

12.14 Random sequence generation - randsequence

Parser generators, such as yacc, use a Backus-Naur Form (BNF) or similar notation to describe the grammar
of the language to be parsed. The grammar is thus used to generate a program that is able to check if a stream
of tokens represents a syntactically correct utterance in that language. SystemVerilog’s sequence generator
reverses this process: it uses the grammar to randomly create a correct utterance (i.e., a stream of tokens) of
the language described by the grammar. The random sequence generator is useful for randomly generating
structured sequences of stimulus such as instructions or network traffic patterns.

The sequence generator uses a set of rules and productions within a randsequence block. The syntax of the
randsequence block is:

statement ::= [block_identifier :] statement_item // from Annex A.6.4

statement_item ::=

 ...
| { attribute_instance } randsequence

randsequence ::= randsequence ([production_ identifier]) // from Annex A.6.12
 production { production }
 endsequence

production ::= [function_data_type] production_name [(tf_port_list)] : rs_rule { | rs_rule } ;

rs_rule ::= rs_production_list [:= expression [rs_code_block]]

rs_production_list ::=

 rs_prod { rs_prod }
| rand join [(expression)] production_item production_item { production_item }

rs_ code_block ::= { { block_data_declaration } { statement_or_null } }

rs_prod ::=

 production_item
| rs_code_block
| rs_if_else
| rs_repeat
| rs_case

production_item ::= production_identifier [(list_of_arguments)]

rs_if_else ::= if (expression) production_item [else production_item]

rs_repeat ::= repeat (expression) production_item

rs_case ::= case (expression) rs_case_item { rs_case_item } endcase

rs_case_item ::=

 expression { , expression } : production_item
| default [:] production_item

Syntax 12-9 —Randsequence syntax (excerpt from Annex A)

A randsequence grammar is composed of one or more productions. Each production contains a name and a
list of production items. Production items are further classified into terminals and non-terminals. Non-

1

terminals are defined in terms of terminals and other non-terminals. A terminal is an indivisible item that
needs no further definition than its associated code block. Ultimately, every non-terminal is decomposed into
its terminals. A production list contains a succession of production items, indicating that the items must be
streamed in sequence. A single production may contain multiple production lists separated by the | symbol.
Production lists separated by a | imply a set of choices, which the generator will make at random.

A simple example illustrates the basic concepts:

 randsequence(main)

main : first second done ;
first : add | dec ;
second : pop | push ;
done : { $display(“done”); } ;
add : { $display(“add”); } ;
dec : { $display(“dec”); } ;
pop : { $display(“pop”); } ;
push : { $display(“push”); } ;

 endsequence

The production main is defined in terms of three non-terminals: first, second, and done. When main is chosen,
it generates the sequence, first, second, and done. When first is generated, it is decomposed into its produc-
tions, which specifies a random choice between add and dec. Similarly, the second production specifies a
choice between pop and push. All other productions are terminals; they are completely specified by their code
block, which in the example displays the production name. Thus, the grammar leads to the following possible
outcomes:

add pop done
add push done
dec pop done
dec push done

When the randsequence statement is executed, it generates a gramar-driven stream of random productions.
As each production is generated, the side effects of executing its associated code blocks produce the desired
stimulus. In addition to the basic grammar, the sequence generator provides for random weights, interleaving
and other control mechanisms. Although the randsequence statement does not intrinsically create a loop, a
recursive production will cause looping.

The randsequence statement creates an automatic scope. All production identifiers are local to the scope. In
addition, each code block within the randsequence block creates an anonymous automatic scope. Hierarchical
references to the variables declared within the code blocks are not allowed. To declare a static variable, the
static prefix must be used. The randsequence keyword may be followed by an optional production name (in-
side the parenthesis) that designates the name of the top-level production. If unspecified, the first production
becomes the top-level production.

