
IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D2, March 16, 2007

Copyright 2005 IEEE. All rights reserved. 1

INSERT:

35.13 VPI Backwards-Compatibility Features and Limitations

The VPI data model has evolved over many previous versions in order to keep up with corresponding features of the Ver-

ilog HDL. Substantial efforts have been made to maintain backwards-compatibility with prior versions whenever possible.

However, some critical incompatible changes were needed that could not be avoided. This section identifies those incom-

patibilities and provides a way for older affected applications to continue to run in newer VPI environments, with some

important restrictions.

35.13.1 VPI Incompatibilities With Other Standard Versions

The following table summarizes the VPI incompatibilities with prior IEEE standard versions.

Table Key:

Y = Behavior, function or object present in that version

D = Behavior, function or object deprecated (present but use discouraged) in that version

N = Behavior, function of object no longer present in that version

For the above table and details below, the types vpiReg and vpiRegArray are the same as vpiLogicVar and

vpiArrayVar, respectively, as shown in the 1800 VPI data model (see 36.14 detail ‘s’).

Incompatibility Details:

1) vpiMemory exists as an object:

Unpacked unidimensional reg arrays were exclusively characterized as vpiMemory objects in 1364-1995, and

later deprecated in 1364-2001. This object type was replaced by vpiRegArray in1364-2005, leaving vpiMem-
ory allowed as only a one-to-many transition for 1364-2005 and 1800-2005 (see section 36.16). Note that

1364-2001 allowed either vpiMemory or vpiRegArray types to represent unpacked unidimensional arrays of

vpiReg objects.

2) vpiMemoryWord exists as an object:

Table 1-1: Summary of VPI Incompatibilities Across Standard Versions

Incompatibility 1364 1800

See detailed descriptions below 1995 2001 2005 2005

1) vpiMemory exists as an object Y D N N

2) vpiMemoryWord exists as an object Y D N N

3) vpiIntegerVar and vpiTimeVar can be arrays Y Y Y N

4) vpiRealVar can be an array N Y Y N

5) vpiVariables iterations include vpiReg and vpiRegArray objects N N N Y

6) vpiReg iterations on vpiRegArray can result in non-vpiReg objects N N N Y

7) vpiNet iterations on scopes and modules include vpiNetArray objects N N N Y

8) vpiNet iterations on vpiNetArray can result in non-vpiNet objects N N N Y

9) vpiMultiArray property available N Y D N

IEEE SV-CC
IEEE Std 1800-2005 Proposed changes

2 Copyright 2005 IEEE. All rights reserved.

Elements of unpacked unidimensional reg arrays were exclusively characterized as vpiMemoryWord objects

in 1364-1995, and later deprecated in 1364-2001. This object type was replaced by vpiReg in 1364-2005, leav-

ing vpiMemoryWord allowed only as an iterator for 1364-2005 and 1800-2005 (see section 36.16). Note that

1364-2001 allowed either vpiMemoryWord or vpiReg types to represent elements of unpacked unidimen-

sional arrays of vpiReg objects.

3) vpiIntegerVar and vpiTimeVar can be arrays

vpiIntegerVar and vpiTimeVar objects could represent unpacked arrays instead of simple variables in all

1364 standards. In 1800-2005 these array types are always represented as vpiRegArray objects, and vpiInte-
gerVar and vpiTimeVar objects are always non-array variables (see section 36.14).

4) vpiRealVar can be an array

This object type was allowed to represent an unpacked array of such variables in 1364-2001 and 1364-2005

standards (vpiRealVar arrays were not yet allowed in 1364-1995). In 1800-2005, these are now exclusively

represented as vpiRegArray objects (see section 36.14).

5) vpiVariables iterations include vpiReg and vpiRegArray objects

In all 1364 standards, vpiReg and vpiRegArray objects were excluded from vpiVariables iterations, and only

accessed instead by iterations on vpiReg (from a scope or vpiRegArray), or vpiRegArray (from a scope),

respectively. In 1800-2005, they are both included in vpiVariables iterations (see section 36.14).

6) vpiReg iterations on vpiRegArray can result in non-vpiReg objects

This is a consequence of vpiRegArray objects being used to represent unpacked arrays of non-vpiReg ele-

ments in 1800-2005 (see section 36.14). vpiReg iterations on these array objects can retrieve array elements

that are of type vpiIntegerVar or vpiTimeVar for example, which is not expected in standards 1364-2001 and

1364-2005.

