
1

Insert as Section 8.5.3

8.5.3 The foreach loop

The foreach construct specifies iteration over the elements of an array. Its argument is an identifier that desig-
nates any type of array (fixed-size, dynamic, or associative) followed by a list of loop variables enclosed in
square brackets. Each loop variable corresponds to one of the dimensions of the array. The foreach construct
is similar to a repeat loop that uses the array bounds to specify the repeat count instead of an expression.

loop_statement ::= // from Annex A.6.8
…
| foreach (array_identifier [loop_variables]) statement

loop_variables ::= [index_indentifier]{ , [index_indentifier] }

Examples:

string words [2] = { “hello”, “world” };
int prod [1:8] [1:3];

foreach(words [j])
$display(j , arr[j]); // print each index and value

foreach(prod[k, m])
prod[k][m] = k * m; // initialize

The number of loop variables must match the number of dimensions of the array variable. Empty loop variable
may be used to indicate no iteration over that dimension of the array, and contiguous empty loop variables
towards the end may be omitted. Loop variables are automatic, read-only, and their scope is local to the loop.
The type of each loop variable is implicitly declared to be consistent with the type of array index. It shall be an
error for any loop variable to have the same identifier as the array.

The mapping of loop variables to array indexes is determined by the dimension cardinality, as described in
Section 22.4. The foreach arranges for higher cardinality indexes to change more rapidly.

// 1 2 3 3 4 1 2 -> Dimension numbers
int A [2][3][4]; bit [3:0][2:1] B [5:1][4];

foreach(A [i, j, k]) …
foreach(B [q, r, , s]) …

The first foreach causes i to iterate from 0 to 1, j from 0 to 2, and k from 0 to 3. The second foreach causes
q to iterate from 5 to 1, r from 0 to 3, and s from 2 to 1 (iteration over the 3rd index is skipped).

When loop variables are used in expressions other than as indexes to the designated array, they are auto-cast
into a type consistent with the type of index. For fixed-size and dynamic arrays the auto-cast type is int. For
associative arrays indexed by a specific index type the auto-cast type is the same as the index type. For asso-
ciative arrays indexed by a wildcard index (*) the auto-cast type is unsigned longint. To use different types,
an explicit cast may be used.