12.14.1 Random production weights

The probability that a production list is generated can be changed by assigning weights to production lists. The
probability that a particular production list is generated is proportional to its specified weight.

production ::= [function_data_type] production_name [(tf_port_list)] : rs_rule { | rs_rule } ;

rs_rule ::= rs_production_list [:= expression [rs_code_block]]

The := operator assigns the weight specified by the expression to its production list. Weight expression must
evaluate to integral non-negative values. A weight is only meaningful when assigned to alternative
productions, that is, production list separated by a |. Weight expressions are evaluated when their enclosing
production is selected, thus allowing weights to change dynamically. For example, the first production of the
previous example can be re-written as:

2

first : add := 3
| dec := 2
;

This defines the production first in terms of two weighted production lists add and dec. The production add
will be generated with 60% probability and the production dec will be generated with 40% probability.

If no weight is specified, a production shall use a weight of 1. If only some weights are specified, the unspeci-
fied weights shall use a weight of 1.

12.14.2 If..else production statements

A production can be made conditionally by means of an if..else production statement. The syntax of the if..else
production statement is:

rs_if_else ::= if (expression) production_item [else production_item]

The expression can be any expression that evaluates to a boolean value. If the expression evaluates to true, the
production following the expression is generated, otherwise the production following the optional else state-
ment is generated. For example:

randsequence()
...
PP_PO : if (depth < 2) PUSH else POP ;
PUSH : { ++depth; do_push(); };
POP : { --depth; do_pop(); };

endsequence

This example defines the production PP_OP. If the variable depth is less than 2 then production PUSH is
generated, otherwise production POP is generated. The variable depth is updated by the code blocks of both
the PUSH and POP productions.

12.14.3 Case production statements

A production can be selected from a set of alternatives using a case production statement. The syntax of the
case production statement is:

rs_case ::= case (expression) rs_case_item { rs_case_item } endcase

rs_case_item ::=

 expression { , expression } : production_item
| default [:] production_item

The case production statement is analogous to the procedural case statement except as noted below. The case
expression is evaluated, and its value is compared against the value of each case-item expression, which are
evaluated and compared in the order in which they are given. The production associated with the first case-
item expression that matches the case expression is generated. If no matching case-item expression is found
then the production associated with the optional default item is generated, or nothing if there no default item.
Multiple default statements in one case production statement shall be illegal. Case-item expressions separated
by commas allow multiple expressions to share the production. For example:

randsequence()
SELECT : case (device & 7)

 0 : NETWORK
 1, 2 : DISK
 default : MEMORY
 endcase ;

...
endsequence

3

This example defines the production SELECT with a case statement. The case expression (device & 7) is
evaluated and compared against the two case-item expressions. If the expression matches 0, the production
NETWORK is generated, and if it matches 1 or 2 the production DISK is generated. Otherwise the production
MEMORY is generated.

12.14.4 Repeat production statements

The repeat production statement is used to iterate over a production a specified number of times. The syntax
of the repeat production statement is:

rs_repeat ::= repeat (expression) production_item

The repeat expression must evaluate to a non-negative integral value. That value specifies the number of times
that the corresponding production is generated. For example:

randsequence()
...
PUSH_OPER : repeat($urandom_range(2, 6)) PUSH ;
PUSH : ...

endsequence

In this example the PUSH_OPER production specifies that the PUSH production be repeated a random num-
ber of times (between 2 and 6) depending on by the value returned by $urandom_range().

The repeat production statement itself cannot be terminated prematurely. A break statement will terminate
the entire randsequence block (see Section 12.14.6).

