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Correction: Remove the last limitation of Section 12.4.4 (Distribution)
(The correct limitation is listed at the end of  Section 12.4 ) – BNF is also modified

Limitations:

� A dist operation shall not be applied to randc variables.

� A dist expression requires that expression contain at least one rand variable.

� A dist expression can only be a top-level constraint (not a predicated constraint).
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Updated Constraints BNF – Replace in section 12.4 and Annex A.1.9

constraint_declaration ::=       // from Annex A.1.9
[ static ] constraint constraint_identifier { { constraint_block } }

constraint_block ::= 
  solve [ priority ] identifier_list before identifier_list ; 
| constraint_expression 

constraint_expression ::= 
  expression ; 
| expression => constraint_set 
| if ( expression ) constraint_set [ else constraint_set ] 
| expression dist { dist_list } ; 
| foreach ( array_identifier [ loop_variables ] ) constraint_set 

constraint_set ::= 
  constraint_expression 
| { { constraint_expression } } 

dist_list ::= dist_item { , dist_item } 

dist_item ::= 
  value_range := expression 
| value_range :/ expression 

constraint_prototype ::= [ static ] constraint constraint_identifier 

extern_constraint_declaration ::= 
[ static ] constraint class_identifier :: constraint_identifier { { constraint_block } } 

identifier_list ::= identifier { , identifier }

loop_variables ::= [ index_indentifier ] { ,  [ index_indentifier ] }
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Insert as new 12.10.4 sub-section -- After $srandom()

12.10.4 $get_randstate()

The system function $get_randstate() retrieves the current state of the Random Number Generator (RNG)
of an object or process.

The prototype for the $get_randstate() function is:

function string $get_randstate( [class_identifier obj] );

The  $get_randstate() system function returns a copy of the internal state of a RNG. With no arguments, this
function returns the state of the RNG associated with the calling process. If the optional object argument is
specified, the function returns the state of the RNG associated with the given object.

The RNG state is a string of unspecified length and format.

12.10.5 $set_randstate()

The system function $set_randstate() allows setting the current state to of the Random Number Genera-
tor (RNG) of an objects or process.

The prototype for the $set_randstate() function is:

function void $set_randstate( string state [, class_identifier obj] );

The  $set_randstate() system function copies the given state into the internal state of a RNG. With one argu-
ment, this function sets the state of the RNG associated with the calling process. If the optional object argu-
ment is specified, the function sets the state of the RNG associated with the given object.

The RNG state is a string of unspecified length and format.

Calling $set_randstate() with a string value that was not obtained from $get_randstate() is undefined.
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Insert as Section 12.4.10

12.4.10 Functions in Constraints

Some properties are unwieldy or impossible to express in a single expression. For example, the natural way to
compute the number of 1’s in a packed array uses a loop:

function int count_ones ( bit [9:0] w );
for( count_ones = 0; w != 0; w = w >> 1 )

count_ones += w & 1’b1;
 endfunction

Such a function could be used to constrain other random variables to the number of 1 bits:

constraint C1  {  length == count_ones( v ) };

Without the ability to call a function, this constraint requires the loop to be unrolled and expressed as a sum of
the individual bits:

constraint C2 
{ 
    length == ((w>>9)&1) + ((w>>8)&1) + ((w>>7)&1) + ((w>>6)&1) + ((w>>5)&1) +

  ((w>>4)&1) + ((w>>3)&1) + ((w>>2)&1) + ((w>>1)&1) + ((w>>0)&1); 
}

 
Unlike the count_ones function, more complex properties, which require temporary state or unbounded loops,
may be impossible to convert into a single expression. The ability to call functions, thus, enhances the expres-
sive power of the constraint language and reduces the likelihood of errors.

To handle these common cases, SystemVerilog allows constraint expressions to include function calls, but it
imposes certain semantic restrictions.

� Functions that appear in constraint expressions may not contain output or ref arguments (const ref are
allowed). They should be automatic (or preserve no state information) and have no side effects.

� Function that appear in constraints may not modify the constraints, for example, calling rand_mode or
constraint_mode methods.

� Functions shall be called before constraints are solved, and their return values shall be treated as state
variables.

� Random variables used as function arguments shall establish an implicit variable ordering or priority.
Constraints that include only variables with higher priority are solved before other, lower priority, con-
straints. Random variables solved as part of a higher priority set of constraints become state variables to
the remaining set of constraints. For example:

class B;
rand int x, y;
constraint C { x <= F(y); };
constraint D { y inside { 2, 4, 8 } };

endclass

Forces y to be solved before x. Thus, constraint D is solved separately before constraint C, which uses the
values of y and F(y) as a state variables.

� Circular dependencies created by the implicit variable ordering shall result in an error.



5

� Function calls in active constraints are executed an unspecified number of times (at least once), in an un-
specified order. 

And change Section 12.4 to:

The declarative nature of constraints imposes the following restrictions on constraint expressions:

— Functions are allowed with certain limitations (see Section 12.4.10).

— Operators with side effects, such as ++ and -- are not allowed.

