggered evaluation of" a sequence that is
the beginning of a concurrent assertion? For that matter, what is an
"element"? This term is undefined.

The LRM intermixes references to 'evaluating an expression at a clock
tick' and an expression 'being true at the nth sample'. Such
inconsistency clouds the intent and confuses readers.

3.18 Section 18 - Hierarchy
SystemVerilog 3.0 introduced new hierarchy concepts which came in
through the introduction of Superlog content. These include $root and
nested modules. These are yet again examples of layering rather than
integration as explained below.

3.18.1 Does not address program blocks
References: 18

A general comment on this section is that it often refers to both
modules and interfaces. Statements such as “All modules and interfaces
must be parsed before elaboration” are common throughout the chapter.
SystemVerilog now adds program blocks and they must be included in each
of these places. Rather than repeat this in all places, Cadence would
prefer if both interfaces and program blocks were merged with modules,
but as long as they are not, these references should be fixed.

3.18.2 $root
References: 18.2

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 39 4/24/2003

The $root scope creates a single top-level scope in Verilog. We believe
this is a disastrous addition to Verilog.

3.18.2.1 Separate compilation
Many simulation vendors and all synthesis vendors are now supporting
separate compilation of Verilog source files. Using this technique,
only portions of a Verilog design are provided to the compiler at any
one time. These pre-compiled units can then be combined later during
elaboration into a single hierarchy. The primary capability of Verilog
that allows this methodology is that all objects are contained in
modules. The addition of $root breaks this paradigm. If objects or
statements are declared in the $root scope, then it becomes extremely
difficult to allow separate compilation. Examples of the issues are:

o Where in a library system should this content be stored?
o When elaborating a hierarchy, what $root content should be

included? All information every precompiled into $root?

The solution for any of these issues is to take the objects in $root
and put them in a module so that they have a name and can be explicitly
brought into a hierarchy.

3.18.2.2 Global name conflicts/visibility
The addition of $root creates a global declarative region for objects.
When a design is assembled, many pieces are brought together from
different designers and even companies. As this assembly process takes
place if the same name has been used they will conflict and one of the
designs will need to be modified. This situation is actually rather
common in other languages such as ‘C’ that allow this sort of global
scope and should be avoided by design in extending Verilog. Declaring
objects in a module and then referencing through this name means that
only the module names need to be kept unique, not every single object.

3.18.3 Namespaces
References: 18.9

The entire content of this section is baffling to Cadence. Verilog 2001
defines 7 name spaces, SystemVerilog defines only 5. There is no
explanation of what the difference between these namespaces is or why
this portion of Verilog was modified at all. The term name space is
ill-defined in Verilog. In most languages, there is a difference
between a namespace and a declarative region. A namespace is a set of
identifiers. For instance, macros are distinct from system tasks
because macros begin with the back tick character (`) and system tasks
begin with the dollar sign ($). A declarative region is a lexical
region where identifiers are declared such as modules, ports, and
attributes. Verilog makes no such distinction and this section attempts
to address both concepts.

In discussing this chapter in committee, Cadence suggested that instead
of creating content that conflicts with the IEEE definition and
continues to overload the meaning of the term namespace, we should
instead define the namespaces and the declarative regions to clean up
the definitions. It was suggested by the committees that instead of
addressing it in SystemVerilog we should instead take this to the IEEE
Errata Task Force. We still believe that this chapter should just be

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 40 4/24/2003

removed from the LRM as it adds no value and just conflicts with 1364.
We will address these issues during the upcoming 1364 revision process.

3.19 Section 19 - Interfaces
References: 19

Interfaces provide a powerful means of passing an entire description
hierarchically through a design. In the introduction to this section in
the LRM the major benefits are:

o to encapsulate the communication between blocks, allowing a
smooth migration from abstract system-level design through
successive refinement down to lower-level register-transfer
and structural views of the design.

o an interface is a named bundle of nets or variables. The
interface is instantiated in a design and can be passed
through a port as a single item, and the component nets or
variables referenced where needed.

o Additional power of the interface comes from its ability to
encapsulate functionality as well as connectivity, making an
interface, at its highest level, more like a class template.

o In addition to task/function methods, an interface can also
contain processes (i.e. initial or always blocks)and continuous
assignments, which are useful for system-level modeling and test bench testbench
applications.

