ADD

Note to the editor: Please, shift the numeration of the subsequent clauses accordingly
17 Checkers

17. 1 Overview

Assertions provide building blocks to validate the behavior of the design. In many cases there is a need to group several assertions together into bigger blocks having a well-defined functionality. These verification blocks may also need to contain modeling code to compute values of auxiliary variables used in assertions or covergroup instances to be integrated with cover statements. The checker construct in SystemVerilog was specifically created to represent such verification blocks encapsulating assertions along with the modeling code. The intended use of checkers is to serve as verification library units, or as building blocks for creating abstract auxiliary models used in formal verification.
The modeling mechanism in checkers is limited to nonblocking assignments only. Each variable declared in a checker may be either deterministic or random. Checker modeling is explained in 17.6. Random variables are useful to build abstract nondeterministic models for formal verification. Reasoning about nondeterministic models is sometimes much easier than reasoning about deterministic RTL models.
Deterministic variables allow a conventional (deterministic) modeling for assertions. Using random variables instead of regular variables in checkers has the advantage that the same checker may be used for both deterministic and nondeterministic cases.
17.2 Checker declaration
checker_declaration ::=

// from A.1.2
checker checker_identifier [([checker_port_list])] ;
{ checker_or_generate_item }

endchecker [: checker_identifier]

checker_port_list ::=

 // from A.1.8

checker_port_item {, checker_port_item}

checker_port_item ::=

{ attribute_instance } property_formal_type port_identifier {variable_dimension}

[= property_actual_arg]

checker_or_generate_item ::=

 checker_or_generate_item_declaration

| initial_construct

| checker_always_construct

| final_construct

| assertion_item

| checker_generate_item

checker_or_generate_item_declaration ::=

 data_declaration

| function_declaration

| assertion_item_declaration

| overload_declaration

| genvar_declaration

| clocking_declaration

| default clocking clocking_identifier ;

| default disable iff expression_or_dist ;

| ;

checker_generate_item2 ::=

loop_generate_construct

| conditional_generate_construct
| generate_region

| elaboration_system_task

checker_always_construct::= always statement

checker_identifier ::=

// from A.9.3

identifier
(((((
2) It shall be illegal for a checker_generate_item to include any item that would be illegal in a checker_declaration outside a checker_generate_item.
Syntax 17-1—Checker declaration syntax (excerpt from Annex A)
Note to editor: please number consistently with rest of chapter.

A checker may be declared in one of the following:

· A module

· An interface

· A program

· A checker

· A package

· A generate block

· A compilation unit scope

A checker is declared using the keyword checker followed by a name and optional formal argument list, and ending with the keyword endchecker.
The following elements from the scope enclosing the checker declaration shall not be referenced in a checker:

· Automatic variables and members or elements of dynamic variables. This includes dynamically sized variables and data in automatic tasks, functions, or blocks.
· Elements of fork…join, fork…join_any, or fork…join_none blocks.
Action blocks of assertions within a checker will be referred to as checker action blocks, and the rest of the checker will be referred to as a checker body.

A checker body may contain the following elements:

· Declarations of let constructs, sequences, properties and functions.

· Deferred assertions (see Note to the editor: insert a reference here)

· Concurrent assertions (see 16.15).
· Checker declarations
· Other checker instantiations.

· Checker variable declarations and assignments (see 17.6).

· default clocking and default disable iff declarations.

· initial, always and final procedures (see 9.2).

· Generate blocks, containing any of the above elements.

Modules, interfaces, programs, and packages shall not be declared inside checkers. Modules, interfaces, and programs shall not be instantiated inside checkers.
All checker formal arguments are inputs and they are processed in a similar way as property formal arguments, but the data types of checker formal arguments besides those legal for a property (see 16.13), may also be string and non-integer types (shortreal, real and realtime). Unlike modules, interfaces, and programs, checker formal arguments may not be connected to interfaces.

