Purpose: The purpose is to fix issues with assertion VPI diagrams.
1. Clarify that vpiIdentifier iterator in the property and sequence declaration shall return the list of arguments in the declaration.

2. Add vpiArgument as an iterator to properties similar to sequences. (same as Mantis 1503)
3. vpiIdentifier is an iterator to the arguments of a sequence or property declaration, but we need to specify how to get the type of the argument to the declaration. (I’m not sure I did this right!)
4. Add new property and sequence types to the list of codes (property, sequence, NULL) (TBD – should it go with 1549???? I have not added it to this yet.)
5. In several diagrams vpiDefLineNo is a “str”. This should be an “int”. It affect 36.44, 36.45, 36.46, 36.48.
6. There is overlap in the definition of vpiDefLineNo and vpiDef. Add a note that they are the same for property and sequence. (Please check)
7. Note that you can register and query results for prop/seq instancess. (So if I register a callback for a sequence instance, I would get a callback for every instance of that sequence. Since it is difficult to identify where the sequence instance is used, it does not make sense to allow this.) This should be prohibited.
8. Note that you can enable/disable property/sequence instances. This makes no sense. It needs to be clarified that you can only enable verification statements.
IN 36.46 Sequence declaration REPLACE

[image: image1]
Details:

1) The vpiArgument iterator shall return the sequence instance arguments in the order that the formals for the
sequence are declared, so that the correspondence between each argument and its respective formal can be made. If

a formal has a default value, that value shall appear as the argument should the instantiation not provide a value for

that argument.

WITH

[image: image2]
1) The vpiArgument iterator shall return the sequence instance arguments in the order that the formals for the

sequence are declared, so that the correspondence between each argument and its respective formal can be made. If

a formal has a default value, that value shall appear as the argument should the instantiation not provide a value for

that argument.

2) The vpiIdentifier iterator shall return the sequence declaration arguments in the order that the formals for the sequence are declared.
3) vpiLineNo and vpiFile for a sequence declaration will be the same as vpiDefFile and vpiDefLineNo.
IN 36.44 Property Declaration REPLACE

[image: image3]
WITH

[image: image4]
Details:

1) The vpiArgument iterator shall return the sequence instance arguments in the order that the formals for the

sequence are declared, so that the correspondence between each argument and its respective formal can be made. If

a formal has a default value, that value shall appear as the argument should the instantiation not provide a value for

that argument.

2) The vpiIdentifier iterator shall return the sequence declaration arguments in the order that the formals for the sequence are declared.

3) vpiLineNo and vpiFile for a property declaration will be the same as vpiDefFile and vpiDefLineNo.
36.45 Replace

 str: vpiDefLineNo
WITH

 str: vpiDefLineNo

 int: vpiDefLineNo

36.48 Replace

 str: vpiDefLineNo

WITH

 str: vpiDefLineNo

 int: vpiDefLineNo

REPLACE

38.3.2 Obtaining static assertion information

The following information about an assertion is considered to be static:

 — Assertion name

 — Instance in which the assertion occurs

 — Module definition containing the assertion

 — Assertion type

— Sequence

— Assert

— Assume

— Cover

— Property

— ImmediateAssert

— Assertion source information: the file, line, and column where the assertion is defined

· Assertion clocking block/expression

WITH

38.3.2 Obtaining static assertion information

The following information about an assertion is considered to be static:

 — Assertion name

 — Instance in which the assertion occurs

 — Module definition containing the assertion

 — Assertion type

— Sequence Instance
— Assert

— Assume

— Cover

— Property Instance
— ImmediateAssert

— Assertion source information: the file, line, and column where the assertion is defined

· Assertion clocking block/expression

REPLACE

38.4.2 Placing assertions callbacks

To place an assertion callback, use vpi_register_assertion_cb(). The prototype is as follows:

WITH:

38.4.2 Placing assertions callbacks

To place an assertion callback for a verification statement (e.g. assume, assert, cover), use vpi_register_assertion_cb(). The prototype is as follows:
REPLACE

38.5.2 Assertion control

To obtain assertion control information, use vpi_control() with one of the operators in this subclause.

WITH:

38.5.2 Assertion control

To obtain assertion control information for verification statements (e.g. assume, assert, cover) , use vpi_control() with one of the operators in this subclause.
expr

sequence inst

identifier

variables

-> definition location

 str: vpiDefFile

 str: vpiDefLineNo

-> block identifier

 str: vpiName

 str: vpiFullName

-> name

 str: vpiName

vpiArgument

sequence decl

sequence expr

 multiclock

sequence expr

vpiExpr

vpiExpr

 multiclock

sequence expr

sequence expr

sequence decl

vpiArgument

-> name

 str: vpiName

-> type

 int: vpiType

-> name

 str: vpiName

 str: vpiFullName

-> definition location

 str: vpiDefFile

 str: vpiDefLineNo

 int: vpiDefLineNo

-> block identifier

 str: vpiName

 str: vpiFullName

variables

identifier

sequence inst

expr

property decl

vpiArgument

property spec

property decl

-> name

 str: vpiName

-> type

 int: vpiType

-> name

 str: vpiName

 str: vpiFullName

-> definition location

 str: vpiDefFile

 str: vpiDefLineNo

-> name

 str: vpiName

 str: vpiFullName

-> definition location

 str: vpiDefFile

 str: vpiDefLineNo

 int: vpiDefLineNo

-> block identifier

 str: vpiName

 str: vpiFullName

identifier

property inst

property spec

identifier

property inst

expr

