Add the text in blue after the following sentence in section 3.14

Structures can be converted to bits preserving the bit pattern, which means they can be converted back to the
same value without any loss of information. When unpacked data is converted to the packed representation,
the order of the data in the packed representation is such that the first field in the structure occupies the most
significant bits. The effect is the same as a concatenation of the data items (struct fields or array elements) in
order. The type of the elements in an unpacked structure or array must be valid for a packed representation in
order to be cast to any other type, whether packed or unpacked.

An explicit cast between packed types is not required since they are treated as integral values, but a cast can be
used by tools to perform stronger type checking.

Add the text in blue to the last sentence in section 4.2

A packed array cannot be directly assigned to an unpacked array without an explicit cast.

Add as section 3.16 — Last section in “Data Types” after “Dynamic casting”

3.16 Bit-stream casting

Type casting may also be applied to unpacked arrays and structs. It is thus possible to convert freely between
bit-stream types using explicit casts. Types that may be packed into a stream of bits are called bit-stream
types. A bit-stream type is a type consisting of the following:

— Any integral, packed, or string type
— Unpacked arrays, structures, or classes of the above types
— Dynamically-sized arrays (dynamic, associative, or queues) of any of the above types

This definition is recursive, so that for example a structure containing a queue of int is a bit-stream type.

Assuming A is of bit-stream type source t and B is of bit-stream type dest ¢, it is legal to convert A into B by
an explicit cast:

B = dest t'(A);
The conversion from A of type source_t to B of type dest t proceeds in two steps:

1. Conversion from source_t to a generic packed value containing the same number of bits as source_t.
— Ifsource_t contains any 4-state data, the entire packed value is 4-state; otherwise, it is 2-state.

2. Conversion from the generic packed value to dest ¢.
— If the generic packed value is a 4-state type and parts of dest_t designate 2-state types then those
parts in dest t are assigned as if cast to a 2-state.

When a dynamic array, queue, or string is converted to the packed representation, the item at index 0 occupies
the most significant bits. When an associative array is converted to the packed representation, items are
packed in index-sorted order with the first indexed element occupying the most significant bits.

Both source t and dest t may include one or more dynamically sized data in any position (for example, a
structure containing a dynamic array followed by a queue of bytes). If the source type, source t, includes
dynamically-sized variables, they are all included in the bit-stream. If the destination type, dest ¢, includes
unbounded dynamically-sized types, the conversion process is greedy: the first dynamically-sized item is

resized to accept all the available data (excluding subsequent fixed-sized items) in the stream; any remaining
dynamically-sized items are left empty.

For the purposes of a bit-stream cast, a string is considered a dynamic array of bytes.

Regardless of whether the destination type contains only fixed-size items or dynamically-sized items, data is
extracted into the destination in left-to-right order. It is thus legal to fill a dynamically-sized item with data
extracted from the middle of the packed representation.

If both source_t and dest_t are fixed sized types (packed or unpacked) of different sizes then a cast generates a
compile-time error. If source t or dest t contain dynamically-sized types then a difference in their sizes will
generate an error either at compile time or run time, as soon as it is possible to determine the size mismatch.
For example:

// 1llegal conversion from 24-bit struct to int (32 bits) - compile time error

struct {bit[7:0] a; shortint b;} a;
int b = int' (a);

// Nllegal conversion from 20-bit struct to int (32 bits) - run time error
struct {bit a[$]; shortint b;} a = {{1,2,3,4}, 67};
int b = int' (a);

// Tllegal conversion from int (32 bits) to struct dest_t (25 or 33 bits) - compile time error
typedef struct {byte a[$]; bit b;} dest t;
int a;
dest t b = dest t'(a);

Bit-stream casting can be used to convert between different aggregate types, such as two structure types, or a
structure and an array or queue type. This conversion can be useful to model packet data transmission over
serial communication streams. For example, the code below uses bit-stream casting to model a control packet
transfer over a data stream:

typedef struct {
shortint address;
reg [3:0] code;
byte command [2];
} Control;

typedef bit Bits [36:1];

Control p;
Bits stream[$];

pP= ... // initialize control packet

stream = {stream, Bits’ (p)} // append packet to unpacked queue of bits
Control qg;

q = Control’ (stream[0]) ; // convert stream back to a Control packet
stream = stream[1:$5]; // remove packet from stream