3.19.1 Overlap with modules
References: 19

Cadence believes that the interface defines a modeling style that is
enforced by defining a new language construct. This continues the theme
of layering on capability rather than integrating it. The basic
capabilities of an interface declare ports, parameters, tasks,
functions, and always/initial blocks to describe communication. This is
all identical to the content of a module. The more advanced capability
of passing interfaces instances through ports, defining multiple port
lists (modports), and importing/exporting task and function definitions
would all be excellent additions to the general definition of modules
and do not require a new top-level language construct.

The unique benefit of interfaces is the ability to pass them
hierarchically through a design. This allows a hierarchical name for
the interface to be written that can deterministically refer to the
interface even when this block is moved around a design or embedded at
a different hierarchical path. This would be very useful for modules in
general.

Other pieces of functionality described in this section as unique
benefits are really derived from this fundamental concept.

3.19.2 Overlap with classes

Interfaces are described as allowing an abstract interface to a device
where the objects in the interface can be viewed as class members and

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 41 4/24/2003

the tasks and functions in the interface can be viewed as class
methods.

First of all, this is not new in Verilog. For years, users have defined
modules with tasks that represent a devices behavior and then interact
with the module by calling these tasks. It is simply made more conven-
ent by being able to develop the hierarchical path through a port.

In SystemVerilog 3.0, there was no class mechanism so discussing use of
interfaces with a class-like metaphor made sense. In SystemVerilog 3.1
there is now a class mechanism that satisfies the need for object
oriented extensions. This further motivates merging interfaces and
modules to emphasize their structural nature and relegating object
oriented programming to true classes.

3.19.3 Lack of decomposition

Interfaces can only contain procedural constructs such as always blocks
and initial blocks. They can not contain gate-level models or hierarchy
underneath them. So despite the introduction to this section, they do
not support hierarchical refinement well.

The argument commonly made for restricting interfaces is that they
model pure communication, not hardware. There are many places where
this modeling style is very useful in system-level models where the
communication is abstract, or not realized in hardware. However, the
examples given for interfaces all demonstrate modeling communication on
a bus. Busses when implemented are hardware, and the behavior of the
bus is created by hardware devices connected to the bus such as pads
and/or muxes.

If a designer begins to model his interconnect abstractly using a
SystemVerilog interface, then he creates the interconnect in a very
stylized fashion where the interface itself is passed through the
hierarchy. This is an excellent extension to Verilog (and we believe it
should be expanded to modules as well). The problem comes when the
designer now wants to refine the communication on his bus. This
refinement should be accomplished only by changing the interface
representing the bus, not by changing every single device which uses
the bus. However, since interfaces have been arbitrarily restricted to
not contain gates you can never completely refine the bus to hardware
without changing every single device connected to the bus. Furthermore,
all devices connected to the bus must be simultaneously changed so no
incremental refinement is possible; all devices driving the bus must be
modeled at the same level of abstraction.

Interfaces provide an excellent mechanism for encapsulating
communication and allowing multiple devices to communicate. They also
have an ingenious forkjoin task and import/export mechanism which
places an obligation on a device using the interface to provide its own
slave functionality. All of this works beautifully with a behavioral
description. Allowing interfaces to contain any Verilog modeling
construct and having a similar import/export mechanism for portions of
actual hardware (as opposed to just tasks), would allow them to be
refined without remodeling the communicating devices.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 42 4/24/2003

Once interfaces are extended in this necessary fashion, then there is
so little difference between an interface and a module that the two
constructs should just be merged into one by adding modports and the
other extensions to all modules.

3.20 Section 20 - Parameters
The SystemVerilog LRM includes an entire section on parameters that
mostly just explains the functionality of parameters in Verilog 2001.
This section should only contain the extensions and not reiterate the
content from 1364.

3.20.1 Parameterized types
References: 20.2

The major extension to parameters is allowing parameterized types to a
module. While Cadence understands the expressive power of parameterized
types we believe it is an unwise extension of Verilog. This is an
extremely difficult and complex thing to implement for functionality
that can be gained in other ways. Modeling styles where macros are used
for types can provide similar capability, or the addition of a generic
handle type to allow modeling of externally linked data structures
would both be possible alternatives. An example of the difficulty of
this can be found in the C++ world where type templates existed in the
standard for years before any compiler vendors supported them.

3.21 Section 21 - Configuration libraries
References: 21

This section is extremely brief and simply specifies that library map
information can be specified in $root instead of in a library map file.
Since we object to the addition of $root at all, we obviously do not
support this addition. If this information is set globally in $root,
then it would be visible for all configurations. During integration of
IP from different sources this would be yet another form of global
conflict created by $root.