Below are examples of simple checkers:
Example 1.
// Simple checker containing concurrent assertions
checker my_check1 (logic test_sig, event clock);

default clocking @clock; endclocking

property p(logic sig);

…

endproperty

a1: assert property (p (test_sig));

c1: cover property (!test_sig ##1 test_sig);

endchecker : my_check1
Example 2.
// Simple checker containing deferred assertions
checker my_check2 (logic a, b);

a1: assert #0 ($onehot0({a, b});

c1: cover #0 (a == 0 && b == 0);

c2: cover #0 (a == 1);

c3: cover #0 (b == 1);

endchecker : my_check2
Type and data declarations within the checker are local to the checker scope and are static. Clock and disable iff contexts are inherited from the scope of the checker declaration (but see 17.4 for usage of context value functions for passing the instantiation context to the checker). For example:
module m;

default clocking @clk1; endclocking
default disable iff rst1;

checker c1;

// Inherits @clk1 and rst1

…

endchecker : c1

checker c2;

// Explicitly redefines its default values

default clocking @clk2; endclocking

default disable iff rst2;

…

endchecker : c2

…

endmodule : m

Variables used in a checker that are neither formal arguments to the checker nor internal variables of the checker are resolved according to the scoping rules from the scope in which the checker is declared.

17.3 Checker instantiation

concurrent_assertion_item ::=

// from A.2.10

…

| checker_instantiation
checker_instantiation ::=

// from A.4.1.4
checker_identifier name_of_instance ([list_of_checker_port_connections]) ;
list_of_checker_port_connections15 ::=

ordered_checker_port_connection { , ordered_checker_port_connection }

| named_checker_port_connection { , named_checker_port_connection }

ordered_checker_port_connection ::= { attribute_instance } [property_expr]

named_checker_port_connection ::=

{ attribute_instance } . port_identifier [([property_expr])]

| { attribute_instance } .*

checker_identifier ::=

// from A.9.3

identifier

(((((
15) The .* token shall appear at most once in a list of port connections.
Syntax 17-2—Checker instantiation syntax (excerpt from Annex A)

Note to editor: please number consistently with rest of chapter.

A checker may be instantiated wherever a concurrent assertion may appear (see 16.15).
It shall be illegal to instantiate checkers in fork…join, fork…join_any, or fork…join_none blocks.
A checker has different behavior depending on whether it is instantiated inside or outside procedural code. A checker instantiation in procedural code is referred to as a procedural checker instance. A checker instantiation outside procedural code is referred to as a static checker instance. The differences in behavior are described in 17.3.1. (See 16.15.5 editor correct Reference to Mantis 2398 for the corresponding definitions of procedural and static assertion statements.)
When a checker is instantiated, actual arguments are passed to the checker. The mechanism for passing arguments to a checker is similar to the mechanism for passing arguments to a property (see 16.13), and each formal argument shall be assigned the sampled value of its actual argument during the Preponed region of each time step, with the following exceptions and clarifications:
· If $ is an actual argument to a checker instance, then the corresponding formal argument shall be untyped and each of its references either shall be an upper bound in a cycle_delay_const_range_expression or shall itself be an actual argument in an instance of a named sequence or property, or in a checker instance.
· If an actual argument contains any subexpression that is a const cast or automatic value from procedural code, then the corresponding formal argument shall be used only in static assertion statements (see 16.15.5 editor correct reference to Mantis 2398) or static checker instances within the checker. In such cases, the current value of each such subexpression shall be substituted before sampling the full actual argument, whenever a static assertion statement in the checker or a statically instantiated subchecker is added to the pending procedural assertion queue (see 16.15.5.1 editor correct reference to Mantis 2398 and 17.3.1 below).
· Arguments that cannot be sampled, such as events, sequences, and properties, are treated similarly to such arguments for sequences and properties (see 16.8): they are substituted directly for the formal argument when it is used in statements or expressions within the checker.

· If the checker is instantiated within another checker, then all formal arguments are considered to be directly connected to their actual arguments, as in a module instantiation. This also means that if the actual argument is connected to a formal in the parent checker that uses a const cast or automatic value from procedural code, it shall only appear in static assertion statements or static checker instantiations.
Checker formal arguments may be connected to their actual arguments in ways similar to module ports (see 22.3.2):

· Positional connections by port order.

