
1

Insert as Section 9.9 {version:2}

9.9 Fine-grain process control

A process is a built-in class that allows one process to access and control another process once it has started.
Users can declare variables of type process and safely pass them through tasks or incorporate them into other
objects. The prototype for the process class is:

class process;
enum state { FINISHED, RUNNING, WAITING, SUSPENDED, KILLED };

static function process self();
function state status();
task kill();
task await();
task suspend();
task resume();

endclass

Objects of type process are created internally when processes are spawned. Users may not create objects of
type process; attempts to call new shall not create a new process, and instead result in an error. The process
class cannot be extended. Attempts to extend it shall result in a compilation error. Objects of type process are
unique; they become available for reuse once the underlying process terminates and all references to the object
are discarded.

The self()function returns a handle to the current process, that is, a handle to the process making the call.

The status() function returns the process status, as defined by the state enumeration:
� FINISHED Process terminated normally.
� RUNNING Process is currently running (not in a blocking statement).
� WAITING Process is waiting in a blocking statement.
� SUSPENDED Process is stopped awaiting a resume.
� KILLED Process was forcibly killed (via kill or disable).

The kill() task terminates the given process and all its sub-processes, that is, processes spawned using fork
statements by the process being killed. If the process to be terminated is not blocked waiting some other con-
dition, such as an event, wait expression, or a delay then the process shall be terminated at some unspecified
time in the current time step.

The await() task allows one process to wait for the completion of another process. It shall be an error to call
this task on the current process, i.e., a process may not wait for its own completion.

The suspend() task allows a process to suspend either its own execution or that of another process. If the
process to be suspended is not blocked waiting some other condition, such as an event, wait expression, or a
delay then the process shall be suspended at some unspecified time in the current time step. Calling this
method more than once on the same (suspended) process has no effect.

The resume() task restarts a previously suspended process. Calling resume on a process that was suspended
while blocked on another condition shall re-sensitize the process to the event expression, or wait for the wait
condition to become true, or for the delay to expire. If the wait condition is now true or the original delay has
transpired, the process is scheduled onto the Active or Reactive region, so as to continue its execution in the
current time step. Calling resume on a process that suspends itself causes the process to continue to execute at
the statement following the call to suspend.

The example below starts an arbitrary number of processes, as specified by the task argument N. Next, the
task waits for the last process to start executing, and then waits for the first process to terminate. At that point
the parent process forcibly terminates all forked processes that have not completed yet .

2

task do_n_way(int N);
process job[1:N];

for(int j = 1; j <= N; j++)
fork

begin job[j] = process::self(); ... ; end
join_none

wait(job[N] != null); // wait for last process to start

job[1].await(); // wait for first process to finish

for(int k = 1; k <= N; k++) begin
if(job[k].status != process::FINISHED)

job[k].kill();
end

endtask