7) vpiNet iterations on scopes and modules include vpiNetArray objects

In all 1364 standards, vpiNetArray objects were excluded from vpiNet iterations on scopes and modules, and

were only accessed by iterations on vpiNetArray (from a scope or module). In 1800-2005, they are included

in vpiNet iterations (see section 36.13).

8) vpiNet iterations on vpiNetArray can result in non-vpiNet objects

This is a consequence of vpiNetArray objects being used to represent net arrays of non-vpiNet elements in

1800-2005 (see section 36.13). vpiNet iterations on these net array objects can retrieve net elements of type

vpiIntegerNet or vpiTimeNet for example, which is not expected in standards 1364-2001 and 1364-2005.

9) vpiMultiArray property available

This is a deprecated property introduced in 1364-2001 that is not referenced in any other standard. For vpiIn-
tegerVar, vpiTimeVar, vpiRealVar, vpiRegArray, and vpiNetArray, its value being TRUE meant that these

objects represented multidimensional unpacked arrays.

35.13.2 VPI Mechanisms to Deal With Incompatibilities

In order to ease the transition to the latest VPI standard for older applications, capability shall be provided to
emulate the incompatible VPI behaviors where they conflict with the current standard. This allows older VPI
applications dependent on these behaviors to be run unmodified, as long as they are applied only to designs (or
portions of designs) they are compatible with. This capability is intended only as an interim measure to allow
extra time for applications to be upgraded; it does not provide general emulation of older behaviors for newer
design constructs. For example, it does not allow 1364 applications to run on portions of designs requiring
1800-level simulation capability.

Two mechanisms to support this shall be provided, which can be used in combination:

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D2, March 16, 2007

Copyright 2005 IEEE. All rights reserved. 3

1) Compile-based binding to a compatibility mode;

This mechanism requires recompilation of the VPI application source code, and is based on defining a com-
piler symbol that binds a particular application to a particular compatibility mode. To use this scheme, one of
the following compiler symbols must be defined prior to compilation of any of the standard VPI include files in
the application source code (either using a “#define” in the source code itself, or defined on the C-compiler
command-line):

VPI_COMPATIBILITY_VERSION_1364v1995
VPI_COMPATIBILITY_VERSION_1364v2001
VPI_COMPATIBILITY_VERSION_1364v2005
VPI_COMPATIBILITY_VERSION_1800v2005

No more than one of these symbols shall be defined for a given application, and it must be consistently defined
for all of its source code that can access any portion of VPI, including callback functions. A compilation error
will occur during the processsing of vpi_user.h if more than one of the above symbols is defined.

Example:

VPI source code file with a compatibility mode selected:

/* VPI application mytask */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define VPI_COMPATIBILITY_VERSION_1364v2001 1
#include “vpi_user.h”
#include “sv_vpi_user.h”

#include “my_appl_header.h”
......
......

Alternatively, the same mode selection could be performed by defining the following option on the C-compiler
command line:

-DVPI_COMPATIBILITY_VERSION_1364v2001

2) Selection of default VPI compatibility mode run by the host simulator.

A means to set the default VPI compatibility mode shall be made available by the simulation provider. This
shall determine the compatibility mode VPI behavior for all applications not using the compile-based scheme
detailed in mechanism #1. Although VPI applications choosing this mechanism can be run without modifica-
tion or recompilation, only one such default mode can be selected. Additional applications requiring different
modes in the same run-time simulation environment must use the compile-based mechanism to do so.

The following VPI functions are affected by compatibility behaviors:

vpi_compare_objects
vpi_get
vpi_get_str
vpi_get_value
vpi_handle
vpi_handle_by_index
vpi_handle_by_multi_index
vpi_handle_by_name
vpi_handle_multi

IEEE SV-CC
IEEE Std 1800-2005 Proposed changes

4 Copyright 2005 IEEE. All rights reserved.

vpi_iterate
vpi_put_value
vpi_scan

Mechanism #1 will result in four functions being defined for each of the above in the “vpi_user.h” header file.
For example, vpi_handle will have the following compatibility-specific versions defined:

vpi_handle_1364v1995
vpi_handle_1364v2001
vpi_handle_1364v2005
vpi_handle_1800v2005

See “vpi_user.h” (1364-2005 Annex G) for the complete set of definitions. The original function vpi_handle
will default to the mode selected by the user in the host simulator, i.e. by mechanism #2 above.