· Named port connections using fully explicit connections.

· Named port connections using implicit connections.
· Named port connections using a wildcard port name.
17.3.1 Behavior of instantiated checkers

All contents of a checker instance other than static assertion statements are considered to exist during every time step, regardless of whether the checker is static or procedural. One copy of these contents exists for each instantiation. Immediate assertions, including deferred assertions, are handled normally as described in 16.3 and 16.4. Procedural concurrent assertion statements in a checker shall be treated just like other procedural assertion statements as described in 16.15.5 editor correct Reference to Mantis 2398. However, static concurrent assertion statements within a checker are treated as if they appear at the checker's instantiation point:

· If the checker is static, the assertion statements are continually monitored, and begin execution on any time step matching their initial clock event.
· If the checker is procedural, all static assertion statements in the checker are added to the pending procedural assertion queue for their process when the checker instantiation is reached in process execution, and then may mature or be flushed like any procedural concurrent assertion (see 16.15.5.2 editor correct reference to Mantis 2398).
· If the checker is statically instantiated inside another checker, any of its static assertions are treated as if instantiated in the parent checker, and thus will also be queued when an instantiation of its top-level ancestor in the checker hierarchy is visited in procedural code.
The following example illustrates this behavior:
checker c1(event clk, logic[7:0] a, b);

logic [7:0] sum;

always @(clk) begin

sum <= a + 1’b1;

p0: assert property (sum < `MAX_SUM);

end

 p1: assert property (@clk sum < `MAX_SUM);

 p2: assert property (@clk a != b);
endchecker

module m(input logic rst, clk, logic en, logic[7:0] in1, in2,
 in_array [20:0]);

c1 check_outside(posedge clk, in1, in2);

always @(posedge clk) begin

automatic logic [7:0] v1=0;

if (en) begin
 // v1 is automatic, so current procedural value is used

 c1 check_inside(posedge clk, in1, v1);

end

for (int i = 0; i < 4; i++) begin

v1 = v1+5;

if (i != 2) begin
 // v1 is automatic, so current procedural value is used

c1 check_loop(posedge clk, in1, in_array[v1]);

end

end

end

endmodule : m
In this example, there are three instantiations of c1: check_outside, check_inside, and check_loop. They have the following characteristics:

· check_outside is a static instantiation, while check_inside and check_loop are procedural.
· Each of the three instantiations has its own version of sum, which is updated at every positive clock edge, regardless of whether that instance was visited in procedural code. Even in the case of check_loop, there is only one instance of sum, and it will be updated using the sampled value of in1.
· Each of the three instantations will queue an evaluation of p0 at every posedge of the clock (according to the rules in 16.15.5 editor correct reference to Mantis 2398), which will mature and report a violation during any time step when sum is not less than MAX_SUM, regardless of the behavior of the procedural code in module m.
· For instance check_outside, p1 and p2 are checked at every positive clock edge. For instance check_inside, p1 and p2 are queued to mature and be checked on any positive clock edge when en is true. For check_loop, three procedural instances of p1 and p2 are queued to mature on any positive clock edge. For p1, all three instances are identical, using the sampled value of sum; but for p2, the three instances compare the sampled value of in1 to the sampled value of in_array indexed by constant v1 values of 5, 10, and 20 respectively.
17.3.2 Nested checker instantiations