— randc variables cannot be specified in ordering constraints (see solve...before in Section 12.4.8).

— dist expressions cannot appear in other expressions (unlike inside); they can only be top-level expres-
sions.
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Insert as Section 12.4.11 

12.4.11 Object handle guards

Constraint expressions may involve multiple objects. Typically, inter-object constraints are written under the
assumption that all constrained objects already exist. If, however, some of the objects do not exist, the con-
straint will fail. Predicate expressions involving object handles can be useful to guard against expressions that
should not be evaluated. For example:

class SList;
rand int n;
rand Slist next;

constraint sort  {  n < next.n; }
endclass

The sort constraint of the singly-linked list, SList, is intended to assign a random sequence of numbers that is
sorted in ascending order. However, the constraint expression will fail on the last element. That condition can
be avoided by writing a handle guard using a predicate expression:

constraint sort  { if( next != null ) n < next.n; }

Predicate expressions involving object handle comparisons prevent the creation of constraints and do not be-
have as logical relations. Thus, in the sort constraint above, the if prevents the creation of a constraint when
next == null, which in this case prevents accessing a non-existent object.

Predicate expressions (implication and if…else) involving comparisons between two object handles or an ob-
ject handle and the constant null shall behave as a guard, that is, if the condition expression is false then that
constraint expression is disregarded.
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Insert as new 12.4.7 section (After if..else constraints)

12.4.7 Iterative Constraints

Iterative constraints allow arrayed variables to be constrained in a parameterized manner using loop variables
and indexing expressions.

The syntax to define an iterative constraint is:

constraint_expression ::=   // from Annex A.1.9
…
|  foreach (array_identifier [ loop_variables ] )  constraint_set 

loop_variables ::= [ index_indentifier ]{ ,  [ index_indentifier ] }

The foreach construct specifies iteration over the elements of an array. Its argument is an identifier that desig-
nates any type of array (fixed-size, dynamic, or associative) followed by a list of loop variables enclosed in
square brackets. Each loop variable corresponds to one of the dimensions of the array.
 
For example:

class C;
rand byte A[] ;

constraint C1 { foreach ( A [ i ] ) A[i] inside {2,4,8,16}; }
constraint C2 { foreach ( A [ j ] ) A[j] > 2 * j; }

 endclass

C1 constrains each element of the array A to be in the set [2,4,8,16]. C2 constrains each element of the
array A to be greater than twice its index.

The number of loop variables must not exceed the number of dimensions of the array variable. The scope of
each loop variable is the foreach constraint construct, including its constraint_set. The type of each loop vari-
able is implicitly declared to be consistent with the type of array index. An empty loop variable indicates no
iteration over that dimension of the array. As with default arguments, a list of commas at the end may be
omitted, thus, foreach( arr [ j ] ) is a shorthand for foreach( arr [ j, , , , ] ). It shall be an error for any loop
variable to have the same identifier as the array.

The mapping of loop variables to array indexes is determined by the dimension cardinality, as described in
Section 22.4.

//     1  2  3            3    4       1   2    -> Dimension numbers
int A [2][3][4];    bit [3:0][2:1] B [5:1][4];

foreach( A [ i, j, k ] ) …
foreach( B [ q, r, , s ] ) …

The first foreach causes i to iterate from 0 to 1, j from 0 to 2, and k from 0 to 3. The second foreach causes
q to iterate from 5 to 1, r from 0 to 3, and s from 2 to 1.

Iterative constraints may include predicates. For example:

class C;
rand int A[] ;

constraint c1 { arr.size inside {1:10}; }
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constraint c2 { foreach ( A[ k ] ) (k < A.size – 1) =>  A[k + 1] > A[k]; }
 endclass

The first constraint, c1, constrains the size of the array A to be between 1 and 10. The second constraint, c2,
constrains each array value to be greater than the preceding one, i.e., an array sorted in ascending order.

Predicate expressions within a foreach behave as guards against the creation of constraints, and not as logical
relations. For example, the implication in constraint c2 above prevents the creation of a constraint when k <
A.size() – 1, which in this case prevents an out of bounds access in the constraint.

Index expressions may include loop variables, constants, and state variables. Invalid or out or bound array
indexes are not automatically eliminated; users must explicitly exclude these indexes using predicates.

The size method of a dynamic or associative array can be used to constrain the size of the array (see constraint
c1 above). If an array is constrained by both size constraints and iterative constraints, the size constraints are
solved first, and the iterative constraints next. As a result of this implicit ordering between size constraints and
iterative constraints, the size method shall be treated as a state variable within the foreach block of the corre-
sponding array. For example, the expression A.size is treated as a random variable in constraint c1, and as a
state variable in constraint c2. This implicit ordering can cause the solver to fail in some situations.
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Insert as new 12.10 section – Before Section “Random number system functions”