3.22 Section 22 - System Tasks and System Functions
This section documents new system tasks and functions that have been
added to SystemVerilog. In general there is very little specific
feedback on this section other than reiterating the previous comments
that in many places system tasks, operators and now methods have been
used in arbitrary places without any particular rationale for when one
was used over the others.

3.22.1 $asserton, $assertoff, $assertkill
References: 22.6

These functions are used to enable or disable assertion execution
during simulation. These functions are extremely dangerous in many
cases. Assertions that contain enabling conditions or sequences must
maintain state information and match multiple sequences simultaneously.
If these sequences are enabled and disabled by the user this state may
be tracked inaccurately and result in either false firings, or more

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 43 4/24/2003

likely, missed firings of an assertion. We would prefer to see these
functions only control the reporting of assertion failures or coverage
data, but they would continue to track the state of the simulation
accurately.

3.23 Section 23 - VCD Data
References: 23

This section points out that VCD data has not been extended to deal
with all the new SystemVerilog data types. We believe this is a major
shortcoming of the standard that should be fixed before this standard
is approved. VCD forms a tool interchange medium that has been
extremely important in the interoperability of Verilog tools in the
past and it should be kept in sync with the standard.

3.24 Section 24 - Compiler Directives
References: 24

This section makes minor modifications to a few compiler directives
that are in general harmless. We would note that this contains an
important extension of the `include mechanism that now allows the
standard to define parts of the language through language-defined
header files. This mechanism should be used for defining many more of
the language extensions for improved backward compatibility.

3.25 Section 25 - Features Under Consideration for Removal
References: 25

The SystemVerilog Basic Committee was chartered with fixing or
clarifying the SystemVerilog 3.0 standard during the creation of
SystemVerilog 3.1. The charter for this group was explicitly that no
content of 3.0 could be deleted. Cadence believes that given this
concern about deleting content from an existing standard that it is
hypocritical to propose any deletions of an existing IEEE standard
under the guise of Accellera work. Deprecation of functionality should
solely be the work of the 1364 task force.

3.26 Section 26 - Direct Programming Interface
References: 26, Annex D

Cadence completely supports the idea of providing a direct foreign
language interface which will allow Verilog object values to be
directly read and updated in ‘C’ code and ‘C’ functions to be called
directly in the Verilog code. The original intent of DPI was to
simplify the life of a user who wants to use some ‘C’ functions he
wrote, in his Verilog design by allowing directly recognition of ‘C’
function symbols (without complex registration like in VPI). Another
motivation was also to provide better performance. Better performance
is expected if the ‘C’ code can deal directly with simulation object
values. Also some optimizations may be allowed if it is known that the
‘C’ functions used by the Verilog design only may do read and write to
their arguments. Finally, SystemVerilog with the addition of new ‘C’
compatible data types should allow the natural definition of a mapping
between any SV data types and ‘C’ data types and hence the transparent

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 44 4/24/2003

ability to directly read and update in ‘C’ the value of a Verilog
object. This should help in facilitating writing mixed
systemC/’C’/C++/systemVerilog designs. However, as demonstrated in the
following sections, the technical specification either deviated from
the original requirements or does not strictly fulfill them : for
example a mix of abstract/direct access is proposed in the Direct
Programming Interface, some functionality other than reading and
updating object values was introduced, and there is not really a true
equivalence between SystemVerilog ‘C’-like data types which are defined
in fixed size manner and ‘C’ native data types which size depends on
the ‘C’ compiler and platform.

Note that section 26 and annexes D, E and F deal with the Direct
Programming Interface. The comments in this section cover all these
areas.

3.26.1 Mix of direct and abstract interface
References: D.1, include files Section D.4.1, E.1

DPI provides direct access to simulation objects of ‘C’ compatible
types such as SV int type, unpacked struct and array types, etc., but
provides abstract access through library functions to packed types, and
open arrays. In fact, DPI has not less than 60 interface functions
defined to:

o read and update values of whole vectors, part select of
vectors and bit selects.

o query size, dimensions, left and right bounds of open
arrays.

Open arrays (which denote unconstrained array type formal arguments of
a DPI function) are accessed by handles and query functions. Cadence
believes that the SystemVerilog DPI abstract interface is unnecessary;
a handle-based abstract interface already exists in VPI. DPI should
only focus on providing a canonical representation and provide direct
access to simulation object values without handles.

