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Insert as Section 19.8 – At the end of interfaces

19.8 Virtual interfaces

Virtual interfaces provide a mechanism for separating abstract models and test programs from the actual sig-
nals that make up the design. A virtual interface allows the same subprogram to operate on different portions
of a design, and to dynamically control the set of signals associated with the subprogram. Instead of referring
to the actual set of signals directly, users are able to manipulate a set of virtual signals. Changes to the under-
lying design do not require the code using virtual interfaces to be re-written. By abstracting the connectivity
and functionality of a set of blocks, virtual interfaces promote code-reuse.

A virtual interface is a variable that represents an interface instance. The syntax to declare a virtual interface
variable is given below.

virtual_interface_declaration ::=       // from Annex A.2.9
 virtual  interface_identifier  list_of_virtual_interface_decl ;

list_of_virtual_interface_decl ::=       // from Annex A.2.3
  variable_identifier [ = interface_instance_identifier ]

{ , variable_identifier [ = interface_instance_identifier ] }

data_type ::=     // from Annex A.2.2.1
 …
| virtual interface_identifier

Syntax 19-2—Virtual interface declaration.

Virtual interface variables may be passed as arguments to tasks, functions, or methods. A single virtual inter-
face variable may thus represent different interface instances at different times throughout the simulation. A
virtual interface must be initialized before it can be used; it has the value null value before it is initialized.
Attempting to use an uninitialized virtual interface shall result in a fatal run-time error.

Only the following operations are directly allowed on virtual interface variables:
� Assignment (=) to:

� another virtual interface of the same type
� an interface instance of the same type
� the special constant null

� Equality (==) and inequality (!=) with:
� another virtual interface of the same type
� an interface instance of the same type
� the special constant null

Virtual interfaces shall  not be used as ports, interface items, or as members of unions.

Once a virtual interface has been initialized, all the components of the underlying interface instance are di-
rectly available to the virtual interface via the dot notation. These components may only be used in procedural
statements; they may not be used in continuous assignments or sensitivity lists. In order for a wire to be driven
via a virtual interface, the interface itself must provide a procedural means to do so. This can be accomplished
either via a clocking domain or by including a driver that is updated by a continuous assignment from a regis-
ter within the interface.

Virtual interfaces can be declared as class properties, which may be initialized procedurally or by an argument
to new(). This allows the same virtual interface to be used in different classes. The following example shows
how the same transactor class can be used to interact with various different devices.
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interface SBus; // A Simple bus interface
logic req, grant;
logic [7:0] addr, data;

endinterface

class SBusTransctor; // SBus transactor class
virtual SBus bus; // virtual interface of type Sbus

function new( virtual SBus s );
bus = s; // initialize the virtual interface

endfunction

task request(); // request the bus
bus.req <= 1’b1;

endtask

task wait_for_bus(); // wait for the bus to be granted
@(posedge bus.grant);

endtask
endclass

module devA( Sbus s ) ...  endmodule  // devices that use SBus
module devB( Sbus s ) ...  endmodule 

mnodule top;

interface SBus s[1:4] (); // instantiate 4 interfaces

devA a1( s[1] ); // instantiate 4 devices
devB b1( s[2] );
devA a2( s[3] );
devB b2( s[4] );

initial begin
SbusTransactor t[1:4]; // create 4 bus-transactors and bind

t[1] = new( s[1] );
t[2] = new( s[2] );
t[3] = new( s[3] );
t[4] = new( s[4] );
// test t[1:4]

end
endmodule

In the preceding example, the transaction class SbusTransctor is a simple reusable component. It is written
without any global or hierarchical references, and is unaware of the particular device with which it will inter-
act. Nevertheless, the class can interact with any number of devices (4 in the example) that adhere to the inter-
face’s protocol.
 