12.10 In-line random variable control

The randomize() method can be used to temporarily control the set of random and state variables within a
class instance or object. When the randomize method is called with no arguments, it behaves as described in
the previous sections, that is, it assigns new values to all random variables in an object --- those declared as
rand or randc --- such that all of the constraints are satisfied. When randomize is called with arguments, those
arguments designate the complete set of random variables within that object; all other variables in the object
are considered state variables. For example, consider the following class and calls to randomize:

class CA;
rand byte x, y;
byte v, w;

constraint c1 { x < v && y > w );
endclass

CA a = new;

a.randomize(); // random variables: x, y state variables: v, w
a.randomize( x ); // random variables: x state variables: y, v, w
a.randomize( v, w ); // random variables: v, w state variables: x, y
a.randomize( w, x ); // random variables: w, x state variables: y, v

This mechanism controls the set of active random variables for the duration of the call to randomize, which is
conceptually equivalent to making a set of calls to the rand_mode() method to disable or enable the corre-
sponding random variables. Calling randomize() with arguments allows changing the random mode of any
class property, even those not declared as rand or randc. This mechanism, however, does not affect the cycli-
cal random mode: it cannot change a non-random variable into a cyclical random variable (randc), and cannot
change a cyclical random variable into a non-cyclical random variables (change from randc to rand).

The scope of the arguments to the randomize method is the object class. Arguments are limited to the names
of properties of the calling object; expressions are not allowed. The random mode of local class members can
only be changed when the call to randomize has access to those properties, that is, within the scope of the class
in which the local members are declared.

12.10.1 In-line constraint checker

Normally, calling the randomize method of a class that has no random variables causes the method to behave
as a checker, that is, it assigns no random values, and only returns a status: one if all constraints are satisfied
and zero otherwise. The in-line random variable control mechanism can also be used to force the randomize()
method to behave as a  checker. 

The randomize method accepts the special argument null to indicate no random variables for the duration of
the call, that is, all class members behave as state variables. This causes the randomize method to behave as a
checker instead of a generator. A checker evaluates all constraints and simply returns one if all constraints are
satisfied, and zero otherwise. For example, if class CA defined above executes the following call:

success = a.randomize( null ); // no random variables

Then the solver considers all variables as state variables and only checks whether the constraint is satisfied,
namely, that the relation  (x < v && y > w) is true using the current values of  x, y, v, and w.

12.11 Randomization of scope variables - ::randomize()
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The built-in class randomize method operates exclusively on class member variables. Using classes to model
the data to be randomized is a powerful mechanism that enables the creation of generic, reusable objects con-
taining random variables and constraints that can be later extended, inherited, constrained, overridden, en-
abled, disabled, merged with or separated from other objects. The ease with which classes and their associated
random variables and constraints can be manipulated make classes an ideal vehicle for describing and ma-
nipulating random data and constraints. However, some less-demanding problems that do not require the full
flexibility of classes, can use a simpler mechanism to randomize data that does not belong to a class. The
scope randomize method, ::randomize(), enables users to randomize data in the current scope, without the
need to define a class or instantiate a class object.

The syntax of the scope randomize method is:

scope_randomize ::=     // from Annex A.?
[::] randomize ( [ variable_identifier_list ] ) [ with {  constraint_block  } ]

variable_identifier_list ::= variable_identifier {, variable_identifier }

The scope randomize method behaves exactly the same as a class randomize method, except that it operates on
the variables of the current scope instead of class member variables. Arguments to this method specify the
variables that are to be assigned random values. i.e., the random variables.

For example:

module stim;
bit[15:0] addr;
bit[31:0] data;

function bit gen_stim();
bit success, rd_wr;

success = ::randomize( addr, data, rd_wr );
return rd_wr ;

endfunction

...
endmodule

The function gen_stim calls ::randomize() with three variables as arguments: addr, data, and rd_wr. Thus,
::randomize() assigns new random variables to those variables that are visible in the scope of the gen_stim
function. Note that addr and data have module scope, whereas rd_wr has scope local to the function. The
above example can also be written using a class:

class stimc;
rand bit[15:0] addr;
rand bit[31:0] data;
rand bit rd_wr;

endclass

function bit gen_stim( stimc p );
bit success;
success = p.randomize();
addr = p.addr;
data = p.data;
return p.rd_wr;

endfunction

However, for this simple application, the scope randomize method leads to a straightforward implementation.
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The scope randomize method returns 1 if it successfully sets all the random variables to valid values, other-
wise it returns 0. If the scope randomize method is called with no arguments then it behaves as a checker, and
simply returns status.

12.11.1 Adding constraints to scope variables - ::randomize() with

The ::randomize() with form of the scope randomize method allows users to specify random constraints
to be applied to the local scope variables. When specifying constraints, the arguments to the scope randomize
method become random variables, all other variables are considered state variables.

task stimulus( int length );
    int a, b, c, success;

success = ::randomize( a, b, c ) with { a < b ; a + b < length };
...
success = ::randomize( a, b ) with { b – a > length };
...

endfunction

The task stimulus above calls ::randomize twice resulting in two sets of random values for its local variables a,
b, and c. In the first call variables a and b are constrained such that variable a is less than b, and their sum is
less that the task argument length, which is designated as a state variable. In the second call, variables a and b
are constrained such that their difference is greater than state variable length.


