Purpose: The purpose is to fix issues with agseMPI diagrams.

1. Clarify that vpildentifier iterator in the properand sequence declaration shall
return the list of arguments in the declaration.

2. Add vpiArgument as an iterator to properties simitasequences.

3. vpiArgument should be a property_expr for propérstances and a
sequence_expr for sequence instances (missedrntisM& 30)

4. In several diagrams vpiDefLineNo is a “str”. TBisould be an “int”. It affect
36.44, 36.45, 36.46, 36.48.

5. There is overlap in the definition of vpiDefLineMnd vpiDef. Add a note that
they are the same for property and sequence declzsa

6. 'block identifier' makes no sense for sequencepaoderty declarations. These
are not 'labeled statements'. In diagram 36.433énb, 'block identifier’ should
be replaced with 'name’.

7. vpiArgument should only come out of the sequenakppperty instance where
they are defined (definitions are bold), so theyudth not be shown in the
declaration diagrams.

8. It was clarified that you can only control verifin statements, which then
enables the instances within them. Clarificativese also stated w.r.t.
interpretation of start times, pass, and fail seguence or property.

9. It was clarified what callbacks apply to sequenag property instances. The
callbacks on the property and sequence instaneesbdssertionStart,
cbAssertionSuccess and cbAssertionFailure only.

10.bool: vpilsCoverSequence was added under coveragnain 36.43 for
distinguishing cover property and cover sequendssg@gd in Mantis 1768)

11.Added a note to the editor to make the Immediageréisn a section of its own
instead of being included with the sequence_exqgrdms in 36.47.

12. Added vpiClockedProp to the header file and platedder vpiClockedSeq .
Also deleted vpiActualArgExpr that is defined iretheader file, but is not an
object in any of the diagrams so should be removed

13. Added vpiClockedSeq diagram to 36.48

After review:

14.[DK] Updated the text in 38.3.2 to reflect Manfi2P as a basis. Also added a
space after immediate and made the second word age in the text from
1729. Also lower cased the word instance” in “Propastance” and “Sequence
instance”

15. Added clarification to cbAssertionStart thatproperty or sequence instance that is not
instantiated in a verification statement will negéart.

16.[DK] New diagram on page 5: sequence expr (bottom right) should not have an
underscore

17.[DK] * 38.4.2, Page 8.

It is written:

- cbAssertionSuccess. An assertion attempt reaches a success state. For
property or sequence instances, success is a match.

- cbAssertionFailure. An assertion attempt fails to reach a success

state. For property or sequence instances, failure is no match.

The second sentence is ambiguous: does cbAssertionFailure relate to each
time point where the sequence does not match or to the time point where

it is detected that the sequence cannot be matched? I think that the

latter is correct. Also it is better to talk about the success state of

a property instead of the match.

| would formulate it as:

- cbAssertionSuccess. An assertion attempt or a property instance
reaches a success state. For sequence instances, success is a match.
- cbAssertionFailure. An assertion attempt or a property fails to reach
a success state, or sequence instance fails to match.

18.[DK] Updated 36.47 to remove the top sequence ardrre-position sequence

declaration so the diagram looks like property.inst

SV-CC Review comments incorporated

SV-CC review comments:

1.

2.

3.

[JV] Per Jim’s discussion, the notes for each eakowere replaced with a
paragraph at the end that states what is possible.

variables was moved from property spec to propsetfaration, which is
consistent with the BNF and examples in the text.

vpiDefFile and vpiDefLineNo were deleted from prdyeleclaration, property instance, sequence
instance, assertion, property spec, and sequectz@atéon and the note addedpiDefFile and
vpiDefLineNo are deprecated because they are the sanibsneNo andvpiFile

The issues of a) not being able to access propextié sequences that are not instantiated and b)
not being able to determine the scope in which #reydefined was fixed, Specifically, property
declaration and sequence declaration was addée 86t 11 scope diagram and to the clocking
block diagram. In the process, it was also nottbedl the clocking block diagram should not have
had concurrent assertion so that was removed @ouleclare properties and sequences in
clocking blocks but not assert them).