3.26.2 Two possible representations for packed (vector) types
References: Ref: Section D.6.3, D.6.4, D.6.7

DPI provides either a canonical representation for packed types or the
simulator internal representation. Either can be used by the ‘C’
writer. Better performance is claimed to be achievable if the internal
simulator representation is used but the ‘C’ code will not be portable
and must be recompiled with each proprietary vendor specific header
file.

We believe that a standard should not provide ways to promote non
portable user code but rather should focus on defining a minimal and
common portable approach acceptable for all vendor implementations.

3.26.3 Source and binary portability
References: Ref: section D.3

As a consequence of the previous section, the DPI interface proposes
two header files, one which contains the public functions and canonical

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 45 4/24/2003

data structures and another which will contain vendor dependent
internal data structures. If the C code uses packed SystemVerilog data
types (for which 2 representations are possible), the C code written
will not be source or binary compatible depending if the internal
representation or the canonical representation was chosen.

We believe that it is not the purpose of a standard to provide vendor
specific header files. A standard should only specify a portable and
common method. We believe that this will be strongly opposed when
presented to the IEEE standardization entity.

3.26.4 Overlap and redundant functionality with VPI and PLI
References: D.8.3, D.8.5

The current DPI specification provides additional functionality in
addition to reading and writing of values. This includes saving C user
data in a Verilog specific instance, and getting Verilog module
instance handles.

Cadence truly supports the idea of a pure direct read/write programming
interface but strongly believe that a new standard interface should not
overlap with an existing Verilog standard, namely the VPI or PLI
interface. We believe such an overlap in scope will not be accepted by
the IEEE. Functions such as svGetScope, svGetScopeByName, svGetUserData
etc. are exact duplicates of existing VPI functions. VPI or PLI
functions should be used instead.

Further these DPI functions return opaque handle which are not
compatible with VPI handles. We are afraid that the DPI interface
functionality will be extended to duplicate even more of the VPI
functionality since the VPI and DPI handles are not compatible. The
following is an extract from the section in the SystemVerilog LRM which
cautions the user about VPI and DPI incompatibility.

"Programmers must make no assumptions about how DPI and the
other interfaces interact. In particular, note that a
vpiHandle is not equivalent to an svOpenArrayHandle, and the
two must not be interchanged and passed between functions
defined in two different interface standards. If a user wants
to call VPI or PLI functions from within an imported function,
the imported function must be flagged with the context
qualifier."

3.26.5 Many library access functions
D.9.1.4, D.10.3.1, D.10.3.2

DPI has library functions to manipulate the values and transform them
between the native SystemVerilog representation and the canonical
representation. DPI provides library functions to read/update the
entire value, a bit select or a partselect of that value. There are 4
variants of the same function with one, two, three and a variable
number of arguments depending on the number of dimensions of the array
to deal with. For SystemVerilog types which are C compatible (like
unpacked arrays and structures), direct access is available.

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 46 4/24/2003

Cadence believes that a library of functions goes against the original
focus of DPI (providing direct access) and against performance as there
is inherent overhead in functions calls.

All the memory allocation for the canonical representations to hold the
value to read or write must be done by the C code. We believe that it
would be more performance efficient and less memory error prone if the
memory allocation was done by the simulator and a copy of the value
would be passed to the argument of the DPI function; the C code would
directly access or modify that value. This would avoid user memory
leaks. This value copy may be necessary in order to determine if the
value was changed by the C code and to wake up the appropriate fan out.
If the object does not have any fanout, a reference to the internal
canonical representation can be passed to C.

Furthermore, the library functions proposed are sometimes limited in
functionality. For example, DPI access to part selects is limited to
reading and writing part selects of less than 32 bits. Instead with a
direct access and user manipulation of the defined canonical
representation, there would not have been any restriction.

3.26.6 C data type mapping
References: D.6.3, D.6.4

The DPI interface maps many of the SystemVerilog data types to a C data
type (SystemVerilog int to a C int, SystemVerilog byte to a C char),
however this mapping assumes a particular implementation of a C
compiler where int would be a 32 bit signed integer and char is an 8
bit signed integer. These SystemVerilog C types do not truly match a C
int or a C char: size of these types is implementation defined in C.
Therefore when running a simulation on a 64 bit platform, a
SystemVerilog int object would be 32 bit wide while on certain C
compiler implementations the int size may be 32 or 64 bits. We believe
that the Verilog C-like data type sizes should instead be parameterized
and customized to a given C compiler implementation to truly provide
equivalent types and thus direct access.

The current DPI interface does not support all SV data types: classes,
events, associative arrays, semaphores, and structs/unions of these
types.