19.8.1 Virtual interfaces and clocking domains

Clocking domains and interfaces can be combined to represent the interconnect between synchronous blocks.
Moreover, because clocking domains provide a procedural mechanism to assign values to both wires and reg-
isters, they are ideally suited to be used by virtual interfaces. For example:

interface SyncBus( input bit clk );
wire a, b, c;

clocking sb @(posedge clk); 
input a;



3

output b;
inout c;

endclocking

endinterface

typedef virtual SyncBus VI; // A virtual interface type

task do_it( VI v ); // handles any SyncBus via clocking sb
if( v.sb.a == 1 )

v.sb.b <= 0;
else

v.sb.c <= ##1 1;
endtask

In the preceding example, interface SyncBus includes a clocking domain, which is used by task do_it to en-
sure synchronous access to the interface’s signals: a, b, and c. Note that changes to the storage type of the in-
terface signals (from wire to register and vice-versa) requires no changes to the task. The interfaces can be
instantiated as shown below.

module top;
bit clk;

SyncBus b1( clk );
SyncBus b2( clk );

initial begin
VI v[2] = { b1, b2 };

repeat( 20 )
do_it( v[ $urandom_range( 0, 1 ) ] );

end
endmodule

The top module above shows how a virtual interface can be used to randomly select among a set of interfaces
to be manipulated, in this case by the do_it task.

19.8.2 Virtual interfaces modports and clocking domains

The modport construct provides direction information for module ports as well as control the use of tasks and
functions within particular modules. When using a modport, the directions are those seen from the module in
which the interface becomes a port.

As shown in the example above, once a virtual interface is declared, its clocking-domain can be referenced
using dot-notation. However, this only works for interfaces with no modports. Typically, a device under test
and its testbench exhibit modport direction. This common case can be handled by including the clocking in
the corresponding modport. The syntax for this is shown below.

modport_declaration ::= modport modport_item { , modport_item } ;      // from Annex A.2.9

modport_item ::= modport_identifier ( modport_ports_declaration { , modport_ports_declaration } )

modport_ports_declaration ::=
  modport_simple_ports_declaration
| modport_hierarchical_ports_declaration
| modport_tf_ports_declaration
| modport_clocking_declaration Note: this is new

modport_clocking_declaration ::= clocking clocking_identifier Note: this is new
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Syntax 19-3—Interface modport declaration.

All of the clocking constructs used in a modport declaration shall be declared by the same interface as is the
modport itself. Like all modport declarations, the direction of the clocking signals are those seen from the
module in which the interface becomes a port. The example below shows how modports can be used to create
both synchronous as well as asynchronous ports.  When used in conjunction with virtual interfaces, these con-
structs facilitate the creation of abstract synchronous models.

interface A_Bus( input bit clk );
wire req, gnt;
wire [7:0] addr, data;

clocking sb @(posedge clk); 
input gnt;
output req, addr;
inout data;

property p1; req ##[1:3] gnt; endproperty
endclocking

modport DUT ( input clk, req, addr, // Device under test modport
  output gnt,
  inout data );

modport STB ( clocking sb ); // synchronous testbench modport

modport TB ( input gnt, // asynchronous testbench modport
 output req, addr, 
 inout data );

endinterface

The above interface A_Bus can then be instantiated as shown below:

module dev1(A_Bus.DUT b); // Some device: Part of the design
...

endmodule

module dev2(A_Bus.DUT b); // Some device: Part of the design
...

endmodule

program T (A_Bus.STB b1, A_Bus.STB b2 ); // Testbench: 2 synchronous ports
...

endprogram

module top;
bit clk;

A_Bus b1( clk );
A_Bus b2( clk );

dev1 d1( b1 );
dev2 d2( b2 );

T tb( b1, b2 );
endmodule

And, within the testbench program, the virtual interface can refer directly to the clocking domain.
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program T (A_Bus.STB b1, A_Bus.STB b2 ); // Testbench: 2 synchronous ports

typedef virtual A_Bus.STB SYNCTB;

task request( SYNCTB s );
s.sb.req <= 1;

endtask

task wait_grant( SYNCTB s );
wait( s.sb.gnt == 1 );

endtask

task drive(SYNCTB s, logic [7:0] adr, data );
if( s.sb.gnt == 0 ) begin

request(s); // acquire bus if needed
wait_grant(s);

end
s.sb.addr = adr;
s.sb.data = data;
repeat(2) @s.sb;
s.sb.req = 0; //release bus

endtask

assert property (b1.p1); // assert property from within program

initial begin
drive( b1, $random, $random );
drive( b2, $random, $random );

end
endprogram

The example above shows how the clocking-domain is referenced via the virtual interface by the tasks within
the program block.


