
Editors Note: These changes are to be applied to P1364.

28.1 General
Decryption envelopes specify the pragma expressions for decrypting encrypted text regions. A decryption
envelope begins in the source text when a begin_protected pragma expression is encountered. The end of
the decryption envelope occurs at the point where an end_protected pragma expression is encountered.
The end_protected pragma expression is said to close the envelope and shall be associated with the most
recent begin_protected that has not already been closed. Decryption envelopes may contain other
envelopes within their enclosed data block. The number of nested decryption envelopes that can be
processed is implementation-specified, however that number shall be no less than 8. Code that is contained
within a decryption envelope is said to be protected.

26.3.5 Object protection properties
All objects have a vpiIsProtected property, which is not shown in the data model diagrams.

-> IsProtected
bool: vpiIsProtected

Using vpi_get(vpiIsProtected, object_handle) returns a boolean constant which indicates whether the
object represents code contained in a decryption envelope. The vpiIsProtected property shall be TRUE if
the object_handle represents code that is protected, otherwise FALSE. Unless otherwise specified, access
to relationships and properties of a protected object shall be an error. Restrictions on access to complex
properties are specified in the function reference descriptions for the corresponding VPI functions. Access
to the vpiType property and the vpiIsProtected property of a protected object shall be permitted for all
objects.

NOTE— Protected objects can be returned through object relationships, or by direct lookup using VPI
functions that return handles.

26.6.19 Task and function call

8) System task and function calls which are protected shall allow iteration over the vpiArgument relationship.

26.6.26 Expressions

3) Expressions which are protected shall permit access to the vpiSize property.

27.6 vpi_get()
The VPI routine vpi_get() shall return the value of integer and boolean object properties. These properties
shall be of type PLI_INT32. Boolean properties shall have a value of 1 for TRUE and 0 for FALSE. For
integer object properties such as vpiSize, any integer shall be returned. For integer object properties that
return a defined value, see Annex G for the value that shall be returned. Note for object property
vpiTimeUnit or vpiTimePrecision, if the object is NULL, then the simulation time unit shall be returned.
Unless otherwise specified, calling vpi_get() for a protected object shall be an error. Should an error occur,
vpi_get() shall return vpiUndefined.

27.10 vpi_get_str()
The VPI routine vpi_get_str() shall return string property values. The string shall be placed in a temporary
buffer that shall be used by every call to this routine. If the string is to be used after a subsequent call, the
string should be copied to another location. Note that a different string buffer shall be used for string values
returned through the s_vpi_value structure. Unless otherwise specified, calling vpi_get_str() for a
protected object shall be an error.

27.16 vpi_handle()

The VPI routine vpi_handle() shall return the object of type type associated with object ref. Unless
otherwise specified, calling vpi_handle() for a protected object shall be an error. The one-to-one
relationships that are traversed with this routine are indicated as single arrows in the data model diagrams.

27.17 vpi_handle_by_index()
The VPI routine vpi_handle_by_index() shall return a handle to an object based on the index number of
the object within the reference object, obj. The reference object shall be an object that has the access by
index property. Unless otherwise specified, calling vpi_handle_by_index() for a protected object shall be
an error. For example, to access a net bit, obj would be the associated net, to access an element of a reg
array, obj would be the array. If the selection represented by the index number does not lead to the
construction of a legal Verilog index select expression, the routine shall return a null handle.

27.18 vpi_handle_by_multi_index()
The VPI routine vpi_handle_by_multi_index() shall provide access to an index-selected sub-object of the
reference handle. The reference object shall be an object that has the access by index property. Unless
otherwise specified, calling vpi_handle_by_multi_index() for a protected object shall be an error. This
routine shall return a handle to a valid Verilog object based on the list of indices provided by the argument
index_array, and reference handle denoted by obj. The argument num_index shall contain the number of
indices in the provided array index_array.

27.19 vpi_handle_by_name()
The VPI routine vpi_handle_by_name() shall return a handle to an object with a specific name. This
function can be applied to all objects with a fullname property. The name can be hierarchical or simple. If
scope is NULL, then name shall be searched for from the top level of hierarchy. If a scope object is
provided, then search within that scope only. Unless otherwise specified, calling vpi_handle_by_name()
with a protected scope object shall be an error. If the name is hierarchical and includes a protected scope,
the call shall be an error.

27.21 vpi_iterate()
The VPI routine vpi_iterate() shall be used to traverse one-to-many relationships, which are indicated as
double arrows in the data model diagrams. Unless otherwise specified, calling vpi_iterate() for a protected
object shall be an error. The vpi_iterate() routine shall return a handle to an iterator, whose type shall be
vpiIterator, which can used by vpi_scan() to traverse all objects of type type associated with object ref. To
get the reference object from the iterator object use vpi_handle(vpiUse, iterator_handle). If there are no
objects of type type associated with the reference handle ref, then the vpi_iterate() routine shall return
NULL.

Editors Note: These changes are to be applied to P1800. Please add the following
notes, assigning the next available note number.

32.27 Task and function call

N+1) System task and function calls which are protected shall allow iteration over the vpiArgument relationship.

32.39 Expressions

N+1) Expressions which are protected shall permit access to the vpiSize property.