3.26.7 Open array arguments
References: D.7.6, D.11

DPI allows one to write a DPI C function which takes open
(unconstrained) formal array type arguments and provides library
functions to query the actual argument low and high bounds of the
ranges, the dimensions, the address of the value of entire array or the
address of the value of an array element. Formal arguments declared in
SystemVerilog as open arrays are passed by a handle
(svOpenArrayHandle), and are accessible via DPI library functions. Open
array arguments allow one to write in C a general function that may
handle SystemVerilog arrays of different sizes at the price of some
performance overhead and at the price of a couple of dozen of library

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 47 4/24/2003

functions.

Cadence believes that if one wants to write some general code which is
not susceptible to array dimensions and ranges, the VPI interface is
already available and has all the array traversal navigation methods
available. Furthermore, the number of VPI methods/properties to do the
equivalent of the SystemVerilog open arrays functions is much smaller
than the one proposed in DPI. Though, VPI for SystemVerilog needs to be
extended to support traversal and access to arbitrary arrays, structure
and unions. This task has been completely put on the side by the
SystemVerilog CC committee because of the time constraints set by an
aggressive schedule and an already overloaded charter. The result is
that VPI has not been enhanced to support SystemVerilog. This will
cause serious problems to users or 3rd party tools which have or want
their VPI application to work in a SystemVerilog design.

Cadence strongly believes that if one part of the language is enhanced,
all dependent features of the language such as (VCD, SDF, or VPI) need
to be enhanced in parallel to preserve consistency and integrity in the
language. Failure to do so will result in not only an incomplete
specification but also catastrophic flow breakage in our customer’s
methodology.

3.26.8 SystemVerilog context and pure qualifiers
References: 26.4.1.3, 26.4.2, 26.4.3

DPI allows SystemVerilog to invoke DPI C imported functions. DPI also
allows SystemVerilog functions to be exported and be callable from the
C code including from within a DPI function. An import DPI function
(which is implemented in C) must be qualified with the context word if
the DPI function is context sensitive. The function is context
sensitive if the DPI function may call an exported SV function or the C
function calls VPI or PLI and therefore needs knowledge of the scope
where the function is either defined or called. If not qualified with
the context keyword, the DPI specification states that calls to VPI and
PLI functions may crash and context DPI utility functions will not
work.

This particular model requires that an internal variable be set prior
to the call to a DPI imported context sensitive function. All DPI
exported functions require that the context of their call is known.
This is needed because SystemVerilog function declarations always occur
in instantiatable scopes, hence allowing a multiplicity of unique
function instances. A call to a DPI exported function requires that the
scope of definition of the exported function instance be set prior to
the call, or it inherits the current default set scope. Therefore the
context of the export function call must be determined dynamically by
the tool.

We believe that there are better alternatives to scope setting which
would avoid runtime SystemVerilog export function look up. For example,
solutions such as function instance specific export or combining a
function export declaration export with a C name denoting the
hierarchical name of a specific function instance.

DPI also provides functions to associate and retrieve C user data from

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 48 4/24/2003

their context, but there is no provision for these models to be saved
and restarted. In fact this issue was brought up but its specification
was postponed to 3.2. We believe that this particular functionality is
incompletely specified.

The pure qualifier is certainly advisable and may help optimizing code
if it was known that the function should only be called when its input
changes; note that the Verilog compiler cannot validate that the C
extern function is really pure and we would be relying on the writer.
The string "DPI" qualifier may also be useful (to the Verilog compiler)
to qualify the import or export declaration to be a DPI user function.

In any cases, adding qualifiers such as pure, context or string such as
"DPI" to import function declaration is yet another way to express a
property of a function. Verilog attributes could have been defined and
used for the same purpose, eliminating the need for short English words
as new keywords.

3.26.9 DPI object code inclusion
References: Annex F

Cadence believes that this annex is a good attempt to standardize on a
foreign code delivery and linking mechanism. However we think that
there are some problems with the approach presented in this Annex.

First, throughout this annex, switch names are provided. Even if these
switch names are provided as informative and non normative as pointed
out by the note:

“NOTE—This annex defines a set of switch names to be used for
a particular functionality. This is of informative nature; the
actual naming of switches is not part of this standard. It
might further not be possible to use certain character
configurations in all operating systems or shells. Therefore
any switch name defined within this document is a
recommendation how to name a switch, but not a requirement of
the language.”