REPLACE in 36.11 Scope (note to editor: only affected parts are shown)

- RN
|/ scope ﬂ—‘—b-N\concurrent assertlo/ns
- !l S

WITH

T T T T T T T ~
> _property decl)

- ~N
—»»(_ sequence decl)
N 7

—_———— e — — =

—_—— -

(clocking block ><—<7—>(\ instance :)

—_—_—— e —_— ——

—_—_ —— e — — —

WITH

—_——

(clocking block ><-<7—>(\ instance :)

—_—_—— e —_— ——

—>(.

—_—_ —— e — — —

—_— -

-~ ~N
—>»{_ property decl)

—_——— e ——— =

—_———

- ~N
—»(_ sequence decl)
N ~

—_——— e ———

REPLACE in 36.43 Concurrent Assertions (note to editor: only the part that
changesis shown)

~
2
2
3
U

-> definition location
str: vpiDefFile
int: vpiDefLineNo

-> block identifier
str: vpiName
str: vpiFullName

-> is clock inferred
bool:vpilsClockinferred

WITH
//’_ ___________ \\
I/ concurrent assertions
T T T T T T |
I |
| (assert) :
: |
| (assume) :
I |
|
: (cover) |
I |
) |
: -> |s cover sequence |
\ bool: IsCoverSequence
N /
N _7
int uniDefLi
-> bleekidentifier-name
str: vpiName

str: vpiFullName
-> s clock inferred
bool:vpilsClockinferred

Noteto editor: also add a detail to the 36.43 list:
2) vpiDefFile andvpiDefLineNo are deprecated because they are the sawibsneNo andvpiFile

IN 36.44 Property Declaration REPLACE

W)—»f property decl)—»(property spec)
N

-> name
str: vpiName

str: vpiFullName
-> definition location

str: vpiDefFile
str: vpiDefLineNo

WITH

-> name
str: vpiName
str: vpiFullName —’< property spec)

Details:

1) Thevpil dentifier iterator shall return the property declaratioruangnts in the order that the formals for the
property are declared.

2) vpiDefFile andvpiDefLineNo are deprecated because they are the sawgilhsneNo andvpiFile.

REPLACE in 36.45 Property specification

s T T T T T T \\ T T T T T T T ~ /—____t____‘\)
(expr < { roperty spec ——»_ property expr
o JEPL vpiClockingEvent ~ _PIOPETY 5PEC Se———— 7
-> definition location
(/ ————————— ~ str: vpiDefFile
expr < uniDef i
S———————— “" \piDisableCondition | " vpiDefLineNo
s T T DT T ~
(variables e
N - e 7
WITH
s T T T T T T \\ T T T T T T T ~ /—-____t___—\
(expr < { roperty spec ——»_ property expr
R I vpiClockingEvent _PIOPETY SPeC Se———— 7
- :
s T T T ~ SHB@G@EH@: } }
(expr 1< str-vpiDefLineNo

S————————— “ vpiDisableCondition

Noteto editor: also add a detail to the 36.43 list:
3) vpiDefFile andvpiDefLineNo are deprecated because they are the sanvgilsneNo andvpiFile

IN 36.46 Sequence declaration REPLACE

vpiArgument

sequence inst

-> name
str: vpiName

Details:

(sequence decl)—

-> definition location
str: vpiDefFile
str: vpiDefLineNo
-> block identifier
str: vpiName
str: vpiFullName

/ .
—> P variables)
VPIEXpr / o —————————— ~O\
—, (__ sequence expr J

multiclock

|
\
- \Sequence expr

1) ThevpiArgument iterator shall return the sequence instance argtemerthe order that the formals for the
sequence are declared, so that the correspondetveedn each argument and its respective formabeanade. If
a formal has a default value, that value shall appe the argument should the instantiation notigeeca value for

that argument.

WITH

sequence inst

-> name
str: vpiName

t.
1) Thevpil dentifier iterator shall return the sequence declarationraegts in the order that the formals for the
sequence are declared.
2) vpiDefFile andvpiDefLineNo are deprecated because they are the sawgilhsneNo andvpiFile.

(sequence decl)—

-> name
str: vpiName
str: vpiFullName
S :

- .
> variables)
VpPIEXpr ./"/ —————————— -\
— {__ sequence expr J

multiclock

!
\
“ \Sequence expr

REPLACE in 36.47 Sequence Expression (only affected parts of the diagram are
shown)

(sequence decHequence inst)—

WITH

BTN VpiEXpE o ~

>)

(seauence decl J¢——(sequence inst) T
vpiArgument _-————————— -
—>»(_sequence expr /)

~

Details:

1) ThevpiArgument iterator shall return the sequence instance argisieithe order that the formals for the
sequence are declared, so that the correspondetveedn each argument and its respective formabeanade. If
a formal has a default value, that value shall appe the argument should the instantiation notigeeca value for
that argument.