12.14.5 Interleaving productions – rand join

The rand join production control is used to randomly interleave two or more production sequences while
maintaining the relative order of each sequence. The syntax of the rand join production control is:

rs_production_list ::=
 rs_prod { rs_prod }
| rand join [(expression)] production_item production_item { production_item }

For example:

randsequence(TOP)
TOP : rand join S1 S2 ;
S1 : A B ;
S2 : C D ;

endsequence

The generator will randomly produce the following sequences:

 A B C D
 A C B D
 A C D B
 C D A B
 C A B D
 C A D B

The optional expression following the rand join keywords must be a real number in the range 0.0 to 1.0. The
value of this expression represents the degree to which the length of the sequences to be interleaved affects the
probability of selecting a sequence. A sequence’s length is the number of productions not yet interleaved at a
given time. If the expression is 0.0, the shortest sequences are given higher priority. If the expression is 1.0,
the longest sequences are given priority. For instance, using the previous example:

4

TOP : rand join (0.0) S1 S2 ;

Gives higher priority to the sequences: A B C D C D A B

TOP : rand join (1.0) S1 S2 ;

Gives higher priority to the sequences: A C B D A C D B C A B D C A D B

If unspecified, the generator used the default value of 0.5, which does not prioritize any sequence length.

At each step, the generator interleaves non-terminal symbols to depth of one.

12.14.6 Aborting productions - break and return

Two procedural statements can be used to terminate a production prematurely: break and return. These two
statements can appear in any code block; they differ in what they consider the scope from which to exit.

The break statement terminates the sequence generation. When a break statement is executed from within a
production code block, it forces a jump out of the randsequence block. For example:

randsequence()
 WRITE : SETUP DATA ;

SETUP : { if(fifo_length >= max_length) break; } COMMAND ;
DATA

 endsequence
: ...

 next_statement : ...

When the example above executes the break statement within the SETUP production, the COMMAND pro-
duction is not generated, and execution continues on the line labeled next_statement. Use of the break state-
ment within a loop statement behaves as defined in Section 8.6. Thus, the break statement terminates the
smallest enclosing looping statement, otherwise the randsequence block.

The return statement aborts the generation of the current production. When a return statement is executed
from within a production code block, the current production is aborted. Sequence generation continues with
the next production following the aborted production. For example:

randsequence()
 TOP : P1 P2 ;

P1 : A B C ;
P2 : A { if(flag == 1) return; } B C ;
A : { $display(“A”); } ;
B : { if(flag == 2) return; $display(“B”); } ;
C : {

 endsequence
$display(“C”); } ;

Depending on the value of variable flag, the example above displays the following:
 flag == 0 ==> A B C A B C
 flag == 1 ==> A B C A
 flag == 2 ==> A C A C

When flag == 1, production P2 is aborted in the middle, after generating A. When flag == 2, production B is
aborted twice (once as part of P1 and once as part of P2), but each time, generation continues with the next
production, C.

12.14.7 Value passing between productions

Data can be passed down to a production about to be generated, and generated productions can return data to
the non-terminals that triggered their generation. Passing data to a production is similar to a task call, and uses

5

the same syntax. Returning data from a production requires that a type be declared for the production, which
uses syntax similar to a function declaration.

Productions that accept data include a formal argument list. The syntax for declaring the arguments to a pro-
duction is similar to a task prototype; the syntax for passing data to the production is the same as a task call.

production ::= [function_data_type] production_name [(task_port_list)] : rs_rule { | rs_rule } ;

production_item ::= production_identifier [(list_of_arguments)]

For example, the first example above could be written as:

 randsequence(main)

main : first second gen ;
first : add | dec ;
second : pop | push ;
add : gen(“add”) ;
dec : gen(“dec”) ;
pop : gen(“pop”) ;
push : gen(“push”) ;
gen(string s = “done”) : { $display(s }; } ;

 endsequence

In this example, the production gen accepts a string argument whose default is “done”. Five other productions
generate this production, each with a different argument (the one in main uses the default).

A production creates a scope, which encompasses all its rules and code blocks. Thus, arguments passed down
to a production are available throughout the production.

Productions that return data require a type declaration. The optional return type precedes the production. Pro-
ductions that do not specify a return type shall assume a void return type.