As described above, a checker instantiated in another checker is treated as if each of its formal arguments is directly connected to the corresponding actual argument, as in a module instantiation. However, a checker shall be evaluated statically or procedurally depending on its placement in the parent checker, and all restrictions on the usage of arguments given above in 17.3 apply. The following example illustrates this behavior:

checker c3(event clk, logic a);

p3: assert property (@clk a);
endchecker
checker c2(event clk, logic a);

c3 c3_stat(clk, a);

always @(clk) begin

c3 c3_proc(clk, a); // ILLEGAL if c2 is instantiated as below

end
endchecker

module m2(logic clk, logic [3:0] d);

always @(posedge clk) begin

for (int i = 0; i < 4; i++) begin

c2 check_loop(in1, d [const’(i)]);

end

end
endmodule : m2
In module m2, during each posedge of clk, checker c2 will be visited four times, and four pending instances of assertion c2.c3_stat.p3, with current procedural values of d[0], d[1], d[2], and d[3] for the value of a, will be queued and mature. However, since c3_proc is in the continually-executing procedural code of the checker, its use of the input a, which is connected to an expression containing a const cast subexpression in this instantiation, is illegal.
17.4 Context inference

Context value functions (see 16.15.6) may be used as default values of formal arguments in a checker declaration. These functions enable adjusting the checker behavior depending on its instantiation context. For example:
// Context inference in a checker

checker check_in_context (logic test_sig,

 event clock = $inferred_clock,

 logic reset = $inferred_disable);

property p(logic sig);

…

endproperty

a1: assert property (@clock disable iff (reset) p(test_sig));

c1: cover property (@clock !reset throughout !test_sig ##1 test_sig);

endchecker : check_in_context
module m(logic rst);

wire clk;

logic a, en;

wire b = a && en;

// No context inference

check_in_context my_check1(.test_sig(b), .clock(clk), .reset(rst));

always @(posedge clk) begin

a <= …;

if (en) begin

…

// inferred from context:

//
.clock(posedge clk)

//
.reset(1'b0)

check_in_context my_check2(a);

end

en <= …;

end

endmodule : m

In the above example the default values of clock, reset in check_in_context are taken from the instantiation context. In the instantiation my_check1 all formal arguments are provided explicitly. In the instantiation my_check2 all optional arguments are passed their default value: the clock is inferred from the clock of the always procedure of the module m, the disable condition is inferred to be 1'b0.
17.5 Checker procedures
The following procedures are allowed inside a checker body:
· initial procedure, and

· always procedure

· final procedure

An initial procedure in a checker body may contain deferred and concurrent assertions and a procedural timing control statement using an event control only.
An always procedure in a checker body may contain deferred and concurrent assertions, nonblocking variable assignments (see 17.6.1) and a procedural timing control statement using an event control. All other statements shall not appear inside an always procedure.
A final procedure may be specified within a checker in the same manner as in a module (see 9.2.3). This allows for the checker to check conditions with immediate assertions or print out statistics at the end of simulation. The operation of the final procedure is independent of the instantiation context of the checker that contains it. It will be executed once at the end of simulation for every instantiation of that checker. There is no implied ordering in the execution of multiple final procedures. A final procedure within a checker may include any construct which is allowed in a non-checker final procedure.
17.6 Checker variables

Variables may be defined in checkers, but defining nets in the checker body shall be illegal. All variables defined in a checker body shall have static lifetime (see 17.2). The variables defined in the checker body are referred to as checker variables. The following example illustrates checker variable usage:

checker counter_model(logic flag);

bit [2:0] counter = '0;

always @$global_clock

counter <= counter + 1'b1;

assert property (@$global_clock counter == 0 |-> flag);
endchecker : counter_model

Checker variables may have an optional rand qualifier. In this case they are called free variables; free variables may behave non-deterministically.

Formal analysis tools shall take into account all possible values of the free checker variables imposed by the assumptions and assignments (see 17.6.1). Simulators shall assign random values to the free variables as explained in 17.6.2.
The following example shows how free variables can be used for modeling for formal verification.
checker observer_model(bit valid, reset);

default clocking @$global_clock; endclocking

rand bit flag;

m1: assume property (reset |=> !flag);

m2: assume property (!reset && flag |=> flag);

m3: assume property ($rising_gclk(flag) |-> valid);

endchecker : observer_model
In this example the following constraints are imposed on the free variable flag:

· If it is high it remains high as long as there is no reset.
· If there is a reset, it becomes low at the next tick of the clock.

· It may rise only when valid is high.