The following example uses bit-stream casting to model a data packet transfer over a byte stream:

typedef struct {
byte length;
shortint address;
byte payloadl];
byte chksum;

} Packet;

The above type defines a generic data packet in which the size of the payload field is stored in the length field.
Below is a function that randomly initializes the packet and computes the checksum.

function Packet genPkt () {
Packet ©p;

void’ (randomize (p.address, p.length, p.payload)
with { p.length > 1 && p.payload.size == p.length });
p.chksum = p.payload.xor();
return p;
} Packet;

The byte stream is modeled using a queue, and a bit-stream cast is used to send the packet over the stream.

byte[$] channel;
channel = {channel, (byte[$])"' (genPkt())};

And the code to receive the packet:

Packet p;

int size;

size = channel[0] + 4;

p = Packet’ (channel[0 : size]); // convert stream to Packet
channel = channel[size + 1, $ 1; // remove packet data from stream

| Add as section 7.16 — Last section of “Operators and Expressions”

7.16 Streaming operators (pack / unpack)

The bit-stream casting described in Section 3.16 is most useful when the conversion operation can be easily
expressed using only a type cast, and the specific ordering of the bit-stream is not important. Sometimes, how-
ever, a stream that matches a particular machine organization is required. The streaming operators perform
packing of bit-stream types (see Section 3.16) into a sequence of bits in a user-specified order. When used in
the left-hand-side, the streaming operators perform the reverse operation, unpack a stream of bits into one or
more variables. If the data being packed contains any 4-state types, the result of a pack operation is a 4-state
stream; otherwise, the result of a pack is a 2-state stream. Unpacking a 4-state stream into a 2-state type is
done by a cast to a 2-state variable, and vice-versa.

The syntax of the bit-stream concatenation is:

stream_concatenation ::= { stream_operator [slice size] stream_concatenation } From Annex A.8.1
stream_operator ;1= >> | <<

slice _size ::= type_identifier | constant_expression

stream_concatenation ::= { stream_expression { , stream_expression } }

stream_expression ::=
expression
| array identifier [with [array range expression |]

array range expression :i=
expression
| expression : expression
| expression +: expression
| expression -: expression

The stream-operator determines the order in which data is streamed: >> causes data to be streamed in left-to-
right order, while << causes data to be streamed in right-to-left order. If a slice-size is specified then the data
to be streamed is first broken up into slices with the specified number of bits, and then the slices are streamed
in the specified order. If a slice-size is not specified, the default is 1 (or bit). If the data is smaller than the
slice-size, the data is not sliced (no padding is used).

For example:

intj — { \\AII, \\B//, \\cll, wp” },.

>> {31} // generates stream “A” “B” “C” “D”
<< byte {j}} // generates stream “D” “C” “B” “A” (little endian)
<< 16 {j}} // generates stream “C” “D” “A” “B”

<< { 8’b0011 0101
<< 4 { 6’'bll 0101
>> 4 { 6’bll 0101
<< 2 {<<{ 4'pbl101

// generates stream ‘b1010 1100 (bit reverse)
// generates stream ‘b0101 11
// generates stream ‘bl101 01 (same)

} // generates stream ‘b1110

e T T e e
—— e o

The streaming operators operate directly on integral types and streams. When applied to unpacked aggregate
types, such as unpacked arrays, unpacked struct’s, or classes, they recursively traverse the data until reaching
an integral type. A multi-dimensional packed array is thus treated as a single integral type, whereas an un-
packed array of packed items causes each packed item to be streamed individually. The streaming operators
can only process bit-stream types; any other types shall generate an error.

The result of the pack operator can be assigned directly to any bit-stream type variable. If the left-hand side
represents a fixed-size variable and the stream is larger than the variable, an error will be generated. If the
variable is larger than the stream, the stream is left-justified and zero-filled on the right. If the left-hand side
represents a dynamic-size variable, such as a queue or dynamic array, the variable is resized to accommodate
the entire stream. If after resizing, the variable is larger than the stream, the stream is left-justified and zero-
filled on the right. The stream is not an integral value; to participate in an expression, a cast is required.

