
Mantis 928: The purpose is to fix issues with the existing BNF. Specifically:

1. removal of list_of_formals, formal_list_item, and actual_arg_expr that were not referenced

2. list_of_arguments was redfined as sequence_list_of_arguments and property_list_of_arguments. actual_arg was
defined as sequence_actual_arg and property_actual arg. They are differenct in that sequences cannot have property
arguments.

3. tf_port list was replaced by sequence_port_list and property_port_list to fix the issue that tf_port_list does not allow
default values assignment other than expression The new definition allows for intiialization of all args in the
definition.. Named or positional association of arguments is allowed when the sequence or property is instantiated.

4. Actual args for a sequence include event_expression (which includes expression and sequence instance). Actual args
for a property are the same as for a sequence with the addition of a property_instance .

5. The defnition for event expression was modified to add optional parenthesis. Parentheses are required when an event
expression that contains comma-separated event expressions is passed as an actual argument using positional binding.

6. Wording was added to clarify that untyped parameters must be first in the list since a list of arguments can apply to
one type name.

======================

REPLACE (and also 17-14)

A.2.10 Assertion declarations
…
property_instance ::=

property_identifier [([list_of_arguments])]
concurrent_assertion_item_declaration ::=

property_declaration
| sequence_declaration

property_declaration ::=
property property_identifier [([tf_port_list])] ;
{ assertion_variable_declaration }
property_spec ;
endproperty [: property_identifier]

property_spec ::=
[clocking_event] [disable iff (expression_or_dist)] property_expr

property_expr ::=
sequence_expr
| (property_expr)
| not property_expr
| property_expr or property_expr
| property_expr and property_expr
| sequence_expr |-> property_expr
| sequence_expr |=> property_expr
| if (expression_or_dist) property_expr [else property_expr]
| property_instance
| clocking_event property_expr

sequence_declaration ::=

sequence sequence_identifier [([tf_port_list])] ;
{ assertion_variable_declaration }
sequence_expr ;
endsequence [: sequence_identifier]

sequence_expr ::=
cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }
| sequence_expr cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }
| expression_or_dist [boolean_abbrev]
| (expression_or_dist {, sequence_match_item }) [boolean_abbrev]
| sequence_instance [sequence_abbrev]
| (sequence_expr {, sequence_match_item }) [sequence_abbrev]
| sequence_expr and sequence_expr
| sequence_expr intersect sequence_expr
| sequence_expr or sequence_expr
| first_match (sequence_expr {, sequence_match_item})
| expression_or_dist throughout sequence_expr
| sequence_expr within sequence_expr
| clocking_event sequence_expr

cycle_delay_range ::=
integral_number
| ## identifier
| ## (constant_expression)
| ## [cycle_delay_const_range_expression]

sequence_method_call ::=
sequence_instance . method_identifier

sequence_match_item ::=
operator_assignment
| inc_or_dec_expression
| subroutine_call

sequence_instance ::=
sequence_identifier [([list_of_arguments])]

formal_list_item ::=
formal_identifier [= actual_arg_expr]

list_of_formals ::= formal_list_item { , formal_list_item }
actual_arg_expr ::=

event_expression
| $

WITH

A.2.10 Assertion declarations
property_instance ::=

ps_property_identifier [([list_of_arguments property_list_of_arguments])]
property_list_of_arguments::=

[property_actual_arg] { , [property_actual_arg] } { , . identifier ([property_actual_arg]) }
| . identifier (property_actual_arg]) { , . identifier ([property_actual_arg]) }

property_actual_arg::=
 property_instance
| sequence_actual_arg

concurrent_assertion_item_declaration ::=
property_declaration
| sequence_declaration

property_declaration ::=
property property_identifier [([tf_port_list property_port_list])] ;
{ assertion_variable_declaration }
property_spec ;
endproperty [: property_identifier]

property_port_list ::=
 property_port_item {, property_port_item}
property_port_item ::=
 { attribute_instance }
 property_formal_type
 port_identifier {variable_dimension} [=expression]
property_formal_type ::=
 data_type_or_implicit
property_spec ::=

[clocking_event] [disable iff (expression_or_dist)] property_expr
property_expr ::=

sequence_expr
| sequence_instance
| (property_expr)
| not property_expr
| property_expr or property_expr
| property_expr and property_expr
| sequence_expr |-> property_expr
| sequence_expr |=> property_expr
| if (expression_or_dist) property_expr [else property_expr]
| property_instance
| clocking_event property_expr

sequence_declaration ::=
sequence sequence_identifier [([tf_port_list sequence_port_list])] ;
{ assertion_variable_declaration }
sequence_expr ;
endsequence [: sequence_identifier]

sequence_port_list ::=
 sequence_port_item {, sequence_port_item}
sequence_port_item ::=
 { attribute_instance }
 sequence_formal_type
 port_identifier {variable_dimension} [=expression]
sequence_formal_type ::=
 data_type_or_implicit
sequence_expr ::=

cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }
| sequence_expr cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }
| expression_or_dist [boolean_abbrev]
| (expression_or_dist {, sequence_match_item }) [boolean_abbrev]
| sequence_instance [sequence_abbrev]
| (sequence_expr {, sequence_match_item }) [sequence_abbrev]
| sequence_expr and sequence_expr
| sequence_expr intersect sequence_expr
| sequence_expr or sequence_expr
| first_match (sequence_expr {, sequence_match_item})
| expression_or_dist throughout sequence_expr
| sequence_expr within sequence_expr

| clocking_event sequence_expr
 ….
sequence_instance ::=

ps_sequence_identifier [([list_of_arguments sequence_list_of_arguments])]
formal_list_item ::=

formal_identifier [= actual_arg_expr]
list_of_formals ::= formal_list_item { , formal_list_item }
sequence_list_of_arguments

[sequence_actual_arg] { , [sequence_actual_arg] } { , . identifier ([sequence_actual_arg]) }
| . identifier (sequence_actual_arg]) { , . identifier ([sequence_actual_arg]) }

sequence_actual_arg ::=
event_expression

REPLACE 10.10 and A.6.5

event_expression ::=

[edge_identifier] expression [iff expression]
| sequence_instance [iff expression]
| event_expression or event_expression
| event_expression , event_expression

WITH
 38

event_expression ::=
[edge_identifier] expression [iff expression]
| sequence_instance [iff expression]
| event_expression or event_expression
| event_expression , event_expression
| (event_expression , event_expression)

ADD to A.10 Footnotes

38) Parentheses are required when an event expression that contains comma-separated event expressions is
passed as an actual argument using positional binding.

REPLACE
17.6.1 Formal arguments of sequences can optionally be typed. To declare a type for a formal argument of a
sequence, it is required to prefix the argument with a type. A formal argument that is not prefixed by a type
will be untyped.

WITH
17.6.1 Formal arguments of sequences can optionally be typed. To declare a type name for a formal
argument of a sequence, it is required to prefix the argument with a type name. A formal argument that is
not prefixed by a type shall be untyped. A type name can refer to a comma separated list of arguments.
Untyped arguments must therefore be listed before any typed arguments.

REPLACE

17.11.1 Formal arguments of properties can optionally be typed. To declare a type for a formal argument of
a property, it is required to prefix the argument with a type. A formal argument that is not prefixed by a type
shall be untyped.

WITH

17.11.1 Formal arguments of properties can optionally be typed. To declare a type name for a formal
argument of a property, it is required to prefix the argument with a type name. A formal argument that is
not prefixed by a type shall be untyped. A type name can refer to a comma separated list of arguments.
Untyped arguments must therefore be listed before any typed arguments.