Move from “36.47 Sequence expression” the immediate assert definition to
a new section titled “Immediate Assertions” that follows 36.48. The notes in
36.47 still remain only in 36.47 — they do not get copied. Note that immediate
assume and immediate cover from Mantis 1729 will also reside in this new
section. Re-number subsequent sections accordingly.

REPLACE from 36.48 Multiclock sequence expression (only the parts that change are
shown)

vpiDisableCondition ,————————— ~

ST T T T T T ~
property inst >___arguments)
-> definition location

str: vpiDefFile -
str: vpiDefLineNo > __property decD

WITH
vpiDisableConditon ,———————— -
Me__eer__
- vpiArgument ,——g——t——s____\
property Inst > ﬁ\rirgrie[XEX_pE)
str-vpibefkineNo > property decl
vpiClockingEvent ————————— -
Mo___epr__)
clocked seq
T T T T T T T T ~
™. _Sequence expr.}
Details:

1) ThevpiArgument iterator shall return the property instance argusianthe order that the formals for the
property are declared, so that the correspondegtegebn each argument and its respective formabeanade. If
a formal has a default value, that value shall apps the argument should the instantiation notigheca value for
that argument.

2) vpiDefFile andvpiDefLineNo are deprecated because they are the sana bsneNo andvpiFile

REPLACE

38.3.2 Obtaining static assertion information
The following information about an assertion is sidered to be static:
— Assertion name
— Instance in which the assertion occurs
— Module definition containing the assertion
— Assertion type
— Sequence
— Assert
— Assume
— Cover
— Property
— ImmediateAssert
— ImmediateAssume
— ImmediateCover

WITH

38.3.2 Obtaining static assertion information
The following information about an assertion is sidered to be static:
— Assertion name
— Instance in which the assertion occurs
— Module definition containing the assertion
— Assertion type
— Sequencénstance
— Assert
— Assume
— Cover
— Propertyinstance
— Immediaté\ssertassert
— Immediaté\ssumeassume
— Immediaté&over cover

In 38.4.2 REPLACE

wherereason is any of the following.

— cbAssertionStart. An assertion attempt has started. For most é&sgrone attempt starts each and
every clock tick.

— CcbAssertionSuccess. An assertion attempt reaches a success state.

— cbAssertionFailure. An assertion attempt fails to reach a success.sta

— cbAssertionStepSuccess. Progress one step an attempt. By default, stégacks are not enabled
on any assertions; they are enabled on a per-asgper-attempt basis (s88.5.9, rather than on a
per-assertion basis.

— cbAssertionStepFailure. Fail to progress by one step along an attemptieBgult, step callbacks
are not enabled on any assertions; they are enablader-assertion/per-attempt basis g8.2,
rather than on a per-assertion basis.

— cbAssertionDisable. The assertion is disabled (e.g., as a resultcohéol action).

— CbAssertionEnable. The assertion is enabled.

— CbAssertionReset. The assertion is reset.

— cbAssertionKill. An attempt is killed (e.g., as a result of a coldction).

— cbAssertionDisablePassAction. The pass action is disabled for vacuous and rouoes success
for the assertion (e.g., as a result of contrabagt

— cbAssertionEnablePassAction. The pass action is enabled for vacuous and naouacsuccess for
the assertion (e.g., as a result of control action)

— cbAssertionDisableFail Action. The fail action is disabled for the assertiog.(eas a result of control
action).

— cbAssertionDisableVacuousAction. The pass action is disabled for vacuous sucddbe @assertion
(e.g., as a result of control action).

— cbAssertionEnableNonvacuousAction. The pass action is enabled for nonvacuous suofdise
assertion (e.g., as a result of control action).

These callbacks are specific to a given asseniatjng such a callback on one assertion doesaustec
the

callback to trigger on an event occurring on aeddht assertion. If the callback is successfullcet, a
handle to the callback is returned. This handlebeansed to remove the callback via._remove cb(). If
there were errors on placing the callbackiyal handle is returned. As with all other calls, invakithis
function with invalid arguments has unpredictatifecs.