The unpack operator accepts any bit-stream type on the right-hand side, including a stream. The right-hand
side data being unpacked is allowed to have more bits than are consumed by the unpack operator. However, if

more bits are needed than are provided by the right-hand side expression, an error is generated.

For example:

int a, b, c;

bit [96:1] v = {>>{ a, b, c }}; // OK: pack a, b, c

int j = {>>{ a, b, c }}; // error: j is 32 bits < 96 bits

bit [99:0] b = {>>{ a, b, c }}; // OK: b is padded with 4 bits

{>>{ a, b, ¢ }} = 23'bl; // error: too few bits in stream

{>>{ a, b, ¢ }} = 96"'bl; // OK: unpack a = 0, b =0, c =1

{>{ a, b, ¢ }} = 100'bl; // OK: unpack as above (4 bits unread)

7.16.1 Unpacking dynamically-sized data

If the unpack operator includes unbounded dynamically-sized types, the process is greedy (as in a cast): the
first dynamically-sized item is resized to accept all the available data (excluding subsequent fixed-sized items)
in the stream; any remaining dynamically-sized items are left empty. This mechanism is sufficient to unpack a
packet-sized stream that contains only one dynamically-sized data item. However, when the stream contains
multiple variable-sized data packets, or each data packet contains more than one variable-sized data item, or
the size of the data to be unpacked is stored in the middle of the stream, this mechanism can become cumber-
some and error-prone. To overcome these problems, the unpack operator allows a with expression to explic-
itly specify the extent of a variable-sized field within the unpack operator.

The syntax of the with expression is:

stream_expression ::=
expression
| array_identifier [with [array range expression]]

array _range expression ::=
expression
| expression : expression
| expression +: expression
| expression -: expression

The array range expression within the with construct must be of integral type and evaluate to values that lie
within the bounds of a fixed-size array, or to positive values for dynamic arrays or queues. The array identifier
may be any one-dimensional unpacked array (including a queue). The expression within the with is evaluated
immediately before its corresponding array is streamed (i.e., packed or unpacked). Thus, the expression may
refer to data that is unpacked by the same operator but before the array. If the expression refers to variables
that are unpacked after the corresponding array (to the right of the array) then the expression is evaluated us-
ing the previous values of the variables.

When used within the context of an unpack operation and the array-identifier designates a variable-sized array,
the array shall be resized to accommodate the range expression. If the array-identifier designates a fixed-sized
array and the range expression evaluates to a range outside the extent of the array, only the range that lies
within the array is unpacked and an error is generated. If the range expression evaluates to a range smaller
than the extent of the array (fixed or variable sized), only the specified items are unpacked into the designated
array locations; the remainder of the array is unmodified.

When used within the context of a pack (on the right-hand side), it behaves the same as an array slice: The
specified number of array items are packed into the stream. If the range expression evaluates to a range
smaller than the extent of the array, only the specified array items are streamed. If the range expression evalu-
ates to a range greater than the extent of the array size, the entire array is streamed and the remaining items are
generated using the default value (as described in Table 5-1) for the given array.

For example, the code below uses streaming operators to model a packet transfer over a byte stream that uses
little-endian encoding:

byte stream[$]; // byte stream

class Packet
rand int header;
rand int len;
rand byte payloadl[];
int crc;

constraint G { len > 1; payload.size == len ; }

function void post randomize; crc = payload.sum; endfunction
endclass

send: begin // Create random packer and transmit
byte q[$];
Packet p = new;
void’ (p.randomize());
g = {<< byte{p.header, p.len, p.payload, p.crc}}; // pack
stream = {stream, q}; // append to stream
end

receive: begin // Receive packet, unpcak, and remove
byte q[$];

Packet p = new;
{<< byte{ p.header, p.len, p.payload with [0 +: p.len], p.crc }} = stream;
stream = stream[Sbits(p) / 8 : $ 1; // remove packet

end

In the example above, the pack operation could have been written as either:

q {<<byte{p.header, p.len, p.payload with [0 +: p.len], p.crc}};
or

g = {<<byte{p.header, p.len, p.payload with [0 : p.len-1], p.crc}};
or

q = {<<byte{p}};

The result in this case would be the same since p. 1en is the size of p.payload as specified by the constraint.