A value is returned from a production by using the return with an expression. When the return statement is
used with a production that returns a value, it must specify an expression of the correct type, just like non-void
functions. The return statement assigns the given expression to the corresponding production. The return
value can be read in the code blocks of the production that triggered the generation of the production returning
a value. Within these code blocks, return values are accessed using the production name plus an optional in-
dexing expression. Within each production, a variable of the same name is implicitly declared for each pro-
duction that returns a value. If the same production appears multiple times then a one-dimension array that
starts at 1 is implicitly declared. For example:

 randsequence(bin_op)

void bin_op : value operator value // void type is optional
 { $display(“%s %b %b”, operator, value[1], value[2]); }
 ;
bit [7:0] value : { return $urandom } ;
string operator : add := 5 { return “+” ; }

 | dec := 2 { return “-” ; }
 | mult := 1 { return “*” ; }

 ;
 endsequence

In the example above, the operator and value productions return a string and an 8-bit value, respectively. The
production bin_op includes these two value-returning productions. Therefore, the code block associated with
production bin_op has access to the following implicit variable declarations:

bit 0] value [1:2]; [7:
 string operator;

6

Accessing these implicit variables yields the values returned from the corresponding productions. When exe-
cuted, the example above displays a simple three-item random sequence: an operator followed by two 8-bit
values. The operators +, -, and *are chosen with a distribution of 5/8, 2/8, and 1/8, respectively.

Only the return values of productions already generated (i.e., to the left of the code block accessing them) can
be retrieved. Attempting to read the return value of a production that has not been generated results in an un-
defined value. For example:

X : A {int y = B;} B ; // invalid use of B
X : A {int y = A[2];} B A ; // invalid use of A[2]
X : A {int y = A;} B {int j = A + B;} ; // valid

The sequences produced by randsequence can be driven directly into a system, as a side effect of production
generation, or the entire sequence can be generated for future processing. For example, the following function
generates and returns a queue of random numbers in the range given by its arguments. The first and last queue
item correspond to the lower and upper bounds, respectively. Also, the size of the queue is randomly selected
based on the production weights.

function int[$] GenQueue(int low, int high);
int[$] q;

randsequence()

TOP : BOUND(low) LIST BOUND(high) ;
LIST : LIST ITEM := 8 { q = { q, ITEM }; }

 | ITEM := 2 { q = { q, ITEM }; }
 ;
int ITEM : { return $urandom_range(low, high); } ;

BOUND(int b) : { q = { q, b }; } ;

endsequence
GenQueue = q;

endfunction

When the randsequence in function GenQueue executes, it generates the TOP production, which causes three
productions to be generated: BOUND with argument low, LIST, and BOUND with argument high. The
BOUND production simply appends its argument to the queue. The LIST production consists of a weighted
LIST ITEM production and an ITEM production. The LIST ITEM production is generated with 80% probabil-
ity, which causes the LIST production to be generated recursively, thereby postponing the generation of the
ITEM production. The selection between LIST ITEM and ITEM is repeated until the ITEM production is se-
lected, which terminates the LIST production. Each time the ITEM production is generated, it produces a ran-
dom number in the indicated range, which is later appended to the queue.

The following example uses a randsequence block to produce random traffic for a DSL packet network.

class DSL; ... endclass // class that creates valid DSL packets

randsequence (STREAM)

STREAM : GAP DATA := 80
 | DATA := 20 ;

DATA : PACKET(0) := 94 { transmit(PACKET); }

 | PACKET(1) := 6 { transmit(PACKET); } ;

 DSL PACKET(bit bad) : { DSL d = new;

 if(bad) d.crc ^= 23; // mangle crc
 return d;

 } ;
GAP: { #

endsequence
$urandom_range(1, 20); };

7

8

In this example, the traffic consists of a stream of (good and bad) data packets and gaps. The first production,
STREAM, specifies that 80% of the time the traffic consists of a GAP followed by some DATA, and 20% of
the time it consists of just DATA (no GAP). The second production, DATA, specifies that 94% of all data
packets are good packets, and the remaining 6% are bad packets. The PACKET production implements the
DSL packet creation; if the production argument is 1 then a bad packet is produced by mangling the crc of a
valid DSL packet. Finally, the GAP production implements the transmission gaps by waiting a random num-
ber of cycles between 1 and 20.