Command line switch names should be avoided in a standard LRM. It
should not be mandatory for a tool to provide command line switches;
for example a GUI driven tool does not have a command line. This annex
will have to be completely rewritten to avoid mention of any switch
name when SystemVerilog is folded in the Verilog 1364 as there is no
mention of any switch in the Verilog standard.

Secondly, since the DPI function names do not include the shared
library where the symbol may be defined, DPI function names have to be
global and unique across all foreign object code. We believe that this
severely constrains object code inclusion and can lead to errors when
linking if the same name is defined in multiple libraries.

3.27 Section 27 - SystemVerilog Assertion API

3.27.1 Static information model of assertions
References: 27.3, 27.3.1

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 49 4/24/2003

The static VPI information model of property/assertion access is very
limited. Only iteration on assertions is provided, more detailed access
to the contents of the assertion is not available. Property
declarations, cover statements, sequence declarations, concurrent
assertions, and immediate assertions are all represented by the
vpiAssertion type. The information model was restricted to the minimum.
The current assertion API is mostly a runtime API allowing an
application to interact with the assertion evaluator. We believe that a
more detailed property/assertion/cover static information model should
also be provided.

3.27.2 Callbacks
References: 27.4.2

A new callback registration function was introduced to place an
assertion callback rather than using the existing mechanism
vpi_resgister_cb. The user callback function itself has a different
prototype than other regular callback functions. The reason given was
that the callback function needed to return information other than the
assertion handle, the reason of the callback and the user_data; There
was not an adequate field in the vpis_cb_data structure to store the
vpi_attempt_info (basically information of the matched expressions,
failed expression and their source line information).

A new callback function was invented, vpi_register_assertion_cb(), to
place an assertion callback; the prototype is:

vpiHandle vpi_register_assertion_cb(

vpiHandle, /* handle to assertion */
PLI_INT32 event, /* event for which callbacks needed */
PLI_INT32 (*cb_rtn)() /* callback function */
PLI_INT32 event,
vpiHandle assertion,
p_vpi_attempt_info info,
PLI_BYTE8 *userData),
PLI_BYTE8 *user_data /* user data to be supplied to cb */

);

 typedef struct t_vpi_assertion_step_info {

PLI_INT32 matched_expression_count;
vpiHandle *matched_exprs; /* array of expressions */
p_vpi_source_info *exprs_source_info; /* array of source info */
PLI_INT32 stateFrom, stateTo; /* identify transition */

 } s_vpi_assertion_step_info, *p_vpi_assertion_step_info;

typedef struct t_vpi_attempt_info {
 union {
 vpiHandle failExpr;
 p_vpi_assertion_step_info step;
 } detail;
 s_vpi_time attemptTime,
} s_vpi_attempt_info, *p_vpi_attempt_info;

We believe that another better alternative would have been to use the
same registration function and provide another method from the

Cadence Negative Ballot Comment on SystemVerilog 3.1

Cadence Design Systems, Inc. Page 50 4/24/2003

assertion handle which would return the assertion attempt info. The
assertion current status would be available through this method but
only at the time of the callback. That way the user is not confused in
which callback functions to use.

3.27.3 Assertion Control
References: 27.5

There has been capability added to control through VPI extensions the
assertion system: stop all assertion evaluations, restart the assertion
evaluation, etc… We believe that this capability is dangerous in
certain cases for the same reasons given in section 3.22.1.

3.28 Section 28 - SystemVerilog Coverage API
Cadence believes that the entire coverage API is ill-conceived. A
language interface can only provide information about constructs that
are explicitly specified in the language. Without adding an explicit
model for coverage points and the kinds of coverage to be measured into
the Verilog language itself, then a generic coverage API is
inappropriate.

The current coverage API reflects one vendor’s interpretation of what
coverage information is implicitly recognizable in a simulation run.
The inference from a general language structure to this information is
not specified at all.

3.28.1 Pragma usage
References: 28.3

FSM coverage uses pragmas to specify the current FSM state vector, the
next state and the set of values for a state.

Cadence believes that standard coverage attributes should have been
defined instead of specifying these items in comments.
A proposal was made but was postponed to SV 3.2.

4 Conclusions
In conclusion, Cadence believes that Verilog needs to be extended in
order to support hardware design and verification within the Verilog
environment. We believe extensions in the areas of data types,
constraints and randomization, direct interfaces, and assertions are
important to the productivity of the industry. However, as detailed in
this document, there are many reasons why Cadence believes that the
current SystemVerilog specification should not be forwarded to the
Board of Directors for approval as an Accellera standard.