Note that although the behavior of the free variable flag has been restricted by the assumptions m1, m2, and m3, it is still non-deterministic because it does not have to rise when valid is high. Figure 17-1 shows two possible legal behaviors of this variable given the same behaviors of reset and valid. Formal analysis tools shall take all possible legal behaviors of flag into account. Simulators shall assign random values to the variable flag as explained in 17.6.2.

[image: image1.emf]$global_clock

reset

possible behavior

possible behavior

valid

flag

Figure 17-1: Non-deterministic free checker variable
The following example shows how free variables may be used to implement a nondeterministic choice:

//
a may assume values 3 and 5 only

rand bit r;

let a = r ? 3'd3 : 3'd5;

A free variable declaration may have a const qualifier. If a constant free variable is initialized, it retains its initial value forever. An uninitialized constant free variable has a non-deterministic value at the initialization, and this value does not change. The following examples demonstrate the usage of constant free checker variables.
Formal analysis tools shall take into account any possible values of a constant free checker variable consistent with the imposed assumptions. Simulators shall assign a random constant value to a constant free variable as explained in 17.6.2.
Examples:
· Reasoning about a representative bit
checker reason_about_one_bit(bit [63:0] data1, bit [63:0] data2, event clock);

const rand bit [5:0] idx;

a1: assert property (@clock data1[idx] == data2[idx]);

endchecker : reason_about_one_bit
In this example the assertion a1 states that any fixed bit of data1 has the same value as the corresponding bit of data2. Therefore the checker reason_about_one_bit is equivalent in formal verification to the following checker (these two checkers are not equivalent in simulation):

checker reason_about_all_bit(bit [63:0] data1, bit [63:0] data2, event clock);

a1: assert property (@clock data1 == data2);

endchecker : reason_about_all_bit

The second realization of the checker compares two 64-bit values while the first one compares only one-bit values, for every possible index. The first version may be more efficient for some formal tools.

· Data integrity checking
// If start_ev is asserted then the value of out_data at the next assertion of
 // end_ev has to be equal to the current value of in_data at start_ev.

//

// It is assumed that in_data and out_data have the same size

checker data_legal(start_ev, end_ev, in_data, out_data);

const rand bit [$bits(in_data)-1:0] mem_data;

sequence transaction;

start_ev && (in_data == mem_data) ##1 end_ev[->1];

endsequence

a1: assert property (@clock transaction |-> out_data == mem_data);

endchecker : data_legal
Since mem_data is a constant free variable, if in_data is equal to mem_data at the beginning of the transaction, then mem_data records that value and keeps it throughout the trace. In particular, at the end of the transaction, mem_data still holds that value and the assertion checks that it is equal to out_data. Moreover, mem_data was initialized with a non-deterministic value; it follows that for every value of in_data, there exists a computation in which mem_data is equal to that value of in_data, which in turn implies that the corresponding legality of data transfer through that transaction is being checked for formal verification. In simulation mem_data will be randomly initialized (see 17.6.2), and it will only be checked that if at the transaction beginning in_data equals to mem_data then at the transaction end out_data will have the same value as in_data at the beginning of the transaction.
The latter example may be rewritten for formal verification using local variables instead of constant free variables (see 16.9; these implementations are not equivalent in simulation):
// If start_ev is asserted then the value of in_data has to be

// equal to the value of out_data at the next assertion of end_ev

//

// It is assumed that in_data and out_data have the same size

checker data_legal_with_loc(start_ev, end_ev, in_data, out_data);

sequence transaction (loc_var);

(start_ev, loc_var = in_data) ##1 end_ev[->1];

endsequence

property data_legal;

bit [$bits(in_data)-1:0] mem_data;

transaction(mem_data) |-> out_data == mem_data;

endproperty

a1: assert property (@clock data_legal);

endchecker : data_legal_with_loc

Note the difference between a constant and a non-constant free variable: a constant free variable does not change its value, while a non-constant free variable can assume a new value any time. If a non-constant free variable has been initialized but is never assigned then it can assume any value at any time step in formal verification, or be randomized in subsequent time steps in simulation (see 17.6.2), except the first one where its value is defined by the initialization. Consider the following declaration:

rand bit a = 1'b0, b;

The free variable a has initial value 0, but in other time steps its value may change. The free checker variable b may assume any value 0 or 1 at any time (in formal verification or randomized in simulation), as opposed to an uninitialized constant free checker variable which is guaranteed to keep forever one specific value.

