

Remove the following Note from the end of Section 9.6

Note: SystemVerilog 3.0 provided a process statement, which gave the same functionality as the fork...join_none
construct. SystemVerilog 3.1 deprecates the process statement, in favor of fork...join_none.

Add the following to the end of Section 9.6

Automatic variables declared in the scope of the fork…join block shall be initialized to the initialization value
whenever execution enters their scope, and before any processes are spawned. These variables are useful in
processes spawned by looping constructs to store unique, per-iteration data. For example:

initial
 for(int j = 1; j <= 3; ++j)
 fork
 automatic int k = j; // local copy, k, for each value of j
 #k $write("%0d", k);
 begin

automatic int m = j; // the value of m is undetermined
#m $write("%0d", m);

 end
 join_none

The example above generates the output 123.

Add the text in blue to Section 5.5

Verilog-2001 allows tasks and functions to be declared as automatic, making all storage within the task or
function automatic. SystemVerilog allows specific data within a static task or function to be explicitly declared
as automatic. Data declared as automatic has the lifetime of the call or block, and is initialized on each entry
to the call or block. The lifetime of a fork…join, fork…join_any, or fork…join_none block shall encompass
the execution of all processes spawned by the block. The lifetime of a scope enclosing any fork…join block
includes the lifetime of the fork…join block.

SystemVerilog also allows data to be explicitly declared as static. Data declared to be static in an auto-
matic task, function or in a process has a static lifetime and a scope local to the block. This is like C static data
declared within a function.

1