35.13.2 Limitations of VPI Compatibility Mechanisms

The VPI user and VPI application provider should take steps to ensure that VPI applications dependent on
these mechanisms are used only for designs or design partitions consistent with the mode selected. Designs
should only require simulation versions older or equal to the VPI mode level.The behavior of a VPI application
running in a mode that is incompatible with (older than) design objects it is processing can be unpredictable,
and thus shall not be guaranteed to be diagnosable by the VPI provider. Strictness of checking for consistency
in this regard is left to the discretion of the VPI provider.

In general, VPI users and application developers are strongly encouraged to update their applications to the lat-
est VPI version as soon as possible. The compatibility mode feature should be used only as a temporary bridge
until such upgrades can be completed or become available.

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D2, March 16, 2007

Copyright 2005 IEEE. All rights reserved. 5

Annex L

(normative)

vpi_user.h (1364-2005 Annex G)

INSERT (after “/************************ FUNCTION DECLARATIONS *********************/”):

/* Compatibility-mode variants of functions */
#if VPI_COMPATIBILITY_VERSION_1364v1995
#if VPI_COMPATIBILITY_VERSION_1364v2001 || VPI_COMPATIBILITY_VERSION_1364v2005

|| VPI_COMPATIBILITY_VERSION_1800v2005
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1364v1995
#define vpi_get vpi_get_1364v1995
#define vpi_get_str vpi_get_str_1364v1995
#define vpi_get_value vpi_get_value_1364v1995
#define vpi_handle vpi_handle_1364v1995
#define vpi_handle_by_index vpi_handle_by_index_1364v1995
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1364v1995
#define vpi_handle_by_name vpi_handle_by_name_1364v1995
#define vpi_handle_multi vpi_handle_multi_1364v1995
#define vpi_iterate vpi_iterate_1364v1995
#define vpi_put_value vpi_put_value_1364v1995
#define vpi_scan vpi_scan_1364v1995
#elif VPI_COMPATIBILITY_VERSION_1364v2001
#if VPI_COMPATIBILITY_VERSION_1364v1995 || VPI_COMPATIBILITY_VERSION_1364v2005

|| VPI_COMPATIBILITY_VERSION_1800v2005
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1364v2001
#define vpi_get vpi_get_1364v2001
#define vpi_get_str vpi_get_str_1364v2001
#define vpi_get_value vpi_get_value_1364v2001
#define vpi_handle vpi_handle_1364v2001
#define vpi_handle_by_index vpi_handle_by_index_1364v2001
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1364v2001
#define vpi_handle_by_name vpi_handle_by_name_1364v2001
#define vpi_handle_multi vpi_handle_multi_1364v2001
#define vpi_iterate vpi_iterate_1364v2001
#define vpi_put_value vpi_put_value_1364v2001
#define vpi_scan vpi_scan_1364v2001
#elif VPI_COMPATIBILITY_VERSION_1364v2005
#if VPI_COMPATIBILITY_VERSION_1364v1995 || VPI_COMPATIBILITY_VERSION_1364v2001

|| VPI_COMPATIBILITY_VERSION_1800v2005
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1364v2005
#define vpi_get vpi_get_1364v2005
#define vpi_get_str vpi_get_str_1364v2005
#define vpi_get_value vpi_get_value_1364v2005
#define vpi_handle vpi_handle_1364v2005
#define vpi_handle_by_index vpi_handle_by_index_1364v2005
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1364v2005
#define vpi_handle_by_name vpi_handle_by_name_1364v2005

IEEE SV-CC
IEEE Std 1800-2005 Proposed changes

6 Copyright 2005 IEEE. All rights reserved.

#define vpi_handle_multi vpi_handle_multi_1364v2005
#define vpi_iterate vpi_iterate_1364v2005
#define vpi_put_value vpi_put_value_1364v2005
#define vpi_scan vpi_scan_1364v2005
#elif VPI_COMPATIBILITY_VERSION_1800v2005
#if VPI_COMPATIBILITY_VERSION_1364v1995 || VPI_COMPATIBILITY_VERSION_1364v2001

|| VPI_COMPATIBILITY_VERSION_1364v2005
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1800v2005
#define vpi_get vpi_get_1800v2005
#define vpi_get_str vpi_get_str_1800v2005
#define vpi_get_value vpi_get_value_1800v2005
#define vpi_handle vpi_handle_1800v2005
#define vpi_handle_by_index vpi_handle_by_index_1800v2005
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1800v2005
#define vpi_handle_by_name vpi_handle_by_name_1800v2005
#define vpi_handle_multi vpi_handle_multi_1800v2005
#define vpi_iterate vpi_iterate_1800v2005
#define vpi_put_value vpi_put_value_1800v2005
#define vpi_scan vpi_scan_1800v2005
#endif