17.6.1 Checker variable assignments

Checker variables may be assigned using nonblocking procedural assignment only. Blocking procedural assignments to checker variables are not allowed. The formal semantics of free variable assignment is described in F.2.3.6.
The following example illustrates usage of free variable assignments.

// Toggling variable:

//
a may have either 0101… or 1010… pattern

rand bit a;

always @clk a <= !a;

The right-hand side of a checker variable assignment may contain the sequence method triggered (see 16.14.6).
The following rules apply to both regular and free checker variables:
· It shall be illegal to reference a checker variable using its hierarchical name in assignments (see 22.6). For example:
checker check(…)

bit a;

…

endchecker

module m(…)

…

check my_check(…);

…

wire x = my_check.a; // Illegal

bit y;

…

always @(posedge clk) begin

my_check.a = y; // Illegal

…

end

…

end

· Single Assignment Rule (SAR): it shall be illegal to use the same bit of a checker variable in several assignment-like contexts.
Example 1:

bit [2:0] a;

…

bit [2:0] b;

always @(posedge clk) begin

b[1:0] <= a[1:0];

b[2:1] <= a[2:1]; // Illegal: SAR violation

end
This is illegal because there are two assignment statements to b[1] (even though the two assignments are to the same value).

Example 2:

bit [2:0] a;

…

bit [2:0] b;

always @(posedge clk) begin

b[1:0] <= a[2:1];

b[2] <= a[0];

end
This is legal because each bit of b is assigned only once.

The left hand side of an assignment shall be the longest static prefix of a select (see 11.5.3). For example:

rand bit [3:0] a;

rand bit [1:0] i;

always @clk

a[i] <= !a[i]; // Illegal

a) A checker variable may not be assigned in an initial procedure. For example:

bit v;

initial v <= 1'b0; // Illegal
17.6.2 Checker variable randomization with assumptions
Checker assume statements are used to describe assumptions that may be made about the values of variables. They may be used by simulators to constrain the random generation of free checker variable values or by formal tools to constrain the formal computation. As with normal assume statements, checker assume statements shall also be checked for violation during simulation.

Assume-based checker variable randomization is the process of periodically solving a set of properties appearing in assume statements (called an assume set) to find satisfying values for the free checker variables, and updating those variables with the newfound values. Unlike class-based constrained random generation, solving is triggered by any of the clock events of the properties in the assume set (called an assume set clock event) rather than by an explicit procedural call (e.g., there is no randomize() for checkers). Once updated with solution values, free checker variables shall remain constant until the next assume set clock event or the end of the time step, whichever comes first.

All non-const free checker variables are treated as either active or inactive for assume-based randomization, in the same way as rand variables for class-based constrained random generation (see 17.8), but without an explicit control facility (such as rand_mode()). All other variables (such as non-free checker variables and checker formals) are always treated as inactive. Any free checker variables that appear on the left-hand side of a checker variable assignment (see 17.6.1) are inactive; all other free checker variables are active. Free checker variables are active or inactive for each singular element of the variable; for example, a packed array or structure is active or inactive monolithically, whereas the elements of an unpacked array or structure are separately active or inactive.
All free checker variables, both const and non-const, active and inactive, are initialized with unconstrained random values unless explicitly initialized in their declaration.
Each checker instance has one and only one assume set, which may be empty. Like checker procedures and variables, checker assume sets are considered to exist at every time step, regardless of whether the checker instance is static or procedural (see 17.3).
The assume set of a checker instance is formed from the checker assume statements and child checker assume statements. Any of these assume statements that references a formal whose actual argument contains any subexpression that is a const cast or automatic value (see 17.3) is excluded from the assume set. This restriction allows a single copy of the assume set to exist for each instantiation that is valid for the entire simulation, as described in 17.3.1. Among the remaining assume statements, those that reference active free variables of the checker are included in the assume set. For example,
module my_mod();