WITH

— cbAssertionStart. An assertion attempt has started. For most &ssgrone attempt starts each and
every clock tick. For property and sequence instances the stan istéint of evaluation of the property or
sequence instance. A property or sequence insthatis not instantiated in a verification stataemsill
never start.

— CbAssertionSuccess. An assertion attempdr property instanceeaches a success stater sequence
instances, success is a match.

— cbAssertionFailure. An assertion attempt a propertyfails to reach a success stateax sequence
instance fails to match.

— CcbAssertionStepSuccess. Progress one stepongan attemptA step is defined as progress along the
flattened assertion (e.g. rewriting algorithm defirin[Note to Editor --- insert reference to the

new section in F.3.1 titled “Rewriting sequencel gnoperty instances)] By default, step callbacks are
not enabled on any assertions; they are enabladoen-assertion/per-attempt basis G&&.9, rather than
on a per-assertion basis.

— cbAssertionStepFailure. Fail to progress by one step along an attefptep is defined as progress
along the flattened assertion (e.g. rewriting atgor defined inNote to Editor --- insert reference to the
new section in F.3.1 titled “Rewriting sequencel gnoperty instances” By default, step callbacks are not
enabled on any assertions; they are enabled onaspertion/per-attempt basis (8&5.9, rather than on
a per-assertion basis.

— cbAssertionDisable. The assertion is disabled (e.g., as a resultcoh#ol action).

— CbAssertionEnable. The assertion is enabled.

— CcbAssertionReset. The assertion is reset.

— cbAssertionKill. An attempt is killed (e.g., as a result of a coldction).

— cbAssertionDisablePassAction. The pass action is disabled for vacuous and rouoes success

for the assertion (e.g., as a result of contrabagt

— cbAssertionEnablePassAction. The pass action is enabled for vacuous and naouacsuccess for
the assertion (e.g., as a result of control action)

— cbAssertionDisableFailAction. The fail action is disabled for the assertiog.(eas a result of control
action).

— cbAssertionDisableVacuousAction. The pass action is disabled for vacuous sucddbe @assertion
(e.g., as a result of control action).

— cbAssertionEnableNonvacuousAction. The pass action is enabled for nonvacuous suofdise
assertion (e.g., as a result of control action).

Each of these callbacks may be registered on amguecent or immediate assertion. The cbAssertam,St
cbAssertionSuccess, and cbAssertionFailure caltbatky also be registered on a sequence instarace or
property instance.

These callbacks are specific to a given asseniatjng such a callback on one assertion doesaustec
the callback to trigger on an event occurring different assertion. If the callback is succesgfplaced,

a handle to the callback is returned. This hanaltele used to remove the callbackwpa remove cb().
If there were errors on placmg the callbackl,UaL handle is returnechs-with-all-ether-calls-inveking

REPLACE

38.5.2 Assertion control
To obtain assertion control information, wge_control() with one of the operators in this subclause.

WITH:

38.5.2 Assertion control

To obtain assertion control informatiémr verification statements (e.g. assume, asseverg, use
vpi_control() with one of the operators in this subclau€mly verification statement handles are valid
here, not sequence or property instances.

REPLACE On page 1126 of N.2 Source code (for siv uger.h)

#define vpi Met hod 645
#define vpilsC ocklnferred 649

WITH

#define vpi Met hod 645
#define vpilsC ocklnferred 649
#define vpilsCover Sequence [Editor to fill in]

Also REPLACE On page 1124 of Annex N.2 Source cafeobject types(for sv_vpi_user.h)

#def i ne vpi Mul ti cl ockSequenceExpr 658
#define vpi C ockedSeq 659

#def i ne vpi Propertyl nst 660

#def i ne vpi SequenceDecl 661

#def i ne vpi Act ual ArgExpr 663

#def i ne vpi Sequencel nst 664

WITH

#def i ne vpi Mul ti cl ockSequenceExpr 658
#define vpi C ockedSeq 659

#define vpi Cl ockedProp [Editor to fill in]
#def i ne vpi Propertyl nst 660

#def i ne vpi SequenceDecl 661

#def i ne vpi Sequencel nst 664