 bit mclk, v1, v2;
 checker foo(bit fclk, bit a, bit b);

 default clocking @ (posedge fclk); endclocking
 checker bar(bit bclk, bit x, bit y);

 default clocking @ (posedge bclk); endclocking
 rand bit m, n;

 u1: assume property (f1(x,m));
 u2: assume property (f2(y,n));
 endchecker
 rand bit q, r;
 bar B1(fclk, q+r, r);

 always @ (posedge fclk)

 r <= a || q; // assignment makes r inactive.
 u3: assume property (f3(a, q));

 u4: assume property (f4(b, r));

 endchecker

 …

 foo F1(mclk, v1, const’(v2));
endmodule

The assume set of F1 consists of F1.u3 and F1.B1.u1. The property F1.B1.u1 is included because it references the formal x, whose actual expression q+r involves an active free checker variable. F1.u4 is excluded because it references the formal b, which is associated with the const cast actual v2. F1.B1.u2 is excluded because the only formal referenced is y, which is not associated with an active free variable actual (the actual r is inactive). However, checker instance F1.B1 has its own assume set, which includes u2 as well as u1; neither of those assume statements involve formals with const cast or automatic actuals.
When a solution attempt is made on an assume set, values shall be sought for all active checker variables such that, together with the inactive variables and state, none of the assumptions will fail in that time step. If a set of such values is found, the solution attempt is successful. Otherwise, any values may be chosen for the active variables and the solution attempt is unsuccessful. There is no requirement that a solution be found if it exists or that "dead end" states (states where no solution exists) be avoided. For example,

u_deadend: assume property (@(posedge clk) x |=> ##5 1’b0);

If the value 1 is chosen for x, the property would not fail in the current time step; however, it would inevitably fail six clock cycles later. Such an inevitable future failure is called a dead end. Despite the dead end, selecting 1 for x is considered a successful solution attempt.
Empty assume sets shall be considered to have an implicit assume set clock event in every time step before the Observed region. Active variables in checkers with empty assume sets are called implicitly clocked active free variables; those with non-empty assume sets are explicitly clocked. Implicitly clocked active variables may be updated with unconstrained random values at every time step. Once updated, the variables stay constant until the end of the time step.
Note that active variables that do not appear in any property in a non-empty assume set are unconstrained but explicitly clocked. They may be updated with random values at every assume set clock event.
When an implementation is about to begin the Observed region, it shall solve for all the active free variables. When solving, non-active variables are either sampled or not as described in 17.3. Checker procedures and properties shall not use sampled values of active free checker variables; current values shall be read to ensure that up-to-date solved values are visible. Note that checker procedures and properties execute in the Reactive and Observed regions (see 17.6.3), and so have the new values available.

When a solution attempt is unsuccessful, any resulting assumption failure(s) do not occur until an unsatisfied property is clocked and checked in the Observed region.

17.6.3 Scheduling semantics

Statements and constructs within a checker that are sensitive to changes (e.g., clocking events) are scheduled in the Reactive region (similarly to programs, see 23.3.1). The nonblocking assignments of checker variables schedule their updates is the Re-NBA region. The Re-NBA region is processed after the Reactive and Re-Inactive regions have been emptied of events. See 4.2. These scheduling rules make possible assignment of sequence endpoint values to checker variables. For example,

checker my_check(…);

…

sequence s; …; endsequence

always @clk a <= s.triggered;

endchecker

For every transition of signal clk the simulator will update the variable a in the Re-NBA region with the value of s.triggered captured in the Reactive region. Had the checker captured the value of s.triggered in the Active region, a would always be assigned 1’b0, since s.triggered is evaluated in the Observed region, and the above code would be meaningless.
Concurrent assertions have invariant scheduling semantics – whether present in checker code or design code.
17.7 Functions in checkers

While procedural statements (if, case, ...) may not be placed directly in the initial and in the always procedures, they may be used in functions called from the right-hand side of a checker variable assignment. The formal arguments and internal variables of functions used in checkers shall not be declared as free variables. However, free variables are allowed to be passed in as actual arguments to a function.

Expressions at the right hand side of checker variable assignments are allowed to include function calls with the same restrictions that are imposed on function calls in concurrent assertions (see 16.6):
· Functions that appear in expressions shall not contain output or ref arguments (const ref is allowed).
· Functions shall be automatic (or preserve no state information) and have no side effects.

See an example of a function used in a checker in 17.8.

17.8 Complex checker example

The checker in the following example makes sure that the expression is true in a window delimited by start_event and end_event.

typedef enum { cover_none, cover_all } coverage_level;

checker assert_window (

logic test_expr, // Expression to be true in the window

sequence start_event, // Window opens at the completion of the start_event

sequence end_event, // Window closes at the completion of the end_event

 event clock = $inferred_clock,

 logic reset = $inferred_disable,

 string error_msg = "violation",

 coverage_level clevel = cover_all

);

default clocking @clock; endclocking

default disable iff reset;

bit window = 0;

let start_flag = start_event.triggered;

let end_flag = end_event.triggered;

 // Compute next value of window

function bit next_window (bit win);

if (reset || win && end_flag == 1'b1)

return 1'b0;

if (!win && start_flag == 1'b1)

return 1'b1;

return win;

endfunction

always @(clock)

window <= next_window(window);

property p_window;

start_flag && !window |=> test_expr[*1:$] ##0 end_flag;

endproperty

a_window: assert property (p_window) else $error(error_msg);

generate if (coverage_level != ovl_cover_none) begin : cover_b

cover_window_open: cover property (start_flag && !window)

$display("win_open_covered”);

cover_window:
cover property (

start_flag && !window

##1 (!end_flag && window) [*0:$]

##1 end_flag && window

) $display("window covered");

 end : cover_b

endgenerate

endchecker : assert_window

22.6 Hierarchical names
ADD as final sentence of 22.6:

Hierarchical references into checkers (see clause 17 editor correct reference) shall not be permitted.

F.3.3 Notations
REPLACE

Except where specified otherwise, the following notational conventions, including subscripted versions of the notations, will be used throughout the remainder of this annex: b and c denote boolean expressions; t denotes a type; v denotes a local variable name; e denotes an expression; uppercase R denotes an unclocked sequence; uppercase S denotes a clocked sequence; uppercase P denotes an unclocked property; uppercase Q denotes a clocked property; uppercase T denotes an unclocked top-level property; uppercase U denotes a clocked top-level property; lowercase r and s denote sequences, either clocked or unclocked; lowercase p and q denote properties, either clocked or unclocked and either top-level or not; uppercase A denotes an assertion; i, j, k, m, and n denote non-negative integer constants.

WITH

Except where specified otherwise, the following notational conventions, including subscripted versions of the notations, will be used throughout the remainder of this annex: b and c denote boolean expressions; t denotes a type; v denotes a local variable name; u denotes a free checker variable name; e denotes an expression; uppercase R denotes an unclocked sequence; uppercase S denotes a clocked sequence; uppercase P denotes an unclocked property; uppercase Q denotes a clocked property; uppercase T denotes an unclocked top-level property; uppercase U denotes a clocked top-level property; lowercase r and s denote sequences, either clocked or unclocked; lowercase p and q denote properties, either clocked or unclocked and either top-level or not; uppercase A denotes an assertion; i, j, k, m, and n denote non-negative integer constants.
ADD

Note to the Editor: Adjust the numeration.

F.3.4.8 Checker variable assignment
· rand t u = e (initial assume property (@1 u === e)

· always @c u <= e (always assume property (@1 $future_gclk(u) === c ? e : u)

PAGE
3

_1265049467.vsd
$global_clock

possible behavior

reset

flag

possible behavior

valid

